文档库 最新最全的文档下载
当前位置:文档库 › 脱氮硫杆菌自养反硝化及其影响因素研究进展

脱氮硫杆菌自养反硝化及其影响因素研究进展

脱氮硫杆菌自养反硝化及其影响因素研究进展
脱氮硫杆菌自养反硝化及其影响因素研究进展

硝化反应和反硝化反应

硝化反应和反硝化反应 Prepared on 22 November 2020

一、硝化反应 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: NH4+++H 2 O+2H+ NO 2 -+ 硝化反应总方程式: NH 3 ++若不考虑硝化过程硝化菌的增殖,其反应式可简化为 NH4++2O 2NO 3 -+H 2 O+2H+ 从以上反应可知: 1)1gNH 4+-N氧化为NO 3 -需要消耗2*50/14=碱(以CaCO 3 计) 2)将1gNH 4+-N氧化为NO 2 --N需要,氧化1gNO 2 --N需要,所以氧化1gNH 4 +-N需 要。 硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持在2-3mg/L。当溶解氧的浓度低于L时,硝化反应过程将受 到限制。 b.PH和碱度:,其中亚硝化菌,硝化菌。最适合PH为。碱度维持在70mg/L 以上。碱度不够时,应补充碱 c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~ 42℃。15℃以下时,硝化反应速度急剧下降;5℃时完全停止。 d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为~(温度20℃,~。 为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。 e.污泥负荷:负荷不应过高,负荷宜。因为硝化菌是自养菌,有机物浓度 高,将使异养菌成为优势菌种。总氮负荷应≤(m3硝化段·d),当负荷>(m3硝化段·d)时,硝化效率急剧下降。 f.C/N:BOD/TKN应<3,比值越小,硝化菌所占比例越大。 g.抑制物浓度:NH 4+-N≤200mg/L,NO 2 --N10-150mg/L,L。 h.ORP:好氧段ORP值一般在+180mV左右。 二、反硝化反应 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO 2--N和NO 3 --N还 原成N 2 的过程,称为反硝化。 反硝化反应方程式为: NO 2-+3H(电子供给体-有机物)+H 2 O+OH- NO 3-+5H(电子供给体-有机物)+2H 2 O+OH- 由以上反应可知: 1)还原1gNO 2--N或NO 3 --N,分别需要有机物(其O/H=16/2=8)3*8/14=和 5*8/14=,同时还产生50/14=碱(以CaCO 3 计) 2)如果废水中含有DO,它会使部分有机物用于好氧分解,则完成反硝化反应 所需要的有机物总量Cm=[NO 3--N]+[NO 3 --N]+DO 反硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持低于L(活性污泥法)或1mg/L(生物膜法)。

同步硝化反硝化

同步硝化反硝化的出路,究竟在何方? 古语云:殊途同归。对于污水脱氮来说,亦是如此。处理方法并不是只有一种。 方法一:依照传统生物脱氮理论,在脱氮过程中需要经过硝化和反硝化两个过程,最终将氨氮转化为氮气而解决污水处理脱氮问题。生物脱氮原理如下:硝化作用是在亚硝酸菌作用下将氨氮转化为NO2-N,然后硝酸菌将NO2-N转化为NO3-N。反硝化作用是指在厌氧或缺氧情况下将NO3-N转化为NO2-N,并最终将NO2-N转化为N2。 方法二:然而,近年来,国内外的不少研究和报告证明存在着同步硝化反硝化现象。同步硝化反硝化又称短程硝化反硝化。是指在同一反应器内同步进行硝化反应和反硝化反应。这样的反应中,反硝化可以直接利用硝化作用转化的NO2-N进行反应,而不必将氨氮转化为NO3-N,可以减少能源的消耗,以及对氧的需求。 条条道路通罗马,那么总有一条是最合适的吧?那么,相对于传统脱氮反应来说,同步硝化反硝化又具有什么样的优势呢? 根据化学计量学统计,与传统硝化反硝化脱氮反应相比,同步硝化反硝化具有以下优势: 1.在硝化阶段可以减少25%左右的需氧量,减少对曝气的需求,就 是减少能耗; 2.在反硝化阶段减少了40%的有机碳源,降低了运行费用; 3.NO2-N的反硝化速率比NO3-N的反硝化速率高63%左右; 4.减少50%左右污泥;

5.反应器容积可以减少30%-40%左右; 6.反硝化产生的OH-可以原地中合硝化作用产生的H+,能有效保持 反应容器内的PH。 (以上数据出自论文:《同步硝化反硝化脱氮机理分析及影响因素研究》) 既然有这么多的优势,那么为什么同步硝化反硝化工艺一直没能得到推广呢?这个,就要用一句古语来解释了:祸兮,福之所倚,福兮,祸之所伏。也就是说,有利就有弊。 同步硝化反硝化工艺进入人们的视线以来,科学家以及相关的研究人员在上面倾注了大量的精力进行研究,对影响同步硝化反硝化反应的因素有了详细的了解。同步硝化反硝化的影响因素总结如下: 1.溶解氧(DO) 控制系统中溶解氧,对获得高效的同步硝化反硝化具有极其重要的意义。对于实现同步硝化反硝化来说,DO浓度不宜太高,一方面,过高的溶解氧具有较强的穿透力,就无法在污泥絮体以及生物膜内部形成缺氧区,第二方面,会使异养好氧菌活性提高,从而加速对有机物的消耗,最终造成反硝化因营养源不足而无法完成。研究表明,溶解氧浓度在0.5mg/L时,硝化速率等于反硝化速率, 2.温度 生物硝化适宜的温度在20到35℃,一般温度低于15℃硝化反应速度降低,但低温对硝化产物以及两种硝酸菌的影响不同,12到14℃活性污泥中硝酸菌的活性受到严重抑制,出现NO2-N的积累。当温度超

