文档库 最新最全的文档下载
当前位置:文档库 › 电量外文翻译

电量外文翻译

电量外文翻译
电量外文翻译

附件2:外文原文

Battery Fuel Gauges: Accurately Measuring Charge Level

Abstract: Battery fuel gauges determine the amount of charge remaining in a secondary battery and how much longer (under specific operating conditions) the battery can continue providing power. This application note discusses the challenges presented in measuring the charge remaining in a lithium-ion battery and the different methods of implementing a fuel gauge to address these challenges.

Introduction

Since the advent of the mobile phone, chargeable batteries and their associated fuel-gauge indicators have become an integral part of our information and communication society. They are just as important to us now as automotive fuel gauges have been for the past 100 years. Yet, while drivers do not tolerate inaccurate fuel gauges, mobile-phone users are often expected to live with highly inaccurate, low-resolution indicators. This article discusses the various impediments to accurately measuring charge levels and describes how designers can implement accurate fuel gauging in their battery-powered applications.

Lithium-Ion Batteries

Lithium-ion batteries have only been in mass production since about 1997, following the resolution of various technical problems during their development.

Because they offer the highest energy density with respect to volume and weight (Figure 1), they are used in systems ranging from mobile phones to electric cars.

Figure 1. The energy densities of various battery types.

Lithium cells also have specific characteristics that are important for determining their charge level. A lithium battery pack must include various safety mechanisms to prevent the battery from being overcharged, deeply discharged, or reverse connected. Because the highly reactive lithium can pose an explosion hazard, lithium batteries must not be exposed to high temperatures.

The anode of an Li-ion battery is made from a graphite compound, and the cathode is made of metal oxides with lithium added in a way that minimizes disruption of the lattice structure. This process is called

intercalation. Because lithium reacts strongly with water, lithium batteries are constructed with non-liquid electrolytes of organic lithium salts. When charging a lithium battery, the lithium atoms are ionized in the cathode and transported through the electrolyte to the anode.

Battery Capacity

The most important characteristic of a battery (apart from its voltage) is its capacity (C), specified in mA-hours and defined as the maximum amount of charge the battery can deliver. Capacity is specified by the manufacturer for a particular set of conditions, but it changes constantly after the battery is manufactured.

Figure 2. The influence of temperature on battery capacity.

As Figure 2 illustrates, capacity is proportional to battery temperature. The upper curve shows an Li-ion battery charged with a constant-I, constant-V process at different temperatures. Note that the battery can take approximately 20% more charge at high temperatures than it can at -20°C.

As shown by the lower curves in Figure 2, temperature has an even greater influence on the available charge while a battery is being discharged. The graph shows a fully charged battery discharged with two different currents down to a cut-off point of 2.5V. Both curves show a strong dependence on temperature as well as discharge current. At a given temperature and discharge rate, the capacity of a lithium cell is given by the difference between the upper and lower curves. Thus, Li-cell capacity is greatly reduced at low temperatures or by a large discharge current or by both. After discharge at high current and low temperature, a battery still has significant residual charge, which can then be discharged at a low current at the same temperature.

Self-Discharge

Batteries lose their charge through unwanted chemical reactions as well as impurities in the electrolyte. Typical self-discharge rates at room temperature for common battery types are shown in Table 1.

Table 1. The Self-Discharge Rates of Common Battery Types

Chemical reactions are thermally driven, so self-discharge is highly temperature-dependent (Figure 3). Self-discharge can be modelled for different battery types using a parallel resistance for leakage currents.

Figure 3. Self-discharge of Li-ion batteries.

Aging

Battery capacity declines as the number of charge and discharge cycles increases (Figure 4). This decline is quantified by the term service life, defined as the number of charge/discharge cycles a battery can provide before its capacity falls to 80% of the initial value. The service life of a typical lithium battery is between 300 and 500 charge/discharge cycles.

Lithium batteries also suffer from time-related aging, which causes their capacity to fall from the moment the battery leaves the factory, regardless of usage. This effect can cause a fully charged Li-ion battery to lose 20% of its capacity per year at 25°C, and 35% at 40°C. For partially charged batteries the

aging process is more gradual: for a battery with a 40% residual charge, the loss is about 4% of its capacity per year at 25°C.

Figure 4. Battery aging.

Discharge Curves

The characteristic discharge curve for a battery is specified in its data sheet for specific conditions. One factor affecting battery voltage is the load current (Figure 5). Load current cannot, unfortunately, be simulated in the model by a simple source resistance, because that resistance depends on other parameters such as the battery's age and charge level.

Figure 5. Battery-discharge curve.

Secondary lithium cells exhibit relatively flat discharge curves in comparison with primary cells. System developers like this behaviour because the available voltage is relatively constant. However, gradual discharge makes the battery voltage independent of the battery's residual-charge level. Accurately Measuring Charge Level

To determine the available charge in a battery, simple monitoring methods are preferred. They should consume little energy and should (ideally) allow one to deduce the charge level from battery voltage. Such a voltage-only method can produce unreliable outcomes, however, because no clear correlation exists between voltage and the available charge (Figure 5). Battery

voltage also depends on temperature, and dynamic relaxation effects can cause a slow increase in the terminal voltage after a reduction in load current. Thus, purely voltage-based monitoring is unlikely to provide charge-level accuracies better than 25%.

