文档库 最新最全的文档下载
当前位置:文档库 › 4芯单模光缆

4芯单模光缆

4芯单模光缆
4芯单模光缆

4芯单模光缆

4芯单模光缆简述:

4芯单模光缆是内置有4根光纤(成分是二氧化硅,石英玻璃)的室外通讯线缆。拥有多种结构型号以及两种传输模式,是利用比较广泛的通讯光缆,主要应用在长途通讯和局间通讯的传输。

4芯单模光缆传输:

传输方面4芯单模光缆主要是以单模和多模两种规格。单模(内径是9μm外径是125μm)多模(有两种,分别是内径是62.5μm外径是125μm和内径是50μm外径是125μm),单模是一种长距离传输的模式,波长是1310和1550两种;多模是一种短距离传输的模式(传输距离限制在2000米以内),波长是850和1300两种。(现在广泛应用的是单模,而多模正在逐渐的淘汰中)

4芯单模光缆结构:

在结构上4芯单模光缆主要分为中心束管式和层绞式两种结构类型。中心束管式是以光纤位于光缆中心,采用没膏填充、双钢丝外加强的结构,能容纳4-12芯的光纤;层绞式则是以光纤围绕中心加强件的一种形式的结构,能容纳4-144芯的光纤。

4芯单模光缆型号:

在型号选型方面4芯单模光缆主要以中心束管式和层绞式两种规格类型的型号,中心束管式的有GYXTW,GYXTY,ADSS;层绞式的有GYTA,GYTS,GYTA53,GYFTY。

1、GYXTW:中心束管式带铠结构,可以容纳4-12芯,适用于架空的敷设。

2、GYTS:层绞式带铠结构,可以容纳4-144芯,适用于埋地和管道的敷设。(埋地

时需要套上一层PVC管)

3、GYTA:层绞式带铝结构,可以容纳4-144芯,适用于埋地和管道的敷设。(埋地

时需要套上一层PVC管)

4、GYTA53:层绞式双重护套带铠结构,可以容纳4-144芯,适用于埋地和管道的敷

设。(可直接埋地,无需套管)

测绘里面的四参数和七参数原理(精)

测绘里面的四参数和七参数原理 1. 两个不同的二维平面直角坐标系之间转换时,通常使用四参数模型(数学方程组。在该模型中有四个未知参数,即: (1两个坐标平移量(△ X , △ Y ,即两个平面坐标系的坐标原点之间的坐标差值; (2 平面坐标轴的旋转角度 A ,通过旋转一个角度,可以使两个坐标系的 X 和 Y 轴重合在一起。 (3尺度因子 K ,即两个坐标系内的同一段直线的长度比值,实现尺度的比例转换。通常 K 值几乎等于 1. 通常至少需要两个公共已知点,在两个不同平面直角坐标系中的四对 XY 坐标值,才能推算出这四个未知参数, 计算出了这四个参数, 就可以通过四参数方程组, 将一个平面直角坐标系下一个点的 XY 坐标值转换为另一个平面直角坐标系下的 XY 坐标值。 2. 两个不同的三维空间直角坐标系之间转换时,通常使用七参数模型(数学方程组,在该模型中有七个未知参数,即: (1三个坐标平移量(△ X , △ Y , △ Z ,即两个空间坐标系的坐标原点之间坐标差值; (2三个坐标轴的旋转角度(△ α, △ β, △ γ,通过按顺序旋转三个坐标轴指定角度, 可以使两个空间直角坐标系的 XYZ 轴重合在一起。 (3尺度因子 K ,即两个空间坐标系内的同一段直线的长度比值,实现尺度的比例转换。通常 K 值几乎等于 1. 通常至少需要三个公共已知点, 在两个不同空间直角坐标系中的六对 XYZ 坐标值, 才能推算出这七个未知参数, 计算出了这七个参数, 就可以通过七参数方程

