文档库 最新最全的文档下载
当前位置:文档库 › 影响测距高程导线(EDM)精度的几个因素的经验分析

影响测距高程导线(EDM)精度的几个因素的经验分析

影响测距高程导线(EDM)精度的几个因素的经验分析
影响测距高程导线(EDM)精度的几个因素的经验分析

影响测距高程导线(EDM)精度的几个因素的经验分析本文简述了在生产实践中总结的影响测距高程导线精度的几个方面因素。

标签:GPS EDM 精度

1引言

随着全国三级GPS大地控制网建网工作的大面积展开,如何提高建网质量是摆在我们每名测绘工作者面前的一个新课题。建网质量在外业方面包括三个方面的因素:首先是点位选埋质量,第二个是测距高程导线(EDM)测量的质量,第三个是GPS观测质量。

本文就影响测距高程导线(EDM)质量的几个因素加以分析,并在多年外业经验的基础上提出几点不成熟的意见。不足之处,敬请指正。

2影响测距高程导线(EDM)精度的几个因素分析

本人把影响EDM成果精度因素大体分为两个方面:一是系统因素,包括点位所在位置因素、选用的仪器自身精度、测量时采用的方法等。二是观测因素,包括测角精度、测边精度、量高精度等。

(1)点位所在位置,测量员一般不能选择。应由点位的选建人员控制这里就不再做详细说明。

(2)仪器精度,应该选择精度和自动化程度较高的仪器观测,本人多年来一直采用TC1800观测,感觉良好。

(3)根据几年来作者的经验来看,隔点设站法观测优于每点设站法观测,因此建议在观测方法上采用隔点设站法。

h12=S2·Sinα2-S2·Sinα2+a1-a2+(1-k)·[(S2·Cosα2)2-(S1·Cosα1)2]/(2·R)

其中,1、2分别表示后视和前视标号;

S——经各项改正后的斜距,m;

α——观测的垂直角;

a——觇板标志到地面点的高度,m;

R——地球半径曲率,m;

全站仪三角高程测量精度分析报告

全站仪三角高程测量精度分析 作者修涛 容摘要全站仪三角高程测量具有效率高,实施灵活等优点。全站仪三角高程测量可以代替水准测量进行高程控制,主要有对向观测法和中间观测法。在这两种方法中,前者将大气折光系数作为常数考虑,认为各个方向的折光系数相同,这与实际的情况有出入。而中间观测法则将大气折光系数作为变量处理,并加以改正。经研究并通过实践验证,在观测结果进行修正的条件下,全站仪三角高程测量完全能达到三、四等水准测量的精度要求,同时可借助Excel强大的数据处理能力,使观测数据的处理更为方便快捷[1]。文章根据三角高程测量原理及误差传播定律,对全站仪三角高程测量在测量中的应用及精度进行了探讨。对三角高程测量的不同方法进行了对比、分析总结。通过试验,对全站仪水准法三角高程测量进行了精度分析。 关键词全站仪;三角高程测量;精度分析

Total Station trigonometric leveling accuracy analysis Abstract T otal Station trigonometric leveling with high efficiency, the implementation of the advantages of flexible. Total Station trigonometric leveling can replace the standard of measurement for elevation control, mainly on the observation method to the observational method and intermediate. In both methods, the former take into account atmospheric refraction coefficient as a constant, that the refraction coefficient in each direction, this discrepancy with the actual situation. While the rule of the middle observation of atmospheric refraction coefficient as a variable processing and correction. Research and verify through practice, Total Station trigonometric leveling observations amendment can fully meet the accuracy requirements of the third and fourth level measurement, Can take advantage of Excel's powerful data processing capabilities, more convenient to make the processing of observational data.Article based on trigonometric leveling principle and law of error propagation, Total Station trigonometric leveling application and accuracy in the measurement are discussed. Different methods of measurement for triangulation were compared, analyzed and summarized. Trigonometric leveling Total Station Standards test, measurement accuracy analysis. Key words Electronic Total Station;trigonometric leveling;accuracy analysis

井下导线短边测量误差分析(精)

井下导线短边测量误差分析 谭新民梁树吾 摘要:本文通过对《测量规程》中按短边测量规定达不到相应精度要求的分析,得出了适合特定矿区的短边测量方法及结论。 关键词:导线短边测量误差精度 1.前言 井下导线测量常遇到15米以下的短边,在短边测量中,测量的主要误差是测角误差,因此在《测量规程》中对短边的测角对中次数和测回数都做了规定。在《煤矿测量手册》中指出15″、45″导线遇有15米以下的短边时,按规定进行对中以后,仍可能达不到相应的精度要求。因此有必要结合各矿山自己的具体情况对不同边长的对中和测回数进行分析,到寻找到满足本矿测量精度要求的测角方法。 2.误差分析 测角误差主要包括仪器系统误差、测角方法误差和对中误差。对于J2级以上的仪器,仪器系统误差可采用测量方法减小或忽略不计,测角方法误差和对中误差是测角误差的两大重要误差来源,现对测角方法误差和对中误差分析如下: 2.1测角方法误差

测角方法误差 m i =±n m n m v //022+ ① ①式中: n 为测回数 m v 为照准误差,其值为±100” /望远镜放大率v m 0为读数误差,其值为±()()2205.0/1250t L D +ρ ② ②式中:t 为最小读数值; L 为读盘上最小格值经显后的宽度; D 为读盘最小格值; ρ值为206265; ` 2.2对中误差 对中误差m e =±()3/αρe ) 式中:e 为对中线量误差 α为导线边长 ρ值为206265 设前后视边长相等,对中线量误差e 一样大,则一测回的测角中误差为: m e=± e i m m 22+ 则采用D 次对中C 次测回时水平角平均值中误差为: m β平=± D m C m e i //22+ 3.短边测量误差分析 3.1实测成果 表1为《测量手册》中根据全国多个矿山共计3631条导线的实测资料综合统计的成果,并不适合于每一个矿井使

