文档库 最新最全的文档下载
当前位置:文档库 › 高一数学必修1函数的基本性质

高一数学必修1函数的基本性质

高一数学必修1函数的基本性质
高一数学必修1函数的基本性质

高中数学必修1函数的基本性质

1.奇偶性

(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:

1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○

2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:

1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○

2 确定f (-x )与f (x )的关系; ○

3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数;

若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。

(3)简单性质:

①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;

②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:

奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶

2.单调性

(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);

注意:

1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○

2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

(3)设复合函数y = f [g(x )],其中u =g(x ) , A 是y = f [g(x )]定义域的某个区间,B 是映射g : x →u =g(x ) 的象集: ①若u =g(x ) 在 A 上是增(或减)函数,y = f (u )在B 上也是增(或减)函数,则函数y = f [g(x )]在A 上是增函数;

②若u =g(x )在A 上是增(或减)函数,而y = f (u )在B 上是减(或增)函数,则函数y = f [g(x )]在A 上是减函数。

(4)判断函数单调性的方法步骤

利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤:

1 任取x 1,x 2∈D ,且x 1

2 作差f (x 1)-f (x 2); ○

3 变形(通常是因式分解和配方);

○4 定号(即判断差f (x 1)-f (x 2)的正负);

○5 下结论(即指出函数f (x )在给定的区间D 上的单调性)。

(5)简单性质

①奇函数在其对称区间上的单调性相同;

②偶函数在其对称区间上的单调性相反;

③在公共定义域内:

增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数;增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

3.最值

(1)定义:

最大值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M ;②存在x 0∈I ,使得f (x 0) = M 。那么,称M 是函数y =f (x )的最大值。

最小值:一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≥M ;②存在x 0∈I ,使得f (x 0) = M 。那么,称M 是函数y =f (x )的最大值。

注意:

1 函数最大(小)首先应该是某一个函数值,即存在x 0∈I ,使得f (x 0) = M ; ○

2 函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x ∈I ,都有f (x )≤M (f (x )≥M )。

(2)利用函数单调性的判断函数的最大(小)值的方法:

1 利用二次函数的性质(配方法)求函数的最大(小)值; ○

2 利用图象求函数的最大(小)值; ○

3 利用函数单调性的判断函数的最大(小)值: 如果函数y =f (x )在区间[a ,b ]上单调递增,在区间[b ,c ]上单调递减则函数y =f (x )在x =b 处有最大值f (b ); 如果函数y =f (x )在区间[a ,b ]上单调递减,在区间[b ,c ]上单调递增则函数y =f (x )在x =b 处有最小值f (b );

4.周期性

(1)定义:如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x+T )= f (x ),则称f (x )为周期函数;

(2)性质:①f (x+T )= f (x )常常写作),2

()2(T x f T x f -=+若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期;②若周期函数f (x )的周期为T ,则f (ωx )(ω≠0)是周期函数,且周期为

||ωT

。 四.典例解析

【奇偶性典型例题】

例1.以下五个函数:(1))0(1≠=

x x y ;(2)14+=x y ;(3)x y 2=;(4)x y 2log =; (5))1(log 22++=x x y ,其中奇函数是____ __,偶函数是__ ____,非奇非偶函数是 _________

点评:判断函数的奇偶性是比较基本的问题,难度不大,解决问题时应先考察函数的定义域,若函数的解析式能化简,一般应考虑先化简,但化简必须是等价变换过程(要保证定义域不变)。

题型二:奇偶性的应用

例2.设f (x )是定义在R 上的奇函数,若当x ≥0时,f (x )=lo g 3(1+x ),则f (-2)=____ _。

例3.已知()f x 奇函数,当x ∈(0,1)时,1()lg 1f x x

=+,那么当x ∈(-1,0)时,()f x 的表达式是 .

例4.若奇函数()f x 是定义在(1-,1)上的增函数,试求a 的范围:

2(2)(4)0f a f a -+-<.

解:由已知得2(2)(4)f a f a -<--

因f(x)是奇函数,故 22(4)(4)f a f a --=-,于是2(2)(4)f a f a -<-.

