文档库 最新最全的文档下载
当前位置:文档库 › 浅谈对数求导法_石富华

浅谈对数求导法_石富华

浅谈对数求导法_石富华

科技信息

高校理科研究

[8]苗明山.常用中药毒理学[M ].北京:中国中医药出版社,1997:196.

[9]刘红亚,崔红梅.川楝子药材中川楝素的薄层色谱鉴别[J ].时珍国医国药,2008(7):1674.

[10]蔡永敏等.中药药理与临床应用[M ].北京:华夏出版社,1999:243.

[11]王希海.中草药引起中毒性肝病的病理变化[J ].临床肝胆病杂志,1997(3):126.

[12]刘士敬等.对中药不正确使用导致药源性肝损害的思考-面对现实,积极防控[J ].中国中医药现代远程教育,2008(7):798-802.

[13]谢帆等.川楝子的化学成分研究[J ].中国药学杂志,2008(14):1066-1069.

[14]郭惠等.川楝子活性成分石油醚提取与GC-MS 分析[J ].西南民族大学学报(自然科学版),2007(5):1113-1117.

[15]昌军等.川楝子中两个新的苯丙三醇甙[J ].植物学报,1991(11):1245.

[16]刘小平.对肝脏有毒副作用的中草药[J ].中西医结合肝病杂志,1992(2):50.

[17]刘进辉等.果子狸川楝子中毒试验[J ].中国兽医科技,1996(5):41-42.

[18]齐双岩等.川楝子致大鼠肝毒性机制研究[J ].中国中药杂志,2008(16):2045-2047.

[19]熊彦红等.川楝子对大鼠肝毒性的时效和量效关系研究[J ].江苏中医药,2008(7):83-84.

[20]齐双岩等.川楝子对大鼠肝组织超微结构和原代培养肝细胞的影响[J ].中国中药杂志,2009(22):2966-2968.

[21]崔颖等.P450酶的研究进展[J ].中国新技术新产品,2009(16):7.[22]王潇等.细胞色素P450调节肝脏药物代谢的途径[J ].生物技术通报,2009(7):39-41.

[23]齐双岩等.川楝子对大鼠肝细胞色素P450诱导作用的研究[J ].中药药理与临床,2011(3):62-64.

[24]吴春福等.常用中药的DNA 毒性研究[J ].临床药物治疗杂志,2009(2):9-13.

[25]王磊昆.川楝子生品和炒制品对大鼠肝毒性的比较研究[J ].中国中医药杂志,2008(12):26-28.

[26]李迎春等.正交法优选川楝子最佳清炒工艺[J ].中药材,2011(4):524-525.

[27]梅彩霞等.二香定痛散全方及拆方的急性毒性试验[J ].毒理学杂志,2007(4):309.

[28]齐双岩等.川楝子减毒配伍规律初探[J ].四川中医,2009(2):9-10.

[29]齐双岩等.白芍对川楝子减毒作用研究[J ].中药药理与临床,2010(5):84-86.

[30]齐双岩等.白芍对川楝子减毒作用机制研究[J ].中成药,2011(3):404-406.

(上接第168页)

在《微积分》的导数一章的教学中,我们发现有些题目它并不能用公式直接求导,而是需要应用对数求导法才可以求出其导数。在此,先介绍一下什么是对数求导法。

如若已知y =f (x ),y ≠0求y '。采用对数求导法:先对y =f (x )的两边取对数ln y =ln f (x ),再将y 看作关于x 的函数,在上式两边关于x 求导,得到1y

y '=(ln f (x ))',然后将y '从上式中解出来,可得:

y '=y (ln f (x ))'即y '=f (x )(ln f (x ))

'

(1)对数求导法的实质是将函数f (x )的导数转化为求其对数ln f (x )的导数,这也就是这一方法名字的缘由。那么,f (x )是什么样的函数时,我们采用对数求导法呢?一般地,f (x )若是下面两类函数,在求函数导数时都采用对数求导法。

一、幂指函数

对于幂指函数f (x )g (x )