The relative charge level, often called the state of charge (SOC), is defined as the ratio of residual charge to the battery's charge capacity. Hence charge flow must be measured and monitored through a procedure called "coulomb counting." In practice, coulomb counting is accomplished by integrating the currents flowing into and out of the cell. To measure these currents with a high-resolution ADC, one typically connects a small resistor in series with the anode.

Fuel-Gauge Learning

The functional relationship between battery SOC and the parameters mentioned above cannot be related analytically, so cell capacity and charge must be determined empirically. No extensive analytical models are available for calculating (with sufficient accuracy) the capacity of a battery under practical operating conditions such as temperature, number of charge cycles, current, age, etc. Theoretical models apply only to certain "local" conditions. For determining relative charge levels, they are applied locally and calibrated globally.

To achieve sufficient accuracy while a battery is in use, the model parameters must be calibrated constantly through a process called

fuel-gauge "learning." In conjunction with coulomb counting, that approach yields fuel gauges accurate to within a few percent.

Fuel-Gauge Selection

Modern integrated circuits can determine the SOC for all types of secondary cells, cell configurations, and applications. Despite their low supply current (about 60μA in active mode and 1μA in sleep mode), these ICs achieve a high degree of accuracy. Fuel-gauge ICs fall into three categories (Table 2). Because lithium-based batteries are preferred for many applications, the examples shown are based on Li-ion and Li-polymer batteries.

Table 2. Fuel-Gauge Circuits.

Coulomb counters, sometimes known as battery monitors, are ICs that measure, count, and convert the battery's parameters mentioned above, including charge, temperature, voltage, load cycles, and time. Because coulomb counters do not process the measured variables, they are not intelligent. One such device, the DS2762, already includes an integrated, highly accurate 25m resistor for measuring current. It monitors temperature, battery voltage, and current, and it features a 1-Wire? bus that allows all readings to be read by a microcontroller residing in the battery pack or host system. It also offers the requisite safety circuit essential for secondary Li cells. The result is a flexible, cost-effective system that requires considerable knowledge and development effort (although costs are offset by the software, models, and support provided by the IC vendor).

An alternative approach to the coulomb counter is provided by fuel gauges. These all-in-one devices perform fuel-gauging routines with a learning algorithm, and they perform all necessary measurements on their own. Fuel gauges are typically deployed in intelligent, autonomous batteries called smart batteries. Because development effort is considerably less with integrated fuel gauges, this approach is well suited for applications that demand a quick time to market. One such fuel gauge, the DS2780, allows the host to read the SOC using the 1-Wire bus.

Another option is provided by programmable fuel gauges, which include integrated microcontrollers that provide considerable flexibility. The MAX1781, for example, includes an integrated RISC core, EEPROM, and RAM. This device enables developers to implement battery models, fuel-gauging routines, and measurements as required. Integrated LED drivers support simple but accurate SOC indication.

Summary

Fuel gauging of chargeable battery cells is a complex task due to the many interdependent parameters that influence cell capacity. Simple methods of measurement, therefore, deliver inaccurate results that are adequate only for non-critical applications. By utilizing off-the-shelf fuel-gauge ICs, however, one can implement highly accurate and reliable fuel gauges.

燃料电池,准确测量负载水平

文摘:电池燃料仪检测电荷残留在废旧电池和多少时间(在特定的操作条件)电池可以继续提供电力。应用笔记进行了讨论,提出在测量其电荷残留在锂离子电池和不同的方法来实现燃料表克服这些挑战。

介绍

自问世以来,充电手机电池及其相关fuel-gauge指标都已成为信息和通讯社会不可分割的一部分。现在它们的重要性就像汽车燃油压力表在已经在过去的100年那样。然而,司机不容忍不准确的燃料压力表,手机用户期望生活在高度准确、低解析度的指标下。本文论述了如何准确测量电荷水平和设计者怎样准确实施燃料电池应用的各种障碍。

锂离子电池,

锂电池在1997年左右开始大规模生产,并在接下来的发展中解决了各种技术问题。因为他们提供最高的能量密度体积、重量(图1),它们被用于从手机到电动汽车

各种的系统。

图1。各型电池的能量密度。

锂电池也有特定的特点,确定他们的负载是非常重要的。一个锂电池包必须包括多种安全机制,以防止电池被过度充电,分解,或反向连接。因为高活性锂会引起爆炸的危险,所以锂电池不得暴露于高温。

锂离子电池的阳极由一个石墨组成、阴极是由锂金属或锂合金组成。这个过程被称为夹层。因为锂强烈地与水起化学反应,锂电池用有机锂盐的非液体电解物来构造。当锂电池充电时, 锂离子原子在阴极和阳极通过电解液的运送。