又()f x 是定义在(-1,1)上的增函数,从而

223224121132141a a a a a a a a a ??-<<-<-??-<-

即不等式的解集是2)

【单调性典型例题】

例1.(1)()(21),f x a x b R =-+设函数是上的减函数则a 的范围为( )

A .12a ≥

B .12a ≤

C .12a >-

D .12

a < (2)函数2([0,)y x bx c x =++∈+∞)是单调函数的充要条件是( )

A .0b ≥

B .0b ≤

C .0b >

D .0b <

(3)已知()f x 在区间(,)-∞+∞上是减函数,,a b R ∈且0a b +≤,则下列表达正确的是( )

A .()()[()()]f a f b f a f b +≤-+

B .()()()()f a f b f a f b +≤-+-

C .()()[()()]f a f b f a f b +≥-+

D .()()()()f a f b f a f b +≥-+-

提示:0a b +≤可转化为a b ≤-和b a ≤-在利用函数单调性可得.

(4) 如右图是定义在闭区间上的函数()y f x =的图象,该函数的单调增区

间为

例2.画出下列函数图象并写出函数的单调区间

(1)22||1y x x =-++ (2)2

|23|y x x =-++

例3.根据函数单调性的定义,证明函数

上是减函数.

例4.设)(x f 是定义在R 上的函数,对m 、R n ∈恒有)()()(n f m f n m f ?=+,且当0>x 时,1)(0<

(1)求证:1)0(=f ; (2)证明:R x ∈时恒有0)(>x f ;

(3)求证:)(x f 在R 上是减函数; (4)若()(2)1f x f x ?->,求x 的范围。 解:(1)取m=0,n=

12则11(0)()(0)22f f f +=,因为1()02

f > 所以(0)1f = (2)设0x <则0x -> 由条件可知()f x o ->

又因为1(0)()()()0f f x x f x f x ==-=->,所以()0f x > ∴R x ∈时,恒有0)(>x f

(3)设12x x <则

121211()()()()f x f x f x f x x x -=--+ =1211()()()f x f x x f x -- =121()[1()]f x f x x -- 因为12x x <所以210x x ->所以21()1f x x -<即211()0f x x -->

又因为1()0f x >,所以121()[1()]0f x f x x --> 所以12()()0f x f x ->,即该函数在R 上是减函数.

(4) 因为()(2)1f x f x ?->,所以2()(2)(2)(0)f x f x f x x f ?-=->

所以220x x -<,所以20x x x ><的范围为或

例5:(复合函数单调性)1.函数

y =的增区间是( ).

A . [-3,-1]

B . [-1,1]

C . (,3)-∞-

D . [1,)-+∞

2.函数y =8021

2--x x 的单调递增区间为( )

A .(,8)-∞-

B .(,1)-∞

C .(1,)+∞

D .(8,)-+∞

题型五:周期问题

例6.已知函数()y f x =是定义在R 上的周期函数,周期5T =,函数()(11)y f x x =-≤≤是奇函数又知()y f x =在[0,1]上是一次函数,在[1,4]上是二次函数,且在2x =时函数取得最小值5-。

①证明:(1)(4)0f f +=;

②求(),[1,4]y f x x =∈的解析式;

③求()y f x =在[4,9]上的解析式。

解:∵()f x 是以5为周期的周期函数,∴(4)(45)(1)f f f =-=-,

又∵()(11)y f x x =-≤≤是奇函数,∴(1)(1)(4)f f f =--=-,∴(1)(4)0f f +=。

②当[1,4]x ∈时,由题意可设2

()(2) 5 (0)f x a x a =-->,

由(1)(4)0f f +=得22(12)5(42)50a a --+--=,∴2a =,∴2()2(2)5(14)f x x x =--≤≤。

③∵()(11)y f x x =-≤≤是奇函数,∴(0)0f =,

又知()y f x =在[0,1]上是一次函数,

∴可设()(01)f x kx x =≤≤,而2(1)2(12)53f =--=-,

∴3k =-,∴当01x ≤≤时,()3f x x =-,

从而当10x -≤<时,()()3f x f x x =--=-,故11x -≤≤时,()3f x x =-。

∴当46x ≤≤时,有151x -≤-≤,

∴()(5)3(5)315f x f x x x =-=--=-+。

当69x <≤时,154x <-≤,

∴22()(5)2[(5)2]52(7)5f x f x x x =-=---=-- ∴2315,46()2(7)5,69x x f x x x -+≤≤?=?--<≤?

