文档库 最新最全的文档下载
当前位置:文档库 › 弹性力学学习心得

弹性力学学习心得

弹性力学学习心得
弹性力学学习心得

弹性力学学习心得

孙敬龙S201201024

大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。

弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。

弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

解泛函极值问题开辟了道路,推动了力学、物理、工程中近似计算的蓬勃发展。从20世纪20年代起,弹性力学在发展经典理论的同时,广泛地探讨了许多复杂的问题,出现了许多边缘分支:各向异性和非均匀体的理论,非线性板壳理论和非线性弹性力学,考虑温度影响的热弹性力学,研究固体同气体和液体相互作用的气动弹性力学和水弹性理论以及粘弹性理论等。磁弹性和微结构弹性理论也开始建立起来。此外,还建立了弹性力学广义变分原理。这些新领域的发展,丰富了弹性力学的内容,促进了有关工程技术的发展。

弹性力学开始的时候感觉很难,但是慢慢地看进去了,它具有特殊性;一般情况下,数学知识要具备,对于工程人员来讲,必要的方程解法是必须的;而且书上的例题是应该一步一步做。仔细研究一本弹力书即可。力学解决的是在外力作用下结构的响应,即求内力与变形;力学需要解决三方面的问题:(1)材料本构关系,它解决的是应力与应变之间的关系,对于弹性力学而言是线弹性的,满足虎克定律;二维平面应力与平面应变的本构(物理)方程是三维块体的特殊形式;(2)几何关系:应变与位移之间的关系;(3)平衡方程:内外力之间的平衡关系。如何建立外力与变形的关系,从一下关系可知:外力<=[平衡]=>内力<=[本构]=>应变<=[几何]=>变形为了消除刚体位移,还要引入边界条件,至此弹性力学问题变成了数学的偏微分方程,但直接求解还是有相当难度的;半解析法还是需要一些力学分析。弹性力学有大部分内容是涉及求解的,如平面应力(变)、轴对称、空间问题讲的都是解法,因此需要一定的数学功底。

通过对弹性力学的学习,我感觉整本书主要针对微分方程解未知数而剩下的问题就是如何求解这些方程的问题,这也是数学和力学结合最紧密的地方。而求解的方法无外乎两种:基于位移的求解和基于应力的求解,而前人的研究大部分都是如何使这些方程求解起来更方便。例如,应力函数的引入就是因为同时满足平衡方程和应力表达的相容方程是很难找到的再例如伽辽金位移函数它使得原本要求的方程(非齐次微分方程)转化为求拉普拉期方程,而拉普拉斯方程在数学上已经研究的很透彻因而大大简化了求解的难度,而近代即二十世纪以来发展起来的能量法更是如此:对位移的变分方程代替了以位移表达的平衡方程及应力边界条件,对应力的变分代替了相容方程及位移边界条件,这无疑都大大简化了弹性力学基本方程的求解过程。二十一世纪随着计算机的发展,人们已经借助计算机避免了繁琐的计算,因而会有更多更精确的方法被发现(例如有限单元法.这使得许多从前很难解决的问题基本上都能获得满足工程精度的解答。弹性力学的发展会更加迅速,它的应用范围更加广泛,前景是非常可观的.

参考资料:[1] 秦飞等.2011.弹性与塑性性理论基础.

[2]徐芝纶.2003.弹性力学简明教程.第三版.

[3] 弹性力学发展简史.