电池容量

一个电池组(除了它的电压之外)的最重要的特性是它的容量(C)指明毫安小时并作为充电电池可提供最高电荷界定。容量为一特定组条件被制造厂商指定,但是在电池是制成的之后,它不变地改变。

图2。温度对电池的容量的影响。

如图2所示,容量与电池温度成正比。上面的曲线显示了在不同温度下锂离子电池用恒流,恒压的过程中的被控。注意该电池在高温时会比它可在-20℃时多消耗大约20%的电荷。

正如图2中的较低的曲线显示, 当电池正在放电时温度就可以具有更大的影响力。图显示了电池在两个不同的电流降到2.5V时的放电情况。两条曲线表现出强烈依赖于温度以及放电电流。在一个给定的温度和放电率,锂电池的容量是由上下曲线之间的差额决定。因此,锂电池的容量较低的温度下或被一个大电流放电或两者兼而有之是被大大削弱。经过放电电流高低温后,电池仍具有显着的剩余电荷,然后可以在在同一温度低电流放电

自放电

电池通过不必要的化学反应以及杂质的电解质失去他们的电量。在室温下,普通电池类型的典型自放电率都显示在表1。

表1 普通电池类型的自放电率

化学自放电率/月

铅酸 4%至6%

NiCd 15%至30%

镍氢 30%。

锂 2%到3%

化学反应的热反应,自放对温度有很高的依赖性(图3)。自放电通过利用并联电阻可以模拟不同类型电池的泄露电流。

图3 锂离子电池自放电

老化

电池容量下降作为充电和放电周期的增加(图4)。这种下降被使用寿命所量化,被定义为一个电池充放电循环的次数, 电池可提供的容量下降至初始值的80%。一个锂电池的寿命是充放电300至500次。

锂电池的老化受时间影响, 这会导致它们的容量从出厂的那刻起开始下降,无论是否使用。这种效应可能会导致完全充电的锂离子电池在25℃诗每年失去其20%的能力,在40℃时每年35%。对于部分充电电池的老化过程是渐进的: 对于一个有40%的剩余充电电池,在25℃时,每年损失约4%的电量。

图4。电池老化。

放电曲线

对于电池的放电特性曲线是在其指定的数据表的具体条件。一个影响电池电压的因素是负载电流(图5)。不幸的是,负载电流不能对模型进行数值模拟,因为一个简单的电源电阻,取决于等参数的电池的年龄和电荷的水平。

图5。电池放电曲线。

二次锂电池放电曲线展现相比于普通的电池相对平坦。系统开发商像这样的行为是因为现有的电压是相对稳定的。然而,逐步放电使电池电压独立于的电池的剩余充电水平。

准确地测量电荷水平

确要确定一个可充电电池,简单的监测方法是首要条件。他们应该耗能少, 应该(最好)允许从电池电压推断充电水平。这种电压唯一的方法会产生不可靠的结果,然而,由于电压和可用的电荷之间没有明显的相关性(图5)。电池电压也取决于温度、动态松弛效果可以减少电流在负载端电压在缓慢增长。因此,纯粹以电压为基础的监督是不可能提供超过25%的电荷水平精度。

这个电荷密度的相对水平, 通常称为充电状态(SOC),是作为剩余电量的比例,电池的充电定义的能力。于是电荷流量测量和监测必须通过一个被称为“库仑计数”的程序进行。在实践中, 库仑计数是通过集成的电流流入和流出电荷表示。为了用一个高分辨率ADC衡量这些电流,通常使用一系列与阳极连接小电阻。

电量计学习

由于电池SOC及以上提到的不能解析相关参数功能之间的关系,导致电池容量和充电必须通过实践确定。没有大量的分析模型可用于计算(有足够的准确度)实际经营状况的电池容量如温度,充电周期,电流,年龄等。理论模型只适用于某些“局部”的条件。确定相对电荷水平,将它们适用于本地和全球范围内校准。

为了达到足够的精度,而电池在使用中,该模型参数必须不断校准,这个过程称为电量计“学习”。结合库仑计数,这种做法产生的燃料计精确到百分之几。

电量计选择

现代的集成电路可以决定所有类型的二次电池的SOC,电池配置和应用。尽管他们的低电源电流(约60μA的工作模式和睡眠模式仅为1μA),这些IC仍能实现高精确度。电量计芯片分为三类(见表2)。由于锂基电池是许多应用的首选,这些例子所示是基于锂离子和锂聚合物电池。

库仑计数器,有时被称为电池显示器也称为集成电路,用于测量,计数,并将上述转换成电池的参数,包括收费,温度,电压,负载周期和时间。由于库仑计数器不处理标准变量,它们也不聪明。一个这样的设备,DS2762,包括一个集成的,测量电流的高度准确的25m电阻。它监视温度,电池电压和电流,它具有一个1 - Wire ?总线,允许所有数据通过一个电池组或主机系统上微控制器读取。它还提供了锂电池中必需的安全电路。其结果是一个灵活,高性价比,需要相当的知识和发展成就(虽然成本由软件,模型和IC供应商所提供)的系统。