人教版_数学_必修1函数的基本性质_教案

一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。 (3)单调性:如果函数()y f x =在某个区间是增函数或减函数。那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。 2、单调性的判定方法 (1)定义法: 判断下列函数的单调区间:2 1x y = (2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (3)复合函数的单调性的判断: 设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在] ,[b a 上也是单调函数。 ①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。 ②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。也就是说:同增异减(类似于“负负得正”) 练习:(1)函数24x y -=的单调递减区间是 ,单调递增区间 为 . (2)5 412 +-= x x y 的单调递增区间为 . 3、函数单调性应注意的问题: ①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数). ③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在上 是增(或减)函数 4.例题分析

高一数学必修一 函数知识点总结

3. 函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型),(,)(2n m x c bx ax x f ∈++=的形式; ②逆求法(反求法):通过反解,用y 来表示x ,再由x 的取值范围,通过解不等式,得出y 的取值范围;常用来解,型 如: ),(,n m x d cx b ax y ∈++= ; ④换元法:通过变量代换转化为能求值域的函数,化归思想; 常针对根号,举例: 令 ,原式转化为: ,再利用配方法。 ⑤利用函数有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域; ⑥基本不等式法:转化成型如: )0(>+ =k x k x y ,利用平均值不等式公式来求值域; ⑦单调性法:函数为单调函数,可根据函数的单调性求值域。 ⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。 二.函数的性质 1.函数的单调性(局部性质) (1)增函数 设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1?<∈对任意的 注:① 函数上的区间I 且x 1,x 2∈I.若2 121)()(x x x f x f -->0(x 1≠x 2),则函数f(x)在区间I 上是增函数; 若2121)()(x x x f x f --<0(x 1≠x 2),则函数f(x)是在区间I 上是减函数。 ② 用定义证明单调性的步骤: <1>设x1,x2∈M ,且21x x <;则 <2> )()(21x f x f -作差整理; <3>判断差的符号; <4>下结论; ③ 增+增=增 减+减=减 ④ 复合函数y=f[g(x)]单调性:同增异减 [](内层) (外层)) (,则)(,)((x f y x u u f y ??===

高中数学必修1《函数的应用》知识点

高中数学必修1《函数的应用》知识点(总7页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

第4章 函数的应用 第1讲 函数与方程 一、连续函数 连续函数: 非连续函数: 二、方程的根与函数的零点 ()()()0001f x x f x x f x ?、零点:对于函数,若使=0,则称为函数的零点. ()()()=0y f x f x y f x x ??2、函数=的零点方程的实根函数=图像与交点的横坐标. 3、零点存在性定理: ()[]()()()(),::,. 0.y f x a b p q y f x a b f a f b ?????

()f x 三、用二分法求=0的近似解 步骤: ()()()()()()( )1 2121233131323231,,0; 2,;2 30,20,2.i i x x f x f x x x x f x f x f x x x f x f x x x x x d +?<+= ?

高中数学必修一函数难题

高中函数大题专练 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-?=??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2=++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =-≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探求,a b 应满足的条件。 6、设bx ax x f += 2)(,求满足下列条件的实数a 的值:至少有一个正实数b ,使函数)(x f 的定义域和值域相同。 7.对于函数)(x f ,若存在R x ∈0 ,使00)(x x f =成立,则称点00(,)x x 为函数的不动点。