2011年期末考试试卷(A答案)—弹性力学

,考试作弊将带来严重后果! 华南理工大学2011年期末考试试卷(A)卷 《弹性力学》 1. 考前请将密封线内各项信息填写清楚; 所有答案请直接答在答题纸上; .考试形式:闭卷; 20分) 、五个基本假定在建立弹性力学基本方程时有什么用途?(10分) 答:1、连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可以看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 (2分) 2、完全弹性假定:引用这一完全弹性的假定还包含形变与形变引起的正应力成正比的含义, 亦即二者成线性的关系,符合胡克定律,从而使物理方程成为线性的方程。(4分) 3、均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此, 反映这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 (6分) 4、各向同性假定:所谓“各向同性”是指物体的物理性质在各个方向上都是相同的。进一步 地说,就是物体的弹性常数也不随方向而变化。(8分) 5、小变形假定:我们研究物体受力后的平衡问题时,不用考虑物体尺寸的改变而仍然按照 原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将他们的二次幂或乘积略去不计,使得弹性力学中的微分方程都简化为线性微分方程。 在上述假定下,弹性力学问题都化为线性问题,从而可以应用叠加原理。(10分)2、试分析简支梁受均布荷载时,平面截面假设是否成立?(5分) 解:弹性力学解答和材料力学解答的差别,是由于各自解法不同。简言之,弹性力学的解法,是严格考虑区域内的平衡微分方程,几何方程和物理方程,以及边界上的边界条件而求解的,因而得出的解答是比较精确的。而在材料力学中没有严格考虑上述条件,因而得出的是近似解答。例如,材料力学中引用了平面假设而简化了几何关系,但这个假设对一般的梁是近似的。所以,严格来说,不成立。 3、为什么在主要边界(占边界绝大部分)上必须满足精确的应力边界条件,教材中式(2-15),而在次要边界(占边界很小部分)上可以应用圣维南原理,用三个积分的应力边界条件(即主矢量、主矩的条件)来代替?如果在主要边界上用三个积分的应力边界条件代替教材中式(2-15),将会发生什么问题?(5分) 解:弹性力学问题属于数学物理方程中的边值问题,而要边界条件完全得到满足,往往遇到很大的困难。这时,圣维南原理可为简化局部边界上的应力边界条件提供很大的方便。将物体一小部分边界上的面力换成分布不同,但静力等效的面力(主矢、主矩均相同),只影响近处的应力分布,对远处的应力影响可以忽略不计。如果在占边界绝大部分的主要边界上用三个应力边界条件来代替精确的边界条件。教材中式(2-15),就会影响大部分区域的应力分布,会使问题的解答具有的近似性。 三、计算题(80分) 2.1 已知薄板有下列形变关系:, , ,2 3Dy C By Axy xy y x - = = =γ ε ε式中A,B,C,D皆为常数,试检查在形变过程中是否符合连续条件,若满足并列出应力分量表达式。(10分) 1、相容条件: 将形变分量带入形变协调方程(相容方程)

弹性力学学习心得

弹性力学学习心得 孙敬龙S4 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编着的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17

世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从 1822~1828年间,在?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表

弹性力学空间问题

第十章弹性力学空间问题知识点 空间柱坐标系 空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解 分布载荷作用区域外的沉陷弹性球体变形分析 热应力的弹性力学分析方法坝体热应力 质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程 球坐标的基本方程 位移表示的平衡微分方程乐普位移函数 载荷作用区域内的沉陷球体接触压力分析 受热厚壁管道 弹性应力波及波动方程应力波的相向运动 一、内容介绍 对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。 本章的主要任务是介绍弹性力学的一些专题问题。通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。 本章首先介绍空间极坐标和球坐标问题的基本方程。然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。 另一方面,本章将介绍弹性波、热应力等问题的基本概念。 二、重点 1、空间极坐标和球坐标问题; 2、布希涅斯克问题; 3、半无限空间作 用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。

§10.1 柱坐标表示的弹性力学基本方程 学习思路: 对于弹性力学问题,坐标系的选择本身与问题的求解无关。但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。某些坐标系可以使得一些特殊问题的边界条件描述简化。因此,坐标系的选取直接影响问题求解的难易程度。 例如对于弹性力学的轴对称或者球对称问题,如果应用直角坐标问题可能得不到解答,而分别采用柱坐标和球坐标求解将更为方便。 本节讨论有关空间柱坐标形式的基本方程。特别是关于空间轴对称问题的基本方程。 学习要点: 1、空间柱坐标系; 2、柱坐标基本方程; 3、空间轴对称问题的基本方程。 1、空间柱坐标系 在直角坐标系下,空间任意一点M的位置是用3个坐标(x,y,z)表示的,而在柱坐标系下,空间一点M的位置坐标用(ρ,?,z)表示。 直角坐标与柱坐标的关系为:x =ρ cos ?,y =ρ sin ? ,z = z 柱坐标下的位移分量为:uρ,u? , w 柱坐标下的应力分量为:σρ,σ? ,σz,τρ?,τ? z,τzρ 柱坐标下的应变分量为:ερ,ε? ,εz,γρ?,γ? z,γzρ 以下讨论柱坐标系的弹性力学基本方程。 2、柱坐标基本方程

弹性力学期末考试复习

弹性力学2005 期末考试复习资料 一、简答题 1.试写出弹性力学平面问题的基本方程,它们揭示的是那些物理量之间的相互关系在应用这些方程时,应注意些什么问题 答:平面问题中的平衡微分方程:揭示的是应力分量与体力分量间的相互关系。应注意两个微分方程中包含着三个未知函数σx、σy、τxy=τyx ,因此,决定应力分量的问题是超静定的,还必须考虑形变和位移,才能解决问题。 平面问题的几何方程: 揭示的是形变分量与位移分量间的相互关系。应注意当物体的位移分量完全确定时,形变量即完全确定。反之,当形变分量完全确定时,位移分量却不能完全确定。 平面问题中的物理方程:揭示的是形变分量与应力分量间的相互关系。应注意平面应力问题和平面应变问题物理方程的转换关系。 2.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明。 答:按照边界条件的不同,弹性力学问题分为位移边界问题、应力边界问题和 混合边界问题。