全站仪测量误差分析

全站仪测量误差分析 随着新仪器新设备的不断出现,测量技术的不断提高,同时对工程质量的要求也是愈来愈高,这就对精度的要求加强了许多,随着全站仪在施工放样中的广泛应用,为了使全站仪在实际生产中更好地运用,现结合工程测量理论,对全站仪在测量放样中的误差及其注意事项进行分析。 在我们建筑施工测量中,全站仪主要是用于测量坐标点位的控制和高程的控制,在以下几个方面对全站仪放样的误差作简要概述。 1、全站仪在施工放样中坐标点的误差分析 全站仪极坐标法放样点点位中误差MP由测距边边长S(m)、测距中误差ms(m)、水平角中误差mβ(″)和常数ρ=206265″共同构成,其精度估算公式为: 而水平角中误差mβ(″)包含了仪器整平对中误差、目标偏心误差、照准误差、仪器本身的测 角精度以及外界的影响等。 式(3)表明,对固定的仪器设备,采用相同的方法放样时,误差相等的点分布在一个圆周上,圆心为测站O。因此对每一个放样控制点O,可以根据点位放样精度m计算圆半径S,在半径范围内的放样点都可由此控制点放样。由式(1)可看出,放样点位误差中,测距误差较小,主要是测角误差。因此,操作中应时时注意提高测角精度。 2、全站仪在控制三角高程上的误差分析 一般情况下,在测量高程时方法为:设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA±HAB得到B点的高程HB。 当A、B两点距离较短时,用上述方法较为合适。 在较长距离测量时要考虑地球曲率和大气折光对高差的影响。 设仪器高为i,棱镜高度为l,测得两点间的斜距为S,竖直角α,则AB两点的高差为: 一般情况下,当两点距离大于400m时须考虑地球曲率及大气折光的影响,在高差计算时需加两差改正。 式中R为地球曲率半径,取6371km, k为大气折光差系数,k=1-2RC (C为球气差,C=0.43D2/R,D:两点间水平距离)。 从上式中可以看出,当距离较远时,影响高差精度的主要因素就是地球曲率及大气折光,如果高程传递次数较多,累计误差就会加大,在测量时,最好是一次传递高程,若有需要,往返测高程,取其平均值以减小误差。 (1)、地球曲率改正 以水平面代替椭球面时,地球曲率对高差有较大的影响,测量中,采取视距离相等,消除其影响。三角高程测量是用计算影响值加以改正。地球曲率引起的高差误差,按下式计算 P=D2 /2R (2)、大气折光改正 一般情况下,视线通过密度不同的大气层时,将发生连续折射,形成向下弯曲的曲线。视线读数与理论位值读数产生一个差值,这就是大气光引起的高差误差。按下式计算 r =D2 /14R