组, 将一个空间直角坐标系下一个点的 XYZ 坐标值转换为另一个空间直角坐标系下的 XYZ 坐标值。

7参数、5参数、4参数

参数问题一直是测量方面最大的问题,我简单的解释一下,首先说七参,就是两个空间坐标系之间的旋转,平移和缩放,这三步就会产生必须的七个参数,平移有三个变量Dx,Dy,DZ;旋转有三个变量,再加上一个尺度缩放,这样就可以把一个空间坐标系转变成需要的目标坐标系了,这就是七参的作用。如果说你要转换的坐标系XYZ三个方向上是重合的,那么我们仅通过平移就可以实现目标,平移只需要三个参数,并且现在的坐标比例大多数都是一致的,缩放比默认为一,这样就产生了三参数,三参就是七参的特例,旋转为零,尺度缩放为一。四参是应用在两个平面之间转换的,还没有形成统一的标准,说的有点乱,如果还是不明白可以给我留言。希望有帮助。 七参数是由一个坐标系统向另一个坐标系统转换所用参数,三个旋转参数RX、RY、RZ,三个平移参数DX、DY、DZ,一个尺度比参数K。在GPS应用中使用同一空间直角坐标系,因此XYZ三个方向上重合且坐标比例一致,因此仅用三个平移参数DX、DY、DZ便可进行坐标转换,也称为三参数,另外,WGS84所用椭球与北京54、西安80所用椭球不一致,因此额外多出两个参数DA、DF,DA为两种坐标系统椭球长半轴差值,DF为两种坐标系统椭球扁率的差值,因此,在使用GPS将WGS84经纬度坐标转为北京54或西安80坐标时,实际使用DA、DF、DX、DY、DZ,也称为五参数。 1.2 四参数 操作:设置→求转换参数(控制点坐标库) 四参数是同一个椭球内不同坐标系之间进行转换的参数。在工程之星软件中的四参数指的是在投影设置下选定的椭球内 GPS 坐标系和施工测量坐标系之间的转换参数。工程之星提供的四参数的计算方式有两种,一种是利用“工具/参数计算/计算四参数”来计算,另一种是用“控制点坐标库”计算。。需要特别注意的是参予计算的控制点原则上至少要用两个或两个以上的点,控制点等级的高低和分布直接决定了四参数的控制范围。经验上四参数理想的控制范围一般都在 5-7 公里以内。 四参数的四个基本项分别是:X 平移、Y 平移、旋转角和比例。从参数来看,

ArcGis中三参数和七参数转换

在ArcGIS Desktop中进行三参数或七参数精确投影转换ArcGIS中定义的投影转换方法,在对数据的空间信息要求较高的工程中往往不能适用,有比较明显的偏差。在项目的前期数据准备工作中,需要进行更加精确的三参数或七参数投影转换。下面介绍两种办法来在ArcGIS Desktop中进行这种转换。方法1:在ArcMap 中进行动态转换(On the fly) 假设原投影坐标系统为Xian80坐标系统,本例选择为系统预设的Projected Coordinate Systems\Gauss Kruger\Xian 1980\Xian 1980 GK Zone 20投影,中央经线为117度,要转换成Beijing 1954\Beijing 1954 GK Zone 20N。在ArcMap中加载了图层之后,打开View-Data Frame Properties对话框,显示当前的投影坐标系统为Xian 1980 GK Zone 20,在下面的选择坐标系统框中选择Beijing 1954 GK Zone 20N,在右边有一个按钮为Transformations...

点击打开一个投影转换对话框,可以在对话框中看到Convert from和Into表明了我们想从什么坐标系统转换到什么坐标系统。

在下方的using下拉框右边,点击New...,新建一个投影转换公式,在Method下拉框中可以选择一系列转换方法,其中有一些是三参数的,有一些是七参数的,然后在参数表中输入各个转换参数。 输入完毕以后,点击OK,回到之前的投影转换对话框,再点击OK,就完成了对当前地图的动态投影转换。这时还没有对图层文件本身的投影进行转换,要转换图层文件本身的投影,再使用数据导出,导出时选择投影为当前地图的投影即可。

光纤的分类-特性-优缺点-详解Word版

光纤的分类特性优缺点详解 单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。 多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。传输距离较近,最多几公里。 我只是知道有单模和多模的,单模就是波长在1310NM上,多模就是850NM的,还有就是接口也不同,分LC ,SC ,FC,因本人专业知识有限,其他的是我在网上查找的!请参考!一,光纤的分类些特种光纤如晶体光纤并未列出 光纤是光导纤维(OF:Optical Fiber)的简称。但光通信系统中常常将 Opti cal Fibe(光纤)又简化为 Fiber,例如:光纤放大器(Fiber Amplifier)或光 纤干线(Fiber Backbone)等等。有人忽略了Fiber虽有纤维的含义,但在光系统 中却是指光纤而言的。因此,有些光产品的说明中,把fiber直译成“纤维”,显然 是不可取的。 光纤实际是指由透明材料作成的纤芯和在它周围采用比纤芯的折射率稍低的材 料作成的包层所被覆,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯 中传播前进的媒体。 光纤的种类很多,根据用途不同,所需要的功能和性能也有所差异。但对于有 线电视和通信用的光纤,其设计和制造的原则基本相同,诸如:①损耗小;②有一 定带宽且色散小;③接线容易;④易于成统;⑤可靠性高;⑥制造比较简单;⑦价 廉等。 光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上 作一归纳的,兹将各种分类举例如下。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85pm、1.3pm、 1.55pm)。 (2)折射率分布:阶跃(SI)型、近阶跃型、渐变(GI)型、其它(如三角型、W型、 凹陷型等)。 (3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。 (4)原材料:石英玻璃、多成分玻璃、塑料、复合材料(如塑料包层、液体纤芯等)、 红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料 等。