的求导,一般我们采用两种方法:一种是将其转化成复合函数,再按复合函数求导法则来求;另一种方法就是对数求导法。在做幂指函数求导中,通过两种方法的对比,很容易发现,前种方法由于要多一步转化,相对第二种就麻烦,而第二种对数求导法就步骤、过程都相对第一种方法要简洁。若直接用(1)式求,还可以免去取对数,求导过程仅需要应用求导公式即可写出幂指函数的导数,方法就更简单。

例1[1]求y =x sin x

(x >0)的导数。

解法1:在y =x sin x 的两边取对数得ln y =ln x sin x

=sin x ln x 两边对x 求导,

1y

y '=sin 'x ln x +sin x (ln x )'=cos x ln x +sin x x 即y '=x sin x

(cos x ln x +sin x x )解法2:直接应用(1)式求之

y '=x sin x (ln x sin x )'=x sin x (sin x ln x )'

=x sin x (cos x ln x +sin x x )二、由多个因子的积、商、幂或根式组成的函数这类函数由于其做同底对数可以写成对数之和、之差及其倍数,因而求函数的导数就可以转化为求各个分项的导数。对这类函数,用对数求导法相对直接求导法要简单。

例2求y =x ln x 1-sin x 的导数。解:对等式的两边取对数得,

ln y =12[ln x +ln ln x +12ln(1-sin x )]

两边对x 求导,

1y

y '=12[1x +1x ln x +12?(-cos x )1-sin x ]即得y '

12x ln x -cos x 4(1-sin x )

]例3[1]设y =(b x )a (x a )b (b a )x (a >0,b >0)求y '

。解:对等式的两边取对数得,

ln y =ln(b x )a (x a )b (a b )

x

=a ln(b x )+b ln(x a )+x ln(a

b )

=a ln b -a ln x +b ln x -b ln a +x ln a -x ln b 对上式两边关于x 求导

y '

=y [-a x +b x +ln a -ln b ]=(b x )a (x a )b (b a )x [b -a x +ln a b ]从以上几个例子可以看出,利用对数求导法,求这两类函数的导数时,确实非常简单、方便。同时,我们大家也不难发现对数求导法的优点:

(1)当f (x )是幂指函数时,利用直接求导是不太可能的,但通过取对数将其转换成初等函数的形式,利用公式可求出导数。

(2)当f (x )是多个函数的积、商幂或根式的形式时,通过取对数转换成和、差的形式,求导起来就更简单。

有兴趣的读者,也可以想想下面函数的导数。

y =(x -1)(x 2

-2)??(x 2011-2011)

参考文献[1]同济大学应用数学系.高等数学[M ].上海:同济大学出版社,2009:102,104

浅谈对数求导法

九江学院理学院石富华

[摘要]本文介绍了对数求导法及其应用的范畴。[关键词]对数求导法幂指函数

—169

高数三角函数公式大全

三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) = tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A = A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3 π +a)·tan( 3 π -a) 半角公式 sin( 2A )= 2cos 1A - cos(2A )=2cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )= A A sin cos 1-=A A cos 1sin +

sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2 b a +sin 2 b a - tana+tanb= b a b a cos cos ) sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π -a) = cosa cos(2 π -a) = sina sin(2 π +a) = cosa cos( 2 π +a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina c os(π+a) = -cosa tgA=tanA =a a cos sin

指数对数函数求导

一、自然常数e 1、求导x a dx d 令x a y = 已知导数差商公式定义式: x x f x x f x f x ?-?+=→?) ()()(lim 0 ' 由导数差商定义式得: x a a x a a x x f x x f x f x x x x x x x x ?-?=?-=?-?+=?→??+→?→?1 )()()(lim lim lim 000'(因子x a 与x ?无关,因此我们可以将它提到极限号前面) 注意到上式中的极限是函数)(x f 的导数在0=x 处的值,即 x a a f x x ?-?=?→?1)0(lim 00 ' 因此,我们已经说明了如果指数函数x a x f =)(在0=x 处是可微的,则该函数是处处可微的,并且 x a f x f ?=)0()('' 上述等式说明了任何指数函数的变化率是和指数函数本身成正比的. 令x a a f a M x x ?-?==?→?1 )0()(lim 00 ' 0,因为x a 已知,要求)('x f 必须 求得)(0a M ,从x a a M x x ?-=?→?1 )(l i m 0 0的定义式可以猜测)(0a M 可能 是一个无线不循环的数值,只能无限取小x ?值求得)(0a M 的估算值,

