文档库 最新最全的文档下载
当前位置:文档库 › 感应电机的故障诊断分析

感应电机的故障诊断分析

感应电机的故障诊断分析
感应电机的故障诊断分析

感应电机的故障诊断分析

摘要:本文首先简单介绍了感应电机,在通过分析感应电机的结构,再对故障

分析设计就行分析,希望能给相关的专业人士提供一点参考借鉴的材料。

关键词:感应电机;故障诊断;分析

1.介绍

感应电机应用广泛,电机的故障诊断关系工业利益,吸引着研究人员不断地

深入研究。早期电机检测故障和正确诊断程序可以避免有害,甚至是毁灭性的后果,减少经济损失。对于异步电动机,其中轴承、定子和转子的相关故障分别占

了所有故障的41%,37%和10%。这些主要故障可分为以下几类:

1)定子故障导致定子绕组断开或短路;

2)转子故障,如转子绕组断开或绕组转子短路电机;

3)转子故障,如断裂条和松鼠笼的裂纹端环转子电机;

4)轴承故障;

5)气隙偏心率。

感应电机是高度对称的电气系统。所以,任何形式的电机故障都可能会导致

其变化,破坏其对称性,例如电流,电压,通量,扭矩,速度,振动,温度等。

现有不同类型的诊断技术,是从测量信号中提取特征故障分量检测异步电机的故障,如电动机电流特征分析(MCSA)和振动谱分析,广泛用于检测来自定子电流的特征分量,以及振动。一般来说,诊断技术可以分类如下:

1)基于建模的技术。该方法用于感应电动机的建模,不同类型故障的情况下,例如绕组功能方法、动态网格磁阻法、有限元法。一旦设备故障,模型的参数将

改变发生,即用于检测电机故障。

2)基于信号处理的技术。这种技术基于信号处理算法、小波变换等快速傅立叶变换(FFT),用于分析测量的信号,以检测设备故障。

3)基于人工智能的技术。人工神经网络(ANNS)、模糊系统、专家系统、

遗传系统等。目前广泛用作决策工具到状态监测和故障检测的技术。

2.感应电机结构

异步电机诊断技术可一直扩展到其他电机,如感应发电机,同步发电机等同

步电机。由于鼠笼式转子感应电动机广泛应用于感应电动机。所以,本文重点介

绍鼠笼式转子感应电动机的故障分析。

3.2 转子故障

鼠笼式转子设计在过去几年中略有变化,因此,转子故障占电机故障的大约10%,其中转子断裂和端环裂纹是导致转子故障的主要原因。一般来说,我们会

通过分析电流信号来检测转子故障。

(3.2)

其中,k = 1;2;3;……,f是电源电压的频率,s是电机滑差。

此外,转矩和速度信号还包含2sf和4sf频率,轴通量和轴向振动谱也可用于

检测转子故障。许多信号算法可以从上述测量信号中检测特征分量,如自适应滤

波器,矢量变换,小波分析方法等。

3.3 轴承故障

轴承故障主要体现在设备结构的故障。传统的轴承故障检测故障是基于振动

信号。定义为外圈故障频率,为内圈故障频率,作为球故障频率。

4.结论

直流电机测试方法和常见不良问题的分析

测试方法和常见不良问题的分析 一、测试方法 1.电机空载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),无负载时的电机每分钟转动的圈 数 (空载转速)及此时流过端子的电流 2)测试方法:使用测速计、胶轮、直流电源,如下连接, 直流电源 电机测速计 参考测试 方法:使 用电机综 合测试仪测试(但誨定范围及电机的冲片槽数,测试 数据不准) 2.负载转速及电流的测试 1)定义:在额定电压下(指要求的加到电机端子上的电 压, 并不是指电源电压),额定负载时的电机每分钟转动的 圈数(负载转速)及此时流过端子的电流(负载电 流) 2)测试方法:见上图,一般选择胶轮的直径为20mm,如 果负载为M gem,则所挂舷码的重量则为M g,同时胶 轮上的圈数取决于绳子A处必须松动才行(即祛码的重 量必须全部加到轮子上才行) 3.堵转力矩和堵转电流的测试

1); “ 定义:使电机正好停止转动时的负载力矩Ts即为堵转力

矩,此时的电流即为堵转电流Is 3)一般采用两点法进行测试,选择两个负载T1及T2,测 试此负载下的nl> n2及II、12,使用下而的公式计算堵 转力矩和堵转电流: Ts=(n2Tl-nlT2)/(n2-nl) I S=(I2T1-I2T2)/(T1-T2)+(I1-I2)/(T1-T2)*T S 注意点:T1最好在最大效率点附近,而T2最好在最大 功率点附近 参考测试方法:可以采用测功计测试(不精确)或者使 用扭力计测试(较准) 4.窜动量的测试 1)定义:转子在电机中沿轴向可以松动的最大的间隙量 2)测试方法:使用百分表,电机轴前后最大窜动的位置在 百分表上显示的位置分别是A和B,则电机窜动量为B-A 电机 5.电流波形 1)定义:电机在额定电压下旋转时,流过电机两端子间的电 流的变化的波形,可以用示波器进行显示 2)测试方法:如图连接,示波器上显示的波形即为电机的电 流波形,电容一般为qf的电解电容,如果槽数为n 个,则 电机转动一周的完整的波形数为2n个

电动机三种典型振动故障的诊断(1)

电动机三种典型振动故障的诊断 1 引言 某造纸厂一台电动机先后出现了三种典型的振动故障: (1) 基础刚性差; (2) 电气故障; (3) 滚动轴承损坏。 现将诊断分析及处理过程进行简单的描述和总结: 此电动机安装于临时混凝土基础上,基础由四根混凝土支柱支撑于二楼楼板横梁上,基础较为薄弱。电动机运行时振动较大,基础平台上感觉共振强烈。没有发现其他异常。 电动机结构型式及技术参数如下: 三相绕线型异步电动机 型号:yr710-6 额定功率:2000kw 额定转速:991r/min 工作频率:50hz 额定电压:10kv 极数:6 滚动轴承:联轴节端nu244c3; 6244c3 末端: nu244c3 (fag) 针对本电动机的特点,采用entek data pactm 1500数据采集器+9000a-lbv加速度传感器; enmoniter odyssey软件进行振动数据的采集和分析: 2 电动机基础刚性弱的诊断过程 2001年8月21日,采用entek data pactm 1500数据采集器对此电动机进行测试。首先,

