文档库 最新最全的文档下载
当前位置:文档库 › 万有引力定律的推导及完美之处

万有引力定律的推导及完美之处

万有引力定律的推导及完美之处
万有引力定律的推导及完美之处

万有引力定律的推导及完美之处

现在由开普勒第一定律来求行星所受的力的量值。既然轨道为椭圆,我们就可把轨道方程写为

1cos P r e θ=+ 或1cos e P P μθ=+ 把这关系式1cos e P P μθ=+代入比耐公式

2222()d F h d m μμμθ+=- ,就得到 222222

22()d mh h m F mh d P P r μμμμθ=-+=-=- 这表明行星所受力是引力,且与距离平方成反比。

乍一看来,似乎不需要开普勒第三定律就已经能推出胡克的万有引力公式。其实不然,我们并不能把

22h m F P r =-化成22k m F r =-,因为式22h m F P r =-中的h 和P 对每一个行星来讲都具有不同的数值(2r h θ=,1r μ=,P 为椭圆曲线正焦弦长度的一半),而式中的2k 是一个与行星无关的常数。

开普勒第一定律:行星绕太阳作椭圆运行,太阳位于椭圆的一个焦点上。

开普勒第二定律:行星和太阳之间的连线,在相等的时间内所扫过的面积相等。 开普勒第三定律:行星公转的周期的平方和轨道半长轴的立方成正比。 为了能把22h m F P r =-化为

22k m F r =-,就得利用开普勒第三定律,由行星公转的周期得

22324T P a h π=

虽然h 和P 都是和行星有关的常数,但根据开普勒第三定律中2

3T a 是与行星无关的常数,可以得到2P h (或2

h P )是一个与行星无关的常数(即跟行星质量无关,而是由太阳决定了行

星轨道的性质)。因而可以令22h k P =,我们就可以把22h m F P r =-化为

22k m F r =-, 即

2222h m k m F P r r =-=-

此式称为胡克的万有引力公式。虽然得到这样一个简洁的公式,但是我们没法根据这个公式构建相应的实验且求出2

k 常数。这就说明胡克的万有引力公式没有实用性。

为了让胡克的万有引力公式变得有实用性,我们还得从2k 这个常数着手研究。 (1)因为令22h k P =,同时因为2k 、2

3T a 为(与行星无关的)常数, 那么22232244T P a h k ππ==为常数,即2

24k k π='也为常数。

因为k '是与行星无关的常数,根据因果关系,那么k '就是与太阳有关的常数,不可能是其它因素有关的常数,也不可能与r 有关。因为力不可能离开物体单独存在,万有引力是两个物体(太阳和行星)产生的。

有了上面的确定,我们知道在2k 为常数的时候,s m (太阳的质量)、m (行星的质量)

也是常数。∵s m 、m 为常数∴s m m ?也为常数。近而2s k m m ??,

2s k m ?,…也是常数。常数与常数的加减乘除也是常数。

(2)从

22k m F r =-中我们不难发现要求出2k 似乎很难,即使从牛顿第三定律也只能得到

22222222p s s s s p s s F F k m k m k m F r r r

k m F r ?=-???=?=-???=??p F 是行星受到太阳的万有引力,s F 是太阳受到m 质量行星的万有引力,m 为行星的质量,s m 为太阳的质量,s k 是跟太阳有关的常数,k 是跟行星有关的常数,r 为行星到太阳的距离。 从2222s s k m k m r r =-可以知道一个方程两个未知常数,(即便m 和s m 知道)也无法求解,也无法构建相应的实验来验证。 但是我们仔细观察22s p k m F r =和

22s s k m F r =两式,可以看出p F 的大小跟s k 常数的大小有关,s F 的大小跟k 常数的大小有关。我们还可以从生活中得到一个常识:一个物体受到的万有引力不仅跟该物体的质量大小有关还跟对其产生万有引力的物体的质量大小有关。换

句话说,我们这个引力体系不能同时缺少m 和s m 中的任意一个。即s k 常数跟太阳的质量s m 有关,k 常数跟行星的质量m 有关。

显然易见,(1)(2)都证明了k 是跟质量有关的常数。也说明(1)的逻辑是对的。

那么我们不妨设2s s s k G m =,2k Gm =,(其中显然易见s G 、G 为常数),然后有

2222p s s s s s s p s s s F F G m m G m m Gmm F G G r r r Gmm F r ?=-???=?=-?=???=?? 故有2s Gmm F r =-

此式称为牛顿万有引力公式。

这样我们就得到一个未知常数一个方程,可以求解方程了。同时由力学平衡条件F F =-我们可以用实验来求出G 常数。

这就是牛顿万有引力公式的优越性(实用,可验证,具有对称美)。 从22k m F r =-到2s Gmm F r =-这步,我想当年牛顿只不过这么想的(2k 既然是个常数,

那么给它一个常数G ,然后把2k 写成s Gm 也是一样的,带有一个s m 更有利于计算和实验。),根本就没有经过严格的证明。他的这个思维跳跃导致现在的教科书误导大家——说这是灵感,只可意会不可言传。

牛顿的偶然成功,不能不说牛顿的逻辑思维及哲学是非常好的。

最后,我想说的是:牛顿你的灵感也让我感一感吧!