已知七参数输入方法

已知七参数输入方法 我们在测量过程中,常常会遇到要求我们利用已知的七参数进行测量的情况,下面我们来看一下如何在仪器中输入七参数。 1、在主菜单屏幕上选择管理: 七参数:使用严格3D 经典方法产生转换的参数. 该方法使用GPS 测量点(WGS84 椭球 )的直角坐标,并将这些坐标与地 方坐标的直角坐标相比较.通过这种方法,计算出用来将坐标从一个系统转换到另一个系统中平移量,旋转量和尺度因子.经典 3D 转换方法可确定最多7个转换参数(3个平移参数,3个旋转参数,和1个尺度因子). 2、选择坐标系: 3、新建一个坐标系:

4、在名称行里输入一个坐标系统的名字: 5、将光标移至转换一行,点击回车键: 6、点击F2新建:

7、在概要界面输入一个七参数名称,然后点击参数: 8、输入已知的七参数,(也有输入四参数的,即不输旋转参数): 9、在更多界面下选择莫洛金斯基或布沙-沃尔夫,一般选择后者,然后保存: Molodensky-Badekas ——莫洛金斯基 一种转换模型,其旋转原点是系统A 中公共点的重心. Bursa-Wolf ——布沙-沃尔夫 对系统A 来说,旋转原点为笛卡儿坐标系统原点的转换模型.

10、选择做好参数的转换文件,继续: 11、将光标移至椭球行,回车: 在大地测量中,除非特别定义,椭球是 指椭圆绕短半轴旋转形成的数学图形 (有时也称回转椭球体),两个量定义一 个椭球,它们是长半轴的长度; 扁率 f. The Flattening is one of the quantities to specify an ellipsoid. f = (a-b)/a = 1 - sqrt(1-e2) where: a ... semi-major axis b ... semi-minor axis e ... eccentricity 12、选择要用的椭球(西安-80或北京-54) 如果没有需要的椭球,请点击 SHIFT键,在点击F5键即可调 阅所有椭球 13、将光标移至投影行,回车,然后新建,选择横轴莫卡托,然后输入投影参数,保存: 假定东坐标:为避免坐标出现负值,我 国将坐标原点东坐标规定为500,000 米。 中央子午线:定义地图投影经度的中央 线。是使用在地图投影中的带常数。 带宽:投影带的宽度。 注意:投影参数一定要在开始工作前落 实清楚,否则将影响投影后坐标。

RTK坐标转换中四参数法与七参数法精度比较

2006年第5期(第24卷262期)东北水利水电67[文章编号]1002--0624(2006)05一0067一02 RTK坐标转换中四参数法与七参数法精度比较 茹树青t,吉长东z,王宏宇, (1.阜新市水利勘测设计研究院,辽宁阜新123000;2.辽宁工程技术大学,辽宁阜新123000; 3.阜新蒙古族自治县河道站,辽宁阜新123100;) [摘要]文章探讨了P.TK坐标转换中的参数法和七参数法的原理,并对观测的平面坐标进行了精度 的分析和比较。 [关键词]四参数;七参数;IkTK;坐标转换 [中图分类号]P204 随着GPSrZTK技术的出现,其以精度高、速度快和不存在误差累积等优点在各行各业中被广泛应用。坐标转换是R.TK技术里不可缺少的重要部分。不同的空间直角坐标系之间的转换一般采用布尔萨(Bursa)七参数模型,本文在研究布尔萨模型的基础上导出四参数模型。GPS接收机一般是利用三个以上的重合点的两套坐标值通过七参数(或三参数)和四参数来实现坐标转换。在常用的GPS接收机中Ashtechz—x采用的是四参数模型。而Trimble5700采用的则是七参数模型。 本文利用Ashtechz—x和Trimble5700双频GPS接收机(均是4台套(1+3),水平方向标称精度均是10mm+lppm),采用实时载波相位差分技术(R.TK)完成了某工程GPS测量工作。用两种型号的GPSIkTK.对135个图根点分别独立观测2次,并用GTS一6全站仪(标称精度为2”,3mm+2ppm),采用全站仪导线的方法,按I级导线要求,对上述点中的50个点进行检测(抽检比例为37%),总结出在该地区,只有2个已知点的情况下,四参数法要优于七参数法。 1七参数模型 设x压和xa分别为地面网点和GPS网点的 [文献标识码]B 参心和地心坐标向量。由布尔萨(Bursa)模型可知: X压=AX+(1+南)R(8:)尺(s,)R(8;)x伍(1)式中x口=(x赝,Y口,磊),Xa.=(Xa,Y盘,玩),△x=(AX,AY,△z)为平移参数矩阵;k为尺度变化参数:旋转参数矩阵为 FCOSs.sine,0] R(乞)。J-sine,co嗡0I, 【-001j ~P000。5i1吩], R(岛)2lI, [sine,0COSSyj r100] R(&)=10COS,fix—sirle,l Lo—sine,co沾,j 通常将AX,AY,△z,k,8:,岛,吼称为坐标系问的转换参数。为了简化计算,当k,£,占,,8,为微小量时,忽略其间的互乘项,且COS8—1,sirls—s。则上述模型变为: 【收稿日期】2005—12—12 【作者简介】茹树青(1965一),男,辽宁阜新市人。工程师,从事工程测量工作。 卦、,七+‘l,k+XyZ△△△