这种估算的过程相当繁琐且得不到)(0a M 的准确数值. h h h 1 2- h h 1 3- 0.1 0.7177 1.1612 0.01 0.6956 1.1047 0.001 0.6934 1.0992 0.0001 0.6932 1.0987 在上表中,给出了2=a 和3=a 时的情况,通过数值举例,说明了)0('f 的存在.极限明显存在并且 当2=a ,69.012)0(lim 0 ' ≈?-=?→?x f x x 当3=a ,10.11 3)0(lim 0' ≈?-=?→?x f x x 实际上,我们将在《微积分》5.6节说明它们极限存在并且精确到小数点后六位,如下: 693147.0)2(0≈=x x dx d 098612.1)3(0 ≈=x x dx d 因此,由等式①,我们有 x x dx d 2)69.0()2(?≈ x x dx d 3)10.1()3(?≈ 在等式①对于底数a 的所有可能的选择中,当1)0('=f 时,微分 公式最为简单,即x e y =,x e y =',并且有11 )(lim 00=?-=?→?x e e M x x ,

三角函数公式大全7768

高中三角函数公式大全[图] 1 三角函数的定义1.1 三角形中的定义 图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数 ?余割函数 1.2 直角坐标系中的定义

图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: ?正弦函数 ?余弦函数 ?正切函数 ?余切函数 ?正割函数

余割函数 2 转化关系2.1 倒数关系 2.2 平方关系 2 和角公式 3 倍角公式、半角公式3.1 倍角公式 3.2 半角公式

3.3 万能公式 4 积化和差、和差化积4.1 积化和差公式

4.2 和差化积公式 诱导公式 ?sin(-a)=-sin(a) ?cos(-a)=cos(a) ?sin(pi/2-a)=cos(a) ?cos(pi/2-a)=sin(a) ?sin(pi/2+a)=cos(a) ?cos(pi/2+a)=-sin(a) ?sin(pi-a)=sin(a) ?cos(pi-a)=-cos(a) ?sin(pi+a)=-sin(a) ?cos(pi+a)=-cos(a) ?tgA=tanA=sinA/cosA 两角和与差的三角函数

?sin(a+b)=sin(a)cos(b)+cos(α)sin(b) ?cos(a+b)=cos(a)cos(b)-sin(a)sin(b) ?sin(a-b)=sin(a)cos(b)-cos(a)sin(b) ?cos(a-b)=cos(a)cos(b)+sin(a)sin(b) ?tan(a+b)=(tan(a)+tan(b))/(1-tan(a)tan(b)) ?tan(a-b)=(tan(a)-tan(b))/(1+tan(a)tan(b)) 三角函数和差化积公式 ?sin(a)+sin(b)=2sin((a+b)/2)cos((a-b)/2) ?sin(a)?sin(b)=2cos((a+b)/2)sin((a-b)/2) ?cos(a)+cos(b)=2cos((a+b)/2)cos((a-b)/2) ?cos(a)-cos(b)=-2sin((a+b)/2)sin((a-b)/2) 积化和差公式 ?sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] ?cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] ?sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 二倍角公式 ?sin(2a)=2sin(a)cos(a) ?cos(2a)=cos^2(a)-sin^2(a)=2cos^2(a)-1=1-2sin^2(a) 半角公式

求导公式大全

求导公式大全 1、原函数:y=c(c为常数) 导数: y'=0

导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx 6、原函数:y=cosx 导数: y'=-sinx 7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x