位移边界问题是指物体在全部边界上的位移分量是已知的,也就是位移的边界值是边界上坐标的已知函数。 应力边界问题中,物体在全部边界上所受的面力是已知的,即面力分量在边界上所有各点都是坐标的已知函数。 混合边界问题中,物体的一部分边界具有已知位移,因而具有位移边界条件;另一部分边界则具有应力边界条件。 3.弹性体任意一点的应力状态由几个应力分量决定试将它们写出。如何确定它们的正负号 答:弹性体任意一点的应力状态由6个应力分量决定,它们是:?x、?y、?z、?xy、?yz、、?zx。正面上的应力以沿坐标轴正方向为正,沿坐标轴负方向为负。负面上的应力以沿坐标轴负方向为正,沿坐标轴正方向为负。 4.在推导弹性力学基本方程时,采用了那些基本假定什么是“理想弹性体”试举例说明。答:答:在推导弹性力学基本方程时,采用了以下基本假定: (1)假定物体是连续的。 (2)假定物体是完全弹性的。 (3)假定物体是均匀的。 (4)假定物体是各向同性的。 (5)假定位移和变形是微小的。 符合(1)~(4)条假定的物体称为“理想弹性体”。一般混凝土构件、一般土质地基可近似视为“理想弹性体”。 5.什么叫平面应力问题什么叫平面应变问题各举一个工程中的实例。 答:平面应力问题是指很薄的等厚度薄板只在板边上受有平行于板面并且不沿厚度变化的面力,同时体力也平行于板面并且不沿厚度变化。如工程中的深梁以及平板坝的平板 支墩就属于此类。 平面应变问题是指很长的柱型体,它的横截面在柱面上受有平行于横截面而且不沿长 度变化的面力,同时体力也平行于横截面而且也不沿长度变化,即内在因素和外来作 用都不沿长度而变化。 6.在弹性力学里分析问题,要从几方面考虑各方面反映的是那些变量间的关系 答:在弹性力学利分析问题,要从3方面来考虑:静力学方面、几何学方面、物理学方面。 平面问题的静力学方面主要考虑的是应力分量和体力分量之间的关系也就是平面问 题的平衡微分方程。平面问题的几何学方面主要考虑的是形变分量与位移分量之间的 关系,也就是平面问题中的几何方程。平面问题的物理学方面主要反映的是形变分量与应力分量之间的关系,也就是平面问题中的物理方程。 7.按照边界条件的不同,弹性力学问题分为那几类边界问题试作简要说明 答:按照边界条件的不同,弹性力学问题可分为两类边界问题: (1)平面应力问题:很薄的等厚度板,只在板边上受有平行于板面并且不沿厚度变化的面力。

弹性力学100题

一、单项选择题 1.弹性力学建立的基本方程多是偏微分方程,还必须结合( C )求解这些微分方程,以求得具体问题的应力、应变、位移。 A .相容方程 B .近似方法 C .边界条件 D .附加假定 2.根据圣维南原理,作用在物体一小部分边界上的力系可以用( B )的力系代替,则仅在近处应力分布有改变,而在远处所受的影响可以不计。 A .几何上等效 B .静力上等效 C .平衡 D .任意 3.弹性力学平面问题的求解中,平面应力问题与平面应变问题的三类基本方程不完全相同,其比较关系为( B )。 A .平衡方程、几何方程、物理方程完全相同 B .平衡方程、几何方程相同,物理方程不同 C .平衡方程、物理方程相同,几何方程不同 D .平衡方程相同,物理方程、几何方程不同 4.不计体力,在极坐标中按应力求解平面问题时,应力函数必须满足( A ) ①区域内的相容方程;②边界上的应力边界条件;③满足变分方程; ④如果为多连体,考虑多连体中的位移单值条件。 A. ①②④ B. ②③④ C. ①②③ D. ①②③④ 5.如下图1所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。 ① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564 图1 A. ①③ B. ②④ C. ①④ D. ③⑤ 6.平面应变问题的微元体处于( C ) A.单向应力状态 B.双向应力状态 C.三向应力状态,且z 是一主应力 D.纯剪切应力状态 7.圆弧曲梁纯弯时,( C ) A.应力分量和位移分量都是轴对称的 B.应力分量和位移分量都不是轴对称的 4 63 5 21I III II IV