单模光纤的参数及理论分析

单模光纤的特性参数及特性的理论分析 陆锐勇 2009012303 皖西学院信息工程学院通信工程2009级02班 摘要:本文通过在理论上对单模光纤的特征参数(即影响单模光纤的传输效率因素),以及衰减特性的分析。在单模光纤中存在弯缩损耗,材料对信号的吸收及模内色散等现象。并结合实际应用的技术规范,对单模光纤的生产要求和研发趋势进行简单的总结和概述。 关键词:单模光纤、色散、宏弯损耗、微弯损耗、吸收 Abstract: Based in theory of single mode fiber characteristic parameters (i.e. the effects of single mode optical fiber transmission efficiency factors ), and attenuation characteristics analysis. In a single-mode fiber in the presence of bending loss, material absorbs the signal and intramode dispersion phenomenon. Combined with the practical application of the technical specification for single-mode fiber, the production requirements and development trend for simple summary and overview. Key words: A single-mode optical fiber, dispersion, macro bending loss, microbending loss, absorption 一、光纤的介绍 光纤是一种高度透明的玻璃丝,由二氧化硅等高纯度玻璃经复杂的工艺拉丝制成。光纤从横截剖面看可以分为三部分,即折射率较高的芯区、折射率较低的包成、表面涂覆层。包层和涂覆层的作用是满足光纤能够导光的需求,涂覆层是为了防止光纤表面微小裂纹的扩大,从而增强光纤的机械强度。 光纤的种类有很多,根据光纤中的传输模式的多少可以分为单模光纤和多模光纤。单模光纤指在给定的工作波长上,只能传输单一模式的光纤。因为单模光纤中不存在模式色散,所以具有几十吉赫兹以上的传输频段,有利于大容量、长距离、高码速的信息传输。 目前ITU-T已经在建议G.652、G.653、G.654、G.655和G.656中分别定义了5种不同设计的单模光纤。其中G.652光纤是目前应用最广泛的标准单模光纤,称为1310nm性能最佳的单模光纤;G.652光纤还可以分为G.652.A、G.652.B、G.652.C、G.652.D。 二、光纤在光纤通信系统的应用 光纤通信系统主要由发送端机、光纤传输信道、接收端机组成。光纤是光纤通信系统中最重要的组成部分,是光波的传输媒介,其传播特性直接影响系统的通信质量。 在最初对光纤如何对光进行传导的实验中发现,所有将光纤用于通信的尝试都因信号刚传输几英尺就完全消失而失败。即随着传输距离的增加,信号将发生衰减和失真,信道的传输特性是影响光纤通信系统性能的决定因素。光纤的主要传输特性是损耗和色散。光纤的传输损耗特性用衰减系数表示,与光线中的杂质浓度和光波频率等因素有关。 三、单模光纤的特征参数 单模光纤的常用特征参数:衰减系数、截止波长、模场直径 1.衰减系数α 衰减量的大小通常用单位长度的衰减,即衰减系数α表示,定义为 α= 10/L lg (Pi/Po) (dB/km) 式中L--光纤长度,单位km

七参数

坐标系统之间的坐标转换既包括不同的参心坐标之间的转换,或者不同的地心坐标系之间的转换,也包括参心坐标系与地心坐标系之间的转换以及相同坐标系的直角坐标与大地坐标之间的坐标转换,还有大地坐标与高斯平面坐标之间的转换。在两个空间角直坐标系中,假设其分别为O--XYZ和O--XYZ,如果两个坐标系的原来相同,通过三次旋转,就可以两个坐标系重合;如果两个直角坐标系的原点不在同一个位置,通过坐标轴的平移和旋转可以取得一致;如果两个坐标系的尺度也不尽一致,就需要再增加一个尺度变化参数;而对于大地坐标和高斯投影平面坐标之间的转换,则需要通过高斯投影正算和高斯投影反算,通过使用中央子午线的经度和不同的参考椭球以及不同的投影面的选择来实现坐标的转换。 WGS84与BJ54是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。当要把GPS接收到的点(WGS84坐标系统的)叠加到BJ54坐标系统的底图上,那就会发现这些GPS点不能准确的在它该在的地方,即“与实际地点发生了偏移”。这就要求把这些GPS点从WGS84的坐标系统转换成BJ54的坐标系统了。 在不同的椭球之间的转换是不严密的。那么,两个椭球间的坐标转换应该是怎样的呢?一般而言比较严密的是用七参数法,即3个平移因子(X平移,Y平移,Z平移),3个旋转因子(X旋转,Y旋转,Z旋转),一个比例因子(也叫尺度变化K)。国内参数来源的途径不多,一般当地测绘部门会有。通行的做法是:在工作区内找三个以上的已知点,利用已知点的BJ54坐标和所测WGS84坐标,通过一定的数学模型,求解七参数。若多选几个已知点,通过平差的方法可以获得较好的精度。如果区域范围不大,最远点间的距离不大于30Km(经验值),这可以用三参数,即只考虑3个平移因子(X平移,Y平移,Z平移),而将旋转因子及比例因子(X旋转,Y旋转,Z旋转,尺度变化K)都视为0,所以三参数只是七参数的一种特例。北京54和西安80也是两种不同的大地基准面,不同的参考椭球体,他们之间的转换也是同理。在ArcGIS中提供了三参数、七参数转换法。而在同一个椭球里的转换都是严密的,在同一个椭球的不同坐标系中转换需要用到四参数转换,举个例子,在深圳既有北京54坐标又有深圳坐标,在这两种坐标之间转换就用到四参数,计算四参数需要两个已知点。B