矿山井下全站仪导线测量提高精度的有效策略研究

矿山井下全站仪导线测量提高精度的有效策略研究 发表时间:2018-06-01T10:50:03.277Z 来源:《基层建设》2018年第9期作者:张波[导读] 摘要:文章分析井下全站仪的优点以及井下全站仪导线测量的特点,分先采用全站仪进行井下导线测量时产生误差的类型和原因,并提出减小误差提高井下全站仪导线测量精度的有效方法,以供参考。 根河市森鑫矿业开发有限责任公司内蒙古自治区根河市 022357 摘要:文章分析井下全站仪的优点以及井下全站仪导线测量的特点,分先采用全站仪进行井下导线测量时产生误差的类型和原因,并提出减小误差提高井下全站仪导线测量精度的有效方法,以供参考。 关键词:矿山;全站仪;导线测量;精度 1引言 全站仪导线测量是矿山井下测量的主要方式,其具有精度高的优点,有别于地面测量具有施工环境差、施工面狭窄、测量精度要求高等特点,但是容易受到测量作业环境中多种因素的影响,其测量精度直接决定着矿山的生产安全以及抢险救灾工作的顺利开展,所以在采用全站仪导线测量方法进行矿山井下测量时,需要根据井下全站仪导线测量的特点,分析引起全站仪井下测量误差的原因,寻找提高导线测量精度的有效方法。 2井下全站仪导线测量的特点 2.1全站仪的特点 全站仪是一种由微处理器进行控制,能够进行距离和角度测量,并对水平距离、高差和坐标等进行自动归算,还能进行施工放样和数据自动记录的测量仪器,可以完成常规测量仪器的所有工作,并具有携带和测量操作方便等特点,具体表现为以下几点:一是只需要进行一次照准反射棱镜就可以对水平角、竖直角和斜距的测量,并可以计算出测点的平面坐标和高程;二是便于与其他外围设备之间的数据通讯,可以与其他计算机设备组成一个完整的自动化测量系统;三是可以进行数据计算和处理,并与相应的计算机软件配合可以进行导线测量、碎部测量和施工放样等作业;四是能够对仪器竖轴和水平轴的倾斜误差进行自动测量,还能校正角度观测值。 2.2井下全站仪导线测量的特点 井下全站仪的导线测量与地面测量有着明显的不同,主要表现在以下几点:一是由于井下测量通常位于黑暗潮湿、通视条件差、行人和矿车来往较为频繁的环境中,所以施工环境较差;二是随着井下坑道掘进的进行,通视条件越来越差,而且点位误差会由于不断积累而不断增加;三是井下全站仪测量的作业面较为狭窄,所以通常只能采用导线测量等较为单一的测量形式;四是井下测量的精度不仅对新老巷道及采空区之间关系的确定以及巷道的贯通有较大的影响,而且对矿山的安全生产和抢险救灾也有重要作用,所以对测量精度的要求较高;五是进行高级导线校核的布设,然后进行井下导线测量的方法通常为先继续拧低级导线指示坑道掘进的布设。 3全站仪井下测量误差分析 3.1仪器自身误差 全站仪自身误差主要是由仪器自身的几何关系出现偏差以及检校不完善等原因引起的,其误差形式主要表现为视准轴误差、横轴误差和竖轴误差三种。其中视准轴误差主要是由于仪器的视准轴与横轴不垂直而造成的;横轴误差则主要是由仪器的横轴与竖轴不垂直而造成的;竖轴误差则主要是由仪器的竖轴自身不铅垂而引起的,还与观测方向与垂直轴的倾斜方向的夹角有关系。 3.2测量误差 井下全站仪导线测量的测量误差主要有对中误差、瞄准误差和测距误差等形式,对于对中误差来说,主要是由于井下进行测量的点位与全站仪测站的中心不在同一铅垂线上引起的,根据误差产生的原理以及实际测量作业进行分析可知,对中误差对观测方向值主要产生以下影响:一是与其线量对中误差成正比;二是与距离成反比,而且边长越短,对水平角的影响越大。对于瞄准误差来说,这主要是由于在采用全站仪进行导线测量时,其瞄准的镜站的目标位置与实际位置产生偏差而造成的,瞄准误差对观测方向值主要产生以下影响:一是与瞄准高度、目标倾斜角成正比;二是与边长成反比。对于测距误差来说,其主要是由于全站仪中心到反射镜反射点之间存在一定的距离而引起的误差,主要包括固定误差、比例误差和周期误差等。 3.3作业环境引起的误差 在井下全站仪导线测量过程中,由于井下的湿度、温度、矿尘量、照明度等因素的变化都会对测量工作造成影响而产生测量误差,但是在井下的实际测量过程中,由于测角等测量的时间较短,在此时间内井下的测量环境各种因素较为稳定,不会像地面测量一样容易受到季节和天气等变化的影响,所以在井下测量条件基本稳定的情况下,作业环境引起的误差可以忽略不计。 4矿山井下全站仪导线测量提高精度的有效方法 4.1一测回中采用盘左盘右进行观测 从全站仪导线测量重点视准轴误差、横轴误差的原理可知,其盘左盘右两个位置的大小相等,且符号相反,所以对观测方向值产生影响,为了消除以上误差,可以采用盘左盘右观测时取其平均值的方式,并确保观测过程中的照准部水准器气泡居中,来提高全站仪导线测量的精度。 4.2采用三架法进行测量 根据全站仪导线测量中的对中误差原理和对测量的影响可知,为了消除其对观测方向值的影响,可以采用全站仪三架法进行导线测量,这样可以减小对中误差值,由于观测方向值与对中误差值成正比,所以可以提高导线测量的精度,而且还可以取消了对中整平的操作,提高了测量的速度。 4.3适量调整垂球的质量 根据全站仪导线测量的照准误差原理可知,在井下测量过程中,如果由于气流过大而导致垂球发生摆动,会影响镜站点下对中的精度,所以可以适当增加垂球的质量,降低其发生晃动的幅度,这样可以提高瞄准作业时对垂球线根部的瞄准精度,降低照准误差。 此外,边长测量时,全站仪应注意设置为棱镜激光模式,在气象数据中输入井下气压和温度值,要经常检查常数改正是否与使用的反光镜匹配。还应十分注意镜面不得有水珠或灰尘玷污。井下坑道中有瓦斯时,应采用防爆型全站仪。无论是平巷边长测量还是斜巷三角高程测量,都进行往返测量,来提高井下全站仪导线测量的精度。

第九章 井下控制测量学习目的与要求

第九章井下控制测量 一、学习目的与要求 1.了解井下控制测量的意义。 2.掌握井下经纬仪导线的外业和内业计算。 3.掌握井下高程测量方法。 二、课程内容与知识点 第一节井下平面控制测量 一、概述 (一)井下平面控制测量的目的 井下平面控制测量的主要目的是在井下建立统一的平面坐标系统,为井下生产提供可靠的数据。 (二)井下平面控制测量的特点 井下测量时就不同了,受井下条件所限,只能沿巷道设点,最初只能布设成支导线的形式,随着巷道不断向前延伸及巷道数量的不断增多,逐渐可以布设成闭合导线,符合导线及导线网等。 (三)井下平面控制测量的等级 按照高级控制低级的原则,井下平面控制测量分为基本控制和采区控制两类。基本控制导线精度较高,是矿井的首级控制导线,其精度应能满足一般贯通工程的要求;采区控制导线精度较低,应能满足施工测量和测图的要求。 根据《规程》的规定,基本控制导线分为7″和15″两级,主要敷设在斜井或平硐,井底车场,水平(阶段)运输巷道,矿井总回风巷道,暗斜井,集中上山,下山,集中运输石门等主要巷道内,各矿可根据井田范围的大小,选用其中的一种作为本矿的基本控制导线。 在井田一翼长度小于1km的小型井中,亦可以采用30″作为基本控制导线。 (四)井下经纬仪导线的形状 井下经纬仪导线的形状,也和地面一样有附合导线,闭合导线,支导线及导线网等。一般来说,基本导线在主要巷道时多布设成支导线形式,但当已掘巷道增多时,则可形成闭合导线,附合导线及导线网。 (五)井下经纬仪导线点的分类及编号 井下导线点按其使用时间的长短分为永久点和临时点两类。永久点使用时间较长,应设置在便于使用和便于保存的稳定的碹顶上或巷道顶,底版的岩石内;临时点保存时间较短,一般设在顶板上或牢固的棚梁上。 我国绝大多数矿井都将导线点设置在巷道的顶板上或棚梁上,这是因为点在顶板上不仅使用方便,容易寻找,不易被井下行人或运输车辆破坏,而且用垂球对中时,仪器在点下对中比在点上对中要精确一些。只有当顶板岩石松软、破碎、容易移动或某些特殊的情况下,才将其设置在巷道的底版上。 永久导线点应设置在矿井的主要巷道内,一般每隔300~500m设置一组,每组不得少于

高程测量的精度研究.