断开联轴节,进行电动机单试。测量电动机两端轴承座处水平、垂直、轴向三个方向的振动速度有效值(mm/s rms)、振动尖峰能量(gse)幅值及频谱;测量电动机地脚螺栓、基础、基础邻近台板各点及台板下支撑柱上各点的振动位移峰峰值(μm p-p); 测量电动机两侧轴承座 水平、垂直方向的工频(1×n)振动相位角。将电动机断电,采集断电瞬间前后电动机振动频谱瀑布图。 之后,重新找正对中,带负荷运行进行测试,测试内容同上。 测点位置如图1所示;对电动机基础、地脚螺栓及台板各点振动幅值进行测量的数据如图2、图3所示。 图1 图2 振动数据侧视图

实用电机故障诊断方法总结

交流异步电动机常见故障的分析、诊断及处理 一、异步电动机的故障分析、诊断与处理 电动机的故障大体归纳为电磁的原因和机械的原因两个方面。常见故障分析、诊断与处理如下: 1.异步电动机不能起动: 1.1电动机不能起动,有被拖动机械卡住、起动设备故障和电动机本体故障及其它方面原因: 处理方法:当电动机不能起动的故障时,可使用万用表测量三相电压,若电压太低,应设法提高电压,原因可能有:⑴电源线太细,起动压降太大,应更换粗导线。⑵三角形接线错接成星形接线,又是重载起动,应按三角形接法起动。⑶送电电压太低,应增高电压,达到要求的电压等级。若三相电压不平衡或缺相,说明故障发生在起动设备上。若三相电压平衡,但电动机转速较慢并有异常声响,这可能是负荷太重,拖动机械卡住。此时应断开电源,盘动电动机转轴,若转轴能灵活均衡地转动,说明是负荷过重;若转轴不能灵活均衡地转动,说明是机械卡阻。若三相电压正常而电机不转,则可能是电机本体故障或卡阻严重,此时应使电动机与拖动机械脱开,分别盘动电动机和拖动机械的转轴,并单独起动电动机,即可知道故障所在,作相应的处理。 1.1.1当确定为起动设备故障时,要检查开关,接触器各触头及接线柱的接触情况;检查热继电器过载保护触头的开闭情况和工作电流的调整值是否合理;检查熔断器熔体的通断情况,对熔断的熔体在分析原因后应根据电动机起动状态的要求重新选择;若起动设备内部接线有错,则应按照正确接线改正。 1.1.2 当确定为电动机本体故障时,则应检查定,转子绕组是否接地或轴承是否损坏。绕组接地或局部匝间短路时,电动机虽能起动但会引起熔体熔断而停转,短路严重时电动机绕组很快就会冒烟。 检查绕组接地常采用的方法:用兆殴表检查绕组的对地绝缘电阻,若存在接地故障,兆殴表指示值为零。绕组短路:通常用双臂电桥测直阻的平衡情况,对于绕组接地、匝间短路的处理通常都是重新绕制绕组。 1.1.3其它原因 由于轴承损坏而造成电动机转轴窜位、下沉、转子与定子磨擦乃至卡死时,应更换轴承。 若在严冬无保温,环境较差场所的电动机,应检查润滑脂。 2、鼠笼式电动机起动后转速低于额定值 2.1电动机运行时的转速降低: 2.1.1电源电压;如端电压降低,则电机起动转矩减小,转速降低。若检查是电压太低,则应提高电源电压。电动机接线错误,绕组应是三角形接线而错接成星形的也会使相电压降低。 2.1.2转子电阻;若鼠笼转子导条断裂或开焊,表现为转速和起动转矩下降。导条断裂和开焊,首先可进行直观检查,也可借助于仪表检查。直观检查:就是查看鼠笼导条有没有电弧灼痕,有无断裂和细小裂纹,端环连接是否良好。借助于仪表检查:一种方法是在电动机运行时,看指示电动机定子电流的电流表。在鼠笼转子导条断裂或开焊故障时,电流表指针将来回摆动。对于未装设电流表的电动机,可将电动机的定子绕组串联电流表后接到15-20%Ue(Ue为额定电压)的三相交流电源上,(用三相自耦调压器调压),盘动电动机转轴,随着转子位置不同,定子电流会发生变化,指针突然下降处即导条断裂或开焊处。 2.2若检查是被拖动机械轻微卡住,使转轴转不灵活,也会使电动机勉强拖动负载

电机故障诊断综合实验讲解

电机故障诊断综合实验 课程名称:电气设备故障诊断技术 实验组员;张笑庆(信电09-8) 丁慧慧(信电09-8) 王喜乐(信电09-8) 朱星奎(信电09-8)

目录 一、实验目的 (3) 二、实验内容 (3) 三、实验原理 (3) 四、实验步骤 (3) 五、数据采集与分析步骤 (4) 六、数据处理 (5) 1、傅里叶变换法 (5) 2、PARK 矢量法 (8) 3、小波变换法 (13) 七、实验总结 (15)

一、实验目的 1、初步了解故障诊断的过程; 2、了解并初步掌握电机转子断条和气隙偏心故障的定子电流频谱分析方法; 3、认识不同的数据处理与故障诊断方法在故障诊断的敏感性和准确性等方面的差异。 二、实验内容 分别采集状态良好的和存在转子断条,气隙偏心,匝间短路故障的三相异步电动机、在不同负载工况下的三相电流数据;然后运用已编制好软件或运用MATLAB自行编程,对测试数据进行频谱分析,根据相应的故障诊断特征频谱分量,判断电机的故障状态。 三、实验原理 当三相电机出现转子断条故障时,电流频谱中会出现特征分量=(1±2ks)*f1,通常k=1时的特征最为明显;当出现气隙偏心故障时,电流频谱中会出现特征分量=f1±mfr,其中fr为转子频率,m为正整数。当三相电动机出现定子匝间短路故障时,通过对三相定子电流运用Park矢量模平方函数进行变换,电流中除了直流分量外还出现了两倍的基频分量。电机稳态运行时,转速相对稳定,故障特征频率也相对稳定,因此,可根据频谱分析结果判断电机有无对应故障。 四、实验步骤 转子断条故障 注意:严格按照实验步骤,同时在调节整定时间时注意安全! (1)时间继电器的调整。