《弹性力学》试题

《弹性力学》试题 一.名词解释 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2.圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 二.填空 1.最小势能原理等价于弹性力学基本方程中:平衡微分方程,应力边界条件。 2.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以分为位移边界条件、应力边界条件和混合边界条件。 3.一组可能的应力分量应满足:平衡微分方程,相容方程(变形协调条件)。 4.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 5.平面问题的应力函数解法中,Airy应力函数 在边界上值的物理意义为边界上某一点(基准点)到任一点外力的矩。 6.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 7.弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 8.利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

弹性力学基本概念和考点汇总

基本概念: (1) 面力、体力与应力、应变、位移的概念及正负号规定 (2) 切应力互等定理: 作用在两个互相垂直的面上,并且垂直于改两面交线的切应力是互等的(大小相等,正负号也相同)。 (3) 弹性力学的基本假定: 连续性、完全弹性、均匀性、各向同性和小变形。 (4) 平面应力与平面应变; 设有很薄的等厚度薄板,只在板边上受有平行于板面并且不沿厚度变化的面力或约束。同时,体力也平行与板面并且不沿厚度方向变化。这时, 0,0,0z zx zy σττ===,由切应力互等,0,0,0z xz yz σττ===,这样只剩下平行于xy 面的三个平面应力分量,即,,x y xy yx σσττ=,所以这种问题称为平面应力问题。 设有很长的柱形体,它的横截面不沿长度变化,在柱面上受有平行于横截面且不沿长度变化的面力或约束,同时,体力也平行于横截面且不沿长度变化,由对称性可知,0,0zx zy ττ==,根据切应力互等,0,0xz yz ττ==。由胡克定律, 0,0zx zy γγ==,又由于z 方向的位移w 处处为零,即0z ε=。因此,只剩下平行于xy 面的三个应变分量,即,,x y xy εεγ,所以这种问题习惯上称为平面应变问题。 (5) 一点的应力状态; 过一个点所有平面上应力情况的集合,称为一点的应力状态。 (6) 圣维南原理;(提边界条件) 如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主失相同,主矩也相同),那么,近处的应力分布将有显著的改变,但是远处所受到的影响可以忽略不计。 (7) 轴对称; 在空间问题中,如果弹性体的几何形状、约束情况,以及所受的外力作用,都是对称于某一轴(通过该轴的任一平面都是对称面),则所有的应力、变形和位移也就对称于这一轴。这种问题称为空间轴对称问题。 一、 平衡微分方程:

弹性力学学习心得

弹性力学学习心得 孙敬龙S201201024 大学时期就学过弹性力学,当时的课本是徐芝纶教授的简明版教程,书的内容很丰富但是只学了前四章,学的也是比较糊涂。研究生一年级又学了一次弹性力学(弹性理论),所有课本是秦飞教授编著的,可能是学过一次的原因吧,第二次学习感觉稍微轻松点了,但是能量原理那一章还是理解不深入。弹性力学是一门较为基础的力学学科,值得我们花大量的时间去深入解读。 弹性力学主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。在研究对象上,弹性力学同材料力学和结构力学之间有一定的分工。材料力学基本上只研究杆状构件;结构力学主要是在材料力学的基础上研究杆状构件所组成的结构,即所谓杆件系统;而弹性力学研究包括杆状构件在内的各种形状的弹性体。弹性力学是固体力学的重要分支,它研究弹性物体在外力和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 弹性力学的发展大体分为四个时期。人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。发展初期的工作是通过实践,探索弹性力学的基本规律。这个时期的主要成就是R.胡克于1678年发表的弹性体的变形与外力成正比的定律,后来被称为胡克定律。第二个时期是理论基础的建立时期。这个时期的主要成就是,从1822~1828年间,在A.L?柯西发表的一系列论文中明确地提出了应变、应变分量、应力和应力分量概念,建立了弹性力学的几何方程、平衡(运动)微分方程,各向同性和各向异性材料的广义胡克定律,从而为弹性力学奠定了理论基础。弹性力学的发展初期主要是通过实践,尤其是通过实验来探索弹性力学的基本规律。英国的胡克和法国的马略特于1680年分别独立地提出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于1687年确立了力学三定律。同时,数学的发展,使得建立弹性力学数学理论的条件已大体具备,从而推动弹性力学进入第二个时期。在这个阶段除实验外,人们还用最粗糙的、不完备的理论来处理一些简单构件的力学问题。这些理论在后来都被指出有或多或少的缺点,有些甚至是完全错误的。在17世纪末第二个时期开始时,人们主要研究梁的理论。到19世纪20年代法国的纳维和柯西才基本上建立了弹性力学的数学理论。柯西在1822~1828年间发表的一系列论文中,明确地提出了应变、应变分量、应力和应力分量的概念,建立了弹性力学的几何方程、运动(平衡)方程、各向同性以及各向异性材料的广义胡克定律,从而奠定了弹性力学的理论基础,打开了弹性力学向纵深发展的突破口。第三个时期是线性各向同性弹性力学大发展的时期。这一时期的主要标志是弹性力学广泛应用于解决工程问题。同时在理论方面建立了许多重要的定理或原理,并提出了许多有效的计算方法。1855~1858年间法国的圣维南发表了关于柱体扭转和弯曲的论文,可以说是第三个时期的开始。在他的论文中,理论结果和实验结果密切吻合,为弹性力学的正确性提供了有力的证据;1881年德国的赫兹解出了两弹性体局部接触时弹性体内的应力分布;1898年德国的基尔施在计算圆孔附近的应力分布时,发现了应力集中。这些成就解释了过去无法解释的实验现象,在提高机械、结构等零件的设计水平方面起了重要作用,使弹性力学得到工程界的重视。在这个时期,弹性力学的一般理论也有很大的发展。一方面建立了各种关于能量的定理(原理)。另一方面发展了许多有效的近似计算、数值计算和其他计算方法,如著名的瑞利——里兹法,为直接求