另一种库伦计算的方法与燃料计提供。这些一体化设备进行电量及程序与学习算法,并执行所有必要的测量。燃料传感器通常部署在智能的,自主研发的智能电池中。由于开发工作相当少运用的集成燃油计,这种做法是很好的并能快速适应市场需求。一个这样的电量计,DS2780电量计,允许主机读取SOC的使用1 - Wire 总线。

另一种选择是可编程电量表,其中包括可提供相当大灵活性的集成微控制器。例如MAX1781,包括一个集成的RISC核心,EEPROM和RAM。该器件使开发人员能够

实现电池型号,燃料测量例程,并根据需要测量。集成LED驱动器支持简单而准确的SOC的迹象。

摘要

燃料充电电池测量是一项复杂的任务,因为许多相互依存的参数影响电池的能力。因此,如果没有适当的非关键应用,简单的方法测量可以提供准确的结果。通过利用现成的电量计芯片,每个电池都可以实现高度精确和可靠的燃油压力表。

施工组织设计外文翻译

摘要: 建筑工程在施工过程中,施工组织方案的优劣不仅直接影响工程的质量,对工期及施工过程中的人员安全也有重要影响。施工组织是项目建设和指导工程施工的重要技术经济文件。能调节施工中人员、机器、原料、环境、工艺、设备、土建、安装、管理、生产等矛盾,要对施工组织设计进行监督和控制,才能科学合理的保证工程项目高质量、低成本、少耗能的完成。 关键词: 项目管理施工组织方案重要性 施工组织设计就是对工程建设项目整个施工过程的构思设想和具体安排,是施工组织管理工作的核心和灵魂。其目的是使工程速度快、质量好、效益高。使整个工程在施工中获得相对的最优效果。 1.编制施工组织设计重要性的原因 建筑工程及其施工具有固定性与流动性、多样性与单件性、形体庞大与施工周期长这三对特点。所以,每一建筑工程的施工都必须进行施工组织设计。这是因为:其它一般工业产品的生产都有着自己固定的、长期适用的工厂。而建筑施工具有流动性的特点,不可能建立这样的工厂,只能是当每一个建筑工程施工时,建立一个相应的、临时性的,如同工厂作用性质的施工现场准备,即工地。施工单件性特点与施工流动性特点,决定了每一建筑工程施工都要选择相应的机具和劳动力组织。选择施工方法、拟定施工技术方案及其劳动力组织和机具配置,统称为施工作业能力配置。施工周期的特点,决定了各种劳动力、机具和众多材料物资技术的供应时间也比较长,这就产生了与施工总进度计划相适应的物资技术的施工组织设计内容。由此可见,施工组织设计在项目管理中是相当重要的。 2.施工组织设计方案的重要性 建筑产品作为一种商品,在项目管理中工程质量在整个施工过程中起着极其重要的作用。工程建设项目的施工组织设计与其工程造价有着密切的关系。施工组织设计基本的内容有:工程概况和施工条件的分析、施工方案、施工工艺、施工进度计划、施工总平面图。还有经济分析和施工准备工作计划。其中,施工方案及施工工艺的确定更为重要,如:施工机械的选择、水平运输方法的选择、土方的施工方法及主体结构的施工方法和施工工艺的选择等等,均直接影响着工程预算价格的变化。在保证工程质量和满足业主使用要求及工期要求的前提下,优化施工方案及施工工艺是控制投资和降低工程项目造价的重要措施和手段。 2.1施工组织方案在很大程度上影响着工程质量,因此合理的施工组织方案不仅是确保工程顺利完成的基础,也是工程安全的依据。施工组织设计是建筑工

建筑类外文文献及中文翻译

forced concrete structure reinforced with an overviewRein Since the reform and opening up, with the national economy's rapid and sustained development of a reinforced concrete structure built, reinforced with the development of technology has been great. Therefore, to promote the use of advanced technology reinforced connecting to improve project quality and speed up the pace of construction, improve labor productivity, reduce costs, and is of great significance. Reinforced steel bars connecting technologies can be divided into two broad categories linking welding machinery and steel. There are six types of welding steel welding methods, and some apply to the prefabricated plant, and some apply to the construction site, some of both apply. There are three types of machinery commonly used reinforcement linking method primarily applicable to the construction site. Ways has its own characteristics and different application, and in the continuous development and improvement. In actual production, should be based on specific conditions of work, working environment and technical requirements, the choice of suitable methods to achieve the best overall efficiency. 1、steel mechanical link 1.1 radial squeeze link Will be a steel sleeve in two sets to the highly-reinforced Department with superhigh pressure hydraulic equipment (squeeze tongs) along steel sleeve radial squeeze steel casing, in squeezing out tongs squeeze pressure role of a steel sleeve plasticity deformation closely integrated with reinforced through reinforced steel sleeve and Wang Liang's Position will be two solid steel bars linked Characteristic: Connect intensity to be high, performance reliable, can bear high stress draw and pigeonhole the load and tired load repeatedly.