常微分 用万有引力定律推导开普勒三定律

万有引力推导开普勒定律 万有引力定律的阐明: 任意两个质点由通过连心线方向上的力相互吸引。该引力大小与它们质量的乘积成正比,与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。 开普勒定律的阐明: ①椭圆定律:所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。 ②面积定律:行星和太阳的连线在相等的时间间隔内扫过相等的面积。 ③所有行星绕太阳一周的恒星时间()的平方与它们轨道长半轴(ai)的立 方成比例,即 一、开普勒第二定律导引: 由于太阳超重于行星,我们可以假设太阳是固定的。用方程式表示为: ; 其中,是太阳作用于行星的万有引力、是行星的质量、是太阳的质量、是行星相对于太阳的位移向量、是的单位向量。 牛顿第二定律声明:物体受力后所产生的加速度,和其所受的浮力成正比, 和其质量成反比。用方程式表示: 。 合并这两个方程式: (1) 思考位置向量,随时间微分一次可得到速度向量,再微分一次则 可得到加速度向量: 在这里,我们用到了单位向量微分方程式:

, 。(2) 合并方程式 (1) 与 (2) ,可以得到向量运动方程式: 取各个分量,我们得到两个常微分方程式,一个是关于径向加速度,另一个是关于切向加速度: ,(3) 。(4) 导引开普勒第二定律只需切向加速度方程式。试想行星的角动量。 由于行星的质量是常数,角动量随时间的导数为: 。 角动量也是一个运动常数,即使距离与角速度都可能会随时间变化。从 时间到时间扫过的区域: 。 行星太阳连线扫过的区域面积相依于间隔时间。 所以,开普勒第二定律是正确的。 二、开普勒第一定律导引: 设定。这样,角速度是: 。 随时间微分与随角度微分的关系为: 。 随时间微分径向距离:

高中万有引力教案.doc

高中万有引力教案【篇一:高中物理《万有引力定律的应用》教案(1)】 万有引力定律的应用 【教育目标】 一、知识目标 1.了解万有引力定律的重要应用。 2.会用万有引力定律计算天体的质量。 3.掌握综合运用万有引力定律和圆周运动等知识分析具体问题的基 本方法。 二、能力目标 通过求解太阳、地球的质量,培养学生理论联系实际的能力。 三、德育目标 利用万有引力定律可以发现未知天体,让学生懂得理论来源于实践,反过来又可以指导实践的辩证唯物主义观点。 【重点、难点】 一、教学重点 对天体运动的向心力是由万有引力提供的理解 二、教学难点 如何根据已有条件求中心天体的质量 【教具准备】 太阳系行星运动的挂图和flash 动画、ppt 课件等。 【教材分析】 这节课通过对一些天体运动的实例分析,使学生了解:通常物体之 间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体 的质量很大,万有引力将起决定性作用,对天文学的发展起了很大 的推动作用,其中一个重要的应用就是计算天体的质量。 在讲课时,应用万有引力定律有两条思路要交待清楚. 1.把天体(或卫星)的运动看成是匀速圆周运动,即 f 引=f 向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及 半径等问题. 2.在地面附近把万有引力看成物体的重力,即 f 引=mg. 主要用于计算涉及重力加速度的问题。这节内容是这一章的重点,这是万有引力定律在实际中的具体应用.主要知识点就是如何求中心体质量及其他应用,还是可发现未知天体的方法。