直流电机常见故障及排除方法(正式)

编订:__________________ 审核:__________________ 单位:__________________ 直流电机常见故障及排除 方法(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9217-56 直流电机常见故障及排除方法(正 式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、前言 直流电机的故障多种多样,产生的原因较为复杂,并且相互影响,电机运行中由于制造、安装、使用、维护不当,都可引起故障。 2、直流发电机常风故障及排除方法 2.1并励直流发电机建立电压的条件 (1)条件:A、主磁极必须有剩磁;B、并励绕组并联到电机绕组上时,接线极性必须正确;C、励磁回路中总电阻值必须小于临界电阻。 (2)排除并励直流电机不能建立稳定电压的故障方法 A、新安装的原因是电机控制柜内接线松脱或电机碳刷接触不良所致。认真检查,调整碳刷压力即可。

对于长期使用后的由于主磁极剩磁消失或严重减少,可先将并励绕组与电柜绕组联接线断开,用直流电源加于并励绕组使其磁化,如发电机仍不能发电,可改变极性重新磁化。 B、在发电机旋转方向正确的情况下,有时由于电机外部或内部并激绕组与电柜绕组联接不正确导致励磁磁通与主磁极的剩磁磁通极性相反,使剩磁进一步减小不能自励,这时只要调换一下励磁绕组接线的极性就可以了。 C、为调整输出电压,励磁回路通常串联附加电阻,有时电阻断线、接头松脱使励磁回路总电阻大于发电机临界电阻,不能建立电压可将电阻值调小或短接一下,待发电机建立电压后,再调节电阻,使电压达到额定值。 2.2空载电压正常,加载后显著下降 (1)串励绕组的极性接反,检查接线可将串励绕组的2个接头互换位置试验,观察电压,若回升………..

电机振动噪音的原因及解决措施

电机振动噪音的原因及解决措施 电机振动噪音的原因及解决措施一般评估电动机的品质除了运转时之各特性外,以人之五感判断电机振动及电机振动噪音的情形较多。而电动机产生的电机振动电机振动噪音,主要有: 1、机械电机振动电机振动噪音,为转子的不平衡重量,产生相当转数的电机振动。 2、电动机轴承的转动,正常的情形产生自然音,精密小型电动机或高速电动机情形以外,几乎不会有问题。但轴承自然的电机振动与电动机构成部材料的共振,轴承的轴方向弹簧常数使转子的轴方向电机振动,润滑不良产生摩擦音等问题产生。 3、电刷滑动,具有电刷的DC电动机或整流子电动机,会产生电刷的电机振动噪音。 4、流体电机振动噪音,风扇或转子引起通风电机振动噪音对电动机很难避免,很多情形左右电动机整体的电机振动噪音,除风扇的叶片或铁心的齿引起气笛音外,也有必要注意通风上的共鸣。 5、电磁的电机振动噪音,为磁路的不平衡或不平衡磁力及气隙的电磁力波产生之电机振动噪音,又磁通密度饱和或气隙偏心引起磁的电机振动噪音。一、机械性电机振动的产生原因与对策 1、转子的不平衡电机振动 A、原因: ·制造时的残留不平衡。

·长期间运转产生尘埃的多量附着。 ·运转时热应力引起轴弯曲。 ·转子配件的热位移引起不平衡载重。 ·转子配件的离心力引起变形或偏心。 ·外力(皮带、齿轮、直结不良等)引起轴弯曲。 ·轴承的装置不良(轴的精度或锁紧)引起轴弯曲或轴承的内部变形。 B、对策: ·抑制转子不平衡量。 ·维护到容许不平衡量以内。 ·轴与铁心过度紧配的改善。 ·对热膨胀的异方性,设计改善。 ·强度设计或装配的改善。 ·轴强度设计的修正,轴联结器的种类变更以及直结对中心的修正。 ·轴承端面与轴附段部或锁紧螺帽的防止偏靠。 2、轴承之异常电机振动与电机振动噪音 A、原因: ·轴承内部的伤。 ·轴承的轴方向异常电机振动,轴方向弹簧常数与转子质量组成电机振动系统的激振。

电动机常见故障分析及处理(案列)

项目:排除电动机常见故障 学习目的 掌握排除电动机常见故障方法 工作准备 电动机一台,万用表、电桥、常用电动工具 操作步骤 电源接通后,电动机不转,熔丝烧断 运作中的电动机要严格按照国家相关质量标准进行检查以确保电动机的正常使用,运作的电动机与被拖动的设备位置要恰当,保证运行的稳定性,不能有晃动,保证通风性能良好。有些电动机因为各种原因需要经常的挪动,搬运等,对于这种电动机要加强日常的维护和检查,保证电动机运转的稳定性。 1、事故现象: 原因分析: 1)缺一相电源,或定子绕组一接反。 2)定子绕组相间短路。 3)定子绕组接地。 4)定子绕组接线错误。 5)熔丝截面过小。 6)电源线短路或接地。 故障判断: 1)首先可用万用表电阻档检查电源开关三相触头是否可靠闭合。 2)如开关正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用摇表测量电机定子绕组和电源线对地绝缘电阻,判断电源线或电机是否发生接地故障。 4)如电机定子和电源线绝缘均正常则检查电机电源熔丝(如有)所标熔断电流同电机功率是否相匹配。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕

组首尾端。 处理方法: 1)检修故障开关触头,消除缺相。 2)查出短路点,并修复。 3)消除接地。 4)查出误接,改正之。 5)换较粗的熔丝。 6)重换电源线。 2、事故现象:通电后电动机不转动,有嗡嗡声 原因分析: 1)定子、转子绕组断路或电源一相无电。 2)绕组引出线首末接错,或绕组内部接反。 3)电源回路接点松动,接触电阻大。 4)负载过大,或转子被卡住。 5)电源电压过低。 6)小型电动机装配太紧或轴承内油脂过硬。 7)轴承卡住。 故障判断: 1)首先可用万用表电压档检查三相电源是否电压过低或有缺相。 2)如电源电压正常则用双臂电桥来测量电机定子绕组相间直阻,以判定定子绕组是否完好。 3)如电机直阻正常可用手转动电机转子以判断电机是否有卡涩现象,如有卡涩可将电机与负载解开再转动转子看卡涩是否消失,如消失则应检查负载是否过大或卡涩;如卡涩现象仍存在则需将电机解体做进一步检查。 4)如电机没有卡涩现象就仔细检查电机电源线螺丝是否松动,电源线本身是否损坏。 5)如以上检查均正常则应考虑电机定子绕组是否接反,如怀疑绕组接反可使用直流法重新判定绕组首尾端。 处理方法:

三相异步电动机常见故障及排除

三相异步电动机常见故障及排除 摘要:人们的日常生活、生产都离不开电动机的使用,在电动机的使用过程当中有很多注意事项以及要求,可能引起重大安全事故。因此,如何及时诊断和排除故障,预防事故发生,确保电机安全、可靠、高效运转,对企业而言显得尤为重要。电机的故障类型多、情况复杂,可概括为机械与电气两方面,机械方面有扫膛、振动、轴承过热、损坏等故障;电气方面故障有定子绕组缺相运行,定子绕组首尾反接,三相电流不平衡,绕组短路和接地绕组过热和转子断条、断路等。本文就常用的电机故障问题进行分析,浅谈一些电机故障诊断方法和维护修理措施。 关键词:电动机常见故障维护检修分析 一,电动机不能启动: 1,电动机不转且没有声音:电源或者绕组有两相或两相以上断路,首先检查电源是否有电压,如果三相电压平衡,那么故障在电动机本身,可检测电动机三相绕组的电阻,寻找出断线的绕组。 2,电动机不转但有嗡嗡声:测量电动机接线柱,若三相电压平衡且为额定电压值,可判断是严重过载,检查的步骤:先去掉负载,这时电动机的转速与声音正常,可以判定过载或者负载机械部分有故障,若任然不转动,可用手转动一下电动机轴,如果很紧或转不动,再测三相电流,若三相电流平衡,但比额定值大,说明电动机的机械部分被卡住,可能是电动机缺油,轴承锈死,或损坏严重,端盖或者油盖装的太斜,转子和内膛相碰(扫膛)当用手转动电动机轴到某一角度时感到比较吃力或听到周期性的擦擦声,可判断为扫膛。 3,电动机转速慢且有嗡嗡声:这种故障表现为轴振东,若测得一相电流为零,而另两相电流大大超过额定电流,说明是两相运转,其原因是:电路或者电源一相断路,或电动机绕组一相断路。小容量的电动机可以用万用表直接测量是否通断。中等容量的电动机由于绕组多采用多根导线并绕多支路并联,其中若断掉若干根或断开一条并联支路时检查起来就比较麻烦,这样的情况通常采用相电流平衡法或者电阻法。电阻法用电桥测量三相绕组的电阻,如三相电阻相差百分五以上,电阻较大的一相为断路相。 经验证明:电动机的断路故障多数发生在绕组的端部,接头处或引出线的地方。 二,电动机启动时熔断器熔断或者热继电器断开 1,故障检查步骤:检查熔丝是否合适,检查电路中是否有短路,检查电机是否短路或者接地。 2,接地故障的检测方法:用摇表检测电机绕组对地的绝缘电阻,当绝缘电阻低于0.2兆欧时,说明电机严重受潮。用万用表电阻档或校验灯逐步检查,如果电阻较小或者校验灯较暗说明该项绕组严重受潮,需要烘干处理,如果电阻为零或者校验灯接近正常亮度,那么该项已近接地了。绕组接地一般发生在电动机出线孔,电源线的进线孔或绕组伸出槽口处对于后一种情况,若发现接地并不严重,可将竹片或绝缘纸插入定子铁芯与绕组之间,如经检查已不接地,可包扎并涂绝缘漆后继续使用。

浅谈直流电机的故障诊断及维护

浅谈直流电机的故障诊断及维护 摘要】直流电机系统的维护决定其正常运行;直流电机结构的特殊性决定其故 障的多样性和故障诊断的复杂性。只有正确维护,准确诊断,才能实现高效稳定 地运行。本文阐述了直流电机故障诊断、直流电机的检查维护、直流电机控制部 分的维护与检修以及直流电机的日常管理,旨在提高直流电机的工作效率以及企 业的经济效益。 【关键词】直流电机故障诊断检查维护日常管理 有关直流电机最早的历史可以追溯到十九世纪二十年代,那时候有关电机的 相关理论已经开始普遍流传,人们将直流电机不断地改造以适应时代的需求。直 流电机过载能力较强,热动和制动转矩较大,调速性能优越,易平滑调速,而且 控制系统简单,电控系统造价低,这个是交流电机无法取代的。因此在钻井中, 直流电机仍在广泛应用着。 一、直流电机故障诊断 直流电机的复杂结构决定了其故障的多样性原因的多样性。主要分为机械性 故障和电气性故障。 1、机械故障。机械性故障包括安装不良松动、轴承不良、润滑脂泄漏等问题,判断机械故障先看电机是否有异响、振动是否过大,两电机电流是否相差过大,解决方法主要通过重新校正平衡以及更换相应设备等措施进行故障排查。机 械故障是难以避免的,而且往往在现场无法解决,这需要我们提前发现处理,防 止事故扩大化。 2、电气故障。直流电机运行的电气故障主要表现在以下几个方面:(1)运 行过程中电机温度升高;(2)电刷下火花强烈引起换向片烧黑;(3)绝缘老化 速度加快等。电气故障可通过电流的波动来判断。运行中的温度升高主要由电机 过载、风机工作不正常、电枢线圈短路等原因所致。处理过程中要找准引起温度 上升的原因,并对相应部位进行检修维护。电刷打火主要是因为碳刷磨损过大或 电刷弹簧老化引起的,应及时更换。换向片应视灼烧情况处理,对于轻微的灼烧 可以拿砂纸打磨凹凸面,严重的应考虑返厂更换了。电机绝缘性能下降最直观的 表现是电控柜直流接地灯亮,电机启动后电压很低,但电流很大。应用兆欧表测 量电枢的绝缘电阻,最低不能低于0.7兆欧。解决方法可以先用热风机或大灯泡 烘烤线圈,若结果不理想,应及时返厂做绝缘处理。 二、直流电机的检查维护 虽然直流电机的故障有很多,但主要集中在碳刷、换向器、轴承等元件,同 时亦是故障的多发区。钻井直流电机主要使用T900的碳刷,而且分直、斜两种。 1、电刷的维护。电刷的质量对换向有很大的影响,合理的选择电刷可以改 善换向。而电刷的维护需要从以下几个方面进行:(1)确认电刷辫螺丝是紧固的,刷辫不影响电刷的自由运动。(2)确保电刷辫不接触到电机内部非绝缘部分。(3)检查电刷能否在刷握内自由移动,弹簧的位置必须正确,功能正常。(4)刷握离换向器表面的距离应一致。 2、换向器的维护。换向器工作状况好坏直接关系直流电机的工作状况,因 此必须加强对换向器的维护。而直流电机换向故障主要标志是换向火花,换向火 花实际上是电刷的换向片脱离接触时,释放的电磁能量。换向器的维护和电刷的 维护与质量直接挂钩,正确的进行电刷质量选择和合理维护电刷运行时换向器维