建筑类型和设计-外文翻译

南京理工大学 毕业设计(论文)外文资料翻译 学院(系):南京理工大学继续教育学院 专业:土木工程 姓名: 学号: 外文出处:学术论坛网 附件: 1.外文资料翻译译文;2.外文原文。 注:请将该封面与附件装订成册。

附件1:外文资料翻译译文 建筑类型和设计 厂房与人民息息相关,因为它提供必要的空间,工作和生活中。 由于其使用的分类,建筑主要有两种类型:工业建筑和民用建筑各工厂或工业生产中使用的工业大厦,而那些居住,就业,教育和其他社会活动的人使用的民用建筑。 工业楼宇厂房可用于加工和制造各类采矿业,冶金工业,机械制造,化学工业和纺织工业等领域。可分为两种类型的单层和多层的厂房,民用建筑,工业建筑是相同的。然而,工业与民用建筑中使用的材料,在使用它们的方式不同。 民用建筑分为两大类:住宅建筑和公共建筑,住宅建筑应满足家庭生活应包括至少有三个必要的房间:每个单位。一个客厅,一个厨房和厕所,公共建筑,可以在政治文化活动,管理工作和其他服务,如学校,写字楼,公园,医院,商店,车站,影剧院,体育场馆,宾馆,展览馆,洗浴池,等等,他们都有不同的功能,这在需要以及不同的设计类型。 房屋是人类居住。房屋的基本功能是提供遮风挡雨,但今天人们需要更他们的住房,一个家庭迁入一个新的居民区知道,如果现有住房符合其标准安全,健康和舒适。附近的房屋是如何粮店,粮食市场,学校,商店,图书馆,电影院,社区中心,家庭也会问。 在60年代中期最重要的住房价值足够空间的内部和外部。多数首选的一半左右1英亩的土地,这将提供业余活动空间单户住宅的家庭。在高度工业化的国家,许多家庭宁愿住尽量尽可能从一个大都市区的中心,“打工仔”,即使行驶一段距离,他们的工作。不少家庭的首选国家住房郊区住房的大量的,因为他们的主要目的是远离噪音,拥挤,混乱。无障碍公共交通已不再是决定性因素,在住房,因为大多数工人开着自己的车上班的人。我们主要感兴趣的安排和房间的大小和卧室数目。 在建筑设计中的一个重要的一点是,房间的布局,应提供有关它们目的,最大可能的便利,在住宅,布局可根据三类认为:“天”,“夜必须注意“和”服务“。支付提供这些地区之间容易沟通。”天“的房间,一般包括用餐室,起居室和厨房,但其他房间,如一项研究,可能会补充说,可能有一个大厅,客厅,通常是最大的,往往是作为一个餐厅,也或厨房,可有一个用餐凉亭。“夜”的房间,卧室组成。“服务”,包括厨房,卫生间,储藏室,厨房和储藏室的水厕。连接天与客房的服务。 这也是必须考虑的前景问题,从不同的房间,和那些在使用中最应该尽可能最好朝

土木工程外文文献翻译

专业资料 学院: 专业:土木工程 姓名: 学号: 外文出处:Structural Systems to resist (用外文写) Lateral loads 附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文 抗侧向荷载的结构体系 常用的结构体系 若已测出荷载量达数千万磅重,那么在高层建筑设计中就没有多少可以进行极其复杂的构思余地了。确实,较好的高层建筑普遍具有构思简单、表现明晰的特点。 这并不是说没有进行宏观构思的余地。实际上,正是因为有了这种宏观的构思,新奇的高层建筑体系才得以发展,可能更重要的是:几年以前才出现的一些新概念在今天的技术中已经变得平常了。 如果忽略一些与建筑材料密切相关的概念不谈,高层建筑里最为常用的结构体系便可分为如下几类: 1.抗弯矩框架。 2.支撑框架,包括偏心支撑框架。 3.剪力墙,包括钢板剪力墙。 4.筒中框架。 5.筒中筒结构。 6.核心交互结构。 7. 框格体系或束筒体系。 特别是由于最近趋向于更复杂的建筑形式,同时也需要增加刚度以抵抗几力和地震力,大多数高层建筑都具有由框架、支撑构架、剪力墙和相关体系相结合而构成的体系。而且,就较高的建筑物而言,大多数都是由交互式构件组成三维陈列。 将这些构件结合起来的方法正是高层建筑设计方法的本质。其结合方式需要在考虑环境、功能和费用后再发展,以便提供促使建筑发展达到新高度的有效结构。这并