弹性力学作业总结

一、综述 这学期我们有幸跟着邱老师学习了弹性力学这门课程,虽然我本科是学习机械专业的,但经过这学期的系统学习,使我对弹性力学的认识也越发的清晰,我对平面问题、空间问题等基本知识有了较为清晰的了解与掌握,会用逆解法、半逆解法、差分法、变分法和有限元法解决一些基础的弹性力学问题。 弹性力学是固体力学的一个分支,研究弹性体由于外力作用或温度改变等原因而发生的应力、形变和位移。它是学习塑性力学、断裂力学、有限元方法的基础,广泛应用于建筑、机械、化工、航天等工程领域。本课程较为完整的表现了力学问题的数学建模过程,建立了弹性力学的基本方程和边值条件,并对一些问题进行了求解。弹性力学基本方程的建立为进一步的数值方法奠定了基础。二、绪论 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。通过对弹性力学的学习,我感觉整本书就讲了十五个控制方程解十五个未知数。而剩下的问题就是如何求解这些方程的问题,这也是数学和力学结合最紧密的地方。而求解的方法无外乎有:基于位移的求解(位移法)和基于应力的求解(应力函数法),差分法、变分法。而前人的研究大部分都是如何使这些方程求解起来更方便。弹性力学思路清晰,但是方程和公式复杂。 1.工程力学问题建立力学模型的过程,一般要对三方面进行简化:结构简化、材料简化及受力简化。建模过程如右图: 结构简化:如空间问题向平面问题的简 化,向轴对称问题的简化,实体结构向板、 壳结构的简化。 受力简化:根据圣维南原理,复杂力系 简化为等效力系。 材料简化:根据各向同性、连续、均匀 等假设进行简化。

弹性力学期末考试卷A答案

2009 ~ 2010学年第二学期期末考试试卷(A )卷 一.名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显着的改变,但是远处所受的影响可以不计。 二.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以 分为位移边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是 作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于 远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1 图3-2 四.简答题(24分) 1.(8分)弹性力学中引用了哪五个基本假定五个基本假定在建立弹性力学基本方程时有什么用途 答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分) 1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E和泊松比μ等)就不随位置坐标而变化。 4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸

弹性力学基础知识点复习

固体力学的重要分支,它研究弹性物体在外力和其他外界因素作用下产生的变形和内力,又称弹性理论。它是材料力学、结构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天等工程领域。 弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。绝对弹性体是不存在的。物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。 人类从很早时就已经知道利用物体的弹性性质了,比如古代弓箭就是利用物体弹性的例子。当时人们还是不自觉的运用弹性原理,而人们有系统、定量地研究弹性力学,是从17世纪开始的。 弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。连续变形规律是指弹性力学在考虑物体的变形时,只考虑经过连续变形后仍为连续的物体,如果物体中本来就有裂纹,则只考虑裂纹不扩展的情况。这里主要使用数学中的几何方程和位移边界条件等方面的知识。