短程硝化反硝化的研究详解

短程硝化反硝化的研究进展 摘要短程硝化反硝化技术主要用于处理高氨氮质量浓度和低C/N比的污水。成功实现短程硝化反硝化技术的关键是将硝化反应控制并维持在亚硝酸盐阶段,不进行亚硝酸盐至硝酸盐的转化。本文探讨了短程硝化反硝化的机理并对氨氧化菌的分子生物学研究进行了分析,同时探讨了A/SBR工艺的应用。 关键词短程硝化反硝化氨氧化菌A/SBR 1 引言 近年来,随着工业化和城市化进程的不断提高,大量氮、磷等营养物质进入水体,水体富营养化的现象日益严重,由于常规的活性污泥工艺硝化作用不完全,反硝化作用则几乎不发生,总氮的去除率仅在10%~30%之间,出水中还含有大量的氮和磷[1]。因此,只有对常规的活性污泥法进行改进,加强其生物脱氮功能,才能解决日益突出的受纳水体“富营养化”问题。目前,各城市污水处理厂均应用新的运行方法和控制策略进行脱氮除磷。随着新的微生物处理技术的介入,污水处理设施的功效得到显著提高。短程硝化反硝化技术对于处理这种污水在经济和技术上均具有较高的可行性。 短程硝化反硝化技术已成为脱氮领域研究的热点。其研究内容主要集中在实现氨氧化菌在反应器的优势积累、构造适于氨氧化菌长期稳定生长并抑制亚硝酸氧化菌的最佳环境因素、优化过程控制模式实现持续稳定的短程硝化等。 2 短程硝化反硝化的机理 生物脱氮包括硝化和反硝化两个反应过程。第一步是由氨氧化菌( ammonium oxidition bacteria,AOB) 将NH4-N氧化NO-2-N的亚硝化过程;第二步是由亚硝酸氧化菌( nitrite oxidition bacteria,NOB) 将NO-2-N氧化为NO-3-N的过程。然后通过反硝化作用将产生的NO-3-N经由NO-2-N、NO或N2O转化为N2,NO-2-N 是硝化和反硝化两个过程的中间产物。V oets等(1975)在处理高浓度氨氮废水的研究中,发现了硝化过程NO-2-N积累的现象,首次提出了短程硝化反硝化生物

硝化与反硝化

3.7 硝化与反硝化 废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。一、硝化与反硝化 (一) 硝化 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 反应过程如下: 亚硝酸盐菌 NH4++3/2O2 NO2-+2H++H O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐: 硝酸盐菌 NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。上诉两式合起来写成: NH4++2O2 NO3-+2H++H2O-△E △E=351KJ 综合氨氧化和细胞体合成反应方程式如下: NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。 影响硝化过程的主要因素有: (1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上; (2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜; (3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上; (5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。 (二) 反硝化 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为: 6NO3-十2CH3OH→6NO2-十2CO2十4H2O 6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-

硝化反硝化

硝化反硝化 一、硝化反应 在好氧条件下,通过自养型微生物亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: 二、反硝化反应 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化菌为异养型微生物,在缺氧状态时,反硝化菌利用硝酸盐中的氧作为电子受体,以有机物作为电子供体提供能量并被氧化稳定。 反硝化反应方程式为: NO2-+3H(电子供给体-有机物) →0.5 N2+H2O+OH- NO3-+5H(电子供给体-有机物) →0.5 N2+2H2O+OH- 三、短程硝化反硝化 短程硝化是指NH3生成亚硝酸根,不再生产硝酸根;而由亚硝酸根直接生成N2,称为短程反硝化。短程硝化反硝化是指NH3---NO2----N2,即可以从水中氨氮去除的一种工艺。 影响因素: 1、pH 硝化反应的适宜的pH值为7.0~8.0之间,其中亚硝化菌7.0~7.8时,活性最好;硝化菌在7.7~8.1时活性最好。当pH降到5.5以下,硝化反应几乎停止。反硝化细菌最适宜的pH值为7.0~7.5之间。考虑到硝化和反硝化两过程中碱度消耗与产生的相互性,同步硝化与反硝化的最适的pH值应为7.5左右。 2、溶解氧(DO) 硝化过程的DO应保持在2~3mg/L,反硝化过程的DO应保持0.2~0.5mg/L。 反应池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L时,氨的硝态反应将受到抑制。反硝化通常需在缺氧条件下进行,溶解氧对反硝化有抑制作用,主要是由于氧会与硝酸盐竞争电子供体,同时分子态氧也会抑制硝酸盐还原酶的合成及其活性。 3、温度 生物硝化反应适宜的温度在20~30℃,反硝化适宜温度在30℃左右。 亚硝酸菌最佳生长温度为35℃,硝酸菌的适宜温度为20~40℃。15℃以下时,硝化反应速度急剧下降。温度对反硝化速率的影响很大,低于5℃或高于40℃,反硝化的作用几乎停止。 4、碱度 一般污水处理厂碱度应维持在200mg/L左右。 NH4++1.83O2+1.98HCO3-→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3