导数:y'=logae/x 10、原函数:y=lnx 导数:y'=1/x 求导公式大全整理 y=f(x)=c (c为常数),则f'(x)=0 f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosx f(x)=cosx f'(x)=-sinx f(x)=tanx f'(x)=sec^2x f(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0) f(x)=e^x f'(x)=e^x f(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0) f(x)=lnx f'(x)=1/x (x>0) f(x)=tanx f'(x)=1/cos^2 x f(x)=cotx f'(x)=- 1/sin^2 x f(x)=acrsin(x) f'(x)=1/√(1-x^2)

f(x)=acrcos(x) f'(x)=-1/√(1-x^2) f(x)=acrtan(x) f'(x)=-1/(1 x^2) 高中数学导数学习方法 1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。 2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。 3、一般情况下,令导数=0,求出极值点;在极值点的两边的区间,分别判断导数的符号,是正还是负;正的话,原来的函数则为增,负的话就为减,然后根据增减性就能大致画出原函数的图像。 根据图像就可以求出你想要的东西,比如最大值或最小值等。 4、特殊情况下,导数本身符号可以直接确定,也就是导数等于0无解时,说明在整个这一段上,原函数都是单调的。如果导数恒大于0,就增;如果导数恒小于0,就减。

三角函数_反三角函数_积分公式_求导公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A - cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a + cosa=22)2(tan 1)2(tan 1a a +- tana=2 )2(tan 12tan 2a a - 6、其他非重点三角函数 csc(a) = a sin 1 sec(a) =a cos 1 7、(a +b )的三次方,(a -b )的三次方公式

求导基本法则和公式

四、基本求导法则与导数公式 1. 基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如下: 基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设 )(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则 若函数 )(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数)(x f y =在对应 区间x I 内也可导,且

三角函数诱导公式大全

三角函数得求导公式就是什么? tanα·cotα=1 sinα·cscα=1 cosα·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱导公式 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sin(3π/2+α)=-cosα

cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα (其中k∈Z) 两角与与差得三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ tanα+tanβ tan(α+β)=—————— 1-tanα·tanβ tanα-tanβ tan(α-β)=—————— 1+tanα·tanβ 2tan(α/2) sinα=—————— 1+tan2(α/2) 1-tan2(α/2) cosα=—————— 1+tan2(α/2) 2tan(α/2) tanα=—————— 1-tan2(α/2)

三角函数公式大全(很详细).docx

高中三角函数公式大全[ 图] 1 三角函数的定义三角形中的定义 图1 在直角三角形中定义三角函数的示意图 在直角三角形 ABC,如下定义六个三角函数: 正弦函数 余弦函数 正切函数 余切函数 正割函数 余割函数

直角坐标系中的定义 图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: 正弦函数 r 余弦函数 正切函数 余切函数 正割函数 余割函数 2 转化关系倒数关系

平方关系 2和角公式 3倍角公式、半角公式倍角公式 半角公式

万能公式 4积化和差、和差化积积化和差公式 证明过程

首先, sin( α+β)=sin αcosβ+sin β(cos已证α。证明过程见《》)因为 sin( α+β)=sin αcosβ+sin β(cos正弦α和角公式)则 sin( -αβ) =sin[ α-β+( )] =sin α cos(-β )+sin(-β )cos α =sin α cos-sinβ β cos α 于是 sin( -αβ )=sin α cos-sinββ cos(α正弦差角公式) 将正弦的和角、差角公式相加,得到 sin( α +β )+sin(-β )=2sinα α cos β 则 sin α cos β =sin( α +β )/2+sin(-β(“α积化和差公式”之一)同样地,运用诱导公式cosα=sin( π-/2α),有 cos( α +β )= sin[ π-/2(α +β )] =sin( π-/2α-β) =sin[(π-α/2 )+(-β )] =sin( π-/2α )cos(-β )+sin(-β )cos( π-α)/2 =cos α cos- βsin α sin β 于是 cos( α +β )=cos α-cossin βα sin(β余弦和角公式) 那么 cos( α-β) =cos[ α-+(β )] =cos α cos(-β)-sin α sin(-β) =cos α cos β +sin α sin β cos( α-β )=cos α cos β +sin (α余sin弦β差角公式) 将余弦的和角、差角公式相减,得到 cos( α +β)-cos( α-β )=-2sin α sin β