不是说富于想象力的结构设计就能够创造出伟大建筑。正相反,有许多例优美的建筑仅得到结构工程师适当的支持就被创造出来了,然而,如果没有天赋甚厚的建筑师的创造力的指导,那么,得以发展的就只能是好的结构,并非是伟大的建筑。无论如何,要想创造出高层建筑真正非凡的设计,两者都需要最好的。 虽然在文献中通常可以见到有关这七种体系的全面性讨论,但是在这里还值得进一步讨论。设计方法的本质贯穿于整个讨论。设计方法的本质贯穿于整个讨论中。 抗弯矩框架 抗弯矩框架也许是低,中高度的建筑中常用的体系,它具有线性水平构件和垂直构件在接头处基本刚接之特点。这种框架用作独立的体系,或者和其他体系结合起来使用,以便提供所需要水平荷载抵抗力。对于较高的高层建筑,可能会发现该本系不宜作为独立体系,这是因为在侧向力的作用下难以调动足够的刚度。 我们可以利用STRESS,STRUDL 或者其他大量合适的计算机程序进行结构分析。所谓的门架法分析或悬臂法分析在当今的技术中无一席之地,由于柱梁节点固有柔性,并且由于初步设计应该力求突出体系的弱点,所以在初析中使用框架的中心距尺寸设计是司空惯的。当然,在设计的后期阶段,实际地评价结点的变形很有必要。 支撑框架 支撑框架实际上刚度比抗弯矩框架强,在高层建筑中也得到更广泛的应用。这种体系以其结点处铰接或则接的线性水平构件、垂直构件和斜撑构件而具特色,它通常与其他体系共同用于较高的建筑,并且作为一种独立的体系用在低、中高度的建筑中。

建筑学毕业专业外文翻译文献doc资料

本科毕业设计(外文翻译) 题目居住区交往空间规划与设计 院(系部)xxx学院 专业名称xx 年级班级xx 学生姓名xx 指导教师xx xx 年xx 月x 日 Planning and Design of Association Space of residential District

Xia dong liang 【Abstract】:The association space refers to the indoor and outdoor space for communication between residents.The article presents an overall discussion of the necessity,hierarchy and functionality of association space,with a wish to create positive and healthy association atmosphere and stimulate good communication among residents so that the residential area can become a homeland full of love and harmony. 【Keyword】:residential area;association space;necessity;hierarchy;Functionality 【Foreword】:As the housing system reform and the rapid development of real estate, urban residential areas large urban settlements have emerged on the layout of residential buildings, public buildings, public green space, life and living facilities such as roads, to provide urban residents live in the community and The establishment, is an integral part of the city. Exchanges between the living room area residents is to communicate and exchange of indoor and outdoor space. At this stage, people's living standards greatly improved the living environment of continuous improvement district. Developers should not only focus on residential construction and the reasonable comfort, paying greater attention to the construction of residential environment. However, the current environment in the construction of residential areas, they are often the natural ecology of greening the environment is much more to consider, and the promotion of exchanges between the residents of the space environment to consider less, environmental construction can not meet the occupants of the psychological characteristics and needs. From the basic physiological needs gradually to meet the psychological and cultural fields of promoting a higher level, the residential area is not only the function of living, but also people's thinking and feelings of the local exchange. Therefore, the strengthening of exchanges between the residential areas of space construction, increase residential neighbourhood affinity, should be developed in the planning and construction of residential areas should also consider the issue. How to conduct exchanges between the residential areas of space planning and design, improve people's quality of life, the author of his own real estate development

建筑外文翻译--建筑类型和设计

building types and design A building is closely bound up with people,for it provides with the necessary space to work and live in . As classified by their use ,buildings are mainly of two types :industrial buildings and civil buildings .industrial buildings are used by various factories or industrial production while civil buildings are those that are used by people for dwelling ,employment ,education and other social activities . Industrial buildings are factory buildings that are available for processing and manufacturing of various kinds ,in such fields as the mining industry ,the metallurgical industry ,machine building ,the chemical industry and the textile industry . factory buildings can be classified into two types single-story ones and multi-story ones .the construction of industrial buildings is the same as that of civil buildings .however ,industrial and civil buildings differ in the materials used and in the way they are used . Civil buildings are divided into two broad categories: residential buildings and public buildings .residential buildings should suit family life .each flat should consist of at least three necessary rooms : a living room ,a kitchen and a toilet .public buildings can be used in politics ,cultural activities ,administration work and other services ,such as schools, office buildings, parks ,hospitals ,shops ,stations ,theatres ,gymnasiums ,hotels ,exhibition halls ,bath pools ,and so on .all of them have different functions ,which in turn require different design types as well. Housing is the living quarters for human beings .the basic function of housing is to provide shelter from the elements ,but people today require much more that of their housing .a family moving into a new neighborhood will to know if the available housing meets its standards of safety ,health ,and comfort .a family will also ask how near the housing is to grain shops ,food markets ,schools ,stores ,the library ,a movie theater ,and the community center . In the mid-1960’s a most important value in housing was sufficient space both inside and out .a majority of families preferred single-family homes on about half an acre of land ,which would provide space for spare-time activities .in highly industrialized countries ,many families preferred to live as far out as possible from the center of a metropolitan area ,even if the wage earners had to travel some distance to their work .quite a large number of families preferred country housing to suburban housing because their chief aim was to get far away from noise ,crowding ,and confusion .the accessibility of public transportation had ceased to be a decisive factor in housing because most workers drove their cars to work .people we’re chiefly interested in the arrangement and size of rooms and the number of bedrooms . Before any of the building can begin ,plans have to be drawn to show what the building will be like ,the exact place in which it is to go and how everything is to be done.