硝化-反硝化-碱度-DO与pH值关系

硝化系统与pH值关系(2007-05-19 22:51:41) 分类:七彩水质专题发生硝化反应,那么必须控制污泥龄大于硝化细菌的世代时间方可。按照污水处理的理论,硝化细菌世代周期5~8天,反硝化细菌世代周期15天左右。 碱度是为硝化细菌提供生长所需营养物质,氧化1mg NH4-N需要碱度7.14 mg。硝化过程只有在污泥负荷<0.15kgBOD/(kgSS·d)时才会发生。在反应过程中氧化1kg氨氮约消耗4.6kg氧,同时消耗约7.14kg碳酸钙碱度。为保证硝化作用的彻底进行,一般来说出水中应有剩余碱度。合适的pH是微生物发挥最佳活性必须的,一般微生物要在pH6-9范围内比较合适。实际上,因为水质的差异,相同pH的水,碱度可以相差很多。对于A/O工艺。其中硝化液回流进行反硝化,这样可以利用原污水中的有机物做为反硝化的电子供体,同时可提供部分碱度,抵消硝化段的部分碱度消耗。该工艺脱氮率的提高要靠增加回流比实现,但回流比不宜太高,否则回流混合液中夹带的DO会影响到反硝化段的缺氧状态,另外回流比增大,运行费用也会增加。 水的碱度是指水中含有能接受氢离子的物质的量,例如氢氧根,碳酸盐,重碳酸盐,磷酸盐,磷酸氢盐,硅酸盐,硅酸氢盐,亚硫酸盐,腐植酸盐和氨等,都是水中常见的碱性物质,它们都能与酸进行反应。因此,选用适宜的指示剂,以酸的标准溶液对它们进行滴定,便可测出水中碱度的含量.。碱度可分为酚酞碱度和全碱度两种。酚酞碱度是以酚

酞作指示剂时所测出的量,其终点的pH值为8.3;全碱度是以甲基橙作指示剂时测出的量,终点的pH值为4.2.若碱度很小时,全碱度宜以甲基红-亚甲基蓝作指示剂,终点的pH值为5.0。碱度以CaCO3(碳酸钙)浓度表示,单位为mg/l。PH的值是H离子浓度的体现,当PH=7是,说明H离子浓度为10的-7次幂,所以OH离子的浓度也是10的-7次幂,为中型,当PH=8时,H离子浓度为10的-8次幂,OH离子浓度是10的-6次幂,这都是H离子的浓度小于1mol/L时的计算方法,当H离子浓度大于1时,就不用了。严格的说来,pH值和碱度没有必然的关系,也就是pH值为某个值时,溶液的组成不同,碱度值会不同的。消化反应会消耗碱度,PH值会下降,反硝化阶段会产生碱度PH会上升,平时检测只用观察PH值的变化就可以了。亚硝酸菌和硝酸菌在PH为7.0-7.8,7.7-8.1是最活跃,反硝化最适ph值为7.0-7.5。好氧池出水DO一般在2左右啊。校探头拿到空气中是8左右~。看情况,如果不要进行脱氮除磷好氧池出水口溶解氧不小于2mg/L,如果要回水进行反硝化,出水溶解氧小于1.5mg/L 一、前言 水族缸中的「氮循环」会直接影响pH的变化。氮循环是指有机氮化合物在自然界中的物质循环过程,它由微生物的固氮作用、氨化作用、硝化作用及脱氮作用所构成,惟在水族缸中,通常仅发生氨化作用及硝化作用,所以氮循环并不具完整性,必有中间产物遗留于水中,并

硝化与反硝化

硝化:在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。反应过程如下: 亚硝酸盐菌: 向左转|向右转 接着亚硝酸盐转化为硝酸盐: 向左转|向右转 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。上诉两式合起来写成: 向左转|向右转 综合氨氧化和细胞体合成反应方程式如下: 向左转|向右转

上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg氨氮,将消耗碱度(以CaCO3计) 7.lg。 影响硝化过程的主要因素有: (1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上; (2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜; (3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~ 0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上; (5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。

一文概括短程硝化反硝化与同步硝化反硝化的区别及影响因素

一文概括!短程硝化反硝化与同步硝化反硝化的区别及影响因素! 一、短程硝化反硝化 1、简介 生物脱氮包括硝化和反硝化两个反应过程,第一步是由亚硝化菌将NH4+-N氧化为NO2--N的亚硝化过程;第二步是由硝化菌将NO2--N氧化为氧化为 NO3--N的过程;然后通过反硝化作用将产生的 NO3—N经由NO2--N转化为N2,NO2--N是硝化和反硝化过程的中间产物。1975年Voets等在处理高浓度氨氮废水的研究中,发现了硝化过程中NO2--N 积累的现象,首次提出了短程硝化反硝化脱氮的概念。如下图所示。 比较两种途径,很明显,短程硝化反硝化比全程硝化反硝化减少了NO2-、NO3-和NO3- 、NO2-两步反应,这使得短程硝化反硝化生物脱氮具有以下优点:

1、可节约供氧量25%。节省了NO2-氧化为NO3-的好氧量。 2、在反硝化阶段可以节省碳源40%。在C/N比一定的情况下提高了TN的去除率。并可以节省投碱量。 3、由于亚硝化菌世代周期比硝化菌短,控制在亚硝化阶段可以提高硝化反应速度和微生物的浓度,缩短硝化反应的时间,而由于水力停留时间比较短,可以减少反应器的容积,节省基建投资,一般情况下可以使反应器的容积减少30%~40%。 4、短程硝化反硝化反应过程在硝化过程中可以减少产泥25%~34%,在反硝化过程中可以减少产泥约50%。 由于以上的优点,使得短程硝化-反硝化反应尤其适应于低C/N比的废水,即高氨氮低COD,既节省动力费用又可以节省补充的碳源的费用,所以该工艺在煤化工废水方面非常可行。 2、影响短程硝化反硝化的因素 2.1温度的影响