高中导数公式大全

C'=0(C为常数函数); (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数 (sinx)' = cosx; (cosx)' = - sinx; (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) (sinhx)'=hcoshx (coshx)'=-hsinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) (e^x)' = e^x; (a^x)' = a^xlna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2) .y=c(c为常数) y'=0 .y=x^n y'=nx^(n-1) .y=a^x y'=a^xlna y=e^x y'=e^x y=lnx y'=1/x .y=sinx y'=cosx .y=cosx y'=-sinx .y=tanx y'=1/cos^2x .y=cotx y'=-1/sin^2x

角函数反三角函数积分公式求导公式

1、两角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB 1tanB tanA +- cot(A+B)=cotA cotB 1-cotAcotB +cot(A-B)=cotA cotB 1cotAcotB -+ 2、倍角公式 tan2A=A tan 12tanA 2-Sin2A=2SinA?CosA Cos2A=Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3、半角公式 sin(2A )=2cos 1A -cos(2 A )=2cos 1A + tan( 2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A A cos 1sin + 4、诱导公式 sin(-a)=-sinacos(-a)=cosa sin(2π-a)=cosacos(2π-a)=sinasin(2π+a)=cosacos(2 π+a)=-sina sin(π-a)=sinacos(π-a)=-cosasin(π+a)=-sinacos(π+a)=-cosa tgA=tanA=a a cos sin 5、万能公式 sina=2)2(tan 12tan 2a a +cosa=22)2(tan 1)2(tan 1a a +-tana=2 )2 (tan 12tan 2a a - 6、其他非重点三角函数 csc(a)=a sin 1sec(a)=a cos 1 7、(a +b )的三次方,(a -b )的三次方公式 (a+b)^3=a^3+3a^2b+3ab^2+b^3 (a-b)^3=a^3-3a^2b+3ab^2-b^3 a^3+b^3=(a+b)(a^2-ab+b^2) a^3-b^3=(a-b)(a^2+ab+b^2) 8、反三角函数公式 arcsin(-x)=-arcsinx arccos(-x)=π-arccosx arctan(-x)=-arctanx arccot(-x)=π-arccotx

三角函数积分公式求导公式整理

同角三角函数的基本关系式 诱导公式

化asin α ±bcos α为一个角的一个三角函数的形式(辅助角的三角函数的公式) 第二部分 求导公式 1.基本求导公式 ⑴ 0)(=' C (C 为常数)⑵ 1)(-='n n nx x ;一般地,1)(-='αααx x 。 特别地:1)(=' x ,x x 2)(2=',2 1 )1(x x -=',x x 21)(= '。 ⑶ x x e e =')(;一般地,)1,0( ln )(≠>='a a a a a x x 。 ⑷ x x 1)(ln = ';一般地,)1,0( ln 1 )(log ≠>='a a a x x a 。 2.求导法则 ⑴ 四则运算法则 设f (x ),g (x )均在点x 可导,则有:(Ⅰ))()())()((x g x f x g x f '±'='±; (Ⅱ))()()()())()((x g x f x g x f x g x f '+'= ',特别)())((x f C x Cf '='(C 为常数) ; (Ⅲ))0)(( ,) ()()()()())()(( 2≠'-'='x g x g x g x f x g x f x g x f ,特别21() ()()()g x g x g x ''=-。 3.微分 函数 ()y f x =在点x 处的微分:()dy y dx f x dx ''== 第三部分 积分公式 1.常用的不定积分公式 (1) ?????+==+=+=-≠++=+c x dx x x dx x c x xdx c x dx C x dx x 43,2,),1( 1143 32 21αααα ; (2) C x dx x +=?||ln 1; C e dx e x x +=?; )1,0( ln ≠>+=?a a C a a dx a x x ; (3) ??=dx x f k dx x kf )()((k 为常数) 2.定积分 ()()|()()b b a a f x dx F x F b F a ==-? ⑴ ??? +=+b a b a b a dx x g k dx x f k dx x g k x f k )()()]()([2121 ⑵ 分部积分法