三参数与七参数的区别

参数问题一直是测量方面最大的问题,我简单的解释一下, 首先说七参,就是两个空间坐标系之间的旋转,平移和缩放,这三步就会产生必须的七个参数,平移有三个变量Dx,Dy,DZ;旋转有三个变量,再加上一个尺度缩放,这样就可以把一个空间坐标系转变成需要的目标坐标系了,这就是七参的作用。如果说你要转换的坐标系XYZ三个方向上是重合的,那么我们仅通过平移就可以实现目标,平移只需要三个参数,并且现在的坐标比例大多数都是一致的,缩放比默认为一,这样就产生了三参数,三参就是七参的特例,旋转为零,尺度缩放为一。四参是应用在两个平面之间转换的,还没有形成统一的标准,说的有点乱,如果还是不明白可以给我留言。希望有帮助。 1.2 四参数 操作:设置→求转换参数(控制点坐标库) 四参数是同一个椭球内不同坐标系之间进行转换的参数。在工程之星软件中的四参数指的是在投影设置下选定的椭球内 GPS 坐标系和施工测量坐标系之间的转换参数。工程之星提供的四参数的计算方式有两种,一种是利用“工具/参数计算/计算四参数”来计算,另一种是用“控制点坐标库”计算。。需要特别注意的是参予计算的控制点原则上至少要用两个或两个以上的点,控制点等级的高低和分布直接决定了四参数的控制范围。经验上四参数理想的控制范围一般都在 5-7 公里以内。 四参数的四个基本项分别是:X 平移、Y 平移、旋转角和比例。 从参数来看,这里没有高程改正,所以建议采用“控制点坐标库”来

求取参数,而根据已知点个数的不同所求取的参数也会不同,具体有以下几种。 1.2.1 四参数+校正参数:所需已知点个数:2个 1.2.2 四参数+高程拟合 GPS 的高程系统为大地高(椭球高),而测量中常用的高程为正常高。所以 GPS 测得的高程需要改正才能使用,高程拟合参数就是完成这种拟和的参数。计算高程拟和参数时,参予计算的公共控制点数目不同时计算拟和所采用的模型也不一样,达到的效果自然也不一样。 高程拟后有三种拟合方式: a.高程加权平均:所需已知点个数:3个 b.高程平面拟合:所需已知点个数:4 ~ 6个 c.高程曲面拟合:所需已知点个数:7个以上 二、七参数 操作:工具→参数计算→计算七参数 所需已知点个数:3个或3个以上 七参数的应用范围较大(一般大于 50 平方公里),计算时用户需要知道三个已知点的地方坐标和 WGS-84 坐标,即 WGS-84 坐标转换到地方坐标的七个转换参数。注意:三个点组成的区域最好能覆盖整个测区,这样的效果较好。七参数的格式是,X平移,Y平移,Z 平移,X 轴旋转,Y 轴旋转,Z 轴旋转,缩放比例(尺度比)。 七参数的控制范围和精度虽然增加了,但七个转换参数都有参