高中数学必修一函数的概念知识点总结

必修一第一章 集合与函数概念 二、函数 知识点8:函数的概念以及区间 1》函数概念 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =()f x 注意:①x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域 ②与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域. 2》区间和无穷大 ①设a 、b 是两个实数,且a=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3》决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数. 典例分析 题型1:函数定义的考察 例1:集合A=}{40≤≤x x ,B=}{20≤≤y y ,下列不表示从A 到B 的函数是( ) A 、x y x f 21)(= → B 、x y x f 31 )(=→ C 、 x y x f 32 )(=→ D 、x y x f =→)( 例2:下列对应关系是否是从A 到B 的函数: ① }{;:,0,x x f x x B R A →>== ②,:,,B A f N B Z A →==求平方; ③B A f Z B Z A →==:,,,求算术平方根; ④B A f Z B N A →==:,,,求平方; ⑤A=[-2,2],B=[-3,3],B A f →:,求立方。 是函数的是_________________。 题型2:区间的表示 例1:用区间表示下列集合 (1) }{1≥x x =_____________。 (2)}{42≤x x x 且=_____________。 (4)}{3-≤x x =______________。 题型3:求函数的定义域和值域 例1:求函数的定义域 (1)32+=x y (2)1 21 y x =+- (3)2 1-= x y (4)y = (5) 0)1(3 1 4++++ +=x x x y

高一数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f(x)定义域内的任意x 都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x) 定义域内的任意x 都有f(-x)=f(x),则称f (x)为偶函数。 如果函数f(x)不具有上述性质,则 f (x)不具有奇偶性.如果函数同时具有上述两条性质,则 f(x)既是奇函数, 又是偶函数。 注意: ○ 1函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;○ 2由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也 一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1首先确定函数的定义域,并判断其定义域是否关于原点对称;○ 2确定f(-x)与f(x)的关系;○ 3作出相应结论:若f(-x) = f(x) 或f(-x)-f (x) = 0,则f (x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f (x)是奇函数。(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称; 一个函数是偶函数的充要条 件是它的图象关于 y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇 奇=偶,偶+偶=偶,偶 偶=偶 2.单调性 (1)定义:一般地,设函数 y=f(x)的定义域为I ,如果对于定义域 I 内的某个区间 D 内的任意两个自变量 x 1,x 2,当x 1f(x 2)),那么就说f(x)在区间D 上是增函数(减函数); 注意: ○ 1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○ 2必须是对于区间D 内的任意两个自变量 x 1,x 2;当x 1

必修1函数的基本性质专题复习(精心整理)

必修 1 《函数的基本性质》专题复习 (一)函数的单调性与最值 ★知识梳理 1.函数的单调性定义: 设函数的定义域为,区间 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是单调增函数,称为的单调增区间 如果对于区间内的任意两个值,,当时,都有,那么就说在区间上是单调减函数,称为的单调减区间 2.函数的最大(小)值 设函数的定义域为 如果存在定值,使得对于任意,有恒成立,那么称为的最大值; 如果存在定值,使得对于任意,有恒成立,那么称为的最小值。 ★热点考点题型探析 考点1 函数的单调性 【例】试用函数单调性的定义判断函数2()1 f x x =-在区间(1,+∞)上的单调性. )(x f y =A A I ?I 1x 2x 21x x <)()(21x f x f <)(x f y =I I )(x f y =I 1x 2x 21x x <)()(21x f x f >)(x f y =I I )(x f y =)(x f y =A A x ∈0A x ∈)()(0x f x f ≤) (0x f )(x f y =A x ∈0A x ∈)()(0x f x f ≥) (0x f )(x f y =

【巩固练习】证明:函数2()1 x f x x = -在区间(0,1)上的单调递减. 考点2 函数的单调区间 1.指出下列函数的单调区间: (1)|1|y x =-; (2)22||3y x x =-++. 2. 已知二次函数2()22f x x ax =++在区间(-∞,4)上是减函数,求a 的取值范围.

【巩固练习】 1.函数26y x x =-的减区间是( ). A . (,2]-∞ B. [2,)+∞ C. [3,)+∞ D. (,3]-∞ 2.在区间(0,2)上是增函数的是( ). A. y =-x +1 B. y C. y = x 2-4x +5 D. y =2x 3. 已知函数f (x )在-1∞(,)上单调递减,在[1+∞,) 单调递增,那么f (1),f (-1),f 之间的大小关系为 . 4.已知函数)(x f 是定义在]1,1[-上的增函数,且)31()1(x f x f -<-,求x 的取值范围. 5. 已知二次函数2()22f x ax x =++在区间(-∞,2)上具有单调性,求a 的取值范围.