温度对微生物影响很大。亚硝酸菌和硝酸菌的最适宜温度不相同,可以通过调节温度抑制硝酸菌的生长而不抑制亚硝酸菌的方法,来实现短程硝化反硝化过程。国内的高大文研究表明:只有当反应器温度超过28℃时,短程硝化反硝化过程才能较稳定地进行。 2.2 pH值的影响 pH较低时,水中较多的是氨离子和亚硝酸,这有利于硝化过程的进行,此时无亚硝酸盐的积累;而当pH较高时,可以积累亚硝酸盐。因此合适的pH环境有利于亚硝化菌的生长。pH对游离氨浓度也产生影响,进而也会影响亚硝酸菌的活性,研究表明:亚硝化菌的适宜pH值在8.0附近,硝化菌的pH值在7.0附近。因此,实现亚硝化菌的积累的pH值最好在8.0左右。 2.3溶解氧(DO)的影响 DO对控制亚硝酸盐的积累起着至关重要的作用。亚硝化反应和硝化反应均是好氧过程,而亚硝酸菌和硝酸菌又存在动力学特征的差异:低DO条件下亚硝酸菌对DO的亲和力比硝酸菌强。可以通过控制DO使硝化过程只进行到氨氮氧化为亚硝态氮阶段,从而淘汰硝酸菌,达到短程硝化的目的。 2.4泥龄的影响

影响硝化反硝化的因素

1、温度:温度愈高,可使硝化作用的活性增加,但这不表示温度越高越好,因为温度越高,溶氧的饱和度会降低,因此硝化作用仅能在温度与溶氧之间取得一个平衡关系以获得最高的效率。一般的建议是以不超过30℃,不低于20℃为原则。 2、PH值:在一般的生物处理程序中,硝化反应系统受pH影响很大。硝化细菌在生长过程中会消耗大量碱度,故pH稍高于7~8,有利于硝化作用(张镇南等,1995)。一般的建议是以介于7.5~8.2之间最佳,若高于9.0或低于6.0都要避免,因为那已超过硝化细菌正常生长的范围,必然会影响硝化作用的效率(Alleman,1992)。 3、溶氧:当溶氧(DO)浓度低时,硝化反应受溶氧浓度影响很大。但在一般的生物处理程中,溶氧则较不容易控制,因此必须作处理水之溶氧测试,并控制至少不低于2~3ppm的范围内(Alleman,1992)。 4、氨和亚硝酸:分子性的氨和游离的亚硝酸均会对硝化反应产生抑制作用(Anthonisen,1976)。分子性的氨浓度如果高于10~150ppm,可能对亚硝酸化作用产生抑制作用,高于0.1~1.0ppm对硝酸化作用即产生抑制作用(Anthonisen,1976)。亚硝酸浓度若大于0.22~2.8ppm亦会抑制硝酸化作用(Anthonisen et al.,1976)。 5、碳氮比:硝化细菌之存在比率取决于污水中含碳物质及含氮物质之相对数量。含氮营养物浓度之测定可利用凯氏法(Kjeldahl method)测得所谓的总凯氏氮(Totol Kjeldahl Nitrogen),简称TKN,其值包含氨及有机氮化物。含碳物质浓度之测定可利用生化需氧量BOD(Biochemical Oxygen Demand)行之,它代表有机污染之程度。BOD/TKN简称碳氮比。碳氮比愈高,异营性氧化菌的活性较大,大量繁殖,消耗溶氧速率快,使硝化细菌无法生存竞争。反之,如果碳氮比愈低,则有利于硝化细菌之增殖。

硝化与反硝化

硝化与反硝化 利用好氧颗粒污泥实现同步硝化反硝化 1 生物脱氮与同步硝化反硝化 在生物脱氮过程中,废水中的氨氮首先被硝化菌在好氧条件下氧化为NO-X,然后NO-X 在缺氧条件下被反硝化菌还原为N2(反硝化)。硝化和反硝化既可在活性污泥反应器中进行,又可在生物膜反应器中进行,目前应用最多的还是活性污泥法。硝化菌和反硝化菌处在同一活性污泥中,由于硝化菌的好氧和自养特性与反硝化菌的缺氧和异养特性明显不同,脱氮过程通常需在两个反应器中独立进行(如Bardenpho、UCT、双沟式氧化沟工艺等)或在一个反应器中顺次进行(如SBR)。当混合污泥进入缺氧池(或处于缺氧状态)时,反硝化菌工作,硝化菌处于抑制状态;当混合污泥进入好氧池(或处于好氧状态)时情况则相反。显然,如果能在同一反应器中使同一污泥中的两类不同性质的菌群(硝化菌和反硝化菌)同时工作,形成同步硝化反硝化(Simultaneous Nitrification Denitrification简称SND),则活性污泥法的脱氮工艺将更加简化而效能却大为提高。此外从工程的角度看,硝化和反硝化在两个反应器中独立进行或在同一个反应器中顺次进行时,硝化过程的产碱会导致OH-积累而引起pH值升高,将影响上述两阶段反应过程的反应速度,这在高氨氮废水脱氮时表现得更为明显。但对SND工艺而言,反硝化产生的OH-可就地中和硝化产生的H+,减少了pH值的波动,从而使两个生物反应过程同时受益,提高了反应效率。 2 实现同步硝化反硝化的途径 由于硝化菌的好氧特性,有可能在曝气池中实现SND。实际上,很早以前人们就发现了曝气池中氮的非同化损失(其损失量随控制条件的不同约在10%~20%左右),对SND的研究也主要围绕着氮的损失途径来进行,希望在不影响硝化效果的情况下提高曝气池的脱氮效率。