第三章 单模光纤传输特性及光纤中非线性效应

第三章 单模光纤的传输特性及光纤中的非线性效应 单模工作模特性及光功率分布 ............................................................. 错误!未定义书签。 单模光纤中LP 01模的高斯近似 ............................................................... 错误!未定义书签。 单模光纤的双折射(单模光纤中的偏振态传输特性) ............................. 错误!未定义书签。 双折射概念 ............................................................................................... 错误!未定义书签。 偏振模色散概念 ..................................................................................... 错误!未定义书签。 单模光纤中偏振状态的演化 ................................................................. 错误!未定义书签。 单模单偏振光纤 ..................................................................................... 错误!未定义书签。 单模光纤色散 ................................................................................................... 错误!未定义书签。 色散概述 ................................................................................................ 错误!未定义书签。 单模光纤的色散系数 ............................................................................. 错误!未定义书签。 单模光纤中的非线性效应 ............................................................................. 错误!未定义书签。 受激拉曼散射(SRS ) ........................................................................... 错误!未定义书签。 受激布里渊散射(SBS ) ....................................................................... 错误!未定义书签。 非线性折射率及相关非线性现象 ................................................................. 错误!未定义书签。 光纤的非线性折射率 ............................................................................. 错误!未定义书签。 与非线性折射率有关的非线性现象 ..................................................... 错误!未定义书签。 自相位调制............................................................................................. 错误!未定义书签。 第三章 单模光纤的传输特性及光纤中的非线性效应 单模光纤的传输特性 单模光纤就是在给定的工作波长上,只有主模式才能传播的光纤。例如在阶跃型光纤只传播 HE 11模(或LP 01)的光纤。 由于单模光纤中只传输一个模式,不存在模式色散,所以它的色散比多模光纤要小的多,因 而单模光纤拥有巨大的传输带宽。长途光纤通信系统都无例外的采用单模光纤作为传输介 质。由于单模光纤已经成为光纤通信系统中最主要的传输介质,所以对单模光纤分析并掌握 其传输特性就显得尤为重要。单模光纤的纤芯折射率分布可以是均匀的,也可以是渐变的。 单模条件和截止波长 阶跃式光纤的主模LP 01模的归一化频率为零,次最低阶模LP 11模的归一化截止频率为。单模传输条件是光纤中只有LP 01模可以传输,而LP 11模以及其它高次模都被截止,这就意 味着归一化工作频率应满足条件:0

七参数坐标变换,影像和矢量完美套合技术文档

影像与完美矢量套合技术文档 本文档要解决的问题如下: 1.如何将卫星影像导出为cad,并与现有的cad图形套合 2.如何将CAD图形导入到软件中,与卫星影像进行套合 众所周知, CAD图形文件常为80或者54坐标系高斯投影,而Google Earth 上的影像则为WGS84坐标系经纬度投影,这两种数据其坐标系采用的是不同的参考椭球,要想实现影像和矢量完美套合,须涉及到不同椭球之间坐标转换,常用的方法有三参数法、四参数和七参数法,本文采用七参数法。 首先说七参数,两个不同的坐标系之间转换时,通常使用七参数模型(数学方程组),在该模型中有七个未知参数,即: (1)三个坐标平移量(△X,△Y,△Z),即两个空间坐标系的坐标原点之间坐标差值; (2)三个坐标轴的旋转角度(△α,△β,△γ)),通过按顺序旋转三个坐标轴指定角度,可以使两个空间直角坐标系的XYZ轴重合在一起。 (3)尺度因子K,即两个空间坐标系内的同一段直线的长度比值,实现尺度的比例转换。 计算七参数至少需要三个公共已知点,在两个不同空间直角坐标系中的六对坐标值,才能推算出这七个未知参数,计算出了这七个参数,就可以通过七参数方程组,将一个坐标系下一个点的坐标值转换为另一个坐标系下。需要说明的是,七参数各个地方,各有不同,不存在统一的转换参数,并且七参数属于保密范畴。 1)求解七参数 假如你有精确的WGS84到目标坐标系的转换参数(一般可从当地测绘局中获得),我们软件能直接支持,求解七参数这一步可以略过,直接进入下一步。 假如你没有转换参数,可以通过在CAD(或其他图纸资料)中和卫星影像图上找三组及以上公共点(cad和地图上位置对应的三组点),根据这些已知点对求七参数。当然,如果你有其他渠道获取公共点,比如通过CORS测量或者从当地测试局获取,可以直接通过我们软件计算七参数,略过找公共点这一步。 下面将演示如何找公共点

单模与多模光纤的区别

单模与多模光纤的区别 1、光纤分类 光纤按光在其中的传输模式可分为单模和多模。多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。故有62.5/125μm、50/125μm、9/125μm等不同种类。 光纤的工作波长有短波850nm、长波1310nm和1550nm。光纤损耗一般是随波长增加而减小,850nm的损耗一般为2.5dB/km,1.31μm的损耗一般为 0.35dB/km,1.55μm的损耗一般为0.20dB/km,这是光纤的最低损耗,波长 1.65μm以上的损耗趋向加大。由于OHˉ(水峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,这两个范围未能充分利用。 2、单模光纤 单模光纤(SingleModeFiber):单模光纤只有单一的传播路径,一般用于长距离传输,中心纤芯很细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。后来发现在1310nm波长处,单模光纤的总色散为零。从光纤的损耗特性来看,1310nm正好是光纤的一个低损耗窗口。这样,1310nm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。1310nm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。 900~1300nm和1340nm~1520nm范围内都有损耗高峰,该现象称为水峰。目前美国康普公司提供的TeraSPEEDTM零水峰单模光缆,正解决了此问题,TeraSPEED系统通过消除了1400nm水峰的影响因素,从而为用户提供了更广泛的传输带宽,用户可以自由使用从1260nm到1620nm的所有波段,因此传输通道从以前的240增加到400,性能比传统单模光纤多50%的可用带宽,为将来升级为100G带宽的CWDM粗波分复用技术打下了坚实的基础,TeraSPEED解决方案为园区/城市级理想的主干光纤系统。 3、多模光缆 多模光纤(MultiModeFiber)-芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。因此,多模光纤传输的距离就比较近,一般只有几公里。

