文档库 最新最全的文档下载
当前位置:文档库 › 潮汐学

潮汐学

潮汐学
潮汐学

1. 潮汐静力理论的基本思想是什么?潮汐静力理论的贡献是什么?

假定:

(1)地球为一个圆球,其表面完全被等深的海水所覆盖,不考虑陆地的存在;

(2)海水没有粘性,也没有惯性,海面能随时与等势面重叠;

(3)海水不受地转偏向力和海底摩擦力的作用。

在这些假定下,海面在月球引潮力的作用下离开原来的平衡位置作相应的上升或下降,直到在重力和引潮力的共同作用下,达到新的平衡位置为止。因此海面便产生形变,也就是说,考虑引潮力后的海面变成了椭球形,称之为潮汐椭球,并且它的长轴恒指向月球。

由于地球的自转,地球的表面相对于椭球形的海面运动,这就造成了地球表面上的固定点发生周期性的涨落而形成潮汐。这就是平衡潮理论的基本思想。

贡献:1)潮汐静力理论是建立在客观存在的引潮力之上;

2)根据潮汐静力理论导出的潮高公式所揭示出的潮汐变化周期与实际基本相符;

3)由潮高公式计算出来的最大可能潮差为78cm , 这一数值与实际大洋的潮差相近。

2. 潮汐动力理论的基本思想是什么?潮汐动力理论的贡献是什么?

基本思想:潮汐动力学理论是从动力学观点出发,来研究海水在引潮力作用下产生潮汐的过程。此理论认为:对于海水运动来说,只有水平引潮力才是重要的,而引潮力的铅直分量(铅直引潮力)和重力相比非常小,因此铅直引潮力所产生的作用只是使重力加速度产生极微小的变化,故不重要。还认为海洋潮汐实际上指的是海水在月球和太阳水平引潮力作用下的一种潮波运动。海洋潮波在传播过程中,除了受引潮力作用之外,还受到海陆分布、海底地形(如水深)、地转偏向力(即科氏力)以及摩擦力等因素的影响。

贡献:1)解释了潮流现象;

2)解释了无潮点和旋转潮波系统;

3)解释了潮差大于平衡潮理论潮差的现象;

4)解释了浅水潮波的产生。

3. 什么是月球引潮力?月球引潮力如何计算?由引潮力公式可以得到什么结论?

地球上的物体,其所受到的月球的引力,与因地球绕地-月公共质心平动所产生的惯性力的合力,是该物体所受的月球引潮力。

根据万有引力定律,地球上任一地点单位质量的物体所受的月球引力为2x

KM f m =,方向都指向月球中心,彼此不平行,x 为所考虑的质点至月球中心的距离。这个力的大小随着质点所在位置的不同而变化。地球绕地月公共质心公转平动的结果,使得地球(表面或内部)各质点都受到大小相等、方向相同的公转惯性离心力的作用。此公转惯性离心力的方向相同且与从月球中心至地球中心联线的方向相同(即方向都背离月球),大小为2

D KM f c =,式中M 为月球的质量,K 是万有引力常数,D 为月地中心距离。 月球引力与地月公转产生的惯性离心力的合力即为月球引潮力,即→→+c m f f 。

得到的结论:

1)由于地月日的周期性运动,产生了周期性的引潮力变化,引起了周期性的潮汐现象;

2)由于地月日的周期性运动的复杂性,引起了周期复杂的潮汐现象;

3)引潮力与天体质量成正比,与天体和地球距离的立方成反比。

4. 分潮的概念是什么?分潮按其产生机制可以分为几类?

我们可以假定真正天体对潮汐所引起的每一种变化,都不是天体本身的作用,而是由一个或几个假想天体所产生的,这些假想天体对海水所引起的潮汐称为“分潮”。

分潮按其产生机制可分为天文分潮、浅水分潮和辐射分潮。

5. Kelvin 波的特点是什么?

Kelvin 波的特点:1) 传播方向的右边必须有边界(右界波);

2) 波动振幅沿传播方向的左边衰减(左减波);

3)波速 gh c = ;

4) 地转对自由长波有影响,波峰处沿传播方向右边水位高、左边水位低。

6. 宽矩形海湾中的潮波是什么形式?无潮点的位置在哪里?定性的解释为什么会位于那

个位置?

当矩形海湾的宽度较大时,由于地转效应,很多海湾中的潮波运动表现为旋转潮波系统。 可以定性的用两个Kelvin 波的叠加来说明海湾中远离湾顶部分的潮波。实际海湾的水深往往比较浅,摩擦的影响必须考虑。

无潮点的个数和位置取决于海峡的长度、地理纬度、平均深度、摩擦系量和分潮的角速率。

当0=μ时与无摩擦的情形相同,即无潮点位于海峡的中轴线上,相邻无潮点间的距离为半波长;

当0≠μ时,无潮点不在中央轴线上,向强度较强的Kelvin 波的传播方向的左方偏移。 旋转潮波系统变得不太规则,无潮点附近的等振幅线的形状不再是椭圆,同潮时线也不再是直线。

结论:宽矩形海湾中,无潮点向左下方偏移。

7. 浅水分潮产生的动力学机制是什么?以倍潮波的产生为例说明。

一维的非线性基本方程,并取摩擦项为线性形式,即

最后解得

一个线性潮波在浅水中传播时,产生了角频率为原线性潮波的两倍的浅水潮波,称之为倍潮波。倍潮波的振幅与其在浅水中传播的距离成正比,还与水深有关(水深越浅,振幅越大)。

0])[(=?+?+??-??-=??+??x

u h t ku x

g x u u t u ζζζ)14()(2sin 43)(sin 3200c x t x c gR c x t R -+-=σσσζ)15()(2sin 43)(2cos 81)(sin 420232020c x t x c R g c x t c R g c x t R c g u -+-+-=σσσσ

8. 什么是潮汐调和常数?其中的迟角有几种?

天文分潮可表示为 、 其中f i 和(V 0+u )地称为交点因子;H i 和K i 通常称之为分潮调和常数,其中H i 称为分潮调和常数振幅,K i 称为分潮调和常数位相。

分潮的调和常数反映了实际海洋对这一频率天体引潮力的响应。这种响应决定于海洋本身的几何形状及其动力学性质。

迟角有 地方迟角K ,区时迟角K ' ,区时专用迟角g 三种。

9. 什么叫差比关系?差比关系在中期观测资料的分析中如何应用?

差比关系:随从分潮与主分潮的迟角差和振幅比,称为差比关系。可将同一群的次要分潮与主分潮分离开来。

通过假定的差比关系由主要分潮的调和常数估计随从分潮的调和常数。随从分潮的引入只是为了消除它们对主要分潮的影响,即更准确地求取主要分潮的调和常数。

通常假定同一群分潮中每个分潮都与相应的平衡潮分潮之间有着相同的振幅比和位相差。换句话说,实际海域的随从分潮与主分潮的振幅比等于理论上相应的两个平衡潮分潮的系数比;而随从分潮与主分潮的迟角差为零。

10. 什么是潮流椭圆要素?

潮流椭圆的长半轴和短半轴是这个分潮流速可能达到的最大和最小潮流,常记作W 和w ,最大分潮流的方向Θ规定为从正北顺时针旋转的角度。最小潮流与最大潮流的比值叫旋转率,记为κ,如果潮流矢量随着时间按逆时针方向旋转则为正,否则为负。最大分潮流流速W 、方向Θ 、发生的时刻τ以及旋转率κ决定了分潮流椭圆的基本特征,叫做潮流的椭圆要素。

11. 海港工程设计中需要哪三种水位参数?