AO生化的硝化与反硝化原理

2.5 A/O生化处理 2.5.1 基本原理 本系统生化处理段采用缺氧/好氧(A/O)工艺,A/O工艺通常是在常规的好氧活性污泥法处理系统前,增加一段缺氧生物处理过程。在好氧段,好氧微生物氧化分解污水中的BOD5,同时进行硝化反应,有机氮和氨氮在好氧段转化为硝化氮并回流到缺氧段,其中的反硝化细菌利用氧化态氮和污水中的有机碳进行反硝化反应,使化合态氮变成分子态氮,同时获得同时去碳和脱氮的效果。这里着重介绍生物脱氮原理。 1) 生物脱氮的基本原理 传统的生物脱氮机理认为:脱氮过程一般包括氨化、硝化和反硝化三个过程。 ①氨化(Ammonification):废水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程; ②硝化(Nitrification):废水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为NO2-和NO3-的过程; ③反硝化(Denitrification):废水中的NO2-和NO3-在缺氧条件下以及反硝化菌(兼性异养型细菌)的作用下被还原为N2的过程。 其中硝化反应分为两步进行:亚硝化和硝化。硝化反应过程方程式如下所示: ①亚硝化反应:NH4++1.5O2→NO2-+H2O+2H+

②硝化反应:NO2-+0.5O2→NO3- ③总的硝化反应:NH4++2O2→NO3-+H2O+2H+ 反硝化反应过程分三步进行,反应方程式如下所示(以甲醇为电 子供体为例): 第一步:3NO3-+CH3OH→3NO2-+2H2O+CO2 第二步:2H++2NO2-+CH3OH→N2+3H2O+CO2 第三步:6H++6NO3-+5CH3OH→3N2+13H2O+5CO2 2) 本系统脱氮原理 针对本系统生化工艺段而言,除了上述脱氮原理外,还糅合了短程硝化-反硝化,即氨氮在O池中未被完全硝化生成NO3-,而是生成了大量的NO2--N,但在A池NO2-同样被作为受氢体而进行脱氮(上述第二步可知);再者在A池NO2-同样也可和NH4+进行脱氮,即短程硝化-厌氧氨氧化,其表示为:NH4++NO2-→N2+2H2O。 因此针对本系统而言,A/O工艺如在进水水质以及系统控制参数稳定的条件下也可达到理想的出水效果。 2.5.2工艺特征 A/O脱氮工艺主要特征是:将脱氮池设置在去碳硝化过程的前端,一方面使脱氮过程能直接利用进水中的有机碳源而可以省去外加碳源;另一方面,则通过消化池混合液的回流而使其中的NO3-在脱氮池中进行反硝化,且利用了短程硝化-反硝化以及短程硝化-厌氧氨氧化等工艺特点。因此工艺内回流比的控制是较为重要的,因为如内回流比过低,则将导致脱氮池中BOD5/NO3-过高,从而是反硝化菌无足够的

硝化反应和反硝化反应

一、硝化反应 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: NH4++1.5O 2 NO 2 -+H 2 O+2H+ NO 2-+0.5O 2 NO 3 - 硝化反应总方程式: NH 3+1.86O 2 +1.98HCO 3 - 0.02C 5 H 7 NO 2 +1.04H 2 O+0.98NO 3 --+1.88H 2 CO 3 若不考虑硝化过程硝化菌的增殖,其反应式可简化为 NH4++2O 2 NO 3 -+H 2 O+2H+ 从以上反应可知: 1)1gNH 4+-N氧化为NO 3 - 需要消耗2*50/14=7.14g碱(以CaCO 3 计) 2)将1gNH 4+-N氧化为NO 2 --N需要3.43gO 2 ,氧化1gNO 2 --N需要1.14gO 2 ,所以氧 化1gNH 4+-N需要4.57gO 2 。 硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持在2-3mg/L。当溶解氧的浓度低于0.5mg/L时,硝化反应过程 将受到限制。 b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。最适合 PH为8.0-8.4。碱度维持在70mg/L以上。碱度不够时,应补充碱 c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~42℃。 15℃以下时,硝化反应速度急剧下降;5℃时完全停止。 d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为 0.3~0.5d-1(温度 20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。 e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。因为硝化 菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。总氮负荷应≤ 0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急剧 下降。

同步硝化反硝化综述

同步硝化反硝化研究进展 摘要:同步硝化反硝化工艺同传统的生物脱氮工艺相比,可以节省碳源,减少曝气量,减少设备运行费用等优点,具有很大的研究应用前途。本文结合国内外研究,介绍其主要机理,分析同步硝化反硝化实现条件和影响因素,并且提出了研究展望。 关键词:同步硝化反硝化;微环境;生物脱氮;好氧反硝化 Study Progress on Simultaneous Nitrification and Denitrification Abstract:Simultaneous nitrification and denitrification (SND) has some obvious merits in comparison with traditional method for nitrogen removal. This method could reduce energy consumption and construction cost. The paer made a summary on current domesticand foreign study status of simultaneous nitrification and denitrification (SND) in waste water treatment, and made a theoretical explanation for the phenomenom of nitrification and denitrification.The author alsosummarized the practice and influencing facts of SND process and put forward some suggestions for futher study of SND. Key words: Simultaneous nitrification and denitrification;Microbiology;Biological nitrogen removal;Aerobic denitrification