四参数及七参数的简介及测量中的应用

关于四参数和七参数的认识 一、参数的概念: 1、不同的二维平面直角坐标系之间转换时,通常使用四个参数。 (1)两个坐标平移量(△X,△Y),即两个平面坐标系的坐标原点之间的坐标差值; (2)平面坐标轴的旋转角度A,通过旋转一个角度,可以使两个坐标系的X和Y轴重合在一起。 (3)尺度因子K,即两个坐标系内的同一段直线的长度比值,实现尺度的比例转换。通常K值几乎等于1. 通常至少需要两个公共已知点,在两个不同平面直角坐标系中的四对XY坐标值,才能推算出这四个未知参数,计算出了这四个参数,就可以通过四参数方程组,将一个平面直角坐标系下一个点的XY坐标值转换为另一个平面直角坐标系下的XY坐标值。 2、两个不同的三维空间直角坐标系之间转换时,,在该模型中有七个未知参数。 (1)三个坐标平移量(△X,△Y,△Z),即两个空间坐标系的坐标原点之间坐标差值; (2)三个坐标轴的旋转角度(△α,△β,△γ)),通过按顺序旋转三个坐标轴指定角度,可以使两个空间直角坐标系的XYZ轴重合在一起。

(3)尺度因子K,即两个空间坐标系内的同一段直线的长度比值,实现尺度的比例转换。通常K值几乎等于1. 通常至少需要三个公共已知点,在两个不同空间直角坐标系中的六对XYZ坐标值,才能推算出这七个未知参数,计算出了这七个参数,就可以通过七参数方程组,将一个空间直角坐标系下一个点的XYZ坐标值转换为另一个空间直角坐标系下的XYZ坐标值。 二、参数的实际使用。 1.四参数是指相同点在不同平面坐标系中坐标的转换的参数。在测绘工程中,高斯投影平面直角坐标系就是平面直角坐标系,而在一个平面直角坐标系下由于工程建设的需要而建立的建筑坐标系,这就涉及到从测量坐标系到建筑坐标系的转化。在数字化测图中,坐标转化也有许多的应用,比如; 一、测站改正(一个测站上架设一起算观测的坐标数据因为测站点及后视点设置问题,比如测站点设置错误,或者后视点错误导致整个测站数据的错误)可用四参数转换,将坐标数据转换成正确的数据 二、自由设站法中的运用。当使用全站仪进行数字化测图时,由于通视条件的限制,可采用只自由设站法:根据所测地形任一点架设仪器,后视坐标由所测距离假设方位角计算得出。在此测站上测两个或以上的以往测量的点的坐标,作为坐标转换点。根据这些公共点的坐标即可计算自由测站数据与正确数据之间的转换四参数。 2.目前我们外业测量采用RTK仪器比较居多,而RTK获取的

七参数求解

最小二乘求解方法——以布尔沙七参数为例 —Walkinfo—地信网论坛 测绘和GIS计算中经常要用到《最小二乘法》求解。如坐标转换中的四参数、Bursa 七参数,等等。若用matlib求解则需要学习其语法等,若使用他人的程序则需要求证自变量和因变量的关系,若自己编写c/c++程序则颇费周折。求人不如求己,在Walk脚本中提供了类似于 matlib的矩阵运算功能。 以求解Bursa七参数为例,其方程如下: r1 + 0 + 0 + 0 + r5*z0 - r6*y0 + r7*x0 = x1 - x0 0 + r2 + 0 - r4*z0 + 0 + r6*x0 + r7*y0 = y1 - y0 0 + 0 + r3 + r4*y0 - r5*x0 + 0 + r7*z0 = z1 - z0 式中,源srcC(x0,y0,z0), 目标tarC(x1,y1,z1),r1,r2,...,r7为七参数。 bool solve7X(array &srcC, array &tarC, array &X) { int n=srcC.getSize(); //组成系数方程矩阵 A*X=L: double A[3*n][7]; double L[3*n][1]; for (int ii=0, k=0; ii

GPS入门+四,七参数设置

入门疑难解答: 1.用gps测图本地中央子午线是118度而我把它设置成117度了,怎么扭转成118度的平面 坐标?扭转后误差大吗? 答: 是高精度测量还是手持机测量.如果是手持机它一般只手机经纬度,对你输入的中央子午线没任何关系,直接改为118就可以了,在说怎么会有118的中央子午线呢,北京54本来就是117或123 114°