海港工程设计中一般需要三种基本水位参数:设计高(低)水位、校核高(低)水位和乘高(低)潮作业水位。

设计高(低)水位是指该码头在该设计高水位时,能保证设计要求的最大船舶在各种装载情况下,都能够安全靠泊码头进行装卸作业,而且要求码头结构及地基强度和稳定性等还能满足各种设计荷载。对海港工程中航道的水深,则是以设计低水位为标准,它是在该水位下按设计规定的最大船舶满载吃水及一定的预留深度确定的。

校核高(低)水位一般是沿海工程在非正常天气条件下的极端高(低)潮位。在沿海工程设计中,校核高(低)水位一般采用重现期为五十年一遇的高(低)潮位。

【对港口而言,并不要求]

)(cos[0i i i i i K u V t

H f -++=地ωζ

该港口在这种特殊高(低)潮位条件下还能正常使用,但要求在这种极端高潮位时码头不能被淹没,同时码头各部分结构及地基仍能够保持必要的较高安全度。】

乘潮水位又分为乘高潮水位和乘低潮水位两种。乘高(低)潮水位可定义为:对于预先设定的时间间隔I ,在高潮前后满足 的水位Z ,就是对应乘潮时

间间隔I 的乘高潮水位。

和 是对应于高潮前与高潮后两个时刻t1和t2的水位高度。

12. 设计高水位和设计低水位分别如何计算?校核高水位与设计高水位的区别是什么? 设计高水位:

(1)采用高潮累积频率10%的潮位(简称高潮10%或写为10%HW)

(2)历时累积频率1%的潮位。

而设计低水位采用

(1)低潮累积频率90%的潮位

(2)历时累积频率98%的潮位。

区别看11题,码头能不能使用,设计高水位是可以使用的高度,校核高水位是保证码头不被水淹没。

13. 平均海面与海平面的定义是什么?

平均海面是指某段时间内的水位的平均值,理论上是指滤掉周期比该时段短的所有振动后的一个理想面 。

海平面是一种特殊的平均海面,它的时间尺度要足够长,是指消除了所有的物理振动后稳定的平均海面。

14. 什么是海图深度基准面?我国使用的海图深度基准面采用哪些计算方法?

实际海面应当能够但很少落到海图基准面以下,即实际海面落到海图深度基准面以下的概率是一个不等于零的小量。

采用的方法:近最低潮位-海图深度基准面的BPF 方法(近最低潮位是指实际水位低于海图基准面的概率为0.14%所对应的水位),理论深度基准面的分析计算方法(该方法是通过对8个主要分潮M 2、S 2、N 2、K 2、K 1、O 1、P 1、Q 1进行组合从而求出理论上可能出现的最低水位作为深度基准面。当浅水分潮较大时,还要考虑M 4、MS 4和M 6等三个主要浅水分潮。)。

15. 什么是Topex/Poseidon 卫星高度计资料的高频混淆?

高频混淆是指因离散时间采样引起的混淆。当取样间隔过大时将导致原时间序列中频率高于折叠频率的分量向低频方向折叠,在频谱上形成虚假的谱线(峰),造成高、低频分量间的混乱.由采样所导致的这一现象就称为高频混淆。

16. 潮波数值模拟的几个关键是什么?

1)开边界条件

2)边界的形状

3)模型参数的选取:底摩擦系数,混合系数

4)引潮力的加入 )cos(0

u V t fH ++=σζ???==-=)

()(1212t t Z t t I ζζ)(1t ζ)(

2t ζ

17.什么是潮族,群,亚群?

潮汐振动的频率不是任意的。以横轴表示频率,在某一分潮频率处做一纵线,其长度等于此分潮的振幅的平方,这些线叫做潮汐谱线。这些谱线的分布是不均匀的。

按n1=0,1,2,3分成四个大丛,叫做0,1,2,3潮族,分别对应着长周期分潮、全日分潮、半日分潮和三分之一日分潮。在一个潮族中按n2的不同又分为更小的丛,每一丛叫做一个群。同样,按n3的不同又分为若干亚群。

18.写出至少5个前面的所有题中未涉及到的潮汐学术语,并加以解释。

潮位(即海面相对于某一基准面的铅直高度)涨潮时潮位不断增高,达到一定的高度以后,潮位短时间内不涨也不退,称之为平潮,平潮的中间时刻称为高潮时。

当潮位退到最低的时候,与平潮情况类似,也发生潮位不退不涨的现象,叫做停潮,其中间时刻为低潮时。

从低潮时到高潮时的时间间隔叫做涨潮时,从高潮时到低潮时的时间间隔则称为落潮时。海面上涨到最高位置时的高度叫做高潮高,下降到最低位置时的高度叫低潮高,相邻的高潮高与低潮高之差叫潮差。

潮龄:潮汐静力学理论的结论是朔望日必发生大潮,但实际上多数的地方大潮出现在朔望日之后两天左右,即大潮出现的时间比朔望日的时间迟后数天,这迟后的天数称为潮龄高潮间隙:潮汐静力学理论的结论是月中天时发生高潮。所谓高潮间隙是月中天时至下一个高潮发生时刻的时间间隔。

潮汐的日不等现象:凡是一天之中两个潮的潮差不等,涨潮时和落潮时也不等,这种不规则现象称为潮汐的日不等现象。

平均海面是指某段时间内的水位的平均值。海平面是一种特殊的平均海面,它的时间尺度要足够长,是指消除了所有的物理振动后稳定的平均海面。

潮汐要素复习整理

潮汐原理复习思考题整理 (第四章~第五章) 第四章 1.什么是中期观测资料分析和短期观测资料分析,以及调和常数求解的实际步骤 中期观测资料分析:属于不同群的分潮的会合周期最长为1个月,因此把长度长于一个月但不足一年的观测记录称为中期观测资料 短期观测资料分析:观测的时间长度只有一天或几天 调和常数求解的实际步骤: ?中期观测资料分析(TB P103-107) 1)区分主分潮和随从分潮2)取L 段观测记录,式(4.4)可以写为(4.6) 3)将式(4.6)的余弦函数展开得到(4.7) 4)式(4.7)是包含2(P+Q)+1个未知数的由 () 1 L l l M = ∑ 个方程组成的矛盾方程组 5)通过最小二乘法得到矛盾方程组的法方程(4.10) 6)当L=1时,法方程(4.10)变为TB P106 7)引入Q个随从分潮与相应的主分潮的差比关系后,将给出另外2Q个方程(4.11) 8)进一步求得(4.12) ?短期观测资料分析(TB P116-119) 1)潮汐调和常数的初算2)潮流调和常数的计算 3)噪声方差的估计4)不合理数据的舍弃 5)调和常数和余流的计算6)潮流椭圆要素的计算 2.短期资料观测引入的参数D 和d 代表什么含义,具有什么作用? 振幅系数D 和迟角订正d 用准调和分潮表达式比用调和分潮表达式要简单的多,不但可以简化许多分析过程,而 且对分析实际潮汐特征也能使得问题变得更容易。 3.什么是准调和分潮,它和调和分潮有什么区别 ?实际准调和分潮的振幅和相角与A 小时前的引潮力准调和分潮相应量有关,与其余时刻,特别是与当时引潮力则没有关系,故A 叫做准调和分潮的潮龄 ?区别 4.了解潮汐和潮流的自报TB P119 第五章 1.潮汐特征值的含义TB P120-121 2.对于不同潮汐类型港口潮汐特征值的计算方法