土木工程毕业设计外文文献翻译修订版

土木工程毕业设计外文文献翻译修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

外文文献翻译 Reinforced Concrete (来自《土木工程英语》) Concrete and reinforced concrete are used as building materials in every country. In many, including the United States and Canada, reinforced concrete is a dominant structural material in engineered construction. The universal nature of reinforced concrete construction stems from the wide availability of reinforcing bars and the constituents of concrete, gravel, sand, and cement, the relatively simple skills required in concrete construction, and the economy of reinforced concrete compared to other forms of construction. Concrete and reinforced concrete are used in bridges, buildings of all sorts underground structures, water tanks, television towers, offshore oil exploration and production structures, dams, and even in ships. Reinforced concrete structures may be cast-in-place concrete, constructed in their final location, or they may be precast concrete produced in a factory and erected at the construction site. Concrete structures may be severe and functional in design, or the shape and layout and be whimsical and artistic. Few other building materials off the architect and engineer such versatility and scope. Concrete is strong in compression but weak in tension. As a result, cracks develop whenever loads, or restrained shrinkage of temperature changes, give rise to tensile stresses in excess of the tensile strength of the concrete. In

施工组织设计外文翻译

XXXXXXXXX 毕业设计(论文)外文翻译 学生姓名: 院(系): 专业班级: 指导教师: 完成日期:

施工组织设计的重要性 摘要: 建筑工程在施工过程中,施工组织方案的优劣不仅直接影响工程的质量,对工期及施工过程中的人员安全也有重要影响。施工组织是项目建设和指导工程施工的重要技术经济文件。能调节施工中人员、机器、原料、环境、工艺、设备、土建、安装、管理、生产等矛盾,要对施工组织设计进行监督和控制,才能科学合理的保证工程项目高质量、低成本、少耗能的完成。 关键词: 项目管理施工组织方案重要性 施工组织设计就是对工程建设项目整个施工过程的构思设想和具体安排,是施工组织管理工作的核心和灵魂。其目的是使工程速度快、质量好、效益高。使整个工程在施工中获得相对的最优效果。 1.编制施工组织设计重要性的原因 建筑工程及其施工具有固定性与流动性、多样性与单件性、形体庞大与施工周期长这三对特点。所以,每一建筑工程的施工都必须进行施工组织设计。这是因为:其它一般工业产品的生产都有着自己固定的、长期适用的工厂。而建筑施工具有流动性的特点,不可能建立这样的工厂,只能是当每一个建筑工程施工时,建立一个相应的、临时性的,如同工厂作用性质的施工现场准备,即工地。施工单件性特点与施工流动性特点,决定了每一建筑工程施工都要选择相应的机具和劳动力组织。选择施工方法、拟定施工技术方案及其劳动力组织和机具配置,统称为施工作业能力配置。施工周期的特点,决定了各种劳动力、机具和众多材料物资技术的供应时间也比较长,这就产生了与施工总进度计划相适应的物资技术的施工组织设计内容。由此可见,施工组织设计在项目管理中是相当重要的。 2.施工组织设计方案的重要性 建筑产品作为一种商品,在项目管理中工程质量在整个施工过程中起着极其重要的作用。工程建设项目的施工组织设计与其工程造价有着密切的关系。施工组织设计基本的内容有:工程概况和施工条件的分析、施工方案、施工工艺、施工进度计划、施工总平面图。还有经济分析和施工准备工作计划。其中,施工方案及施工工艺的确定更为重要,如:施工机械的选择、水平运输方法的选择、土方的施工方法及主体结构的施工方法和施工工艺的选择等等,均直接影响着工程预算价格的变化。在保证工程质量和满足业主使用要求及工期要求的前提下,优化施工方案及施工工艺是控制投资和降低工程项目造价的重要措施和手段。 2.1施工组织方案在很大程度上影响着工程质量,因此合理的施工组织方案 不仅是确保工程顺利完成的基础,也是工程安全的依据。施工组织设计是建筑工程设计文件的重要组成部分,是编制工程投资概预算的主要依据和编制招投标文件的