电机常见的振动故障原因

编号:SM-ZD-75861 电机常见的振动故障原因Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

电机常见的振动故障原因 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 一般来讲,电机振动是由于转动部分不平衡、机械故障或电磁方面的原因引起的。 一、转动部分不平衡主要是转子、耦合器、联轴器、传动轮(制动轮)不平衡引起的。 处理方法是先找好转子平衡。如果有大型传动轮、制动轮、耦合器、联轴器,应与转子分开单独找好平衡。再有就是转动部分机械松动造成的。如:铁心支架松动,斜键、销钉失效松动,转子绑扎不紧都会造成转动部分不平衡。 二、机械部分故障主要有以下几点: 1、联动部分轴系不对中,中心线不重合,定心不正确。这种故障产生的原因主要是安装过程中,对中不良、安装不当造成的。还有一种情况,就是有的联动部分中心线在冷态时是重合一致的,但运行一段时间后由于转子支点,基础等变形,中心线又被破坏,因而产生振动。 2、与电机相联的齿轮、联轴器有毛病。这种故障主要表

电机振动在线监测系统解决方案上课讲义

钛能科技根据多年来的状态监测实践,针对电机故障研发出了一套电机振动在线监测系统解决方案,对全面推动我司电机状态监测工作深入开展发挥了重要作用。 1.引言 电机是现代工业生产中的重要电气设备,是现代工业生产的重要物质和技术基础,广泛应用于钢铁、石油、化工、电力、建材、机械制造、汽车、轻纺、交通运输、环保等各个行业。各种电机设备的技术水平和运行状况是影响一个工业企业各项经济技术指标的重要因素,电机故障会对企业生产运营造成严重影响。一般说来,电机故障约有60%-70%是通过振动和由振动辐射出的噪声反映出来的,因此现场应用中,振动监测技术是应用比较普遍的故障诊断方法。 电机振动主要由电枢不平衡、电磁力、轴承磨损、转轴弯曲和安装不良使电机与负载机械的轴心线不对中或倾斜等原因引起的。电机振动三个基本参数,分别是振幅、频率和相位。其中振幅可用位移、速度和加速度来表示。在测量过程中我们一般对高频故障(如滚动轴承、齿轮箱故障等)或高速设备进行测量时,应选加速度为参考量;在对低频故障(如不平衡、不对中等)或低速设备测量时,应选位移为参考量;而在进行振动的总体状态测量时,选速度为参考量。电机振动大小必须要满足国家的电机振动标准,否则会造成很严重的后果。 要做好电机振动的监测诊断,首先要对诊断对象做全面的了解以及必要的机理分析,比如:机器的结构和动态特性(齿轮与轴承规格、特征频率等),机器的相关机件连接情况(如动力源、基座等),机器的运行条件(如温度、压力、转速)及维修技术(如故障、维修、润滑、改造),异常振 动的形态和特性。 2.解决方案 2.1方案概述 钛能科技根据已有的技术规范,在对钢铁、石化、水泥客户广泛深入调研的基础之上,结合自身多年来的技术积累,精心开发了电机振动在线监测系统,受到了客户的肯定和好评。 钛能科技电机振动在线监测系统依托先进的物联网传感技术,通过测定电机设备特征参数(如振动加速度、速度、位移等),计算并存储设备的运行参数,自动生成日数据库、历史数据库及报警库。将特征参数值与设定值进行比较,来确定设备当前是处于正常、异常还是故障状态,设备一旦出现异常或者故障,及时报警通知运行管理人员。尽可能多的采集故障信息,从而获得设备的状态变化规律,预测设备的运行发展趋势,帮助用户查找产生故障的原因,识别、判断故障的严重程度,