弹性力学所依据的基本规律有三个:变形连续规律、应力-应变关系和运动(或平衡)规律,它们有时被称为弹性力学三大基本规律。弹性力学中许多定理、公式和结论等,都可以从三大基本规律推导出来。 ①变形连续规律弹性力学(和刚体的力学理论不同)考虑到物体的变形,但只限于考虑原来连续、变形后仍为连续的物体,在变形过程中,物体不产生新的不连续面。如果物体中本来就有裂纹,则弹性力学只考虑裂纹不扩展的情况。 反映变形连续规律的数学方程有两类:几何方程和位移边界条件。几何方程反映应变和位移的联系,它的力学含义是,应变完全由连续的位移所引起,

弹性力学总结

弹性力学关于应力变分法问题 一、起源及发展 1687年,Newton 在《自然哲学的数学原理》中提出第一个变分问题——定轴转动阻力最小的旋转曲面形状问题; 1696年,Bernoulli 提出了著名的最速降线问题;到18世纪,经过Euler ,Lagrange 等人的努力,逐渐形成变分法。 古典变分法的基本内容是确定泛函的极值和极值点,它为许多数学、物理、科技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本方法是Morse 理论与极小极大理论(Minimax Theory )。变分法有着深刻的物理背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示,一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原理”。 由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但“变分”的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建立与理解。以下,就应力变分法进行讨论。 二、定义及应用 (1)、应力变分方程 设有任一弹性体,在外力的作用下处于平衡。命ij σ为实际存在的应变分量,它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满足位移边界条件。现在,假想体力和应变边界条件上给定的面力不变而应力分量发 生了微小的改变ij δσ,即所谓虚应力或应力的变分,使应力分量成为ij ij δσσ+ 假定他们只满足平衡微分方程和应力边界条件。 既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边界条件,应力分量的变化必然满足无体力时的平衡微分方程。即

弹性力学期末考试第一份试卷和答案

2011----2012学年第二学期期末考试试卷(1 )卷题号一二三四五六七八九十总分评分 评卷教师 一.名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 二.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以 分为位移边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是 作用于物体表面上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于 远处的应力,或远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 三.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

弹性力学总结

弹性力学总结

弹性力学关于应力变分法问题 一、起源及发展 1687年,Newton 在《自然哲学的数学原理》中提出第一个变分问题——定 轴转动阻力最小的旋转曲面形状问题; 1696年,Bernoulli 提出了著名的最速降 线问题;到18世纪,经过Euler ,Lagrange 等人的努力,逐渐形成变分法。 古典变分法的基本内容是确定泛函的极值和极值点,它为许多数学、物理、科 技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的 变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以 证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本 方法是Morse 理论与极小极大理论(Minimax Theory )。变分法有着深刻的物理 背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示, 一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原 理”。 由于弹性力学变分解法,实质上就是数学中的变分法应用于解弹性力学问 题,虽然在讨论的近似解法中使用变分计算均甚简单(类似微分),但“变分” 的概念却极为重要,它关系到我们队一系列力学变分原理中“虚”的概念的建 立与理解。以下,就应力变分法进行讨论。 二、定义及应用 (1)、应力变分方程 设有任一弹性体,在外力的作用下处于平衡。命ij σ为实际存在的应变分量, 它们满足平衡微分方程和应力边界条件,也满足相容方程,其相应的位移还满 足位移边界条件。现在,假想体力和应变边界条件上给定的面力不变而应力分 量发生了微小的改变ij δσ,即所谓虚应力或应力的变分,使应力分量成为 ij ij δσσ+ 假定他们只满足平衡微分方程和应力边界条件。 既然两组应力分量都满足同样体力和面力作用下的平衡微分方程和应力边 界条件,应力分量的变化必然满足无体力时的平衡微分方程。即