硝化反应和反硝化反应

硝化反应和反硝化反应 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

一、硝化反应 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: NH4++1.5O 2NO 2 -+H 2 O+2H+ NO 2-+0.5O 2 NO 3 - 硝化反应总方程式: NH 3+1.86O 2 +1.98HCO 3 -0.02C 5 H 7 NO 2 +1.04H 2 O+0.98NO 3 --+1.88H 2 CO 3 若不考虑硝化过程硝化菌的增殖,其反应式可简化为 NH4++2O 2NO 3 -+H 2 O+2H+ 从以上反应可知: 1)1gNH 4+-N氧化为NO 3 -需要消耗2*50/14=7.14g碱(以CaCO 3 计) 2)将1gNH 4+-N氧化为NO 2 --N需要3.43gO 2 ,氧化1gNO 2 --N需要1.14gO 2 ,所以氧 化1gNH 4+-N需要4.57gO 2 。 硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持在2-3mg/L。当溶解氧的浓度低于0.5mg/L时,硝化反应过 程将受到限制。 b.PH和碱度:PH7.0-8.0,其中亚硝化菌6.0-7.5,硝化菌7.0-8.5。最适合 PH为8.0-8.4。碱度维持在70mg/L以上。碱度不够时,应补充碱 c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~ 42℃。15℃以下时,硝化反应速度急剧下降;5℃时完全停止。 d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为0.3~0.5d-1(温度 20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。 e.污泥负荷:负荷不应过高,负荷宜0.05-0.15kgBOD/(kgMLSS·d)。因为硝 化菌是自养菌,有机物浓度高,将使异养菌成为优势菌种。总氮负荷应≤ 0.35kgTN/(m3硝化段·d),当负荷>0.43kg/(m3硝化段·d)时,硝化效率急 剧下降。 f.C/N:BOD/TKN应<3,比值越小,硝化菌所占比例越大。 g.抑制物浓度:NH 4+-N≤200mg/L,NO 2 --N10-150mg/L,NO 3 --N0.1-1mg/L。 h.ORP:好氧段ORP值一般在+180mV左右。 二、反硝化反应 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO 2--N和NO 3 --N还 原成N 2 的过程,称为反硝化。 反硝化反应方程式为: NO 2-+3H(电子供给体-有机物)0.5N 2 +H 2 O+OH- NO 3-+5H(电子供给体-有机物)0.5N 2 +2H 2 O+OH- 由以上反应可知: 1)还原1gNO 2--N或NO 3 --N,分别需要有机物(其O/H=16/2=8)3*8/14=1.71g和 5*8/14=2.86g,同时还产生50/14=3.57g碱(以CaCO 3 计)

短程硝化反硝化原理

短程硝化反硝化原理 传统生物脱氮理论认为氨氮是借助两类不同的细菌(硝化菌和反硝化菌)将水中的氨转化为氮气而去除。其中硝化反应又由两类细菌分步完成,首先亚硝酸细菌将氨氮转化为亚硝酸盐(NO2-),之后硝酸细菌将亚硝酸盐转化为硝酸盐(NO3-)。如图1.1。硝化反应过程需在好氧条件下进行。并以氧作为电子受体。反硝化过程为将硝酸盐或亚硝酸盐转化为N2的过程。反硝化细菌可以利用各种有机基质作为电子供体,以硝酸盐或亚硝酸盐作为电子受体,进行缺氧呼吸。 图1.1 传统硝化反硝化过程 传统脱氮技术亚硝氮无法积累的主要原因基于以下两点:从动力学来看,氨氮转化为亚硝氮速率较慢,为整个硝化过程的限速步骤;从热力学看,单位亚硝氮被氧化所能为硝酸菌提供的能量仅为单位氨氮氧化为亚硝酸菌提供能量的 1/4~1/5。因此,必须通过氧化更多的亚硝氮来满足细菌生长所需的能量。 而在不断探索中,发现氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)在生活习性上存在一定差异。如表1.1。通过利用这些差异,可以控制消化过程在N02-

阶段,阻止NO2-进一步氧化为NO3-。之后直接以N02-作为电子最终受氢体进行反硝化。即实现所谓的短程硝化反硝化。 表1.1 AOB与NOB主要差异 项目氨氧化菌(AOB)亚硝酸盐氧化菌(NOB) 菌属亚硝酸盐单胞菌 属 亚硝酸盐球菌属 硝酸盐杆菌属、螺旋菌 属、球菌属 世代周期/h 8~36 12~59 最佳pH 7.5~8.5 6.5~7.5 溶解氧饱和常数 (Ko2 /mg·L) 0.2~0.4 1.2~1.5 温度/℃<15或>30 15~30 FA(游离氨)敏感 性 不敏感 (10~150mg/L) 较敏感(0.1~1mg/L)

反硝化除磷工艺的基本原理和影响因素

水处理生物学期中小综述 题目:反硝化除磷工艺的基本原理和影响因素 学院:建筑工程学院系土木工程系 专业:给水排水工程 班级:给排水111班 学号:6002211023 姓名:张群华 指导教师:黎俊 日期:2013 年11 月23 日