第十二章:潮汐与潮流分解

第十二章潮汐与潮流 1.根据潮汐静力学观点: A. 赤道上没有潮汐周日不等现象 B. 南、北回归线上没有潮汐周日不等现象 C. 两极没有潮汐周日不等现象 D. 纬度等于月球赤纬的地方没有潮汐周日不等现象 2.以下哪些因素会引起潮汐预报值与实际值相差较大: A. 寒潮 B. 台风 C. AB都是 D. AB都不是 3.英版《潮汐表》中调和常数表的用途是: A. 结合主港潮汐预报表预报附港潮汐 B.利用简化调和常数法预报主附港潮汐 C. 以上都对 D. 以上都不对 4. 则对应该主港低潮时的附港潮时差为: A. -0017 B. 0017 C. -0039 D. 0039 ?kn3其意思为: 5.中国沿海某海区海图上的往复流图示为:?→ A. 该海区涨潮流大潮日最大流速为3kn B. 该海区落潮流大潮日最大流速为3kn C. 该海区涨潮流大潮日最大流速为6kn D. 该海区落潮流大潮日最大流速为6kn 6.中国某海区为往复流,大潮日最大流速为4kn,则农历初七该地的最大流速为: A. 3kn B. 4kn C. 2kn D. 3/2kn 7.地球表面上所受引潮力都指向球心的各点组成的水圈称之为______。 A. 真子午圈 B.照耀圈 C. 卯酉圈 D. 向心圈 8.月赤纬等于0时的潮汐特征为: A. 相邻的两个高潮潮高相等 B. 涨落潮时间相等 C. 相邻的两个低潮潮高相等 D. 以上三者都对 9.某港口潮汐现象为:每天两次高潮和两次低潮,潮差和涨落潮时间均不相等,该港口为: A. 正规半日潮港 B.不正规半日潮港 C. 正规日潮港 D. 不正规日潮港 10.台风对潮汐的影响是: A.引起“增水” B. 引起“减水” C. 引起降雨 D. 产生狂浪

潮汐能发电的发展状况与前景

潮汐能发电的发展状况与前景 摘要:近年来,能源和环境问题一直制约着我国经济的发展。潮汐能作为一种洁净、无污染且可再生的能源,对其进行有效开发利用不失为一良策。本文主要针对潮汐能发电的发展状况与前景进行了探讨。 关键词:潮汐能发电;发展状况;前景 一、潮汐能发电的概念及优点 潮汐能是海水在行星引潮力和地球自转作用下发生周期性运动所产生的能源。涨潮时,潮水汹涌而来,水位迅速上升,这是海水动能向势能转变的过程;退潮时,水位下降,海水迅速退去,这是海水由势能向动能转变的过程;相互转换的动能和势能的总和就是潮汐能。潮汐能发电顾名思义就是将潮汐能转化为电能,通过海水落差推动水轮机转动,从而带动发电机组发电。 早在20世纪初,欧美一些国家就开始研究潮汐发电并取得了一定的成果,如曾经排名第一的法国朗斯潮汐电站。后来,亚洲的国家也加大的重视,目前世界最大的潮汐电站是位于韩国京畿道安山市的始华湖潮汐电站。我国虽然起步较晚,但却一直重视这方面的发展,我国的江夏潮汐实验电站曾经是亚洲最大、世界第三大规模的潮汐海洋能电站,装机容量可达3900KW。 潮汐能除了具有一般绿色能源所具有的无污染,可再生的优点外,还具有可靠性高、相对稳定、不易受外界因素影响等优点。 二、潮汐能发电技术 潮汐发电要求:潮汐的幅度要大,需在几米以上;海岸的地形应能够储蓄大量海水,并允许较大规模的土建工程。涨潮时,将海水储存在水库内,此时海水包含较大的势能。落潮时,放出海水,利用高、低潮位之间的落差,推动水轮机旋转,带动发电机发电。潮汐发电与普通水利发电原理基本类似,差别在于蓄积的海水落差不大,但流量较大,呈间歇性,并且潮水的流动时不断变换方向的,从而潮汐发电的水轮机结构要适合水头低、流量大和双流向的特点。 2.1 水库式潮汐能发电技术 水库式潮汐发电,即在海潮河口或海湾建筑堤坝、闸门和厂房,将河口或海湾与外海隔开围建水库,并安装潮汐发电机组。水库式潮汐电站主要有双池双向发电、单池双向发电和单池单向发电三种形式。 2.2 无水库式新型潮汐能发电技术 无库式潮汐能发电技术突破了常规发电的概念:借鉴风能发电的相关原理,兼顾风和海流的密度等条件的不同而开发设计的,因而这种发电技术所用水轮机

潮汐与潮流

潮汐与潮流 2008-04-02 22:28:09| 分类:自然地理| 标签:|字号大中小订阅 潮汐与潮流 潮汐(Tide)是海面周期性的升降运动。与潮汐现象同时发生的还有海水周期性的水平流动,即潮流(Tidal Stream)。 潮汐与渔业、盐业、港口建筑、以及海水动力利用有着十分密切的关系。潮汐与航海的关系也非常重要,将直接影响船舶的航行计划的实施和航海安全,如需要通过浅水区,须预先依据潮汐资料计算出当地潮高、潮时,并正确调整吃水差;为了保证船舶安全地航行在计划航线上,须随时掌握当的潮汐与潮流资料,观测船位,调整航向。即使是在港内,也不容忽视潮汐、潮流对船舶安全的影响。在沿岸航行中,船长的航行命令、公司的航行规章制度、国际性机构对航行值班驾驶员的指导性文件中,都将掌握当时和未来的潮汐和潮流列为确保航行安全的驾驶台工作的重要内容。 潮汐学有着丰富的内容,本章仅从航海应用实际出发,阐述潮汐的基本成因、潮汐术语、潮流的计算方法等内容。 §13—1 潮汐的基本成因和潮汐术语 一、潮汐的成因 海水的涨落现象是由诸多复杂因素决定的,经研究表明,潮汐产生的原动力,是天 体的引潮力,即天体的引力、地球与天体相对运动所需的惯性离心力的向量和。其 中最主要的是月球的引潮力,其次是太阳的引潮力。 本章仅从航海实际需要出发,扼要地利用平衡潮理论(静力学理论)分析潮汐的基 本成因,并对调和常数分析法作简单扼要的介绍。 平衡潮理论是牛顿创立的,所谓平衡潮是指海水在引潮力和重力作用下,达到平衡 时的潮汐。 为了使问题简化,作以下两个假设: 1、整个地球被等深的海水所覆盖,所有自然地理因素对潮汐不起作用; 2、海水没有摩擦力、惯性力,外力使海水在任何时候都处于平衡状态。 下面以月引潮力为例来分析潮汐的成因: ㈠月球的引力 根据万有引力定律,有: 式中:mM ——月球质量;mE——地球质量; R——地月中心距离;k——万有引力系数。