高一数学三角函数求导公式整理

16年高一数学三角函数求导公式整理 导数是高中学习的重要知识点,而数学三角函数求导公式则是其中的难点,需要大家开动脑筋牢记下面的数学三角函数求导公式,以免在做题时手足无措。 (sinx)' = cosx (cosx)' = - sinx (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2) ④(sinhx)'=coshx (coshx)'=sinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx

(arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2) “教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。其实《国策》中本身就有“先生长者,有德之称”的说法。可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。 我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识 记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口, 成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学

教案 对数函数的导数公式

教案:对数函数的导数公式 姓名:严东泰 教材分析 本节是结合函数四则运算的求导法则与复合函数的求导法则,应用对数函数的求导公式,使学生能求简单的初等函数的导数.本节给出了对数函数、指数函数的导数,使学生对于初等函数的导数能完整地认识,由于这两种导数的证明所需知识均超出现学范围,所以本节重点在于熟悉对数函数、指数函数求导法则与前面知识结合的应用.本节难点是指数函数、对数函数求导法则的正确应用.由于对数函数、指数函数的求导法则均是直接给出,没有证明过程,学生只能直接套用公式求解,增加了运用的困难.这部分题目还涉及到导数的四则运算,复合函数的求导法则知识的运用,因此综合性较强,题目运算量较大. 教学设计 一、教学目标: 1.掌握函数x x a log ln 、 的导数公式; 2.应用对数函数的求导公式,能求简单的初等函数的导数; 3.提高分析、解决问题能力以及运算能力. 二、教学重点:结合函数四则运算的求导法则与复合函数的求导法则,应用对数函数的求导公式,能求简单的初等函数的导数. 教学难点:对数函数求导公式的灵活运用. 三、教学用具:投影仪 教学过程 1.复习 (1)问题 叙述复合函数的求导法则. (2)练习 求下列函数的导数: Ⅰ.21x y -=;Ⅱ..2sin x y = 答案:Ⅰ.2 1x x -- ;Ⅱ..2cos 2x

2.新授 1.直接给出对数函数的导数公式(1)x x 1 )(ln ='. 2.求证对数函数的导数公式(2)e x x a a log 1 )(log = '. 证明:.log 11ln 1ln ln )(log e x x a a x x a a =?= '?? ? ?? =' 注:以上两个公式均是对数函数的导数公式. 公式(1)尤其简单易记,x ln 的导数等于1-x . 公式(2)略显复杂,x a log 的导数除了1-x ,还有另一因子e a log ,即a ln 1,由证明过程看出是由使用换底公式而来. 试思考:求幂函数m x 的导数能得1-x 吗? 3.公式的应用 让学生解答教科书例1,用多媒体展示其过程,需强调中间变量 1322++=x x u . 让学生解答教科书例2,并分组交流、讨论、比较各种解法的优劣,引导学生归纳方法和技巧,寻找规律性的策略. 这样,突出了学生的主体地位,学生感到自己会学习,增强了学会学习、学会求知的兴趣和信心. 引处可向学生说明,真数中若含乘方或开方、乘法或除法的,均可先变再求导.此例中解法2优于解法1,实际上,解法1中21,,lg x v v u u y -===,取了 两个中间变量,属于多重复合.而解法2中21,lg 21 x u u y -==,仅有一次复合, 所以其解法业得简单,不易出错. 补充 例:求下列函数的导数: (1))1(log 2 2x x y ++=;(2)2 2 11ln x x y -+=; (3)x x y 2sin ln =;(4)).(sin ln 2x e y -=

大学用三角函数公式大全

倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 cosα/sinα=cotα=cscα/secα 1+cot^2(α)=csc^2(α) tan α *cot α=1 一个特殊公式 (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)二倍角公式 正弦 sin2A=2sinA·cosA 余弦 =Cos^2(a)-Sin^2(a) =1-2Sin^2(a) =2Cos^2(a)-1 即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a) 正切 tan2A=(2tanA)/(1-tan^2(A)) 万能公式 sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 半角公式 tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a)) 半角公式 sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα 和差化积 sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2] sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB) 两角和公式 ta n(α+β)=(tanα+tanβ)/(1-tanαtanβ) tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