反硝化除磷工艺的基本原理和影响因素 摘要:概述了反硝化除磷工艺的基本原理及反硝化单双污泥系统,介绍了污泥龄、活性污泥浓度、温度、PH值、硝态氮、碳源和溶解氧等影响因素,同时简 单介绍了反硝化除磷技术的运用现状及其发展前景。 关键词:反硝化除磷;DPAOs(反硝化聚磷菌);DPB(反硝化除磷菌) 一、前言 传统的脱氮除磷工艺,如A 2 /O工艺存在很多问题,如二沉池回流污泥中的硝酸盐对厌氧区磷的释放产生的不利影响;反硝化菌与聚磷菌之间存在碳源的竞争,而城市污水的碳源浓度普遍较低,难以满足同时高效脱氮除磷的要求;污泥中硝酸盐氮,亚硝酸盐氮在二沉池中发生反硝化产生的氮气附着在污泥表面而使其上浮,造成污泥沉降性能较差,出水SS升高的问题。【1】 反硝化除磷工艺是一种新型的污水生物脱氮除磷工艺。它是利用DPAOs(反硝化聚磷菌)的生理代谢活动产生的一种能够实现节能降耗的污水脱氮除磷新工艺。DPAOs能够利用在厌氧阶段吸收的有机物在缺氧阶段以硝酸盐为电子受体氧化分解,同时利用此过程产生的能量将污水中的磷过量吸收进入胞内。这样利用同一部分COD(化学需氧量)完成了同步的脱氮和除磷效果。【2】 反硝化除磷技术作为一种新型高效低能耗的技术成为近年来水处理领域的热点。反硝化除磷作用可以在缺氧段无碳源的情况下进行,不仅实现同时除磷脱氮,还克服了生活污水中基质缺乏的问题,尤其适用于高氮磷废水及产生挥发性脂肪酸潜力低的城市污水。应用反硝化除磷工艺处理城市污水时不仅可节省曝气量,而且还可减少剩余污泥量,即可节省投资和运行费用。 二、反硝化除磷工艺基本原理 DPB(反硝化除磷菌)可以利用硝酸盐、亚硝酸盐或O 2 为电子受体,其基于体内的聚β-羟基丁酸酯(PHB)和糖原质生物代谢原理与传统A/O法中的PAOs极为相似。 在厌氧段,COD可被降解为醋酸等低分子脂肪酸被DPB快速吸收之后大量繁 殖,同时水解细胞内的Poly-P,以无机磷酸盐(PO 4 3-)的形式释放出来。利用上 述过程产生的能量ATP和糖原酵解还原性产物NADH 2,DPB以NO 3 --N或NO 2 --N为氧

硝化反硝化

A、硝化反应过程:在有氧条件下,氨氮被硝化细菌所氧化成为亚硝酸盐和硝酸盐。他包括两个基本反应步骤:由亚硝酸菌(Nitrosomonas sp)参与将氨氮转化为亚硝酸盐的反应;硝酸菌(Nitrobacter sp)参与的将亚硝酸盐转化为硝酸盐的反应,亚硝酸菌和硝酸菌都是化能自养菌,它们利用CO2、CO32-、HCO3-等做为碳源,通过NH3、NH4+、或NO2-的氧化还原反应获得能量。硝化反应过程需要在好氧(Aerobic或Oxic)条件下进行,并以氧做为电子受体,氮元素做为电子供体。其相应的反应式为: 亚硝化反应方程式: 55NH4++76O2+109HCO3→C5H7O2N﹢54NO2-+57H2O+104H2CO3 硝化反应方程式: 400NO2-+195O2+NH4-+4H2CO3+HCO3-→C5H7O2N+400NO3-+3H2O 硝化过程总反应式: NH4-+1.83O2+1.98HCO3→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3 通过上述反应过程的物料衡算可知,在硝化反应过程中,将1克氨氮氧化为硝酸盐氮需好氧4.57克(其中亚硝化反应需耗氧3.43克,硝化反应耗氧量为1.14克),同时约需耗7.14克重碳酸盐(以CaCO3计)碱度。 在硝化反应过程中,氮元素的转化经历了以下几个过程:氨离子NH4-→羟胺NH2OH→硝酰基NOH→亚硝酸盐NO2-→硝酸盐NO3-。 B、反硝化反应过程:在缺氧条件下,利用反硝化菌将亚硝酸盐和硝酸盐还原为氮气而从无水中逸出,从而达到除氮的目的。 反硝化是将硝化反应过程中产生的硝酸盐和亚硝酸盐还原成氮气的过程,反硝化菌是一类化能异养兼性缺氧型微生物。当有分子态氧存在时,反硝化菌氧化分解有机物,利用分子氧作为最终电子受体,当无分子态氧存在时,反硝化细菌利用硝酸盐和亚硝酸盐中的N3+和N5+做为电子受体,O2-作为受氢体生成水和OH-碱度,有机物则作为碳源提供电子供体提供能量并得到氧化稳定,由此可知反硝化反应须在缺氧条件下进行。从NO3-还原为N2的过程如下: NO3-→NO2-→NO→N2O→N2 反硝化过程中,反硝化菌需要有机碳源(如碳水化合物、醇类、有机酸类)作为电子供体,利用NO3-中的氧进行缺氧呼吸。其反应过程可以简单用下式表示: NO3-+4H(电子供体有机物)→ 1/2N2+H2O+2OH- NO2-+3H(电子供体有机物)→ 1/2N2+H2O+OH- 污水中含碳有机物做为反硝化反应过程中的电子供体。由上式可知,每转化1gNO2-为N2时,需有机物(以BOD表示)1.71g;每转化1gNO3-为N2时,需有机物(以BOD表示)2.86g。同时产生3.57g重碳酸盐碱度(以CaCO3计)。 如果污水中含有溶解氧,为使反硝化完全,所需碳源有机物(以BOD表示)用下式计算: C=2.86Ni+1.71N0+DO0 其中: C为反硝化过程有机物需要量(以BOD表示),mg/l; Ni为初始硝酸盐氮浓度(mg/l) N0为初始亚硝酸盐氮浓度(mg/l) DO0为初始溶解氧浓度(mg/l) 如果污水中碳源有机物浓度不足时,应补充投加易于生物降解的碳源有机物(甲醇、乙醇或糖类)。以甲醇为例,则 NO3-+1.08CH3OH+0.24H2CO3→0.056C5H7O2N+0.47N2↑+1.68H2O+HCO3- 如果水中有NO2-,则会发生下述反应: NO2-+0.67CH3OH+0.53H2CO3→0.04C5H7O2N+0.48N2↑+1.23H2O+HCO3- 由上式可见,每还原1gNO2-和1gNO3-分别需要消耗甲醇1.53g和2.47g。 当水中有溶解氧存在时,氧消耗甲醇的反应式为: O2+0.93CH3OH+0.056NO3-→0.056C5H7O2N+1.64H2O+0.056HCO3-+0.59H2CO3 综上所述,可得反硝化过程需要有机碳源(甲醇)的投加量公式为:

同步硝化反硝化脱氮技术_百度文库.

同步硝化反硝化脱氮技术 郭冬艳 1,2,李多松 1,2,孙开蓓 1,2,刘丽茹 1,2 1中国矿业大学环境与测绘学院,江苏徐州(221008 2江苏省资源环境信息工程重点实验室,江苏徐州(221008 E-mail: 摘要:同步硝化反硝化脱氮 (SND技术不同于传统的脱氮理论,其具有节省碳源、减少曝气量、降低基建投资和运行费用等优点。文章从宏观环境理论、微环境理论、微生物理论三个方面阐述了同步硝化反硝化的作用机理,并结合目前的国内外研究成果综述了其影响因素,最后简单介绍了同步硝化反硝化的应用状况,提出了该技术的研究方向。 关键词:生物脱氮;同步硝化反硝化;好氧反硝化 中图分类号:X703.1 1. 引言 近年来, 水体中的氮素污染越来越严重, 给环境造成的污染问题日益突出。生物脱氮技术较物化脱氮技术具有工艺简单、成本低廉、较易推广等特点,越来越被人们所采用。传统生物脱氮技术的理论基础是微生物的硝化和反硝化作用。硝化作用即在好氧的条件下, 自养型硝化细菌将氨氧化为亚硝酸 (盐和硝酸 (盐 ; 反硝化作用是指亚硝酸 (盐和硝酸 (盐在异氧型反硝化菌的作用下, 被还原为氮气的过程。因此, 目前大多数的生物脱氮工艺都将好氧区和缺氧区(或厌氧区分隔开,分别在不同的反应器中运行,或者采用间歇的好氧和厌氧条件来实现。 然而, 自 20世纪 80年代以来, 研究人员在一些没有明显缺氧及厌氧段的活性污泥法工艺中, 曾多次观察到氮的非同化损失现象, 即存在有氧情况下的反硝化反

应、低氧情况下的硝化反应。在这些处理系统中,硝化和反硝化往往发生在相同的条件下或同一处理空间内, 这种现象被称作同步硝化反硝化(simultaneous nitrification and dinitrification,SND ,亦有研究人员将这种现象中的反硝化过程称之为好氧反硝化。有氧条件下的反硝化现象确实存在于各种不同的生物处理系统,如流化床反应器、生物转盘、 SBR 、氧化沟、 CAST 工艺等 [1]。 2. 作用机理 2.1宏观环境理论 宏观环境主要是从众多生物反应器在实际运行过程中可能发生的情况为依据,分析 SND 现象发生的环境条件 [2]。在生物反应器中, 由于曝气装置类型的不同, 使得其内部出现氧气分布不均的现象,从而形成好氧段、缺氧段及(或厌氧段,此为 生物反应器的宏观环境。例如:在生物膜反应器中,由于基质浓度和膜厚变化的影响,形成膜内的缺氧区,其他如 RBC 、 SBR 反应器及氧化沟等也存在类似的现象 [3]。实际上,在生产规模的生物反应器中,完全均匀的混合状态并不存在,所以,同步硝化反硝化现象是完全可能发生的。 2.2微环境理论 微环境理论从物理学角度解释 SND 现象, 是目前被普遍接受的一种机理, 被认为是 SND 发生的主要原因之一 [4]。由于活性污泥和生物膜微环境中各种物质(如DO 、有机物、氨氮、NO 2― 、 NO 3-等传递的变化,从而导致微环境中物理、化学和生物条件或状态的改变。在活性污泥絮体和生物膜内部存在各种各样的微环境。但是,对于 SND 现象来说,主要是由于溶解氧扩散作用的限制, 使微生物絮体内产生 DO 梯度, 从而导致微环境的同步硝 化反硝化。微生物絮体的外表面 DO 浓度较高, 自养型硝化细菌利用氧气进行硝化反应; 絮体内部,由于氧传递受阻,以及有机物氧化、硝化作用的消耗,形成缺氧区,反硝化菌占优势,反硝化菌利用 NO 3-为电子受体,发生反硝化反应,即系统缺氧

相关文档