南方RTK使用中参数的求取及分类 一、控制点坐标库的应用 GPS 接收机输出的数据是WGS-84 经纬度坐标,需要转化到施工测量坐标,这就需要软件进行坐标转换参数的计算和设置,控制点坐标库就是完成这一工作的主要工具。 控制点坐标库是计算四参数和高程拟合参数的工具,可以方便直观的编辑、查看、调用参与计算四参数和高程拟合参数的校正控制点。在进行四参数的计算时,至少需要两个控制点的两套坐标系坐标参与计算才能最低限度的满足控制要求。高程拟合时,使用三个点的高程进行计算时,控制点坐标库进行加权平均的高程拟合;使用 4 到 6 个点的高程时,控制点坐标库进行平面高程拟合;使用7 个以上的点的高程时,控制点坐标库进行曲面拟合。控制点的选用和平面、高程拟合都有着密切而直接的关系,这些内容涉及到大量的布设经典测量控制网的知识,在这里没有办法多做介绍,建议用户查阅相关测量资料。 利用控制点坐标库的做法大致是这样的:假设我们利用A、B 这两个已知点来求取参数,那么首先要有A、B 两点的GPS 原始记录坐标和测量施工坐标。A、B 两点的GPS原始记录坐标的获取有两种方式:一种是布设静态控制网,采用静态控制网布设时后处理软件的GPS 原始记录坐标;另一种是GPS 移动站在没有任何校正参数起作用的Fixed(固定解)状态下记录的GPS 原始坐标。其次在操作时,先在控制点坐标库中输入 A 点的已知坐标,之后软件会提示输入A 点的原始坐标,然后再输入B 点的已知坐标和 B 点的原始坐标,录入完毕并保存后(保存文件为*.cot 文件)控制点坐标库会自动计算出四参数和高程拟合参数。 1.1.3、校正参数 操作:工具→ 校正向导或设置→ 求转换参数(控制点坐标库) 所需已知点数:1个 校正参数是工程之星软件很特别的一个设计,它是结合国内的具体测量工作而设计的。校正参数实际上就是只用同一个公共控制点来计算两套坐标系的差异。根据坐标转换的理论,一个公共控制点计算两个坐标系误差是比较大的,除非两套坐标系之间不存在旋转或者控制的距离特别小。因此,校正参数的使用通常都是在已经使用了四参数或者七参数的基础上才使用的。 在工程之星新版本中,在校正向导中已经取消了两点校正功能,如果两个以上的已知点请使用控制点坐标库来求取参数。习惯使用校正向导的人请慎用新版本。

四参数坐标转换原理和程序设计

龙源期刊网 https://www.wendangku.net/doc/3b10322174.html, 四参数坐标转换原理和程序设计 作者:冯骥 来源:《科技资讯》2013年第16期 摘要:四参数在平面坐标转换中被广泛应用,如何正确和科学地使用四参数显得尤为重要。通过分析四参数的原理,提出用VB编程求解四参数的方法,并结合工程实例,分析和判断如何选取公共点,满足了测绘和施工的要求。 关键词:四参数坐标转换 RMS 中图分类号:P208 文献标识码:A 文章编号:1672-3791(2013)06(a)-0035-02 坐标转换是是从一种坐标系统变换到另一种坐标系统的过程,通过建立两个坐标系统之间一一对应关系来实现,它是各种比例尺地图测量和编绘中建立地图数学基础必不可少的步骤。坐标转换一般有两种意义,一是地图投影变换,即从一种地图投影转换到另一种地图投影,地图上各点坐标均发生变化;另一是量测系统坐标转换,即从大地坐标系到地图坐标系、数字化仪坐标系、绘图仪坐标系或显示器坐标系之间的坐标转换。在测绘和施工中,常常会遇到不同坐标系统间坐标转换的问题,目前国内常见的转换有以下3种:大地坐标和平面直角坐标的相互转换、不同椭球坐标系间的相互转换和平面坐标系间的相互转换。常用的方法有四参数法、三参数法和七参数法。本文主要介绍了利用自编的坐标转换软件对四参数转换原理和方法做详细的讲解。 1 四参数坐标转换的原理 在我国平面坐标系中以1954北京坐标系为主,除此之外各地又建有相应的地方独立坐标系统。在测绘和项目施工中,我们常常需将1954北京坐标和地方独立坐标进行互相转换。该类型的转换为同一个椭球系统的不同坐标系中的转换,对于这样的转换至少需要两个公共点求取转换参数,如图1所示,设xoy为1954北京坐标系,x′o′y′为地方独立坐标系,xo、yo为地方独立坐标系的原点O′在1954北京坐标系中的坐标,α为地方独立坐标系的纵轴o′x′在1954北京坐标系中的坐标方位角。设已知P点的地方独立坐标为(x′p、y′p),则可按下式将其换算为1954北京坐标(xp、yp),其转换公式为: Xp=△x+X′p×K×cosα-Y′p×K×sinα Yp=△y+X′p×K×sinα+Y′p×K×cosα 式中K为尺度因子,α为旋转角度,△x,△y为相对应的平移。求得△x,△y,a,K就能方便的计算出当地的坐标了,也可通过该公式对坐标转换进行反算,来把地方独立坐标换算为1954北京坐标系(图1)。

相关文档
相关文档 最新文档