潮汐发电技术的应用及前景

潮汐发电技术的应用及前景 摘要:本文介绍了潮汐能发电的概念、特点、基本原理及我国潮汐能发电的现状和发展前景。潮汐能发电有其优点. 也有其发展的因素. 随着科技的不断进步和能源资源的日趋紧缺. 潮汐能发电在不远的将来将有飞速的发展. 关键字:潮汐能、发电、潮汐电站、发展现状、技术、前景、能源 前言: 海洋占地球面积的71%,它接受来自太阳的辐射能比陆地上要大得多.根据联合国科教文组织提供材料表明,全世界海洋能的可再生量从理论上说近800亿千瓦,浩瀚的大海蕴藏着巨大的可再生能源,包括波浪能、海流能、潮汐能、温差能、盐差能等。在诸多形式的海洋能中,其中海洋潮汐能量含量巨大,且目前开发技术比较成熟、开发历史较长和开发规模较大者,也当属潮汐能。它是最具有开发潜力的新能源之一。 海洋潮汐能是由于太阳、月球和地球相对位置不断改变及地球自转在一昼夜中地表各处受太阳、月球引力的合力不断改变,导致海水周期性地涨落的现象。海水潮汐能的大小随潮差而变化,潮差越大潮汐能也越大.像加拿大的芬迪湾、法国的塞纳河口、印度和孟加拉国的恒河口以及我国的钱塘江都是世界上潮差较大的地区。 现代潮汐能的利用,主要是潮汐能发电。潮汐能发电是利用海湾、河口等有利地形,建筑水堤,形成水库,以便于大量蓄积海水,并在坝中或坝旁建造水力发电厂房,通过水轮发电机组进行发电。 一、潮汐发电的基本原理 潮汐能是月球和太阳等天体的引力使海洋水位发生潮汐变化而产生的能量。潮汐能利用的主要方式是发电。潮汐发电的工作原理与常规水力发电的原理类似,它是利用潮水的涨、落产生的水位差所具有的势能来发电。差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机的结构要适合低水头、大流量的特点。具体地说,就是在有条件的海湾或感潮河口建筑堤坝、闸门和厂房,将海湾(或河口)与外海隔开围成水库,并在闸坝内或发电站厂房内安装水轮发电机组。海洋潮位周期性的涨落过程曲线类似于正弦波。对水闸适当地进行启闭调节,使水库内水位的变化滞后于海面的变化,水库水位与外海潮位就会形成一定的高度差(即工作水头),从而驱动水轮发电机组发电。从能量的角度来看,就是将海水的势能和动能,通过水轮发电机组转化为电能的过程。 利用潮汐能发电必须具备两个条件首先潮汐的幅度必须大,至少要有几米;第二海岸地形必须能储蓄大量海水。由于潮水的流动与河水的流动不同,它是不断变换方向的,因此就使得潮汐能发电出现了不同的型式,例如:①单库单向型,只能在落潮时发电。②单库双向型,在涨、落潮时都能发电。③双库双向型,可以连续发电,但经济上不合算,未见实际应用。在单向方式中水头变化范围较小,平均工作水头略高,这样可以减少水轮机的数量和尺寸,从而减少潮汐电站的投资;而在潮差较小、海湾条件允许的电站,采用双向工作比较有利。 二、潮汐电站的技术关键 潮汐能属于可再生资源,蕴藏量大,运行成本低。对于环境影响小,发电不排放废气废渣度水,属于洁净能源。 潮汐电站由7 个基本部分组成:潮汐水库;堤坝;闸门和泄水道建筑;发电机组和厂房;输电、交通和控制设施;航道、鱼道等。潮汐发电的关键技术主要包括低水头、大流量、变工况水轮机组设计制造;电站的运行控制;电站与海洋环境的相互作用,包括电站对环境的影响和海洋环境对电站的影响,特别是泥沙冲淤问题;电站的系统优化,协调发电量、间断发电以及设备造价和可靠性等之间的关系;电站设备在海水中的防腐等。

潮流潮汐

潮汐现象 潮汐(Tide):海面在外力作用下产生的周期性的升降 现象。 白天的海面上升为潮,晚上的海面上升为汐。 涨潮(Rising tide或Flood tide):海面上升的过程。 落潮(Falling tide或Ebb tide ):海面下降的过程。 高潮(High Water):海面涨到最高位置时,称为高潮。 低潮(Low Water):海面落到最低位置时,称为低潮。 潮流(Tidal Stream):伴随海面周期性的升降运动 而产生的海水周期性的水平方向的流动。 潮汐的变化周期:指相邻高潮或相邻低潮的时间间隔,一般大约为半天或一天,即所谓的半日潮和日潮。 注意的是:海水的涨落时快时慢,高潮后,海面下降速度缓慢,到高、低潮中间附近时下降速度最快,随后又减慢,直到发 生低潮。 停潮(Slack Tide):低潮前后的一段时间内,海面 处于停止状态,称为停潮。

低潮时(Time of Low Water):简记T L W,停潮的中间 时刻。 平潮(Slack Tide):高潮前后的一段时间内,海面 处于停止状态,称为平潮。 高潮时(Time of High Water):简记T H W,平潮的中 间时刻。 涨潮时间(Duration of Rise):从低潮到高潮的时 间间隔。 落潮时间(Duration of Fall):从高潮到低潮的时 间间隔。 潮汐的基本成因 潮汐由天体的引潮力产生的。 引潮力:天体的引力和惯性离心力的合力。 对潮汐影响较大的是月球和太阳的引潮力,其中月球 引潮力是产生潮汐的主要因素,包括月球的引力和地球绕 月地公共质心进行平动运动所产生的惯性离心力。 月球连续两次上(下)中天的平均时间间隔约为24h50m,即一个太阴日,故在一个太阴日中同一地点产生两次高潮 和两次低潮,相邻高(低)潮的时间间隔为12h25m。 在一个太阴日中,两个高潮和两个低潮有明显的差异;涨落潮的时间间隔也不相等称为潮汐的周日不等。

潮汐能的发展与前景

《海洋能源开发利用》作业题目:潮汐能的现状与发展 班级:机械设计制造及自动化3班 姓名:唐雯娟 学号:1222305 2015年12 月

潮汐能的现状与发展 摘要:海洋占地球面积的3/4左右,蕴藏着丰富的无污染可再生能源,其可开发部分远远超出地球能源总消耗量。在我国漫长的海岸向上,蕴藏着丰富的潮汐能,其理论蕴藏量为1.1亿KW。在当前全球能源极度短缺的严峻形势下,合理开发利用潮汐能,可以替代大量的煤炭、石油、天然气等化石能源;并能有效避免燃烧矿物燃料而产生的对人类生存环境的污染,并可以实现对水资源的综合利用——兴水利、除水害,兼而取得防洪、航运、农灌。供水、养殖、旅游等经济和社会效益,同时带动当地的交通运输、工业及至文化、教育、卫生事业的发展,成为振兴地区经济的前导;电能运输方便,可减少交通运输的负荷。 关键词:潮汐能、电站、水资源、开发利用 引言:世界经济的现代化,得益于化石能源,如石油、天然气煤炭与核裂变能的广泛的投入应用,因而它是建筑在化石能源基础之上的一种经济。然而由于化石能源属于不可再生资源随着其量的减少,能源供应的链条将会出现中断,这必将导致世界经济危机和冲突的加剧,最终葬送现代市场经济。化石燃料的使用对环境的破环效应日益受到人们的关注。? 我国作为一个能源消耗大国近年来一直努力减少对化石燃料的依赖。寻求可替代性能源,同时积极改变经济增长模式降低环境污染,走可续发展道路。潮汐能作为一种洁净的,可再生资源对其进行开发利用可以有效的缓解我国能源紧缺问题和环境污染问题。针对该种情况,本文通过对潮汐发电现状的总结,结合我国自身开发潮汐能的可行性现状,指出我国拥有巨大的潮汐能开发利用潜力为我国今后的潮汐能开发利用研究提供合理参考。?

潮汐能发电的发展现状与前景

潮汐能发电的发展现状与前景 姓名:樊书朋 学号:B10040411 班级:B100404 专业:电气工程及其自动化 时间:2013/10/28

潮汐能发电的发展现状与前景 潮汐能发电是利用海水的规律涨落拥有的能量来转换成电能的一种发电形式。其绿色无污染、储量巨大、不消耗燃料、不受洪水或枯水影响、适于沿海及远海发电需求等诸多好处将使得其在战略、民生等方面突出其应用的价值。国内外对潮汐能发电都有了近半个世纪的技术开拓,基本的技术障碍已经突破。海南是一个拥有广阔海洋面积和众多岛屿的省,拥有丰富的潮汐能资源。在建设国际旅游岛的同时,发展绿色能源会给海南省的未来带来更多的机会与实力。 国内现状:中国利用潮汐能的历史可追溯到距今约1000多年前,当时就有了潮汐磨而潮汐发电则是最近才慢慢发展起来的。我国在潮汐能发电开发利用过程中既有挫折也有喜悦。有半个多世纪的建设经验的我国今天的潮汐能发电量居世界第三。以下是我国潮汐发电发展大致的三个阶段: 一初始阶段 我国潮汐能的开发始于20世纪50年代,1957年在山东建成了第一座潮汐发电站。1956年,中国在福州市建成第1座小型潮汐电站。据1958年10月召开的全国第1次潮汐发电会议统计,全国建成了41座潮汐电站,总装机容量仅583kW的发潮汐电站。当时正在兴建的还有80多处,总装机容量7055kW。由于当时我国科学技术水平的限制,绝大多数的潮汐发电站总体质量低、装机容量小、设备维护欠缺故而基本废弃。 二继承改进阶段 20世纪70年代到80年代是我国开发利用潮汐能的第2个阶段。这个阶段,人们吸取了初始阶段潮汐发电的经验教训,注重科学和施工质量,建成了一批较高质量的潮汐电站(有的至今仍在运行)。1978年8月1日山东乳山县白沙口潮汐电站建成发电,年发电量230万千瓦时;20世纪80年代,建成江厦潮汐电站和幸福洋电站,并对以前建设的潮汐电站及其设备进行了治