直流电机的认识与检测维修方法

直流电机的认识与检测维修方法 直流电机(direct current machine)是指能将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。它是能实现直流电能和机械能互相转换的电机。当它作电动机运行时是直流电动机,将电能转换为机械能;作发电机运行时是直流发电机,将机械能转换为电能。 直流电机里边固定有环状永磁体,电流通过转子上的线圈产生安培力,当转子上的线圈与磁场平行时,再继续转受到的磁场方向将改变,因此此时转子末端的电刷跟转换片交替接触,从而线圈上的电流方向也改变,产生的洛伦兹力方向不变,所以电机能保持一个方向转动。陕西西玛金都机电生产部李工程师说:起动机使用的直流电动机为短时额定工作的串激式直流电动机,它起动柴油机时的导线较粗,产生的转矩也很大。 直流电动机主要由电枢、换向器、磁极、激磁绕组和电刷等组成。壳体内部电枢绕组和激磁绕组串联在一起,当蓄电池供电时,激磁绕组和铁心形成磁极而产生磁场,同样,电枢绕组也产生磁场。两个磁场相互作用而产生很大的转矩,然后通过起动机驱动齿轮输出动力。 1.直流电动机的修理。 (1)检修电刷和电刷架,电刷总成的安装位置如图02所示。图02 ST614型起动机的构造。在正常情况下.电刷的高度一般在20mm左右。若在检修中发现磨损到小于原高度1/2时,应换用同型号的新电刷。更换后的电刷,应保证工作面与换向器接触面积在75%以上。若接触面不符合要求时,可用"0"号细砂纸垫在换向器表面上.将电刷工作面研磨成圆弧状的接触面。电刷弹簧的压力一般为13土2N,否则,应更换或调整电刷弹簧。 (2)看图检修电枢 ①电枢的实物外形如图03所示。图03 电枢的实物外形 电枢线圈在使用中出现短路、断路和搭铁现象时,可用万用表电阻挡进行检测。 ②换向器表面应无烧损、划伤、凹坑和云母片凸起等缺陷。换向器表面上的污物,应用汽油将其清洗干净。对于松脱的接头要用锡焊重新牌。换向器表面出现较严重的烧损、磨损和划.并造成表面不光滑或失圆时,可根据具体情况进行修复或更换。 ③电枢两端轴颈与轴承衬套的配合间隙应控制在o. 04 ~ o. 15mm范围内。若测量出的问隙值超过o. 15mm时,应换用新衬套。 (3)看图检修磁场线圈 ①磁场线圈的实物外形如图04所示。图04 磁场线圈的实物外形。 磁场线圈损坏后,可用万用表电阻挡检测磁场线圈的工作情况。 ②磁极铁,心松动、线圈出现松动或其他原因造成损坏后,可将旧绝缘稍加处理后,用布带重新包好,再进行绝缘处理。 ③检修中发现有断路或短路的线圈时,一般应换用新线圈或重新绕制 (4)看图检修后端盖 后端盖的实物外形如图05所示。 图05 后端盖的实物外形 ①在后端盖的4个电刷架中有2个与盖体绝缘,另外2个与盖体搭铁。 ②相邻2个电届IJ架之间的绝缘电阻应大于0.5Mn。若绝缘电阻过小,应查明原因后修复. 电枢绕组接地故障 这是直流电动机绕组最常见的故障。电枢绕组接地故障一般常发生在槽口处和槽内底部,对其的判定可采用绝缘电阻表法或校验灯法,用绝缘电阻表测量电枢绕组对机座的绝缘电阻时,如阻值为零则说明电枢绕组接地;或者用图所示的毫伏表法进行判定,将36V低压电源通过额定电压为36V的低压照明灯后,连接到换向器片上及转轴一端,若灯泡发亮,则说明电枢绕组存在接地故障。具体到是哪个糟的绕组元件接地,则可用图所示的毫伏表法进

高压电机振动故障分析与处理

高压电机振动故障分析与处理 高压电动机在煤矿生产中的应用极其广泛,根据安装运行维护管理的规定必须进行定期的检查,以便及时了解、掌握电动机的运行情况,及时采取有效的措施,从而保障电动机的安全运行。因此,本文将分析总结高压电动机在安装、运行中所出现振动故障的查找与处理方法。 1、电机振动的测量 对电机振动量的测量从过去用螺丝刀测听,到现在使用较精密的振动测试仪,已经能进行准确的判定。V—63型便携式测振仪,为目前各工厂企业使用较多的用于测量振动的主要仪器,在及时预报电机的振动故障,根据电机的具体运行状况,制定出不同的维护检修措施,发挥着重要作用。 1.1 测量方法 振动的测量可进行振动位移、速度、加速度的测量,在测量时,应注意(1)在测量前,应检查确认仪器的电池电压,正确的设置频率范围。(2)根据不同的测量参数,正确的设置频率范围。(3)在测量时,应保持探头和被测面垂直。(4)在测量过程中,施加在仪器上的压力应适中。 1.2 选取测量位置 根据电机的结构特点,选取合适的能表征电机振动特性的测量点,对判定电机的振动是否超标是非常重要的,对于大中型电机,一般选取电机轴承座的正上方以及轴承中心线左右的对称点,或者电机大端盖的垂直向下与轴承水平方向垂直位置作为测量点。 1.3 电机振动的判定标准 电机振动量所测试的三个参数振动位移、速度、加速度,根据振动的频率越低则振动的位移量的测定灵敏度就越高,振动的频率越高则振动加速度所测定的灵敏度就越高的机理,对于大多数的设备,其振动的速度能够表征设备的振动状态。所以,在对电机进行监测时,以电机振动的速度为主,兼顾振动的位移量。 2、电机在自由状态下振动小,栓紧底脚时振动大,或相反 目前对置于刚性基础上所做空载试验的高压电机,是取自由状态的振动测试值还是在栓紧底脚时的振动测试值没有进行明确的规定。实践证明,取自由状态的振动测试值是可行的,由于在大多数的情况下,把紧底脚时测得的电机的振动值要较自由状态小。其原因可认为通过电机底座面和刚性基础面的良好吻合等于变相增加了电机的刚性。现今,对于结构刚性较差的电机,增加其剐性可以减小振动已经成为不争的事实,可以认为是抑制了电机某种频率的附加振动或者削弱了电

三相异步电动机的绕组常见故障分析与处理方法(精)