【教学思路设计】 本节教学是本章的重点教学章节,用万有引力定律计算中心天体的 质量,发现未知天体显示了该定律在天文研究上的重大意义。 本节内容有两大疑点:为什么行星运动的向心力等于恒星对它的万 有引力?卫星绕行星运动的向心力等于行星对它的万有引力?我的 设计思想是,先由运动和力的关系理论推理出行星(卫 星)做圆周运动的向心力来源于恒星(行星)对它的万有引力,然 后通过理论推导,让学生自行应用万有引力提供向心力这个特点来 得到求中心天体的质量和密度的方法,并知道在具体问题中主要考 虑哪些物体间的万有引力;最后引导阅读相关材料了解万有引力定 律在天文学上的实际用途。 本节课我采用了“置疑-启发—自主”式教学法。教学中运用设问、提问、多媒体教学等综合手段,体现教师在教学中的主导地位。同 时根据本节教材的特点,采用学生课前预习、查阅资料、课堂提问;师生共同讨论总结、数理推导、归纳概括等学习方法,为学生提供 大量参与教学活动的机会,积极思维,充分体现教学活动中学生的 主体地位。 【教学过程设计】 一、温故知新,引入新课 教师:1、物体做圆周运动的向心力公式是什么? 2、万有引力定律的内容是什么,如何用公式表示? 3、万有引力和重力的关系是什么?重力加速度的决定式是什么? 【引导学生观看太阳系行星运动挂图和flash 动画】 教师:根据前面我们所学习的知识,我们知道了所有物体之间都存 在着相互作用的万有引力,而且这种万有引力在天体这类质量很大 的物体之间是非常巨大的。那么为什么这样巨大的引力没有把天体 拉到一起呢? 【设疑过渡】 教师:由运动和力的关系来解释:因为天体都是运动的,比如恒星 附近有一颗行星,它具有一定的速度,根据牛顿第一定律,如果不 受外力,它将做匀速直线运动。现在它受到恒星对它的万有引力, 将偏离原来的运动方向。这样,它既不能摆脱恒星的控制远离恒星,也不会被恒星吸引到一起,将围绕恒星做圆周运动。此时,行星做 圆周运动的向心力由恒星对它的万有引力提供。 本节课我们就来学习万有引力在天文学上的应用。

高中物理万有引力定律(教学设计)

高中物理必修二第六章第三节 【教材分析】 万有引力定律是本章的核心,从内容性质与地位上看,本节内容是对上一节“太阳与行星间的引力”的进一步外推,即:从天体运动推广到地面上任何物体的运动;又是下一节掌握万有引力理论在天文学上应用的学习的基础。本节重点内容是理解万有引力定律的推导思路和过程,掌握万有引力定律的内容及表达公式,知道万有引力定律得出的意义,知道任何物体间都存在着万有引力,且遵循相同的规律。本节难点是物体间距离的理解。另外本节内容还注重是对学生“科学方法”教育和“情感态度与价值观”的教育:使学生认识科学研究过程中根据事实和分析推理进行猜想、假设和检验的重要性,培养学生的推理能力、概括能力和归纳总结能力;本节结合“月—地检验”,经历思维程序“提出问题→猜想与假设→理论分析→实验观测→验证结论”培养学生探究思维能力;使学生学习科学家们坚持不懈、勇往直前和一丝不苟的工作精神,培养学生良好的学习习惯和善于探索的思维品质。 【学情分析】 上节内容中,学生用所学的“圆周运动”、“开普勒行星运动定律”和“牛顿运动定律”知识,经历了一系列科学探究过程,得出了太阳与行星间的引力特点,学生对天体运动的研究产生了极大的兴趣和求知欲。本节课教师再引导学生从太阳与行星间引力的规律出发,根据类比事实将“平方反比关系”的作用力进行猜想,假设和推广,从太阳对行星的引力到地球对月球的引力,再到任意物体间的吸引力都满足“平方反比的关系”。学生会带着好奇和探究意识以及必要的检验论证,一路探究下去,最终得出万有引力定律。使学生在理解掌握万有引力定律的基础上,培养了探究思维能力和良好的思维品质,为学生终身发展打下基础。 【教学流程】 【教学目标】 一、知识与技能 1.理解万有引力定律的推导思路和过程。

万有引力定律应用的12种典型案例

3232 万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32G T r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确