高程测量的精度研究

摘要 由于其高效方便,得到了迅猛发展,成为了现在地形测量、变形监测、低等级高程控制测量的首选。近年来在理论和技术高速发展的带动下在平面测量精度和高程测量精度方面都得到了很大的提高。硬件方面,扼流圈天线使得的多路径效应得到了有效的消除;理论方面,各种对流层、电离层延迟改正模型的提出及其应用,以及许多研究表明有效的消除误差理论的应用,使得的诸多与卫星及接收机之间的误差得到了很好的改正,所以在平面位置和高程的测量精度也进一步提高。由于测量的大地高应用于实际时需要经过高程转换为正常高,中间转换过程中需要解算高程异常,一系列的计算使得在高程控制测量方面误差偏大,影响了高程控制测量在许多方面的应用。本文在双频观测的基础上,通过解算原始的观测数据,建立一种区域的电离层延迟改正模型,取代现在最常用的克罗布歇模型来消除电离层对测量的影响,更好的消除电离层延迟的影响,以提高的解算数据的精度。 本文在阐述高程系统和高程测量原理的基础上,首先分析并总结了影响测高的各种因素及大地高的测定精度;其次对现有的高程转换方法进行了全面分析,结合工程算例,深入探讨了各种拟合模型的适合范围及精度情况;同时针对高程测量中几何方法转换的不足,本文研究了基于人工神经元网络转换高程的新方法,通过实例分析证明了该方法转换高程的可行性与可靠,对神经网络模型转换高程的BP网络结构中隐层单元数量的确定、隐含层数的确定、学习速率的选择、初始权值的选择、训练样本对网络泛化能力的影响等问题进行了较为深入的探讨。为避免应用单一模型进行高程拟合方法的局限性,在吸收和学习己有研究成果的基础上,将不同的拟合模型进行迭加,提高高程异常的逼近精度和可靠性。 关键词:1、三角高程;2、测量精度;3、井下三角;4、GPS高程测量

井下全站仪经验整理

井下全站仪经验整理 煤矿井下以往主要是使用经纬仪测角、钢尺量边来进行导线测量。随着先进测量仪器的出现测量工作也发生了很大的变化。目前全站仪在地面测量工作中已得到了广泛的应用但在井下测量中由于受井下条件的影响其应用受到了一定的限制。本人通过几年来对全站仪在井下测量中的使用掌握了一定的测量方法和技巧现与大家交流。 l井下测量的特点 井下测量受环境的影响与地面测量有很多不同之处其主要特点是:(1)井下测量的主要对象是巷道其主要任务是确定巷道、硐室及回采工作面的平面位置与高程为煤矿建设与生产提供数据与图纸资料;(2)井下巷道测量的方式主要是导线测量导线的布设形式一般有闭合导线、符合导线和支导线三种但井下巷道施工测量中一般以支导线为主当巷道贯通以后进行联测时才可布设闭合导线或符合导线; (3)在巷道测量中工作环境黑暗、潮湿、视野狭窄行人、车辆较多巷道内又有各种管线障碍这些因素都会对测量工作带来一定的影响;(4)井下巷道测量对精度要求很高在井下平面控制测量及井下巷道贯通测量中导线测量精度的高低将对确定新老巷道及采空区之问的关系、巷道的贯通等产生直接影响在煤矿的安全生产及抢险救灾工作中也起着重要作用; (5)井下导线测量方法一般采用“后前前后”的测量方法导线点一般都布设在巷道顶板上对点号吊挂线绳进行对中测量。

2全站仪的特点全站仪又名电子速测仪它集测角量边为一体由微处理器控制自动进行测距、测角自动归算水平距离、高差和坐标等还能进行施工放样自动记录数据使用极为方便它几乎可以完成各种常规测量仪器所做的工作。全站仪的工作原理与传统的经纬仪类似但它又具有以下特点: (1)只需一次照准反射棱镜就能测得水平角、竖直角和斜距算出测点的平面坐标和高程并记录下测量和计算的数据。 (2)通过全站仪的主机或电子手簿的标准通讯接口,可实现全站仪与计算机或其他外围设备问的数据通讯,从而使测量数据的获取、管理和计算机绘图形成一个完整的自动化测量系统。 (3)利用全站仪的微处理器来控制全站仪的测量和计算,配合相应的应用软件可实现导线测量、前后方交会、碎部测量和施工放样等计算任务。(4)全站仪内部有双轴补偿系统,可自动测量仪器竖轴和水平轴的倾斜误差,并对角度观测值加以改正。 3全站仪在井下测量中的应用 3.1井下四架法传递,三架法导线测量在井下平面控制测量中,为了提高控制测量的精度,一般都要进行7”级导线测量。在以往的测量过程中,都是采用经纬仪测角、钢尺量边的测量方法,使用这种方法,对于一些长边来讲,在丈量距离时,为了保证量距的精度,即要将边分成几段来量,又要几个人同时配合,对某一段进行多次量取,还要对钢尺进行垂曲改正、温度改正、尺长改正等多项改正,这样既废时又废力,工作效率极低,而且精度不能得到很好的保证。在井下平面控制测量中,若采用