潮汐学

1. 潮汐静力理论的基本思想是什么?潮汐静力理论的贡献是什么? 假定: (1)地球为一个圆球,其表面完全被等深的海水所覆盖,不考虑陆地的存在; (2)海水没有粘性,也没有惯性,海面能随时与等势面重叠; (3)海水不受地转偏向力和海底摩擦力的作用。 在这些假定下,海面在月球引潮力的作用下离开原来的平衡位置作相应的上升或下降,直到在重力和引潮力的共同作用下,达到新的平衡位置为止。因此海面便产生形变,也就是说,考虑引潮力后的海面变成了椭球形,称之为潮汐椭球,并且它的长轴恒指向月球。 由于地球的自转,地球的表面相对于椭球形的海面运动,这就造成了地球表面上的固定点发生周期性的涨落而形成潮汐。这就是平衡潮理论的基本思想。 贡献:1)潮汐静力理论是建立在客观存在的引潮力之上; 2)根据潮汐静力理论导出的潮高公式所揭示出的潮汐变化周期与实际基本相符; 3)由潮高公式计算出来的最大可能潮差为78cm , 这一数值与实际大洋的潮差相近。 2. 潮汐动力理论的基本思想是什么?潮汐动力理论的贡献是什么? 基本思想:潮汐动力学理论是从动力学观点出发,来研究海水在引潮力作用下产生潮汐的过程。此理论认为:对于海水运动来说,只有水平引潮力才是重要的,而引潮力的铅直分量(铅直引潮力)和重力相比非常小,因此铅直引潮力所产生的作用只是使重力加速度产生极微小的变化,故不重要。还认为海洋潮汐实际上指的是海水在月球和太阳水平引潮力作用下的一种潮波运动。海洋潮波在传播过程中,除了受引潮力作用之外,还受到海陆分布、海底地形(如水深)、地转偏向力(即科氏力)以及摩擦力等因素的影响。 贡献:1)解释了潮流现象; 2)解释了无潮点和旋转潮波系统; 3)解释了潮差大于平衡潮理论潮差的现象; 4)解释了浅水潮波的产生。 3. 什么是月球引潮力?月球引潮力如何计算?由引潮力公式可以得到什么结论? 地球上的物体,其所受到的月球的引力,与因地球绕地-月公共质心平动所产生的惯性力的合力,是该物体所受的月球引潮力。 根据万有引力定律,地球上任一地点单位质量的物体所受的月球引力为2x KM f m =,方向都指向月球中心,彼此不平行,x 为所考虑的质点至月球中心的距离。这个力的大小随着质点所在位置的不同而变化。地球绕地月公共质心公转平动的结果,使得地球(表面或内部)各质点都受到大小相等、方向相同的公转惯性离心力的作用。此公转惯性离心力的方向相同且与从月球中心至地球中心联线的方向相同(即方向都背离月球),大小为2 D KM f c =,式中M 为月球的质量,K 是万有引力常数,D 为月地中心距离。 月球引力与地月公转产生的惯性离心力的合力即为月球引潮力,即→→+c m f f 。 得到的结论: 1)由于地月日的周期性运动,产生了周期性的引潮力变化,引起了周期性的潮汐现象; 2)由于地月日的周期性运动的复杂性,引起了周期复杂的潮汐现象; 3)引潮力与天体质量成正比,与天体和地球距离的立方成反比。

潮汐的类型

潮汐的类型 凡是到过海边的人们,都会看到海水有一种周期性的涨落现象:到了一定时间,海水推波逐澜,迅猛上涨,达到高潮;过后一些时间,上涨的海水又自行退去,留下一片沙滩,出现低潮。如此循环重复,永不停息。海水的这种运动现象就是潮汐。“潮”指白天海水上涨,“汐”指晚上海水上涨,不过通常我们往往将潮和汐都叫做“潮”。 潮汐现象非常复杂。仅以海水涨落的高低来说,各地就很不一样。有的地方潮水几乎察觉不出,有的地方却高达几米。在我国台湾省基隆,涨潮时和落潮时的海面只差0.5米,而杭州湾的潮差竟达8.93米。在一个潮汐周期(约24小时50分钟,天文学上称一个太阴日,即月球连续两次经过上中天所需的时间)里,各地潮水涨落的次数、时刻、持续时间也均不相同。潮汐现象尽管很复杂,但大致说来不外三种基本类型。 半日潮型:一个太阴日内出现两次高潮和两次低潮,前一次高潮和低潮的潮差与后一次高潮和低潮的潮差大致相同,涨潮过程和落潮过程的时间也几乎相等(6小时12.5分)。我国渤海、东海、黄海的多数地点为半日潮型,如大沽、青岛、厦门等。 全日潮型:一个太阴日内只有一次高潮和一次低潮。如南海汕头、渤海秦皇岛等。南海的北部湾是世界上典型的全日潮海区。 混合潮型:一月内有些日子出现两次高潮和两次低潮,但两次高潮和低潮的潮差相差较大,涨潮过程和落潮过程的时间也不等;而另一些日子则出现一次高潮和一次低潮。我国南海多数地点属混合潮型。如榆林港,十五天出现全日潮,其余日子为不规则的半日潮,潮差较大。 不论那种潮汐类型,在农历每月初一、十五以后两三天内,各要发生一次潮差最大的大潮,那时潮水涨得最高,落得最低。在农历每月初八、二十三以后两三天内,各有一次潮差最小的小潮,届时潮水涨得不太高,落得也不太低。 月球引潮力 引起潮汐的原因是很复杂的,但主要是受月球和太阳“引潮力”引起的。现在我们先看看月球引潮力的两个构成因素。 第一个因素是月球的引力。万有引力定律告诉我们,宇宙中一切物体之间都是互相吸引的。月球和地球是一对天体,因此月球对地球存在着引力。在地球上不同的地方,月球的引力是方向不同、大小不等的。引力的方向指向月球中心,引力的大小因地球上各地距月球中心的距离而不同。如附图所求,在月球直射点B距月球中心最近,引力最大,A点和C点次之,B点的对蹠点D处,月球的引力最小。 月球引潮力的第二个因素是地球绕地月公共质心转动而产生的离心力。由于月球对地球有引力,地球对月球也有引力,在地月之间就构成了一个互相吸引的引力系统,并有一个公共质心,位于距地心0.73倍地球半径的地方。地球除一刻不停地进行着自转和绕日公转外,它还要绕地月公共质心转动,产生离心力。这股离心力刚好和月球对地心的吸引力大小相等,方向相反,从而使地月之间能够保持一定距离。这种情况就好象人们用强子拴信一块石头使其转动,石头受到人手对它的拉力,并在转动时产生了离心力,并与该拉力

潮汐能发电课题研究报告

潮汐能发电课题研究报告 班级: 姓名: 潮汐能是一种水能,它将潮汐的能量转换成电能及其它种有用形式的能源。因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量为潮汐能。潮汐能是以势能形态出现的海洋能,是指海水潮涨和潮落形成的水的势能与动能。 在涨潮的过程中,汹涌而来的海水具有很大的动能,而随着海水水位的升高,就把海水的巨大动能转化为势能;在落潮的过程中,海水奔腾而去,水位逐渐降低,势能又转化为动能。潮汐能的能量与潮量和潮差成正比。世界上潮差的较大值约为13~15m,但一般说来,平均潮差在3m以上就有实际应用价值。潮汐能是因地而异的,不同的地区常常有不同的潮汐系统,他们都是从深海潮波获取能量,但具有各自独特的特征。 潮汐能主要的利用方式是发电。潮汐发电是利用海湾或河口等地形,建筑水堤形成水库,以便大量蓄积海水,并在坝中或坝旁建造水利发电厂房,通过水轮发电机组进行发电。