弹性力学期末测试模拟试题

《弹性力学》期末考试 学号: 姓名 一 选择题(每题3分,共36分) 1. 所谓“应力状态”是指 。 A. 斜截面应力矢量与横截面应力矢量不同; B. 不同截面的应力不同,因此应力矢量是不可确定的。 C. 3个主应力作用平面相互垂直; D.一点不同截面的应力随着截面方位变化而改变; 2. 应力不变量说明 。 A. 主应力的方向不变; B. 一点的应力分量不变; C.应力随着截面方位改变,但是应力状态不变; D. 应力状态特征方程的根是不确定的; 3 在轴对称问题中,σr 是,τr θ是 。 A.恒为零;B.与r 无关; C.与θ无关; D.恒为常数。 4. 半平面体在边界上受集中力下的解答是 。 A. 精确解; B.圣维南意义下的解; C.近似解; D.数值解。 5. 在与三个应力主轴成相同角度的斜面上,正应力σN = 。 A. σ1+σ2+σ3; B. (σx +σy +σz )/3; C. (σ1+σ2+σ3)/2; D. (σ1+σ2+σ3)/9。 6.等截面直杆扭转中,矩形截面上最大剪应力发生在 。 A .矩形截面长边上;B. 矩形截面短边上; C. 矩形截面中心; D. 矩形截面角点。 矩形薄板自由边上独立的边界条件个数,正确的是 个。 ; B. 3; C. 1; D. 4。 薄板弯曲问题的物理方程有 个。 ; B. 6; C. 2; D. 4。 σx ,σy ,τxy 个沿厚度分布是 。 B.三角分布; C.梯形分布; D.双曲线分布。 。 轴对称应力必然是轴对称位移;B. 轴对称位移必然是轴对称应力; C. 只要轴对称结构,救会导致轴对称应力; D. 对于轴对称位移,最多只有两个边界条件。 11. 下列关于弹性力学基本方程描述正确的是 D .变形协调方程是确定弹性体位移单值连续的唯一条件; 。 A. 几何方程适用小变形条件; B. 物理方程与材料性质无关; C. 平衡微分方程是确定弹性体平衡的唯一条件; 12.矩形薄板受纯剪作用,剪力强度为q 。设距板边缘较远处有一半 径为a 的小圆孔,试求孔边的最大应力和最小应力为 A. 1q, B. 2q, C. 3q, D. 4q. D A CA B B A D A 应力轴对称是说对称轴两端的应力对应点相等,位移轴对称是说对称轴两边对应点位移相等。如是应变位移则各点应力也对称,如是刚体位移和应力无关。

弹性力学期末考试卷A答案

一、名词解释(共10分,每小题5分) 1.弹性力学:研究弹性体由于受外力作用或温度改变等原因而发生的应力、应变和位移。 2. 圣维南原理:如果把物体的一小部分边界上的面力,变换为分布不同但静力等效的面力(主矢量相同,对于同一点的主矩也相同),那么近处的应力分布将有显著的改变,但是远处所受的影响可以不计。 一.填空(共20分,每空1分) 1.边界条件表示在边界上位移与约束,或应力与面力之间的关系式,它可以分为位移 边界条件、应力边界条件和混合边界条件。 2.体力是作用于物体体积内的力,以单位体积力来度量,体力分量的量纲为L-2MT-2;面力是作用于物体表面 上力,以单位表面面积上的力度量,面力的量纲为L-1MT-2;体力和面力符号的规定为以沿坐标轴正向为正,属外力;应力是作用于截面单位面积的力,属内力,应力的量纲为L-1MT-2,应力符号的规定为:正面正向、负面负向为正,反之为负。 3.小孔口应力集中现象中有两个特点:一是孔附近的应力高度集中,即孔附近的应力远大于远处的应力,或 远大于无孔时的应力。二是应力集中的局部性,由于孔口存在而引起的应力扰动范围主要集中在距孔边1.5倍孔口尺寸的范围内。 4. 弹性力学中,正面是指外法向方向沿坐标轴正向的面,负面是指外法向方向沿坐标轴负向的面。 5. 利用有限单元法求解弹性力学问题时,简单来说包含结构离散化、单元分析、 整体分析三个主要步骤。 二.绘图题(共10分,每小题5分) 分别绘出图3-1六面体上下左右四个面的正的应力分量和图3-2极坐标下扇面正的应力分量。 图3-1

图3-2 三. 简答题(24分) 1. (8分)弹性力学中引用了哪五个基本假定?五个基本假定在建立弹性力学基本方程时有什么用途? 答:弹性力学中主要引用的五个基本假定及各假定用途为:(答出标注的内容即可给满分) 1)连续性假定:引用这一假定后,物体中的应力、应变和位移等物理量就可看成是连续的,因此,建立弹性力学的基本方程时就可以用坐标的连续函数来表示他们的变化规律。 2)完全弹性假定:这一假定包含应力与应变成正比的含义,亦即二者呈线性关系,复合胡克定律,从而使物理方程成为线性的方程。 3)均匀性假定:在该假定下,所研究的物体内部各点的物理性质显然都是相同的。因此,反应这些物理性质的弹性常数(如弹性模量E 和泊松比μ等)就不随位置坐标而变化。 4)各向同性假定:各向同性是指物体的物理性质在各个方向上都是相同的,也就是说,物体的弹性常数也不随方向变化。 5)小变形假定:研究物体受力后的平衡问题时,不用考虑物体尺寸的改变,而仍然按照原来的尺寸和形状进行计算。同时,在研究物体的变形和位移时,可以将它们的二次幂或乘积略去不计,使得弹性力学的微分方程都简化为线性微分方程。 2. (8分)弹性力学平面问题包括哪两类问题?分别对应哪类弹性体?两类平面问题各有哪些特征? 答:弹性力学平面问题包括平面应力问题和平面应变问题两类,两类问题分别对应的弹性体和特征分别为: 平面应力问题:所对应的弹性体主要为等厚薄板,其特征是:面力、体力的作用面平行于xy 平面,外力沿板厚均匀分布,只有平面应力分量x σ,y σ,xy τ存在,且仅为x,y 的函数。 平面应变问题:所对应的弹性体主要为长截面柱体,其特征为:面力、体力的作用面平行于xy 平面,外力沿z 轴无变化,只有平面应变分量x ε,y ε,xy γ存在,且仅为x,y 的函数。 3. (8分)常体力情况下,按应力求解平面问题可进一步简化为按应力函数Φ求解,应力函数Φ必须满足哪些条件? 答:(1)相容方程:04 =Φ? (2)应力边界条件(假定全部为应力边界条件,σs s =):()()()上在στστσs s f l m f m l y s xy y x s yx x =???? ?=+=+ (3)若为多连体,还须满足位移单值条件。 四. 问答题(36)