煤矿井下基本控制导线测量方法的改进

煤矿井下基本控制导线测量方法的改进 随着我国科技水平的不断提高,科技的应用范畴逐渐扩大。近年来,科技应用在煤矿井下基本控制导线测量方面取得的成效较为明显,在一定程度上促进了煤矿井下基本控制导线测量方法的创新与改进,大大提高了煤矿井下基本控制导线测量的精准度以及煤矿井下基本控制导线测量的工作效率。本文将简要分析煤矿井下基本控制导线测量方法的改进与创新的相关内容,旨在促进煤矿井下基本控制导线测量工作效率的进一步提高。 标签:煤矿;控制导线;测量方法;改进 在实际工作中,在传统的煤矿井下测量的过程主要涉及到腰线标定、延伸、导线测量以及高程测量等环节。煤矿生产技术的管理,是实现煤矿企业生产目标的重要途径,必须予以重视。在煤矿井下发生的任何疏忽,都可能成为引发煤矿安全事故的导火线,造成煤矿企业重大的经济损失。煤矿井下测量工作对于实现煤矿高效、安全生产的目标,有重大的现实意义。因此,煤矿井下测量的工作被作为一项技术性且难度较大的工作,一直是煤礦生产企业的非常重视的一项工作。近几年,煤矿井下基本控制导线测量的方法不断得到发展与改进,在一定程度上提高了煤矿井下测量工作的精准度以及效率。 1 关于三连架在基本控制导线测量中应用的分析 由于受煤矿井下环境条件的限制,一直以来,传统的煤矿井下基本控制导线的测量方法都是采用逐站整平对中的形式,选择比长的钢尺(或光电测距仪)进行量边的工作。整个测量的过程中,需要耗费大量的时间以及精力,而且无法保证测量的精准度,并且在测量过程中容易产生误差。煤矿井下基本控制导线的测量工作效率的低下,直接导致煤矿企业的生产效率以及工作效率无法保持相对较高的水平。随着科技的发展水平不断提高,随着防爆全站仪在井下测量中的应用,很多煤矿生产企业开始采用三连架法进行煤矿井下基本控制导线测量的工作,以弥补传统的测量方法产生的误差。采用三连架法进行煤矿井下基本控制导线的测量工作的过程中,利用全站仪配套的棱镜、基座等相关设备,可以减少测量工作中过渡点的对中误差,在确保煤矿井下基本控制导线测量精准度的前提下,提高煤矿井下测量的工作效率。但是我们在燕子山矿的实际测量工作中,采用三连架法进行测量还是存在着一定的局限性。 (1)在煤矿井下测量工作中采用三连架法,在测量路线确定后,需要煤矿企业停止在测量线路上的一切生产运输活动,占用巷道时间长,需要与多个部门协调工作。 (2)三连架法测量的环节,常常要对各个测量过渡点进行对中的处理工序,以减小对中误差对各个测量点精准度带来的不利影响。 (3)另外,还需要注意处理煤矿井下隧道中雾气以及风流对边长光测量产

GPS高程测量的精度分析

GPS高程测量的精度分析 介绍了GPS在市政工程高程测量中的应用,并揭示了造成实践应用不广泛的主要原因—测量精度。进而从GPS卫星、卫星信号的传播过程和地面接收设备以及地面高程的转化四个方面分析了GPS高程测量的精度问题。 标签:市政工程高程测量GPS信号接收机测量精度 一、引言 在工程测量中,高程测量的精度问题一直被测绘学界的工作者们广泛关注。水准测量的精度较高,但是测量工作量太大、测量速度较慢。相较于水准测量而言,GPS测量高程在效率上有很大的提高。理论与试验研究表明,如果在测量时加上一些特定的措施,GPS的高程测量精度可以达到三、四等水准测量的要求。近年来,随着RTK技术的广泛应用,尤其是多基站连续运行卫星定位服务综合系统在各城市的相继建立,高程测量方法得到了有效扩展,作业效率大大提高,但由于高程异常变化复杂,所以,GPS高程的精度普遍不高,分析影响GPS测量精度的影响因素,提高GPS的测量精度有重要的实践意义。 二、GPS高程测量的影响因素分析 1.与卫星相关的因素。卫星是GPS测量的信息发出点,卫星的分布、数量、稳定性对GPS测量结果的稳定性和精确度影响很大。 (1)卫星的个数及稳定程度。在解算整周模糊度时,至少需要有5颗公共卫星。星数越多,解算模糊度的速度越快、越可靠。当周围高层建筑物密集且有大树时,公共卫星数如果少于5颗,就很难得到固定解。当降低卫星的截止高度角时,公共卫星数将增加,但将使采集的数据含有较低的信噪比,使GPS接收机解算模糊度的时间延长,且观测精度较差,很难满足要求;当周围只是一侧或部分遮挡,此时的卫星个数需根据实际情况而定,如果卫星正好在遮挡物的一侧,此时,可能导致卫星数少于5颗,或者卫星数时而增加,时而减少。这样就会造成测回间的数据精度不稳定;当周围较空矿时,一般都能达5颗或者5颗以上,且卫星个数固定,此时采集的数据精度也比较稳定,但不排除个例。 (2)卫星分布情况。卫星分布用PDOP值(位置精度强弱度,为玮度、经度和高程等误差平方和的平方根)来衡量。PDOP值越小,说明卫星的分布越好,定位精度越高。一般规定,PDOP值应小于6。 2.与卫星信号传播相关的因素。卫星信号要经由大气空间传播到GPS数据接收器上来,在传播过程中,信号可能受到大气层的影响而发生波动,这就会对GPS接收到的数据造成影响,进而影响解算结果,影响测量的精度。 (1)对流层延迟。对流层延迟是指电磁波信号通过高度在50km以下的未

谈全站仪的高程测量精度

谈全站仪的高程测量精度 本人在从事工程技术管理的工作中,经常听到有测量工程师抱怨说某某全站仪不好用,测高程测不准。于是我问他:测距离准不准?得到回答是,测距离没问题!于是我就奇怪了,为什么测距离准,测高程不准呢?全站仪工作时测得夹角a和距离L,如下图: s H L a H=L*sina S=L*cosa 既然S准确,相应的H也应该准确,因为他们的计算变量都是一样的。但经过本人实际操作,全站仪测高程精度确实比较差。到底是什么原因使得同样的参数,计算出来的结果一个精确,另一个却不精确呢?进过详细分析,本人发现其实并不是仪器的问题,而是误差给大家带来的麻烦:

90sinx cosx Y Y1 Y2 上图是正弦曲线和余弦曲线示意图,我们可以发现在全站仪镜头水平x=0°—竖直x=90°期间y值的变化,当我们在接近0°附近测量时f(x)=cosx相对于g(x)=sinx对x的增量来说不敏感,也就是说,当我们在仪器测量a角时,一个增量Δa引起的S的变化比H的变化小的多,而实际操作中,各位测量工程师也会发现,由于仪器的构造限制,很少有机会在测量的时候使全站仪仰俯超过45°,而真正当仰俯角超过45°,(例如在近距离测量盖梁或者墩顶高程)时,全站仪的高程测量精度并不比水平坐标的测量精度低。例如:sin10.1-sin10=0.00171855,cos10.1-cos10=-0.0003045,这表明在角度误差0.1°的情况下,瞄准接近100米的目标,高程会差17cm,而距离只差3cm,这就是为什么大家都抱怨全站仪测高程不精确的原因。 当然测量高程精度不准还与另外一些因素有关,如:1、仪器高不能准确测得,2、镜杆高度由于标杆底的磨损产生偏差,3、对站标时习惯性只左右对中,不上下对中等。这些原因都可能使全站仪的高

井下导线测量方法的应用研究

技术革新成果报告井下导线测量方法的应用研究 杨 柳 煤 业 小 春 湾 煤 矿 二〇一三年十二月

井下导线测量方法的应用研究 一、矿井导线测量概述 矿山测量是矿山建设时期和生产时期的重要一环,测量工作及测量成果是为矿山生产服务的。随着测绘科学技术迅速发展,矿山测量也不断创新和发展,面对各种挑战和机遇同在的关键时代,广大测量科技工作者肩负着历史的责任,有必要对矿山测量走过的艰苦历程及其未来作一些回顾和认识,分析面临的形势、探讨新时期矿山测量面临的任务。 二、井下导线测量的意义 井下导线测量是矿井测量的重中之重,为各个工作面支导线提供准确的起算数据,是井巷贯通的重要依据。我们看到的各种作业方法、测量办法创新,都是围绕着导线测量精度展开的。随着科技的发展和进步,煤矿测量工作也需要不断的完善和创新。只有关注测量工作中的每一个细小环境,才能得出一个准确的测量结果,只有更加精确的完成每一项测量工作才能更好的为煤矿生产运营保驾护航。 三、传统的测量方法在矿山测量中的应用 (1)一般测量:全站仪作为当前应用最为广泛的测绘仪器,是电子技术与光学技术发展结合的光电测量仪器,也是集测距仪、电子经纬仪的优点于一体的、应用前途广泛的仪器,智能化的全站仪是目前销量最大的测绘仪器,也是今后发展的主要方向。智能型全站仪是

集光、电、磁、机的最新科学成果,集测距、测角为一体的先进仪器。国际上先进的全站仪均以存储卡、内部存储器或电子手簿的方式记录数据,具有双路传输的通讯功能,能接收外部计算机的指令,由计算机输入数据,也能向外部计算机输出数据。全站仪已在工程测量、矿山测量、地籍测量等领域得到了广泛的应用,其发展及应用正处在飞速发展之中。全站仪由于兼具有经纬仪和测距仪的优点,且以数字形式提供测量成果,其操作简便、性能稳定、数据可通过电子手簿与计算机进行通讯等优点使其在矿山测量中得到了广泛的应用。地面控制测量、地形测量、工程测量均可利用全站仪进行,联系测量、井下测量工作也可用全站仪进行。以全站仪为代表的智能化、数字化仪器是矿山测量仪器今后的发展方向之一。基于全站仪和现代计算机技术可建立矿山三维数据自动采集、传输、处理的矿山测量数据处理系统,取代传统的手簿记录、手工录入、繁琐计算等大量的重复性的工作。此外,全站仪在矿山地表移动监测、矿区土地复垦工程实施、矿区施工等方面也都得到应用,各大矿的测量机构正在以全站仪取代传统的仪器进行日常的测量工作,既提高了效益,加快了速度,又减少了开发,保证了精度。利用全站仪在井下进行一般测量时,为了加快测量速度,可直接设置后视方位、测站坐标及高程,并设置好仪器高及镜站高,直接读取、记录所测点的坐标及高程,从而及时了解掘进进度,指导井下工程按设计进行施工,保证安全作业。为便于检查,须同时记录所测点的方位、平距、高差、垂直角、斜距。井下定中线、腰线时,由于全站仪可直接调出方位和读出距离,省去了很多辅助工作,