(完整版)高中数学必修一函数大题(含详细解答)

高中函数大题专练 1、已知关于x 的不等式2 (4)(4)0kx k x --->,其中k R ∈。 ⑴试求不等式的解集A ; ⑵对于不等式的解集A ,若满足A Z B =I (其中Z 为整数集)。试探究集合B 能否为有限集?若能,求出使得集合B 中元素个数最少的k 的所有取值,并用列举法表示集合 B ;若不能,请说明理由。 2、对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为G 函数。 ① 对任意的[0,1]x ∈,总有()0f x ≥; ② 当12120,0,1x x x x ≥≥+≤时,总有1212()()()f x x f x f x +≥+成立。 已知函数2 ()g x x =与()21x h x a =?-是定义在[0,1]上的函数。 (1)试问函数()g x 是否为G 函数?并说明理由; (2)若函数()h x 是G 函数,求实数a 的值; (3)在(2)的条件下,讨论方程(21)()x g h x m -+=()m R ∈解的个数情况。 3.已知函数| |212)(x x x f - =. (1)若2)(=x f ,求x 的值; (2)若0)()2(2≥+t mf t f t 对于[2,3]t ∈恒成立,求实数m 的取值范围. 4.设函数)(x f 是定义在R 上的偶函数.若当0x ≥时,11,()0,f x x ?-? =??? 0;0.x x >= (1)求)(x f 在(,0)-∞上的解析式. (2)请你作出函数)(x f 的大致图像. (3)当0a b <<时,若()()f a f b =,求ab 的取值范围. (4)若关于x 的方程0)()(2 =++c x bf x f 有7个不同实数解,求,b c 满足的条件. 5.已知函数()(0)|| b f x a x x =- ≠。 (1)若函数()f x 是(0,)+∞上的增函数,求实数b 的取值范围; (2)当2b =时,若不等式()f x x <在区间(1,)+∞上恒成立,求实数a 的取值范围; (3)对于函数()g x 若存在区间[,]()m n m n <,使[,]x m n ∈时,函数()g x 的值域也是 [,]m n ,则称()g x 是[,]m n 上的闭函数。若函数()f x 是某区间上的闭函数,试探 求,a b 应满足的条件。

高一数学必修一函数必背知识点整理

高一数学必修一函数必背知识点整理 高一数学必修一函数必背知识点 1、函数定义域、值域求法综合 2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法 5、二次函数根的问题——一题多解 &指数函数y=a^x a^a*a^b=a^a+ba>0,a、b属于Q a^a^b=a^aba>0,a、b属于Q ab^a=a^a*b^aa>0,a、b属于Q 指数函数对称规律: 1、函数y=a^x与y=a^-x关于y轴对称 2、函数y=a^x与y=-a^x关于x轴对称 3、函数y=a^x与y=-a^-x关于坐标原点对称 幂函数y=x^aa属于R 1、幂函数定义:一般地,形如的函数称为幂函数,其中为常数. 2、幂函数性质归纳. 1所有的幂函数在0,+∞都有定义并且图象都过点1,1; 2时,幂函数的图象通过原点,并且在区间上是增函数.特别地,当时,幂函数的图象下凸;当时,幂函数的图象上凸; 3时,幂函数的图象在区间上是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 方程的根与函数的零点 1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。

2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。 即:方程有实数根函数的图象与轴有交点函数有零点. 3、函数零点的求法: 1 代数法求方程的实数根; 2 几何法对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点: 二次函数. 1△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点. 2△=0,方程有两相等实根,二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点. 3△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点. 感谢您的阅读,祝您生活愉快。

(新)高中数学必修一函数部分难题汇总

函数部分难题汇总 1.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 2.为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移, 这个平移是( ) A .沿x 轴向右平移1个单位 B .沿x 轴向右平移 1 2个单位 C .沿x 轴向左平移1个单位 D .沿x 轴向左平移1 2 个单位 3.设? ??<+≥-=)10()],6([) 10(,2)(x x f f x x x f 则)5(f 的值为( ) A .10 B .11 C .12 D .13 4.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( ) A .[]052 , B. []-14, C. []-55, D. []-37, 5.函数x x x y += 的图象是( ) 6.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( ) A .)2()1()2 3(f f f <-<- B .)2()2 3()1(f f f <-<- C .)23()1()2(-<-