潮汐是一种世界性的海平面周期性变化的现象,由於受月亮和太阳这两个万有引力源的作用,海平面每昼夜有两次涨落 潮汐发电与普通水利发电原理类似。在涨潮时将海水储存在水库内,以势能的形式保存;在落潮时放出海水,利用高、低潮位之间的落差,推动水轮机旋转,带动发电机发电。差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机结构要适合低水头、大流量的特点。潮水的流动与河水的流动不同,它是不断变换方向的。潮汐发电有以下三种形式: ?(1)单池单向发电:先在海湾筑堤设闸,涨潮时开闸引水入库,落潮时便放水驱动水轮机组发电。这种类型的电站只能在落潮时发电,一天两次,每次最多5小时。?(2)单池双向发电:为在涨潮进水和落潮出水时都能发电,尽量做到在涨潮和落潮时都能发电,人们便使用了巧妙的回路设施或設臵双向水轮机组,以提高潮汐的利用率。 ?(3)双池双向发电:配臵高低两个不同的水库来进行双向发电。

潮汐能利用现状及发展前景

潮汐能的利用现状及发展前景 摘要:当今世界,能源问题已成为全世界的焦点,节约能源,开发利用可再生、无污染的新能源已成为人类亟待解决的问题。潮汐能作为其一种清洁的 新能源得到了广泛的重视。本文总结了国内外潮汐能利用利用状况,并 简要介绍我国潮汐能开发利用的意义及其开发可行性情况,同时指出我 国潮汐能大规模开发利用所面临的问题在此基础上提出未来研究的方 向并给出相应建议。 关键词:潮汐能;潮汐发电:潮汐能利用 世界经济的现代化,得益于化石能源,如石油、天然气煤炭与核裂变能的广泛的投入应用,因而它是建筑在化石能源基础之上的一种经济。然而由于化石能源属于不可再生资源随着其量的减少,能源供应的链条将会出现中断,这必将导致世界经济危机和冲突的加剧,最终葬送现代市场经济。化石燃料的使用对环境的破环效应日益受到人们的关注。 我国作为一个能源消耗大国近年来一直努力减少对化石燃料的依赖。寻求可替代性能源,同时积极改变经济增长模式降低环境污染,走可续发展道路。潮汐能作为一种洁净的,可再生资源对其进行开发利用可以有效的缓解我国能源紧缺问题和环境污染问题。针对该种情况,本文通过对潮汐发电现状的总结,结合我国自身开发潮汐能的可行性现状,指出我国拥有巨大的潮汐能开发利用潜力为我国今后的潮汐能开发利用研究提供合理参考。 1. 潮汐能概述 潮汐能是月球和太阳等天体的引力使海洋水位发生潮汐变化而产生的能量。潮汐能利用的主要方式是发电。潮汐发电的工作原理与常规水力发电的原理类似,它是利用潮水的涨落产生的水位差所具有的势能来发电。差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机的结构是适合低水头、大流量的特点。具体的说,就是在有条件的海湾或感

潮汐能发电技术与前景研究

潮汐能发电技术与前景研究 传统的发电方式越来越跟不上日益增多的用电需求,全球环境恶化也逐年严重,所以我们急需一种新的发电形式,既可以满足人们的需要又不会加重环境负担。在这种情况下利用潮汐发电的技术应运而生,为这个难题提供了一个较好的解决方案。 标签:潮汐发电;技术;前景 海洋面积在地球上十分宽阔,其具有的能源十分庞大,潮汐能作为一种新型可再生资源,可以有效协调发电、环境及资源之间的关系。我国拥有比较长的海岸线,潮汐能十分丰富,我们要重视开发利用这种能源进行发电。 1 潮汐发电 1.1 发电原理 太阳和月亮对海洋的引力造成了海洋平面的潮起潮落现象,也就是所谓的潮汐。潮汐发电的原理就是利用海水在涨潮,退潮的过程中的巨大推动力进行发电。在涨潮时,海平面逐渐上升,海水由低处逐渐往高处上升,在海水中的水轮在大量海水的作用力下进行转动,从而带动与其相连的发电机发电;在海水退潮时,高处的海水逐渐降低,形成一种落差,利用大量海水产生的落差作用力推动水轮进行反方向的转动,也可以带动发电机进行发电。海水在升降过程中形成的正向推动力及方向落差力都会作用于水轮进行发电。 1.2 潮汐发电形式 利用潮汐能进行发电因为建设范围和作用力的不同主要可分为三种形式。 第一种是单库单向式。这种形式的发电站主要在海边建设一个发电水库,在面临海水的一方设置一个闸门,当海水开始上升时,将闸门开启,让水逐渐进入水库中,在海水上升到最高点时,将闸门关闭,从而将水库中的海水困在发电站里,在海水下降时开启闸门,让水库中的水与海平面形成一个落差,进而让海水推动水轮进行发电。因为只有一个水库进行单方向的放水发电,所以称为单库单向式潮汐发电站。这种发电站的优点是建设投入低,设施少,缺点是能量利用少,发电不连贯。 第二种是单库双向式。这种形式的发电站也是修建一个水库,但是水轮设备有单独的两套。在海水上升进入水库时,将水引入第一套设备,海水在经过第一套设备时推动水轮开始转动发电,在海水升到最高点,即水库内外的水平面基本持平时,关闭第一套设备,让海水随着潮落通过第二套设备流出水库,利用流出的力量发电。因为在一个水库中可以利用海水的流进及流出双向发电,所以称为单库双向式。它的优点是对潮汐能量的利用率比第一种高,缺点是设备比较复杂,

潮汐

第九章潮汐与潮流 单项选择题(选一正确或最合适的答案) 1. 当高潮发生后,海面有一段时间停止升降的现象称为: A. 平潮 B. 转流 C. 转潮 D. ABC都对 答案:A 2. 一般情况下表示潮汐基准面的基准是: A. 海图基准面 B. 当地水尺0点 C. 平均海面 D. 大潮高潮面答案:A 3. 半日潮港是指: A. 每天有两次高潮和两次低潮的港口 B. 每天有两涨两落,涨落潮时间,潮差几乎相等的港口 C. 每天有两涨两落,但涨落潮时间不等的港口 D. 一个月内有半个月是每天有两次高潮和两次低潮的港口 答案:B 4. 日潮港是指 A. 每天只有一次高潮和一次低潮的港口 B. 半个月中有一半以上的天数一天只有一次高潮和一次低潮的港口 C. 半个月中一天只有一次高潮和一次低潮的天数不足7天 D. 以上答案都对 答案:B 5. 不正规日潮港是指: A. 潮汐周期为24小时48分钟的港口 B. 半个月中每天海水一涨一落的天数超过7天的港口 C. 半个月中每天只有一次高潮和一次低潮的天数不超过7天 D. ABC都对 答案:C 6. 潮汐周日不等的潮汐现象是: A. 一天有两涨两落 B. 两次高潮或两次低潮潮高不等 C. 涨落潮时间不相等 D. A+B+C 答案:D 7. 引起潮汐周日不等的主要原因是: A. 日、月与地球相互位置不同 B. 月赤纬不等于零 C. 地理纬度不等于零 D. B+C 答案:D 8. 当月球赤纬最小时的潮汐称: A. 小潮 B. 大潮 C. 分点潮 D. 回归潮 答案:C 9. 当潮汐为分点潮时,潮汐表现为: A. 周日不等最显著 B. 与周日不等现象无关 C. 周日不等(半日潮不等)最小 D. 半日潮不等现象最显著 答案:C 10. 月赤纬等于0时的潮汐特征为:

潮汐能发电的发展和前景综述论文

专业选修课论文 论文题目:潮汐能发电的发展和前景综述

潮汐能发电的发展和前景综述 摘要:随着人口的增多和人类日益增加的活动和科研对能源的消耗的增多,越来越多的能源被持续消耗以致于能源紧缺,为了满足人类社会可持续发展对能源的需要,防止和减轻大量燃用化石能源对环境造成的严重污染和生态破坏。近年来世界各国开始呼吁必须走可持续发展道路,开发和利用新能源。潮汐能作为一种清洁无污染的新能源被人类开发和利用。本文主要对潮汐能的发展和前景进行总结综述。 关键词:潮汐能;潮汐能发电;发展和前景

众所周知,地球上占表面积最大的就是海洋,约占地球表面积的70.9%。海洋是个巨大的能源宝库,海水中蕴藏着巨大的动力资源,我们把它叫做海洋能,潮汐能就是海洋能的一种。说到潮汐能,我们首先要讲到潮汐,所谓的潮汐是因为太阳和月球对地球各处的引力的不同所引起的海水有规律的、周期性的的涨落现象,而潮汐能是指海水涨潮和落潮形成的水的动能和势能。现代潮汐能的利用,主要是潮汐能发电。潮汐能发电是利用海湾、河口等有利地形,建筑水堤,形成水库,以便于大量蓄积海水,并在坝中或坝旁建造水力发电厂房,通过水轮发电机组进行发电。从能源转换的角度来说,潮汐发电首先是把潮汐的动能和位能通过水轮机变成机械能,然后再由水轮机带动发电机,把机械能转变成电能。潮汐能发电与普通水力发电原理类似,差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐能发电的水轮机的结构要适合低水头、大流量的特点。利用潮汐能发电必须具备两个条件:首先潮汐的幅度必须大,至少要有几米;第二海岸地形必须能储蓄大量海水。

潮汐能与潮汐发电

潮汐能与潮汐发电 由于引潮力的作用,使海水不断地涨潮、落潮。涨潮时,大量海水汹涌而来,具有很大的动能;同时,水位逐渐升高,动能转化为势能。落潮时,海水奔腾而归,水位陆续下降,势能又转化为动能。海水在运动时所具有的动能和势能统称为潮汐能。 简单地说,潮汐发电就是在海湾或有潮汐的河口建筑一座拦水堤坝,形成水库,并在坝中或坝旁放置水轮发电机组,利用潮汐涨落时海水水位的升降,使海水通过水轮机时推动水轮发电机组发电。从能量的角度说,就是利用海水的势能和动能,通过水轮发电机转化为电能。 原理 在海湾或感潮河口,可见到海水或江水每天有两次的涨落现象,早上的称为潮,晚上的称为汐。这种现象主要是由月球、太阳的引潮力以及地球自转效应所造成的。潮汐是一种蕴藏量极大、取之不尽、用之不竭、不需开采和运输、洁净无污染的可再生能源。建设潮汐电站,不需要移民,不淹没土地,没有环境污染问题,还可以结合潮汐发电发展围垦、水生养殖和海洋化工等综合利用项目。 潮汐发电与普通水利发电原理类似,通过出水库,在涨潮时将海水储存在水库内, 以势能的形式保存,然后,在落潮时放出海水,利用高、低潮位之间的落差,推动水轮机旋转,带动发电机发电。差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机结构要适合低水头、大流量的特点。 潮汐发电是水力发电的一种。在有条件的海湾或感潮口建筑堤坝、闸门和厂房,围成水库,水库水位与外海潮位之间形成一定的潮差(即工作水头),从而可驱动水轮 发电机组发电。 与潮汐发电相关的技术进步极为迅速,已开发出多种将潮汐能转变为机械能的机 械设备,如螺旋浆式水轮机、轴流式水轮机、开敞环流式水轮机等,日本甚至开始利 用人造卫星提供潮流信息资料。利用潮汐发电日趋成熟,已进入实用阶段。 物理条件 利用潮汐发电必须具备两个物理条件:首先潮汐的幅度必须大,至少要有几米;第二海岸地形必须能储蓄大量海水,并可进行土建工程。潮汐发电的工作原理与一般水力发电的原理是相近的,即在河口或海湾筑一条大坝,以形成天然水库,水轮发电机组就装在拦海大坝里。潮汐电站可以是单水库或双水库。单水库潮汐电站只筑一道堤坝和一个水库。老的单水库潮汐电站是涨潮时使海水进人水库,落潮时利用水库与海面的潮差推动水轮发电机组。它不能连续发电,因此又称为单水库单程式潮汐电站。新的单水库潮汐电站利用水库的特殊设计和水闸的作用既可涨潮时发电,又可在落潮时运行,只是在水库内外水位相同的平潮时才不能发电。这种电站称之为单水库双程式潮汐电站,它大大提高了潮汐能的利用率。 因此为了使潮汐电站能够全日连续发电就必须采用双水库的潮汐电站。双水库潮汐电站建有两个相邻的水库,水轮发电机组放在两个水库之间的隔坝内。一个水库只在涨潮时进水(高水位库),一个水库(低水位库)只在落潮时泄水;两个水库之间始终保持有水位差,因此可以全日发电。由于海水潮汐的水位差远低于一般水电站

航海学3潮汐与潮流作业

第一章 第一节潮汐基本成因及潮流 一、简答题: 1、潮汐产生的基本原因是什么? 答:潮汐产生的原动力是天体引潮力,主要是月球引潮力,其次是太阳引潮力。 2、潮汐周日不等有哪些具体表现? 答:当月球赤纬不等于零、纬度不为零时,在同一太阴日中所发生的两次高潮或两次低潮的潮高以及相邻的高、低潮的时间间隔不相等。 3、潮汐的周日不等、半月不等和视差不等的基本原因各是什么? 答:周日不等:月球赤纬不等于零,测者纬度不为零; 半月不等:月球、太阳和地球在空间的相对位置不同;视差不等:地球和月球之间的距离发生变化。 二、名词解释 1、平均高(低)潮间隙:每天月中天时刻至高(低)潮时的时间间隔的长期平均值。 2、回归潮:当月球赤纬最大时的潮汐称为回归潮,此时,潮汐周日不等现象最显著。 3、大潮升:从潮高基准面到平均大潮高潮面的高度。 4、停潮:当低潮发生后,海面有一段时间呈现停止升降的现象。 第二节中版《潮汐表》与潮汐推算 一、名词解释

1、高(低)潮时差:主港与附港高(低)潮潮时之差。 2、潮差比:对半日潮港来说,是指附港的平均潮差与主港的平均潮差之比;对日潮港来说,是指附港的回归潮大的潮差与主港的回归潮大的潮差之比。 二、计算题 1、我国某主港某日高潮潮时为1138,其附港的潮时差为0150,改正值为15。则该附港日的高潮潮时是多少? 解:附港高潮时=主港高潮时+高潮时差=1138+0150=1328 2、我国某主港某日潮高为3.6m,某附港的潮差比为1.20,主港平均海面220厘米,附港平均海面222厘米,主附港平均海面季节改正值均为+18厘米,求该附港的潮高。 解:附港潮高=[主港潮高-(主港平均海面+主港季节改正值)]×潮差比+(附港平均海面+附港季节改正值)=[3.6-(2.2+0.18)] ×1.20+(2.22+0.18)=3.864m 3、从潮信表查得某海区的平均低潮间隔MLWI为1147,则8月28日(农历二十六)的低潮潮大约是多少? 解:月上中天时=(农历日期-16)×0.8=(26-16)×0.8=8 h 低潮时t1=低潮间隙+格林尼治月上中天时=1147+0800=1947 低潮时t2=1947-1225=0722(注:1225为潮汐周期) 4、我国某地高潮间隔1050,概算农历8月21日该地的高潮时。 解:月上中天时=(农历日期-16)×0.8=(21-16)×0.8=4 h 高潮时t1=高潮间隙+格林尼治月上中天时=1050+0400=1450 高潮时t2=1450-1225=0225(注:1225为潮汐周期)