井下导线联测及效果分析

井下导线联测及效果分析 文章主要论述在井下导线联测中,导线的布设方式和选择适合的测量方法,提高测角精度,优化测量方案。在满足矿山生产要求的前提下,采取什么样的措施和方法来弥补测量过程中出现的误差,及对导线的精度进行分析,是否满足井下生产的需要,为以后工作积累一点经验。 标签:导线布设;控制测量;测量方法;误差分析 前言 某厂位于个旧市东南17公里处,海拔2330米,整个厂区占地面积21.7平方公里。下设四个采矿工区,由于历史的原因、资产重组,井下控制测量系统不统一,系统之间存在一定的系统误差。为保证区域内各项工程的顺利实施,根据实际情况,按测量规范的要求,对井下导线进行系统性联系控制测量,理论性了解各测量系统之间存在的误差值,更好为生产服务,优化测量方案,保证区域各项工程顺利贯通。 1 井下导线的布设方式 由于受井下巷道条件的影响,井下平面控制均以导线的形式沿巷道布设,不能像地面控制网有测角网、测边网等。布设的原则按照“高级控制低级”进行,主要敷设成闭(附)合导线和复测支导线。点与点之间的距离基本相等,避免较大的长短边。 本次由于是对井下导线进行系统性联测,为以后工程的实施提供具体的参数,导线网的布设相对要容易些,所以,导线网基本敷设成闭(附)合导线,从而减小误差的积累。 井下测量控制网的建立,是依据地面2250中段坑口平面GPS卫星定位点H1和H2为已知加强边来敷设井下控制网。用H1和H2已知边形成闭合环,闭合环导线总长5392.480m,平均边长117.228m,闭合点位误差△X+0.460m、△Y+0.108m、△Z-0.146m,方位角闭合差44.5″,导线全长闭合差±0.210m,闭合精度1/25000。对闭合导线进行简易的初级平差,用闭合环中已知坐标为起算坐标来进行井下导线的布设,敷设导线和各中段形成闭(附)合路线,对各条导线进行相应的精度评定。 2 测量设备、校准参数和测量方法 仪器型号:nivo2.m测角精度2″角度显示1″/5″/10″测距精度:棱镜模式±2mm+2ppm免棱镜模式±3mm+2ppm,测程:免棱镜300m单棱镜3000m。(井下)小棱镜校准值5mm,(地面)大棱镜校准值30mm。采用测量方法及实测时超限参数:全圆观测法、2C值控制在10″、水平角观测值闭合差值10″。

试析煤矿井下基本控制导线测量方法的改革策略

试析煤矿井下基本控制导线测量方法的改革策略 本文主要对井下基本控制导线测量三连架方法的应用及其局限进行了探讨,并就实践操作中的一些改进措施进行了分析,结合工程实例印证煤矿井下基本控制导线测量方法改革的实际成效。 标签:煤矿井下基本控制导线测量改革 煤矿井下测量工作的技术性与困难度较大,测量是否准确直接影响着煤矿的高效与安全生产,因此煤矿的井下测量工作是煤矿企业必须重视的一项工作。煤矿井下测量工作包括了腰线、标定、延伸、导线测量与高程测量等工作,为了避免因各种疏忽造成的煤矿安全事故,提高生产的效率,煤矿井下基本控制测量方法进行了不断地改进与创新。 1井下导线控制测量 1.1井下基本控制导线测量 地下导线测量是以必要的精度建立起地下的控制系统,然后根据控制系统进行坑道或者轨道中线、衬砌位置放样,并掘进方向。与地面的导线测量比较而言具有四个方面的特点。第一,坑道具有一定的限制,形状通常为延伸状,而导线的布置不能够一次完成,需要沿着坑道的开挖而向前延伸;第二,当导线点摄于坑道顶板时,需要进行点下对中;第三,沿着坑道的延伸进行导线的敷设,首先敷设精度低、边长段的导线作为坑道掘进的指示,然后敷设高等级的导线用于检查和校正低等级的导线;第四,井下的工作环境较差,导线测量受到较大的干扰。其中地下导线等级是由地下工程类型、范围、精度要求决定的,各个部门有着不同的规定,《煤矿测量规程》中就规定:井下平面控制测量包括了两个方面,即基本控制与采区控制,其中基本控制测量导线测角精度为±7″、±15″,一般沿井主要坑道进行敷设,每300-500m延伸一次;采区则为±15″、±30″,每30-100米延伸一次。表1为基本控制导线主要技术指标。 1.2三连架基本控制导线测量的应用及其局限性 由于煤矿井下测量环境受到限制,因此煤矿井下基本控制导线测量方法的形式均采用逐站整平对中,量边则采用光电测距仪或者比长钢尺来进行,这就使得整个测量工作将耗费大量的时间与精力,而测量的精确度却无法得到保证,易产生误差。而较低的基本控制导线测量效率及精确度将降低煤矿企业的生产效率与安全性。目前,随着全站仪在井下测量中的应用,大部分的煤矿企业都采用了三连架法来进行井下基本控制导线测量工作,该方法在测量中利用全站仪的配套棱镜与基座等能够减少过渡点测量误差,保证基本控制导线测量的精确度,提高煤矿井下测量效率,但是在许多的煤矿井下基本控制导线测量的实际工作中,三连架方法也存在一定的局限性,主要包括了四个方面:第一,采用三连架方法进行测量,确定测量路线后测量路线上的所有生产活动均停止,并且该测量方法占用

全站仪三角高程测量精度分析

全站仪三角高程测量精度 分析 Prepared on 22 November 2020

全站仪三角高程测量精度分析 作者修涛 内容摘要全站仪三角高程测量具有效率高,实施灵活等优点。全站仪三角高程测量可以代替水准测量进行高程控制,主要有对向观测法和中间观测法。在这两种方法中,前者将大气折光系数作为常数考虑,认为各个方向的折光系数相同,这与实际的情况有出入。而中间观测法则将大气折光系数作为变量处理,并加以改正。经研究并通过实践验证,在观测结果进行修正的条件下,全站仪三角高程测量完全能达到三、四等水准测量的精度要求,同时可借助Excel强大的数据处理能力,使观测数据的处理更为方便快捷[1]。文章根据三角高程测量原理及误差传播定律,对全站仪三角高程测量在测量中的应用及精度进行了探讨。对三角高程测量的不同方法进行了对比、分析总结。通过试验,对全站仪水准法三角高程测量进行了精度分析。 关键词全站仪;三角高程测量;精度分析 Total Station trigonometric leveling accuracy analysis Abstract Total Station trigonometric leveling with high efficiency, the implementation of the advantages of flexible. Total Station trigonometric leveling can replace the standard of measurement for elevation control, mainly on the observation method to the observational method and intermediate. In both methods, the former take into account atmospheric refraction coefficient as a constant, that the refraction coefficient in each direction, this discrepancy with the actual situation. While the rule of the middle observation of atmospheric refraction coefficient as a variable processing and correction.