3333 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是赤道平面,周期为24 h 。问:哪颗卫星的向心加速度大哪颗卫星的线速度大若某天上午8点,“风云一号”正好通过赤道附近太平洋上一个小岛的上空,那么“风云一号”下次通过该岛上空的时间应该是多少 解析:本题主要考察普通卫星的运动特点及其规律 由开普勒第三定律T 2 ∝r 3 知:“风云二号”卫星的轨道半径较大 又根据牛顿万有引力定律r v m ma r Mm G 22==得: 2r M G a =,可见“风云一号”卫星的向心加速度大, r GM v = ,可见“风云一号”卫星的线速度大, “风云一号”下次通过该岛上空,地球正好自转一周,故需要时间24h ,即第二天上午8点钟。 【探讨评价】由万有引力定律得:2M a G r = ,v = ω= 2T = ⑴所有运动学量量都是r 的函数。我们应该建立函数的思想。 ⑵运动学量v 、a 、ω、f 随着r 的增加而减小,只有T 随着r 的增加而增加。 ⑶任何卫星的环绕速度不大于7.9km/s ,运动周期不小于85min 。 ⑷学会总结规律,灵活运用规律解题也是一种重要的学习方法。 【案例3】同步卫星的运动 下列关于地球同步卫星的说法中正确的是: A 、为避免通讯卫星在轨道上相撞,应使它们运行在不同的轨道上 B 、通讯卫星定点在地球赤道上空某处,所有通讯卫星的周期都是24h C 、不同国家发射通讯卫星的地点不同,这些卫星的轨道不一定在同一平面上

万有引力定律的建立过程及意义

万有引力定律的建立过程及意义 万有引力定律的发现,是17世纪自然科学最伟大的成果之一。苹果的落地引起了牛顿科学的遐想,在通过大量数学计算后推导出了著名万有引力定律。 然而万有引力定律的确立,却并非牛顿一个人的功劳。在牛顿研究万有引力之前,已有不少人从事这个问题的研究,如第谷、开普勒。此外和牛顿同时代的科学家,如胡克、哈雷、惠更斯、伦恩等,对万有引力定律的建立也有贡献。正如牛顿本人所说:“我之所以有这样的成就,因为我是站在巨人们的肩膀上的。” 丹麦天文学家第谷花费多年时间进行观测行星,编制了篇幅庞大、高度精确的星表。而后德国数学家、天文学家、物理学家开普勒对第谷的星表进行整理研究,最终提出了行星运动三定律。这些对于牛顿提出万有引力定律具有至关重要的作用。此外,惠更斯的向心力公式,胡克、哈雷、伦恩重力问题的研究都给予了牛顿不少启发。 1665-1666年,因为瘟疫流行,牛顿从剑桥大学回到家乡。而看到苹果偶然落地引发了牛顿思考引力问题。之后1684年,牛顿做了《论运动》的演讲,明确叙述了向心力定律,证明了椭圆轨道运动的平方反比关系。此后不久,又在一篇关于物体在均匀介质中的运动的论文中定义了质量概念,并探讨了引力与质量的关系。这些将牛顿引向了万有引力定律的发现。 牛顿设想了从高山上平抛一个铅球的理想实验,他认为当发射速度足够大时,铅球将可能绕地球运动而不再落回地面,指出月球也可以由于重力或者其他力的作用使其偏离直线形成围绕地球的运转。牛顿通过一个靠近地面的“小月球”的运动的思想实验,论证了“使月球保持在它轨道上的力就是我们通常称的为‘重力’的那个力。” 接着,牛顿根据向心力公式和开普勒三定律推导了平方反比关系。牛顿证明,由面积速度定律可以得出物体受中心力的作用,由轨道定律可以得出物体这个中心力是吸引力,由周期定律可以得出这个吸引力与半径的平方成反比。并且通过同磁力的类比,得出“这些指向物体的力应与这些物体的性

人教版必修二《万有引力定律》教案

人教版必修二《万有引力定律》教案万有引 力定律》 教学设计

2012-03-09 万有引力定律 教学设计 【教材分析】 通过学习太阳与行星间的引力,探究地球与月球、地球与地面上的物体之间的作用力是否与太阳与行星间的作用力是同一性质的力,从而得出了万有引力定律。由万有引力定律得到的一系列科学发现,不仅验证了万有引力定律的正确性,而且表明了自然界和自然规律是可以被认识的。万有引力定律是所有有质量的物体之间普遍遵循的规律,引力常量的测定不仅验证了万有引力定律的正确性,而且使得万有引力定律能进行定量计算,显示出真正的实用价值。 教学过程中的关键是对万有引力定律公式的理解,知道公式的适用条件。教学中可灵活采用教学方法以便加深对知识的理解,比如讲授法、讨论法等。 教学重点万有引力定律的理解及应用. 教学难点万有引力定律的推导过程. 课时安排1课时 三维目标 知识与技能 1、了解万有引力定律得出的思路和过程. 2、理解万有引力定律的含义并掌握用万有引力定律计算引力的方法. 3、记住引力常量G并理解其内涵. 过程与方法 1、了解并体会科学研究方法对人们认识自然的重要作用. 2、认识卡文迪许实验的重要性,了解将直接测量转化为间接测量这一科学研究中普遍采用的重要方法. 情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性。 【教学过程】 导入新课(故事导入) 1666年夏末一个温暖的傍晚,在英格兰林肯郡乌尔斯索普,一个腋下夹着一本书的年轻人走进他母亲家的花园里,坐在一颗树下,开始埋头读他的书.当他翻动书页时,他头顶的树枝中有样东西晃动起来,一只历史上最著名的苹果落了下来,打在23岁的伊萨克·牛顿的头上.恰巧在那天,牛顿正苦苦思索着一个问题:是什么力量使月球保持在环绕地球运行的轨道上,以及使行星保持在其环绕太阳运行的轨道上?为什么这只打中他脑袋的苹果会坠落到地上?(如下图所示)正是从思考这一问题开始,他找到了这些问题的答案——万有引力定律. 这节课我们将共同“推导”一下万有引力定律.