求指数、对数函数的导数

求指数、对数函数的导数 例 求下列函数的导数: 1.{ EMBED Equation.3 |1ln 2+=x y ;2.; 3.; 4. 分析:对于比较复杂的函数求导,除了利用指数、对数函数求导公式之外,还需要考虑应用复合函数的求导法则来进行.求导过程中,可以先适当进行变形化简,将对数函数的真数位置转化为有理函数的形式后再求导数. 解:1.解法一:可看成复合而成. 解法二: 解法三:, 2.解法一:设,则 解法二: 3.解法一:设,则 解法二: 4. 说明:深刻理解,掌握指数函数和对数函数的求导公式的结构规律,是解决问题的关键,解答本题所使用的知识,方法都是最基本的,但解法的构思是灵魂,有了它才能运用知识为解题服务,在求导过程中,学生易犯漏掉符合或混淆系数的错误,使解题走入困境. 解题时,能认真观察函数的结构特征,积极地进行联想化归,才能抓住问题的本质,把解题思路放开. 变形函数解析式求导 例 求下列函数的导数: (1); (2); (3); (4). 分析:先将函数适当变形,化为更易于求导的形式,可减少计算量. 解:(1) . (2),

(3) (4) 当时不存在. 说明:求(其中为多项式)的导数时,若的次数不小于的次数,则由多项式除法可知,存在,使.从而,这里均为多项式,且的次数小于的次数.再求导可减少计算量.对函数变形要注意定义域.如,则定义域变为,所以虽然的导数与的导数结果相同,但我们还是应避免这种解法. 函数求导法则的综合运用 例求下列函数的导数: 1.;2.; 3.;4. 分析:式中所给函数是几个因式积、商、幂、开方的关系.对于这种结构形式的函数,可通过两边取对数后再求导,就可以使问题简单化或使无法求导的问题得以解决.但必须注意取寻数时需要满足的条件是真数为正实数,否则将会出现运算失误. 解:1.取y的绝对值,得,两边取寻数,得 根据导数的运算法则及复合函数的求导法则,两端对x求导,得 , ∴ 2.注意到,两端取对数,得 ∴ ∴ 3.两端取对数,得 , 两端对x求导,得 4.两端取对数,得 , 两边对x求导,得 ∴ 说明:对数求导法则实质上是复合函数求导法则的应用.从多角度分析和探索解决问题的途径,能运用恰当合理的思维视力,把问题的隐含挖掘出来加以利用,会使问题的解答避

三角函数公式大全

图1 在直角三角形中定义三角函数的示意图在直角三角形ABC,如下定义六个三角函数: 正弦函数 余弦函数 正切函数 余切函数 正割函数 余割函数 直角坐标系中的定义 图2 在直角坐标系中定义三角函数示意图在直角坐标系中,如下定义六个三角函数: 正弦函数 r 余弦函数 正切函数

余切函数 正割函数 余割函数 2 转化关系倒数关系平方关系 2 和角公式 3 倍角公式、半角公式倍角公式 半角公式 万能公式

4 积化和差、和差化积 积化和差公式 证明过程 首先,sin(α+β)=sinαcosβ+sinβcosα(已证。证明过程见《和角公式与差角公式的证明》)因为sin(α+β)=sinαcosβ+sinβcosα(正弦和角公式) 则 sin(α-β) =sin[α+(-β)] =sinαcos(-β)+sin(-β)cosα =sinαcosβ-sinβcosα 于是 sin(α-β)=sinαcosβ-sinβcosα(正弦差角公式) 将正弦的和角、差角公式相加,得到 sin(α+β)+sin(α-β)=2sinαcosβ 则 sinαcosβ=sin(α+β)/2+sin(α-β)/2(“积化和差公式”之一) 同样地,运用诱导公式cosα=sin(π/2-α),有 cos(α+β)= sin[π/2-(α+β)] =sin(π/2-α-β) =sin[(π/2-α)+(-β)] =sin(π/2-α)cos(-β)+sin(-β)cos(π/2-α) =cosαcosβ-sinαsinβ 于是 cos(α+β)=cosαcosβ-sinαsinβ(余弦和角公式) 那么 cos(α-β) =cos[α+(-β)] =cosαcos(-β)-sinαsin(-β)