井下巷道测量的内业计算

井下导线测量内业 内业计算的目的,是求出导线各边的 坐标方位角及各导线点的平面坐标, 并填绘矿图。一般是按照以下顺序进行的。 一、检查和整理外业观测记录手簿 在井下测角量边的过程中,都应随时按照,《煤矿测量规程》的要求进行检核,如果不符合,必须当场重测,直到满足要求为止。在内业计算开始之前,要重新仔细检查外业观测记录,如往、返丈量边长之差是否达到精度,测回间互差是否超限等,是否有漏测、漏记、记错、算错等问题。 二、计算边长改正和平均边长 井下基本导线水平变长一般取用全站仪上下半测回或测回测得的水平边长的平均值作为导线边长。 三、角度闭合差 (一)闭合导线闭合导线的角度 闭合导线的角度闭合差 是按下式计算的: 式中 —分别是闭合导线的内角总和与外角总和; n — 闭合导线的角度个数。 (二)空间交叉闭合导线 在前面介绍井下导线的形状时,有一种交叉闭合导线(图1-3(a)),当这种导线沿着前进方向测左角时,则经过交叉点后,便由内(外)角变成了外(内)角,内角图形与外角图形的角度总和,即: β f ()()?? ? ?? ? ? +?-= -?-=∑∑ n n n f n f 1121802180外 内β βββ∑n n 1 1 外 内 、ββ ()()()()[]()()()[]()()()[] k p n n n n n n n n n n n n k p k p --'++'+'++++?=+'+++' ++'?+-++-+-?=∑21802221802221802 1 2 1 2 1 2 1 β

式中 — 每个内角图形中的角度个数; — 每个外角图形中的角度个数。 这些图形的角度个数包括交叉点上的虚拟角度,但每个交叉点上的两个虚拟角度对与相邻两个对顶图形来说总是α+β= 360o,所以,应当从上式的中 间去这些虚拟角度,即实测的角度总和应为: 式中 n —实测角度总个数; p ―内角图形的总个数; k —外角图形的总个数。 上式实测角度总和的理论值,而角度闭合差为: (三)附和导线 设附和导线起始边和最终符合边的坚强坐标方位角值为和 测角总个 数为 ,则角度闭合差 为: (四)复测支导线 复测支导线的角度闭合差是按照最末公共边的第Ⅰ次和第Ⅱ次所得的坐 标方位角 和之差来计算的,即 (五)角度闭合差的分配 即将 反号平均分配给各观测角值,每个观测角值的改正数为: 改正后的角值为: p n n n ,,,21 k n n n ''',,,21 ()∑β()()()[]k p n k p --?=-+?-=∑∑21801360ββ()[] ∑--?-= k p n f 2180实测 β β0 αn αβ f ()()?? ? ? ?--??-=--??-=∑∑n n n f n f ααβ ααββ β00180180右 左 β f n n αα- 1β f n f V i ββ- =

浅谈一种井下贯通导线测量的方法

浅谈一种井下贯通导线测量的方法 作者:雷谨魁于智勇 来源:《科技创新导报》2012年第36期 摘要:根据等高四架法的适用范围以及原理和技术特点,提出了一些有效措施。以供同行借鉴参考。 关键词:井下贯通导线测量等高四架法 中图分类号:TP2 文献标识码:A 文章编号:1674-098X(2012)12(c)-0-01 在测量时,测量结果与实际值之间的差值叫误差。测量工作是在一定条件下进行的,外界环境、观测者的技术水平和仪器本身构造的不完善等原因,都可能导致测量误差的产生。通常把测量仪器、观测者的技术水平和外界环境三个方面综合起来,称为观测条件。观测条件不理想和不断变化,是产生测量误差的根本原因。通常把观测条件相同的各次观测,称为等精度观测;观测条件不同的各次观测,称为不等精度观测。矿井里大型贯通导线的测量,因为贯通导线的测量精确度要求比较高,受矿井里的许多因素限制,而且它的线路比较长,在测量时巷道就会被很长时间占据,进而严重的影响了生产,同时也加大了测量时的工作量。矿井贯通作业正常正确的完成必须依靠实施测量时的精度。为了解决以上的问题,并且要使矿井贯通作业的正确正常完成,所以得使用等高四架法,在实践测量时,使用此方这个问题很容易就被解决。 1 适用原理及范围 原理:此方法的原理:先介绍等高,等高是指在施测时所采用的全站仪,前、后视棱镜在同一个已经对中整平的固定基座上安置时,它们有一致的中心高度。等高四架法观测方法,用带有四个相同基座的架腿,在迁站时仅需将仪器或棱镜从基座中拔出,而基座和架腿保持不动,并配备专业人员对点,观测人员和前、后视人员不需对点,可减少对点时间,用以提高整体的工作效率。适用的范围:此方法的使用范围:主要是煤矿井下大型贯通导线的测量,风速大的巷道,用此方法效果更佳。一般来说贯通导线多为单角支导线时,很适合用此方法进行测量要使用等高四架法测量,但是得使用J2级或更高级的全站仪,而且测距精确度应不低于 2+2PPm。 2 技术特点 (1)在使用等高四架法进行三角高程观测时,因为视点高只量取仪器的高,所以有效的消除了视点高丈量的累计误差。挡风工具使用的是自主设计制造的PVC管(Φ160 mm),能有效提高对点精确度,并加快井下对点速度,特别是在较大风速的巷道,其效果非常明显。(2)带觇板的单棱镜作为其前、后视棱镜,能有效减少照准误差;并且能显著提高三角高程测量的精确度,以用来替代倾斜巷道和平巷的等外水准测量。技术领先,工艺纯熟,经济实

相关文档
相关文档 最新文档