从开普勒定律到万有引力定律

从开普勒定律到牛顿万有引力定律 [摘要]:在高中阶段甚至大学的普通物理中,从开普勒三定律到万有引力定律的推导都是在简化之后的圆轨道上进行的。本文从椭圆轨道出发,推导出了万有引力定律。 [关键词]:万有引力定律、开普勒定律、行星运动、椭圆轨道、极坐标 [正文] 高中阶段,由于缺少数学知识,从开普勒定律到万有引力的推导只能在简化之后的圆轨道上进行。甚至大学阶段,普通物理的教材中,也采用了这个方法。本文力图从原始的椭圆轨道入手,导出万有引力定律。当然,这个过程不可能不涉及高等数学的知识。首先我们做一个准备工作,然后再集中考虑推导的过程。如果“准备”中的知识已完全清楚,则可以直接考虑定律的推导了。 第一部分 准备 一、极坐标中的椭圆方程 椭圆定义为到定点的距离与到定直线的距离之比为常数e 的点的集合。 如图1所示,在极坐标中,Ox 为极轴l 是垂直于极轴的定直线,它与O 点的距离为p 。由椭圆的定义可知: e r p r =+θ cos 整理可得: θ cos 1e pe r -= (1) 二、极坐标中的位置矢量 x O θ 图1 l r

极坐标中,r 表示从原点到曲线上一点的距离,如果我们以原点O 为参考,则r 实际上只表示出了位置矢量的大小。为了明确其方向,我们沿着r 所在的直线做出单位矢量i 作为径向单位向量。另外,将i 旋转2 π 得到j 作为横向单位向量。显然物体的位置矢量可表示为: ri =r (2) 上式中等号右边的r 表示的是位矢的大小,i 表示的位矢的方向。但是应当注意的是,不管是r 还是i ,都不一定是常量。这和直角坐标系中的单位向量是常量是有区别的。 另外,r 和i 都是θ的函数,在运动学中θ又是时间t 的函数。所以,r 和i 都是时间t 的函数,所以我们也可以说位置矢量r 是时间的函数。 在这里,我们必须清楚的是,极坐标中的矢量表示和用极坐标表示函数关系并不完全是一回事。若用极坐标表示数量关系,我们只需要用标量式()θr r =即可,在表示矢量时,我们不得不在这个基础上加上了单位向量i 。 三、极坐标中的速度和加速度 下面我们先求单位向量对时间的导数。 在图3中,以Ox 方向为x 轴,O 为原点,垂直Ox 向上为y 轴建立直角坐标系,用ξ、 η表示沿x 轴、y 轴的单位向量,则i 、j 可分别表示为: θηθξsin cos +=i x 图3 r i j θd θ O Δi θd x O θ 图2 r i j

第四节万有引力理论的成就备课备课教案

第三章第三节万有引力定律的应用教学设计 课标分析: 本节课是在学习了万有引力定律的基础上,应用万有引力定律求解天体的质量和发现新的天体等,让学生感受万有引力定律经受了实践的检验及其取得的巨大成功,进而理解万有引力理论的巨大作用和价值。 教材分析: 本节内容是这一章的重点,是万有引力定律在实际中的具体应用,利用万有引力定律除了可求出中心天体的质量外,还可发现未知天体。本节是“应用+检验”性的内容,着重讲清应用思路,通过本节课的学习,重点要使学生深刻体会科学定律对人类探索未知世界的作用,激起学生对科学探究的兴趣,培养学生热爱科学的情感。 学生分析: 学生要运用已有的概念和知识以及力和运动之间的关系,根据实际问题建立合理的物理模型,通过归纳总结、逻辑推理来解决问题。 教学目标: 知识与技能: 1、了解万有引力定律在天文学上的重要应用。 2、会用万有引力定律计算天体的质量。 过程与方法: 1、理解运用万有引力定律处理天体问题的思路、方法,体会科学定律的意义。 2、了解万有引力定律在天文学上的重要应用,理解并运用万有引力定律处理问题的思路方法。 情感、态度与价值观: 1、通过测量天体的质量、预测未知天体的学习活动,体会科学研究方法对人类认识自然的重要作用,体会万有引力定律对人类探索和认识未知世界的作用。 2、通过对天体运动规律的认识,了解科学发展的曲折性,感悟科学是人类进步的动力。 教学重难点: 重点:运用万有引力定律和圆周运动公式计算天体的质量。 难点:在具体的天体运动中应用万有引力定律解决问题。 教学安排:1课时 教学方法:问题驱动法、小组合作互动探究法 教学资源:多媒体课件、学生学习学案 教学过程:

万有引力定律及其应用

万有引力定律及其应用 知识网络: 常见题型 万有引力定律的应用主要涉及几个方面: (1)测天体的质量及密度:(万有引力全部提供向心力) 由r T m r Mm G 222?? ? ??=π 得2324GT r M π= 又ρπ?=33 4R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T =30 1s 。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。计算时星体可视为均匀球体。(引力常数G =6.67?1011-m 3/kg.s 2) 点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。 (2)行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力) 表面重力加速度:2002R GM g mg R Mm G =∴=Θ 轨道重力加速度:()()2 2h R GM g mg h R GMm h h +=∴=+Θ 【例2】一卫星绕某行星做匀速圆周运动,已知行星表面的重力加速度为g 0,行星的质量M 与卫星的质量m 之比M /m=81,行星的半径R 0与卫星的半径R 之比R 0/R =3.6,行星与卫星之间的距离r 与行星的半径R 0之比r /R 0=60。设卫星表面的重力加速度为g ,则在卫星表

面有mg r GMm =2 …… 经过计算得出:卫星表面的重力加速度为行星表面的重力加速度的1/3600。上述结果是否正确?若正确,列式证明;若有错误,求出正确结果。 (3)人造卫星、宇宙速度: 人造卫星分类(略):其中重点了解同步卫星 宇宙速度:(弄清第一宇宙速度与发卫星发射速度的区别) 【例3】我国自行研制的“风云一号”、“风云二号”气象卫星运行的轨道是不同的。“一号”是极地圆形轨道卫星。其轨道平面与赤道平面垂直,周期是12h ;“二号”是地球同步卫星。两颗卫星相比 号离地面较高; 号观察范围较大; 号运行速度较大。若某天上午8点“风云一号”正好通过某城市的上空,那么下一次它通过该城市上空的时刻将是 。 【例4】可发射一颗人造卫星,使其圆轨道满足下列条件( ) A 、与地球表面上某一纬度线(非赤道)是共面的同心圆 B 、与地球表面上某一经度线是共面的同心圆 C 、与地球表面上的赤道线是共面同心圆,且卫星相对地面是运动的 D 、与地球表面上的赤道线是共面同心圆,且卫星相对地面是静止的 【例5】侦察卫星在通过地球两极上的圆轨道上运行,它的运行轨道距地面高度为h ,要使卫星在一天的时间内将地面上赤道各处在日照条件的情况下全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少应拍摄地面上赤道圆周的弧长是多少?设地球半径为R ,地面处的重力加速度为g ,地球自转的周期为T 。 【例6】在地球(看作质量均匀分布的球体)上空有许多同步卫星,下面说法中正确的是( ) A .它们的质量可能不同 B .它们的速度可能不同 C .它们的向心加速度可能不同 D .它们离地心的距离可能不同 点评:需要特别提出的是:地球同步卫星的有关知识必须引起高度重视,因为在高考试题中多次出现。所谓地球同步卫星,是相对地面静止的且和地球有相同周期、角速度的卫星。其运行轨道与赤道平面重合。 【例7】地球同步卫星到地心的距离r 可由2223 4πc b a r =求出,已知式中a 的单位是m ,b