高一数学必修一函数及其表示-函数的概念

1.2函数及其表示 §1.2.1函数的概念 【教学目的】 1、使学生理解函数的概念,明确决定函数的定义域、值域和对应法则三个要素; 2、理解函数符号的含义,能根据函数表达式求出定义域、值域; 3、使学生能够正确使用“区间”、“无穷大”的记号; 4、使学生明白静与动的辩证关系,激发学生学习数学的兴趣和积极性。 【教学重点】 在对应的基础上理解函数的概念 【教学难点】 函数概念的理解 【教学过程】 一、复习引入 〖提问〗初中学习的(传统)的函数的定义是什么?初中学过哪些函数? 〖回答〗设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数,并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域,这种用变量叙述的函数定义我们称之为函 数的传统定义。 〖讲述〗初中已经学过:正比例函数、反比例函数、一次函数、二次函数等。 〖提问〗问题1:y =1(x ∈R )是函数吗? 问题2:y =x 与y = x x 2 是同一函数吗? 〖投影〗观察对应: 〖分析〗观察分析集合A 与B 之间的元素有什么对应关系? 二、讲授新课 函数的概念 (一)函数与映射 〖投影〗函数:设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个

数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =)(x f ,x ∈A 。其中x 叫自变量,x 的取值范围A 叫做函数y =)(x f 的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{)(x f |x ∈A},叫做函数y =)(x f 的值域。 函数符号y =)(x f 表示“y 是x 的函数”,有时简记作函数)(x f 。 函数的三要素:对应法则f 、定义域A 、值域{)(x f |x ∈A} 注:只有当这三要素完全相同时,两个函数才能称为同一函数。 映射:设,A B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射. 如果集合A 中的元素x 对应集合B 中元素y ,那么集合A 中的元素x 叫集合B 中元素y 的原象,集合B 中元素y 叫合A 中的元素x 的象. 映射概念的理解 (1)映射B A f →:包含三个要素:原像集合A ,像集合B(或B 的子集)以及从集合A 到集合B 的对应法则f .两个集合A,B 可以是数集,也可以是点集或其他集合.对应法则f 可用文字表述,也可以用符号表示.映射是一种特殊的对应关系,它具有: (1)方向性:映射是有次序的,一般地从A 到B 的映射与从B 到A 的映射是不同的; (2)任意性:集合A 中的任意一个元素都有像,但不要求B 中的每一个元素都有原像; (3)唯一性:集合A 中元素的像是唯一的,即不允许“一对多”,但可以“多对一”. 函数与映射的关系 函数是一种特殊的映射.映射与函数概念间的关系可由下表给出. 映射B A f →: 函数B y A x x f y ∈∈=,),( 集合A,B 可为任何集合,其元素可以是物,人,数等 函数的定义域和值域均为非空的数集 对于集合A 中任一元素a ,在集合B 中都有唯一确定的像 对函数的定义域中每一个x ,值域中都有唯一确定的值与之对应 对集合B 中任一元素b ,在集合A 中不一定有原像 对值域中每一个函数值,在定义域中都有确定的自变量的值与之对应 函数是特殊的映射,映射是函数的推广. 〖注意〗(1)函数实际上就是集合A 到集合B 的一个特殊对应f :A →B 。这里A ,B 为非空的数集。 (2)A :定义域,原象的集合;{)(x f |x ∈A}:值域,象的集合,其中{)(x f |x ∈A}?B ;f :对应法则,x ∈A ,y ∈B (3)函数符号:y =)(x f ,y 是x 的函数,简记) (x f 〖回顾〗(二)已学函数的定义域和值域: 1、一次函数)(x f =ax +b (a ≠0):定义域R ,值域R 2、反比例函数)(x f = x k (k ≠0):定义域{x |x ≠0},值域{y | y ≠0} 3、二次函数)(x f =ax 2 +bx +c (a ≠0):定义域R ,值域:当a >0时,{y |y ≥a b a c 442 -};