建筑学专业毕业设计方案外文翻译二44

毕业设计英文资料翻译 Tran slati on ofthe En glish Docume nts for Graduati on Desig n 课题名称_____________________________________ 院< 系)_____________________________________ 专业 _____________________________________ 姓名 _____________________________________ 学号 _____________________________________ 起讫日期 _____________________________________ 指导教师 _____________________________________ 2018 年2月25日 原文: Abstract:Gree n buildi ng refers to do its best to maximize con servati on of resources (en ergy, land, water, and wood> , protecti ng the environment and reduce polluti on in its life cycle. Provide people with healthy, appropriate and efficient use of space, and nature in harmony symbiosis buildings. Idescribed more details of green building design ' notion, green building ' design, as well as the sig ni fica nee of the con

土木工程毕业设计外文翻译---土方工程的地基勘察与施工

DESIGN AND EXECUTION OF GROUND INVESTIGATION FOR EARTHWORKS PAUL QUIGLEY, FGS Irish Geotechnical Services Ltd ABSTRACT The design and execution of ground investigation works for earthwork projects has become increasingly important as the availability of suitable disposal areas becomes limited and costs of importing engineering fill increase. An outline of ground investigation methods which can augment …traditional investigation methods? particularly for glacial till / boulder clay soils is presented. The issue of …geotechnical certification? is raised and recommendations outlined on its merits for incorporation with ground investigations and earthworks. 1. INTRODUCTION The investigation and re-use evaluation of many Irish boulder clay soils presents difficulties for both the geotechnical engineer and the road design engineer. These glacial till or boulder clay soils are mainly of low plasticity and have particle sizes ranging from clay to boulders. Most of our boulder clay soils contain varying proportions of sand, gravel, cobbles and boulders in a clay or silt matrix. The amount of fines governs their behaviour and the silt content makes it very weather susceptible. Moisture contents can be highly variable ranging from as low as 7% for the hard grey black Dublin boulder clay up to 20-25% for Midland, South-West and North-West light grey boulder clay deposits. The ability of boulder clay soils to take-in free water is well established and poor planning of earthworks often amplifies this. The fine soil constituents are generally sensitive to small increases in moisture content which often lead to loss in strength and render the soils unsuitable for re-use as engineering fill. Many of our boulder clay soils (especially those with intermediate type silts and fine sand matrix) have been rejected at the selection stage, but good planning shows that they can in fact fulfil specification requirements in terms of compaction and strength. The selection process should aim to maximise the use of locally available soils and with careful evaluation it is possible to use or incorporate …poor or marginal soils? within fill areas and embankments. Fill material needs to be placed at a moisture content such that it is neither too wet to be stable and trafficable or too dry to be properly compacted. High moisture content / low strength boulder clay soils can be suitable for use as fill in low height embankments (i.e. 2 to 2.5m) but not suitable for trafficking by earthwork plant without using a geotextile separator and granular fill capping layer. Hence, it is vital that the earthworks contractor fully understands the handling properties of the soils, as for many projects this is effectively governed by the trafficability of earthmoving equipment.

工业工程英文文献及外文翻译

附录 附录1:英文文献 Line Balancing in the Real World Abstract:Line Balancing (LB) is a classic, well-researched Operations Research (OR) optimization problem of significant industrial importance. It is one of those problems where domain expertise does not help very much: whatever the number of years spent solving it, one is each time facing an intractable problem with an astronomic number of possible solutions and no real guidance on how to solve it in the best way, unless one postulates that the old way is the best way .Here we explain an apparent paradox: although many algorithms have been proposed in the past, and despite the problem’s practical importance, just one commercially available LB software currently appears to be available for application in industries such as automotive. We speculate that this may be due to a misalignment between the academic LB problem addressed by OR, and the actual problem faced by the industry. Keyword:Line Balancing, Assembly lines, Optimization

建筑-外文翻译

外文文献: Risk Analysis of the International Construction Project By: Paul Stanford Kupakuwana Cost Engineering Vol. 51/No. 9 September 2009 ABSTRACT This analysis used a case study methodology to analyse the issues surrounding the partial collapse of the roof of a building housing the headquarters of the Standards Association of Zimbabwe (SAZ). In particular, it examined the prior roles played by the team of construction professionals. The analysis revealed that the SAZ’s traditional construction project was generally characterized by high risk. There was a clear indication of the failure of a contractor and architects in preventing and/or mitigating potential construction problems as alleged by the plaintiff. It was reasonable to conclude that between them the defects should have been detected earlier and rectified in good time before the partial roof failure. It appeared justified for the plaintiff to have brought a negligence claim against both the contractor and the architects. The risk analysis facilitated, through its multi-dimensional approach to a critical examination of a construction problem, the identification of an effective risk management strategy for future construction projects. It further served to emphasize the point that clients are becoming more demanding, more discerning, and less willing to accept risk without recompense. Clients do not want surprise, and are more likely to engage in litigation when things go wrong. KEY WORDS:Arbitration, claims, construction, contracts, litigation, project and risk The structural design of the reinforced concrete elements was done by consulting engineers Knight Piesold (KP). Quantity surveying services were provided by Hawkins, Leshnick & Bath (HLB). The contract was awarded to Central African Building Corporation (CABCO) who was also responsible for the provision of a specialist roof structure using patented “gang nail” roof

相关文档