班级:07自动化 学号:0709111016 姓名:高顺 三相异步电动机的绕组常见故障分析与处理方法 关键词:断路电流不平衡短路绝缘损坏磁场不均绕组接地绕组接错 一、绕组开路 由于焊接不良或使用腐蚀性焊剂,焊接后又未清除干净,就可能造成壶焊或松脱;受机械应力或碰撞时线圈短路、短路与接地故障也可使导线烧毁,在并烧的几根导线中有一根或几根导线短路时,另几根导线由于电流的增加而温度上升,引起绕组发热而断路。一般分为一相绕组端部断线、匝间短路、并联支路处断路、多根导线并烧中一根断路、转子断笼。 1. 故障现象 电动机不能启动,三相电流不平衡,有异常噪声或振动大,温升超过允许值或冒烟。 2. 产生原因 (1)在检修和维护保养时碰断或制造质量问题。 (2)绕组各元件、极(相)组和绕组与引接线等接线头焊接不良,长期运行过热脱焊。 (3)受机械力和电磁场力使绕组损伤或拉断。 (4)匝间或相间短路及接地造成绕组严重烧焦或熔断等。 3. 检查方法 (1)观察法。断点大多数发生在绕组端部,看有无碰折、接头出有无脱焊。(2)万用表法。利用电阻档,对“Y”型接法的将一根表棒接在“Y”形的中心点上,另一根依次接在三相绕组的首端,无穷大的一相为断点;“△”型接法的短开连接后,分别测每组绕组,无穷大的则为断路点。 (3)试灯法。方法同前,等不亮的一相为断路。 (4)兆欧表法。阻值趋向无穷大(即不为零值)的一相为断路点。 (5)电流表法。电机在运行时,用电流表测三相电流,若三相电流不平衡、又无短路现象,则电流较小的一相绕组有部分短断路故障。 (6)电桥法。当电机某一相电阻比其他两相电阻大时,说明该相绕组有部分断路故障; (7)电流平衡法。对于“Y”型接法的,可将三相绕组并联后,通入低电压大电流的交流电,如果三相绕组中的电流相差大于10%时,电流小的一端为断路;对于“△”型接法的,先将定子绕组的一个接点拆开,再逐相通入低压大电流,其中电流小的一相为断路。

电动机常见故障分析与维修..

直流电动机常见故障分析与维修 1.引言 电动机在人们的工农业生产中发挥着巨大的作用,给人们的生活带来了极大的便利。直流电动机虽然结构较复杂,使用与维护较麻烦,价格较贵,但是由于其具有调速性能好,起动转矩大等优点, 本文分析了电动机的结构、工作原理以及在工作中的常见故障,并给出了一些日常维护的方法。 2.直流电动机的原理、结构与拆装 2.1直流电动机的工作原理 当把直流电动机的电刷A、B接到直流电源上时,从图2.1可以看出,电刷A是正电位,B是负电位,在N极范围内的导体ab中的电流是从a流向b,在S极范围内的导体cd中的电流是从c流向d。前面已经说过,载流导体在磁场中要受到电磁力的作用,因此,ab和cd两导体都要受到电磁力Fde的作用。根据磁场方向和导体中的电流方向,利用电动机左手定则判断,ab边受力的方向是向左,而cd边则是向右。由于磁场是均匀的,导体中流过的又是相同的电流,所以,ab边和cd边所受电磁力的大小相等。这样,线圈上就受到了电磁力的作用而按逆时针方向转动了。当线圈转到磁极的中性面上时,线圈中的电流等于零,电磁力等于零,但是由于惯性的作用,线圈继续转动。线圈转过半州之后,虽然ab与cd的位置调换了,ab边转到S极范围内,cd边转到N极范围内,但是,由于换向片和电刷的作用,转到N极下的cd边中电流方向也变了,是从d流向c,在S极下的ab边中的电流则是从b流向a。因此,电磁力Fdc的方向仍然不变,线圈仍然受力按逆时针方向转动。可见,分别处在N、S极范围内的导体中的电流方向总是不变的,因此,线圈两个边的受力方向也不变,这样,线圈就可以按照受力方向不停的旋转了,通过齿轮或皮带等机构的传动,便可以带动其它工 作机械。 图2.1 从以上的分析可以看到,要使线圈按照一定的方向旋转,关键问题是当导体从一个磁极范围内转到另一个异性磁极范围内时(也就是导体经过中性面后),导体中电流的方向也要同时改变。换向器和电刷就是完成这个任务的装置。在直流发电机中,换向器和电刷的任务是把线圈中的交流电变为直流电向外输出;而在直流电动机中,则用换向器和电刷把输入的直流电变为线圈中的交流电。可见,换向器和电刷是直流电机中不可缺少的关键性部件。 当然,在实际的直流电动机中,也不只有一个线圈,而是有许多个线圈牢固地嵌在转子铁芯槽中,当导

交流感应异步电动机故障诊断

交流感应异步电机的故障诊断 Diagnosis of fault on Induction Motor 杨瑞(山东邹县发电厂邹县273522) 摘要:本文讨论了交流感应异步电机的故障机理、特点,并详细地介绍了电机的振动分析技术、电流分析技术、磁通分析技术、轴电压电流分析技术等诊断技术。 A bstract:y. 关键词:电机故障诊断 Key words: motor fault diagnose 0、引言 交流感应异步电机的故障诊断是通过对电机定子线圈电流、定子轴向磁通、转子轴电压及电流等数据分析,应用电机振动分析技术、电流分析技术、磁通分析技术、轴电压电流分析等技术,判断电机运行过程中产生的各种信息。通过对其状态参数的检调和分析,判定是否存在异常和故障以及故障的位置和原因,并对设备未来状态进行预测。由于设备故障诊断技术在生产中的应用,了解和掌握了设备运行的状态,改变了维修方式,减少了突发性的事故停产,减少了过剩维修,降低了维修费用,提高了作业率,其经济效益是比较显著的。1、故障诊断 1.1感应电机振动诊断技术 利用电机轴承处的振动信息可以检测出电机的电气问题:对定子或转子偏心、定子或转子的短路铁心及松动铁心、转子条或端环缺陷、转子热弯曲、松动的或断开的电源接头等故障均能够通过振动信号的分析寻找到依据。 1.1.1感应电机定子故障诊断 电机定子故障包括定子偏心、定子铁心短路或松动,这些故障均产生2FL(电源频率)下的大振动,然而,并不一定均产生极通过频率边带(极通过频率=极数×滑差频率)。若切断电机电源,可发现2FL频率下的振动会立即消失。 1.1.2感应电机偏心的转子故障诊断 偏心的转子可在转子与定子间产生旋转的可变气隙,引起脉冲振动(通常在2FL与转速的谐波频率之间)。常常需要细化谱分离2FL与转速的谐波频率。偏心的转子产生2FL及其两侧的极通过频率边带。极通过频率本身出现在低频处(极通过频率=滑差频率8极的数目)。FP常见值的范围在20到120转(0.3-2赫兹)内。软脚或不对中由于变形常会引起可变的气隙。 1.1.3感应电机转子故障诊断 断的、裂的转子条或短路环,转子条与短路环间接触不良,或者短路的转子铁心将产生1X转速频率的大振动及其两侧极通过频率边带。此外,这些故障常产生转速频率的2、3、4、5阶谐波频率两侧的极通过频率边带。转子条通过频率及其谐波频率两侧的2FL边带指示转子条松动或脱开。松动的转子条与端环间电气引起的电弧常表示出很高的幅值的2RBPF且伴随2FL边带,但是1RBPF频率的振动幅值不增大。 1.1.4感应电机电气相位故障诊断 由于松动或者断的或者裂的接头的相位问题可产生2FL频率的过大的振动,并且2FL两侧伴有1/3电源频率的边带。如果不解决向往问题,2FL处的振动幅值将超过25.4毫米/秒。如