弹性力学作业习题电子教案

HOMEWORK OF THEORETICAL ELASTICITY 1. DATE: 2001-9-20 1. 设地震震中距你居住的地方直线距离为l ,地层的弹性常数ν,E 和密度ρ均为已知。假 设你在纵波到达0t 秒后惊醒。问你在横波到达之前还有多少时间跑到安全地区?试根据Km 200=l ,GPa 20=E ,3.0=ν,36g/m 100.2?=ρ,s 30=t 来进行具体估算。 2. 假定体积不可压缩,位移112(,)u x x 与212(,)u x x 很小,30u ≡。在一定区域内已 知22 12 11(1) ()u x a bx cx =-++,其中a ,b ,c 为常数,且120ε=,求212(,)u x x 。 3. 给定位移分量 21123()u cx x x =+,22213()u cx x x =+,23312()u cx x x =+,此处c 为一个很小的常数。求 应变分量ij ε及旋转分量ij Q 。 4. 证明 ,1 122 i ijk jk ijk k j e Q e u ω== 其中i ω为转动矢量。 5. 设位移场为22131232123()()u a x x e a x x e ax x e =-++-,其中a 为远小于1的常数。确定在 (0,2,1)P -点的小应变张量分量,转动张量分量和转知矢量分量。 6. 试分析以下应变状态能否存在。 (1)22111 22()k x x x ε=+,2 2223kx x ε=,330ε=,121232kx x x γ=,23310γγ== (2)22111 2()k x x ε=+,2222kx x ε=,330ε=,12122kx x γ=,23310γγ== (3)21112ax a ε=,22212ax x ε=,3312ax x ε=,120γ=,22332ax bx γ=+,22 3112ax bx γ=+ 其中,,k a b 为远小于1的常数。 2. DATE: 2001-9-17 1. 证明对坐标变换?? ? ?????????-=? ?????2121cos sin sin cos x x x x αααα ,33x x =,无论α为何值均有

(完整版)弹性力学期末考试练习

1、弹性力学的基本假设是什么? 弹性力学的基本假设是:连续性、完全弹性、均匀性、各向同性、小变形假定。 2、简述什么是弹性力学?弹性力学与材料力学的主要区别? 弹性力学又称为弹性理论,事固体力学的一个分支,其中研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变何位移。 弹性力学与材料力学的区别:从研究对象看;材料力学主要研究杆件,在拉压、剪、弯、扭转等作用下的应力、形变何位移。弹性力学研究各种形状的弹性体,出杆件外,还研究平面体、空间体、平板和壳体等。从研究方法看;弹性力学的研究方法是;在弹性体区域内必须严格地考虑静力学、几何学和物理学;而材料力学中虽然也考虑这几方面的条件,但不是十分严密。 3、如图所示悬臂梁,试写出其边界条件。 解:(1)x a =,1,0 0,0 x y l m f f ==???==?? 由 ()()()()x s xy s x y s xy s y l m f m l f στστ+=+=得()()0,0x xy s s στ== (2),y h =-0,10,x y l m f f q ==-??? ==?? ()()() ()0(1)0 (1)0x xy s s y xy s s q στστ?+?-=?-+?=则()(),0y xy s s q στ=-= (3),y h =+0,10,0 x y l m f f ==+??? ==?? ()()() ()0(1)0 (1)00 x xy s s y xy s s στστ?+?+=?++?=得()()0,0y xy s s στ== (4)0,x =0 0s s u v =??=?

相关文档