潮汐能发电的现状和前景

潮汐能发电的前景 0前言 能源对经济的发展有着举足轻重的作用,煤、石油、天然气等属不可再生的能源。随着世界经济的发展,能源需求也不断增长,世界各国都在寻求新能源,希望新能源既是可再生的又能避免像煤、石油、天然气等能源带来的环境污染问题。开发利用洁净的新能源是解决能源问题及环境问题的出路, 海洋被认为是地球的资源宝库,也被称作为能量之海。从技术及经济上的可行性,可持续发展的能源资源以及地球环境的生态平衡等方面分析,海洋能中的潮汐能作为成熟的技术将得到更大规模的利用。潮汐能作为洁净的、可再生的新能源,受到广泛的重视。世界海洋潮汐能蕴藏量约为27 亿kW,若全部转换成电能,每年发电量大约为1.2万亿kWh。 1潮汐能发电概念 因月球引力的变化引起潮汐现象,潮汐导致海水平面周期性地升降,因海水涨落及潮水流动所产生的能量,称为潮汐能。 现代潮汐能的利用,主要是潮汐能发电。潮汐能发电是利用海湾、河口等有利地形,建筑水堤,形成水库,以便于大量蓄积海水,并在坝中或坝旁建造水力发电厂房,通过水轮发电机组进行发电。 潮汐能发电与普通水力发电原理类似,差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐能发电的水轮机的结构要适合低水头、大流量的特点。利用潮汐能发电必须具备两个条件:首先潮汐的幅度必须大,至少要有几米;第二海岸地形必须能储蓄大量海水。由于潮水的流动与河水的流动不同,它是不断变换方向的,因此就使得潮汐能发电出现了不同的型式,例如:○1单库单向型,只能在落潮时发电。○2单库双向型,在涨、落潮时都能发电。○3双库双向型,可以连续发电,但经济上不合算,未见实际应用。 2潮汐能发电的特点

潮汐能发电技术

网络教育学院《新能源发电》课程设计 题目: 学习中心: 层次: 专业: 年级: 学号: 学生: 辅导教师: 完成日期:

潮汐能发电技术 摘要 潮汐能作为洁净的、可再生的新能源,受到广泛的重视。本文首先介绍了潮汐能发电的原理、优点、发展现状及技术类型和特点,然后以巽寮湾为例对其建设潮汐发电站的可行性进行分析,最后阐述了我国潮汐能发电的应用前景。 关键词:潮汐发电,发展前景,巽寮湾 世界海洋潮汐能蕴藏量约为27亿kW,若全部转换成电能,每年发电量大约为1.2万亿kWh。海洋被认为是地球的资源宝库,也被称作为能量之海。从技术及经济上的可行性,可持续发展的能源资源以及地球环境的生态平衡等方面分析,海洋能中的潮汐能作为成熟的技术将得到更大规模的利用。 一、潮汐发电的原理及发展现状 (一)潮汐能发电的原理 在海湾或涨潮河口,可见到海水或江水每天有两次的涨落现象,早上的称为潮,晚上的称为汐。这种现象主要是由月球、太阳的引潮力以及地球自转效应所造成的。潮汐发电是水力发电的一种。在有条件的海湾或感潮口建筑堤坝、闸门和厂房,围成水库,水库水位与外海潮位之间形成一定的潮差(即工作水头),从而可驱动水轮发电机组发电。 潮汐发电与普通水利发电原理类似,通过出水库,在涨潮时将海水储存在水库内,以势能的形式保存,然后,在落潮时放出海水,利用高、低潮位之间的落差,推动水轮机旋转,带动发电机发电。差别在于海水与河水不同,蓄积的海水落差不大,但流量较大,并且呈间歇性,从而潮汐发电的水轮机结构要适合低水头、大流量的特点。 (二)潮汐能发电的优点 1.潮汐能是一种清洁、不污染环境、不影响生态平衡的可再生能源。潮水每日涨落,周而复始,取之不尽,用之不竭。它完全可以发展成为沿海地区生活、生产和国防需要的重要补充能源。

潮汐

科技名词定义 中文名称: 潮汐 英文名称: tide 定义1: 在天体引潮力作用下产生的海面周期性涨落现象。 所属学科: 海洋科技(一级学科) ;海洋科学(二级学科) ;物理海洋学(三级学科) 定义2: 海水受月球和太阳等天体的引力作用而发生的周期性升降现象。 所属学科: 水产学(一级学科) ;水产基础科学(二级学科) 定义3: 海水在月球和太阳引潮力等外力作用下产生的周期性运动。 所属学科: 水利科技(一级学科) ;水力学、河流动力学、海岸动力学(二级学科) ;海岸动力学(水利)(三级学科) 本内容由全国科学技术名词审定委员会审定公布 百科名片 潮汐现象是指海水在天体(主要是月球和太阳)引潮力作用下所产生的周期性运动,习惯上把海面垂直方向涨落称为潮汐,而海水在水平方向的流动称为潮流。是沿海地区的一种自然现象,古代称白天的潮汐为“潮”,晚上的称为“汐”,合称为“潮汐”。 目录[隐藏] 潮汐概述 定义与分类 形成原因 潮汐推算 咸潮 潮汐能 开发利用 世界名潮 潮汐概述 定义与分类 形成原因 潮汐推算 咸潮 潮汐能 开发利用 世界名潮 扩展

潮汐 拼音:cháo xī [编辑本段] 潮汐概述 凡是到过海边的人们,都会看到海水有一种周期性的涨落现象:到了一定时间,海水推波助澜,迅猛上涨,达到高潮;过后一些时间,上涨的海水又自行退去,留下一片沙滩,出现低潮。如此循环重复,永不停息。海水的这种运动现象就是潮汐。 随着人们对潮汐现象的不断观察,对潮汐现象的真正原因逐渐有了认识。我国古代余道安在他著的《海潮图序》一书中说:“潮之涨落,海非增减,盖月之所临,则之往从之”。哲学家王充在《论衡》中写道:“涛之起也,随月盛衰。”指出了潮汐跟月亮有关系。到了17世纪80年代,英国科学家牛顿发现了万有引力定律之后,提出了潮汐是由于月亮和太阳对海水的吸引力引起的假设,科学地解释了产生潮汐的原因。 潮汐是所有海洋现象中较先引起人们注意的海水运动现象,它与人类的关系非常密切。海港工程,航运交通,军事活动,渔、盐、水产业,近海环境研究与污染治理,都与潮汐现象密切相关。尤其是,永不休止的海面垂直涨落运动蕴藏着极为巨大的能量,这一能量的开发利用也引起人们的兴趣。 [编辑本段] 定义与分类 由于日、月引潮力的作用,使地球的岩石圈、水圈和大气圈中分别产生的周期性的运动和变化,总称潮汐。作为完整的潮汐科学,其研究对象应将地潮、海潮和气潮作为一个统一的整体,但由于海潮现象十分明显,且与人们的生活、经济活动、交通运输等关系密切,因而习惯上将潮汐(tide)一词狭义理解为海洋潮汐。固体地球在日、月引潮力作用下引起的弹性—塑性形变,称固体潮汐,简称固体潮或地潮; 海水在日、月引潮力作用下引起的海面周期性的升降、涨落与进退,称海洋潮汐,简称海潮; 大气各要素(如气压场、大气风场、地球磁场等)受引潮力的作用而产生的周期性变化(如8、12、24小时)称大气潮汐,简称气潮。 其中由太阳引起的大气潮汐称太阳潮,由月球引起的称太阴潮。 [编辑本段] 形成原因 月球引力和离心力的合力是引起海水涨落的引潮力。地潮、海潮和气潮的原动力都是日、月对地球各处引力不同而引起的,三者之间互有影响。因月球距地球比太阳近,月球与太阳引潮力之比为11:5,对海洋而言,太阴潮比太阳潮显著。大洋底部地壳的弹性—塑性潮汐形变,会引起相应的海潮,即对海潮来说,存在着地潮效应的影响;而海潮引起的海水质量的迁移,改变着地壳所承受的负载,使地壳发生可复的变曲。气潮在海潮之上,它作用于海面上引起其附加的振动,使海潮的变化更趋复杂。

相关文档