高一数学必修一函数题型复习

1 集合 题型1:集合的概念,集合的表示 1.下列各项中,不可以组成集合的是() A .所有的正数 B .等于2的数 C .接近于0的数 D .不等于0的偶数 2.下列四个集合中,是空集的是() A .}33|{=+x x B .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.下列表示图形中的阴影部分的是() A .()()A C B C B .()()A B A C C .()()A B B C D .()A B C 4.下面有四个命题: (1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ; (3)若,,N b N a ∈∈则b a +的最小值为2; (4)x x 212=+的解可表示为{ }1,1; 其中正确命题的个数为() A .0个 B .1个 C .2个 D .3个 题型2:集合的运算 例1.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =?,则m 的值为(D ) A .1 B .1- C .1或1- D .1或1-或0 例2.已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ?,求m 的取值范围。 解:当121m m +>-,即2m <时,,B φ=满足B A ?,即2m <; 当121m m +=-,即2m =时,{}3,B =满足B A ?,即2m =; 当121m m +<-,即2m >时,由B A ?,得12215m m +≥-??-≤? 即23m <≤; ∴3≤m 变式: 1.设222{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈, 如果A B B =,求实数a 的取值范围。 2.集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-= A B C

人教版 数学 必修1函数的基本性质 教案

课程标题 函数的基本性质 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。 (3)单调性:如果函数()y f x =在某个区间是增函数或减函数。那么就说函数()y f x =在这一区间具有(严格的)单调性,这一区间叫做()y f x =的单调区间。 2、单调性的判定方法 (1)定义法: 判断下列函数的单调区间:2 1x y = (2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (3)复合函数的单调性的判断: 设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在] ,[b a 上也是单调函数。 ①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同。 ②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相 同。 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。也就是说:同增异减(类似于“负负得正”) 练习:(1)函数2 4x y -= 的单调递减区间是 ,单调递增区间 为 .

高中数学必修1 函数知识点总结

高中数学必修1函数知识总结 一、函数的有关概念 1.函数的概念:设A 、B 是非空的 ,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有 的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .函数的三要素为 找错误:①其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域; ②与x 的值相对应的y 值叫做函数值,所以集合B 为值域。 注意:1、如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;2、函数的定义域、值域要写成集合或区间的形式. 专项练习1.求函数的定义域: 类型1.⑴22153x x y x --= + ⑵0 (21)y x =- ⑶2214log (1) y x x = +-+ 总结: 能使函数式有意义的实数x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零 (7)实际问题中的函数的定义域还要保证实际问题有意义. (注意:求出不等式组的解集即为函数的定义域。) 类型2 抽象函数求定义域: 1.已知)(x f 的定义域,求复合函数()][x g f 的定义域 方法总结 练习1.已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域为 练习2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为 2.已知复合函数()][x g f 的定义域,求)(x f 的定义域方法总结 练习1.若函数(1)f x +的定义域为[]-23,,求函数()f x 的定义域. 练习2. 已知函数2 (22)f x x -+的定义域为[]03,,求函数()f x 的定义域. 3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域方法总结 练习1.若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 练习2、已知函数的定义域为,则y=f(3x-5)的定义域为________。

高中数学必修一 函数的基本性质(一)

函数的基本性质(一) 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题: 1. 已知f(x)=8+2x -x 2 ,如果g(x)=f(2-x 2 ),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤ 2 3 时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有 101个不同的实数根,那么所有实数根的和为( ) A.150 B. 2 303 C.152 D. 2 305 提示:由已知,函数f(x)的图象有对称轴x =2 3 于是这101个根的分布也关于该对称轴对称.

即有一个根就是 23,其余100个根可分为50对,每一对的两根关于x =2 3 对称 利用中点坐标公式,这100个根的和等于 2 3 ×100=150 所有101个根的和为 23×101=2 303.选B 4. 实数x ,y 满足x 2 =2xsin(xy)-1,则x 1998 +6sin 5 y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2 +cos 2 (xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5. 已知x =9919+是方程x 4 +bx 2 +c =0的根,b ,c 为整数,则b +c =__________. 解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2 -219x +19=99 即 x 2-80=219x 再平方得x 4 -160x 2 +6400=76x 2 即 x 4 -236x 2+6400=0 ∴ b=-236,c =6400 b +c =6164 6. 已知f(x)=ax 2 +bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根, 求证:a >4. 证法一:由已知条件可得 △=b 2-4ac≥0 ① f⑴=a +b +c >1 ②