基于PLC电机故障诊断系统设计

基于PLC电机故障诊断系统设计 摘要:随着经济的高速发展,现今社会自动化代替人工操作已经不是梦想,PLC可编程逻辑控制器(PLC)是实现自动化操作的基础。一个完善的PLC控制系统不仅仅只是使整个自动化操作系统满足工业自动化控制的要求还可以在自动化生产系统出现故障时及时的对故障进行诊断和处理,保证了生产设备的正常运转。PLC故障的诊断和处理是体现自动化控制系统代替人工操作实现自我诊断和处理的先进化程度,同时也是衡量自动化控制的智能化指标。PLC 对于整个系统故障的自我诊断对于工业控制具有较的实用价值。 关键词:PLC电机故障诊断系统设计 中图分类号:TM57 文献标识码:A 文章编号:1003-9082(2016)06-0278-02 在当下的工业生产过程中,PLC控制系统在工业智能化的领域被大量的使用,是实现工业自动化控制的中间力量。PLC的完善程度决定着整个自动化操作系统的安全性和可靠性,PLC故障诊断系统它在工业自动化控制中占有举足轻重的地位。 一、电机系统的组成和工作原理 PLC电机系统主要由上位计算机和一套PLC监控系统组

成[1]。上位计算机为用户提供数据、图形和事件的显示。PLC 通过外部变送器、互感器和发动机连接完成自动化系统设备的故障信号检测并将这些数据转化为通讯数据传输给上位计算机。上位计算机通过对故障原因进行分析和判断,分析和判断后的结果通过数据传送给人机界面。人机界面给出故障点解释故障的诊断结果,并在人机界面给出相应排除故障的建议。电机故障诊断系统的框架图如下: 当操作人员按下生产系统的开机按钮后,PLC电机故障诊断系统先对断路器的闭合或断开的形态进行判断,如果电机故障诊断系统监测到断路器初始状态为闭合那么电机将无法启动,并且伴随报警,反之则启动成功。电机启动成功的标志是在控制柜上电机的“开/关”指示灯亮起,反之则电机出现故障。在生产设备运行过程中,PLC不停的对电机有可能发生的故障进行循环的检测。如果电机发生相间短路、断相和过负荷以及过电流等故障,PLC迅速的对电机故障做出判断和相应的故障分析并且为操作人员给出排除故障的建议。在关机时,PLC接到关机命令后,断路器跳闸(电机“开/关”指示灯灭),故障声光报警后,按下报警复位按钮进行系统复位完成关机动作[2]。 二、PLC的组成 PLC的组成主要包含:中央处理器、存储器、输入/输出模块、电源、外部设备接口及输入/输出扩展单元等组成。它

直流电机常见故障及排除方法(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 直流电机常见故障及排除方法 (新版) Safety management is an important part of production management. Safety and production are in the implementation process

直流电机常见故障及排除方法(新版) 1、前言 直流电机的故障多种多样,产生的原因较为复杂,并且相互影响,电机运行中由于制造、安装、使用、维护不当,都可引起故障。 2、直流发电机常风故障及排除方法 2.1并励直流发电机建立电压的条件 (1)条件:A、主磁极必须有剩磁;B、并励绕组并联到电机绕组上时,接线极性必须正确;C、励磁回路中总电阻值必须小于临界电阻。 (2)排除并励直流电机不能建立稳定电压的故障方法 A、新安装的原因是电机控制柜内接线松脱或电机碳刷接触不良所致。认真检查,调整碳刷压力即可。对于长期使用后的由于主磁极剩磁消失或严重减少,可先将并励绕组与电柜绕组联接线断开,用直流电源加于并励绕组使其磁化,如发电机仍不能发电,可改变

极性重新磁化。 B、在发电机旋转方向正确的情况下,有时由于电机外部或内部并激绕组与电柜绕组联接不正确导致励磁磁通与主磁极的剩磁磁通极性相反,使剩磁进一步减小不能自励,这时只要调换一下励磁绕组接线的极性就可以了。 C、为调整输出电压,励磁回路通常串联附加电阻,有时电阻断线、接头松脱使励磁回路总电阻大于发电机临界电阻,不能建立电压可将电阻值调小或短接一下,待发电机建立电压后,再调节电阻,使电压达到额定值。 2.2空载电压正常,加载后显著下降 (1)串励绕组的极性接反,检查接线可将串励绕组的2个接头互换位置试验,观察电压,若回升……….. (2)换向极绕组接反。此情况会使换向严重恶化,可看到电刷下火花随负载增加而更加明显,发现这种情况,先检查换向极性是否正确,可将换向极绕组的接头互换位置,进行试验以观察效果。 (3)电刷偏离中性线过多,严重时不发电空载下电刷有火花,

相关文档