三角函数公式及求导公式

两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 sin2A=2sinA*cosA 三倍角公式 sin3a=3sina-4(sina)^3 cos3a=4(cosa)^3-3cosa tan3a=tana*tan(π/3+a)*tan(π/3-a) 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA)) tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)+cos(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB 积化和差公式 sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)] 诱导公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a)

基本求导公式

基本求导公式 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

这是基本求导公式,只能根据导数的定义来求。导数的定义就是给X一个增Δx,求出ΔY,然后求ΔY/Δx的极限(当Δx→0时)。函数是Y=X^nΔY=(X+Δx)^n-X^n把(X+Δx)^n展开(按n为正整数),展开式写起来很麻烦,我给你叙述一下,你应能理解。展开式中,第一项是X^n,最末项是(Δx)^n,中间的项中,X是降幂,Δx是升幂,系数是前后对称,如n=2,系数是1,2,1;n=3,系数是1,3,3,1;等等。注意,n是几,第二项的系数就是几。只需考虑展开式中的前两项。第一项是X^n,它将会与ΔY=(X+Δx)^n-X^n中的-X^n项抵消。第二项是[nX^(n-1)]*Δx,其后的项中,Δx的方次都比1大。现在来考虑比值ΔY/Δx,前边说过,第一项已消失,第二项除以Δx后为[nX^(n-1)],其后各项除以Δx后都还剩有Δx因子。因此,当Δx→0取极限时,就只剩下[nX^(n-1)],其后的项都成为0了。这就是你要证的求导公式。(顺便说一下,上述是以n为正整数来证明的,n为任意实数时也是成立的。)(X+Δx)^n的展开式在纸上写起来也并不太麻烦,只是在这里写起来,为避免误会,需加的括号太多,就显得麻烦了。第一项系数是1,第二项系数是n,第三项系数是[n(n-1)]/(1*2) 10~12是利用函数的商的求导法则。如(secx)'=secx*tanx。(secx)'=(1/cosx)'=-(cosx)'/(cosx)^2=sinx/(cosx)^2=secx*tanx 13~16是利用反函数的求导法则:y=f(x)的反函数是x=g(y),则dx/dy=1/(dy/dx)。如(arcsinx)'=1/√(1-x^2)。y=arcsin x的反函数是x=siny。已知dx/dy=(siny)'=cosy=√(1-x^2)。所以dy/dx=1/(dx/dy)=1/√(1-x^2)。即(arcsinx)'=1/√(1-x ^2) f(x)=c,则f'(x)=0f(x)=x^n,则f'(x)=nx^n-1f(x)=sinx,则f'(x)=cosxf(x)=cosx,则f'(x)=-sinxf(x)=a^x,则f'(x)=a^xlna(a>0)f(x)=e^x,则f'(x)=e^xf(x)=logax,则f'(x)=1/xlna(a>0且a不等于1) f(x)=lnx,则f'(x)=1/x 四、基本求导法则与导数公式 1.基本初等函数的导数公式和求导法则 基本初等函数的求导公式和上述求导法则,在初等函数的基本运算中起着重要的作 用,我们必须熟练的掌握它,为了便于查阅,我们把这些导数公式和求导法则归纳如 下: 基本初等函数求导公式 (1) ) (=' C (2) 1 ) (- ='μ μμx x (3) x x cos ) (sin=' (4) x x sin ) (cos- = ' (5) x x2 sec ) (tan=' (6) x x2 csc ) (cot- =' (7) x x x tan sec ) (sec= ' (8) x x x cot csc ) (csc- =' (9)(10)(e)e x x '= (11)(12) x x 1 ) (ln=' ,

相关文档