高中数学必修1函数概念及性质知识点总结

数学必修1函数概念及性质(知识点总结) (一)函数的有关概念 1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A 叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式. 定义域补充 能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义. (又注意:求出不等式组的解集即为函数的定义域。) 2.构成函数的三要素:定义域、对应关系和值域 再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备) (见课本21页相关例2) 值域补充 (1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础. (3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等. 3. 函数图象知识归纳 (1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象. C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A } 图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成. (2) 画法 A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来. B、图象变换法(请参考必修4三角函数) 常用变换方法有三种,即平移变换、伸缩变换和对称变换 (3)作用: 1、直观的看出函数的性质; 2、利用数形结合的方法分析解题的思路。提高解题的速度。

高一数学必修一函数讲义

第二章、函数 第一节、函数 一、函数 1、函数的定义:设集合A 是一个非空的数集,对A 中的任意数x ,按照确定的法则f ,都有唯一 确定的数y 与它对应,这种对应关系叫做集合A 上的一个函数,记作()y f x =,x A ∈。其中,x 叫做自变量,自变量的取值范围叫做函数的定义域。所有函数值构成的集合,即(){} ,y y f x x A =∈叫做这个函数的值域。 2、检验两个给定的变量之间是否具有函数关系,需检验: (1)定义域和对应法则是否给出; (2)根据给出的对应法则,自变量x 在其定义域中的每一个值,是否都能确定唯一的函数值y 。 例1、下列图形中,能表示y 是x 的函数的是( ) 例2、下列等式中,能表示y 是x 的函数的是( ) A. y x =± B. 2 1y x =+ C. 21y x = -- D. 21y x =- 3、如何判断函数的定义域: (1)分式的分母不能为零; (2)开偶次方根的被开方数要不小于零; (3)多个函数经过四则运算混合得到的函数定义域是多个定义域的交集; (4)函数0 x 中x 不为零。 例3、求下列函数的定义域 (1)32()32x f x x -=+; (2)()21f x x =-; A x B C D x x x y y y y o o o o

(3)20 ()(4)f x x =-; (4)21()42 f x x x =-+ + 例4、求下列函数值域 (1){}()21,1,2,3,4f x x x =+∈ (2)[]2 ()21,0,3f x x x x =--∈ (3)) ,1(,1 )(+∞-∈= x x x f (4)[)21(),1,1 x f x x x -=∈+∞+ 4、函数的3要素:定义域、值域和对应法则。 判断两个函数相同的依据就是函数的三要素完全相同。 注:在函数关系式的表述中,函数的定义域有时可以省略,这时就约定这个函数的定义域就是使得这个函数关系式有意义的实数的全体构成的集合。 例5、下列各对函数中,是相同函数的是 ( ) A.2 (),()f x x g x x == B. 2 (),()f x x g x x == C.2(),()f x x g x x = = D. 2 (),()f x x g x x == 5、区间:设a ,b ∈R ,且a <b , 满足a ≤x ≤b 的全体实数x 的集合,叫做闭区间,记作[a,b]; 满足a <x <b 的全体实数x 的集合,叫做开区间,记作﹙a,b ﹚; 满足a ≤x <b 或a <x ≤b 的全体实数x 的集合,都叫做半开半闭区间,分别记作[a,b ﹚或﹙a,b ]; 分别满足x ≥a,x >a,x ≤a,x <a 的全体实数的集合分别记作[a,﹢∞﹚,﹙a,﹢∞﹚,﹙﹣∞,a ], ﹙﹣∞,a ﹚。 6、映射:设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一 个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射.其中x 叫做原象,y 叫做象。 注:映射可以是多对一,不可以一对多。即A 中元素不可剩余,B 中元素可以剩余。特别的,集合B 中的任意元素在集合A 中有且只有一个原象的映射,叫做一一映射。 7、映射个数的确定:若集合A 有m 个元素,集合B 中有n 个元素,则A 到B 的映射有m n 个。 例6、已知集合},{},3,2,1{b a B A ==。问: (1)A到B的不同映射f:B A →有多少个? (2)B到A的不同映射g:A B →有多少个?

相关文档
相关文档 最新文档