万有引力定律教案_物理_教学设计_人教版资料讲解

万有引力定律教案_物理_教学设计_人教版

万有引力定律教学设计 (张格丽宝鸡中学 721013) 【教材版本】 新课标人教版高中物理必修2第六章第3节 【设计理念】 1.本课设计中,力求为学生创造一个良好的学习探究场所,课堂中教师不再是一个主讲者,而是课堂教学的组织者和参与者,和学生一起去感受、认识、探索、分析、概括。 2.科学探究既是学生的学习目标,又是重要的教学方式之一。引导学生对问题的学习、探究,养成良好的评价习惯,在取得成功喜悦的同时,培养学生分析问题、发现不足、纠正错误的严谨的科学态度。让学生知道解决物理问题常采用这种方法,即提出问题,猜想和假设,实验、检验,得出结论。 【教材分析】 万有引力定律的发现过程犹如一部壮丽的科学史诗,它歌颂了前辈科学家的科学精神,也展现了科学发展过程中科学家们富有创造性而又严谨的科学思维,是发展学生思维能力难得的好材料,本节课内容充分利用这些材料发展学生的科学思维能力。教科书在尊重历史事实的前提下,通过一些逻辑思维的铺垫,让学生以自己现有的知识基础身于历史的背景下,经历一次“发现”万有引力的过程: 收集于网络,如有侵权请联系管理员删除

从上述物理学史进程中,可以看出《万有引力定律》这节内容是对上两节课教学内容的进一步推演,并与之构成本章的第一单元内容。同时,本节内容也是下节课 教学内容的基础,是本章 的教学重点,在高中物理中占有重要地位。 【学情分析】 1.原有认知发展分析 从知识结构来看,在学习万有引力定律前,学生已经对力、重力、向心力、太阳对行星的引力、加速度、重力加速度(即自由落体运动的加速度)、向心加速度等概念有了较好的理解,并且掌握了自由落体运动和圆周运动等运动规律,能熟练运 用牛顿运动定律解决动力学问题。已经 完全具备深入探究和学习万有引力定律的能力。 2.原有知识结构分析 从知识建构的历史进程来看,在上一节中学生经历了太阳与行星间引力的探究过程,其中向学生渗透了发现问题、提出问题、猜想假设、推理论证等方法思想,依照学生的认知心理特点,同时根据上节课“说一说”中的问题,很容易在他们脑中形成这样一个问题:太阳与行星间引力规律是否适用于我们与地球间的相互作用?从而为我们进一步演绎万有引力定律“发现之旅”, 确定了转接点,也引入本节新课内容。 3.非认知因素分析 收集于网络,如有侵权请联系管理员删除

万有引力定律的推导及完美之处

万有引力定律的推导及完美之处 现在由开普勒第一定律来求行星所受的力的量值。既然轨道为椭圆,我们就可把轨道方程写为 1cos P r e θ=+ 或1cos e P P μθ=+ 把这关系式1cos e P P μθ=+代入比耐公式 2222()d F h d m μμμθ+=- ,就得到 222222 22()d mh h m F mh d P P r μμμμθ=-+=-=- 这表明行星所受力是引力,且与距离平方成反比。 乍一看来,似乎不需要开普勒第三定律就已经能推出胡克的万有引力公式。其实不然,我们并不能把 22h m F P r =-化成22k m F r =-,因为式22h m F P r =-中的h 和P 对每一个行星来讲都具有不同的数值(2r h θ=,1r μ=,P 为椭圆曲线正焦弦长度的一半),而式中的2k 是一个与行星无关的常数。 开普勒第一定律:行星绕太阳作椭圆运行,太阳位于椭圆的一个焦点上。 开普勒第二定律:行星和太阳之间的连线,在相等的时间内所扫过的面积相等。 开普勒第三定律:行星公转的周期的平方和轨道半长轴的立方成正比。 为了能把22h m F P r =-化为 22k m F r =-,就得利用开普勒第三定律,由行星公转的周期得 22324T P a h π= 虽然h 和P 都是和行星有关的常数,但根据开普勒第三定律中2 3T a 是与行星无关的常数,可以得到2P h (或2 h P )是一个与行星无关的常数(即跟行星质量无关,而是由太阳决定了行 星轨道的性质)。因而可以令22h k P =,我们就可以把22h m F P r =-化为 22k m F r =-, 即 2222h m k m F P r r =-=-

万有引力定律及其应用教学设计

万有引力定律及其应用 高三物理 张翠云 4月18日 知识网络: 教学目标: 1.掌握万有引力定律的内容并能够应用万有引力定律解决天体、卫星的运动问题 2.掌握宇宙速度的概念 3.掌握用万有引力定律和牛顿运动定律解决卫星运动问题的基本方法和基本技能 教学重点:万有引力定律的应用 教学难点:宇宙速度、人造卫星的运动 教学方法:讲练结合,计算机辅助教学 教学过程: 一、万有引力定律:(1687年) 适用于两个质点或均匀球体;r 为两质点或球心间的距离;G 为万有引力恒量(1798年由英国物理学家卡文迪许利用扭秤装置测出)2211 /10 67.6kg m N G ??=- 二、万有引力定律的应用 1.解题的相关知识: (1)在高考试题中,应用万有引力定律解题的知识常集中于两点:一是天体运动的向心 力来源于天体之间的万有引力,即222r v m r Mm G ==r T m 224πr m 2 ω=;二是地球对物体的 万有引力近似等于物体的重力,即G 2R mM =mg 从而得出GM =R 2 g 。 (2)圆周运动的有关公式:ω=T π 2,v=ωr 。 讨论:

①由222r v m r Mm G =可得:r GM v = r 越大,v 越小。 ②由r m r Mm G 2 2 ω=可得:3r GM =ω r 越大,ω越小。 ③由r T m r Mm G 2 22?? ? ??=π可得:GM r T 3 2π= r 越大,T 越大。 ④由向ma r Mm G =2 可得:2r GM a =向 r 越大,a 向越小。 点评:需要说明的是,万有引力定律中两个物体的距离,对于相距很远因而可以看作质点的物体就是指两质点的距离;对于未特别说明的天体,都可认为是均匀球体,则指的是两个球心的距离。人造卫星及天体的运动都近似为匀速圆周运动。 2.常见题型 万有引力定律的应用主要涉及几个方面: (1)测天体的质量及密度:(万有引力全部提供向心力) 由r T m r Mm G 2 22??? ??=π 得2 324GT r M π= 又ρπ?=3 3 4R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T = 30 1 s 。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。计算时星体可视为均匀球体。(引力常数G =6.67?10 11 -m 3/kg.s 2 ) 解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。 设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小物块质量为m ,则有 R m R GMm 2 2 ω= T πω2= ρπ33 4R M = 由以上各式得2 3GT πρ= ,代入数据解得:3 14/1027.1m kg ?=ρ。 点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分

《万有引力定律》教学设计【高中物理必修2(人教版)教案】

《6.3万有引力定律》教学设计 ● 教学模式介绍 “传递-接受”教学模式源于赫尔巴特的四段教学法,后来由前苏联凯洛夫等人进行改造传入我国。在我国广为流行,很多教师在教学中自觉不自觉地都用这种方法教学。该模式以传授系统知识、培养基本技能为目标。其着眼点在于充分挖掘人的记忆力、推理能力与间接经验在掌握知识方面的作用,使学生比较快速有效地掌握更多的信息量。该模式强调教师的指导作用,认为知识是教师到学生的一种单向传递的作用,非常注重教师的权威性。 “传递-接受”教学模式的课程环节: 复习旧课——激发学习动机——讲授新知识——巩固运用——检查评价——间隔性复习 ● 设计思路说明 一、新课程标准倡导学生自主学习,重视学生科学探究,在“科学探究”中学生自己不断发现问题、解决问题、体会科学方法、学会交流合作及通过集体的智慧解决问题。我将发现万有引力定律的过程设计为教师引导和学生探究先后结合的方法。“地球对月球的力、地球对地面上物体的力、太阳对行星的力,真是同一种力吗?”这个过程中所涉及到的逻辑思维和数学推导给学生带来的困难则由教师适时引导。当学生亲自动手,计算出月球轨道上物体运动的加速度就是地面物体下落加速度的2601 倍时,学生一定会由衷地感叹自然界的和 谐统一和科学的无穷魅力。 二、万有引力定律既是一个独立的科学定律,又是牛顿经典力学体系的重要组成部分。是普遍存在于宇宙中的任何有质量的物体(大到天体小到微观粒子)间的相互吸引力,是自然界的物体间的基本相互作用之一.对人类认识和探索未知世界有着重要的意义。教学中要让学生知道学习万有引力定律不只是用来做几道题,而是一个人科学素养的具体体现。 三、我让学生查找关于卡文迪许的资料、做成ppt 并让两到三组同学在课堂展示。增加学生的学习兴趣,同时锻炼学生的语言组织能力和表达能力。四、将不易测量的微小量转化为可测量的物理量的方法是物理学中重要且常用的研究方法。通过卡文迪许扭秤实验对学生进行的物理思想和科学方法的渗透。同时也能说明科学实验是发现科学真理的基础,也是检验科学真理的唯一标准。 ● 教材分析 万有引力定律是本章的重点知识,,本节内容是对上两节教学内容的进一步延伸,是下

万有引力定律应用的12种典型案例

万有引力定律应用的12种典型案例 万有引力定律不仅是高考的一个大重点,而且是自然科学的一个重大课题,也是同学们最感兴趣的科学论题之一。 特别是我国“神州五号”载人飞船的发射成功,更激发了同学们研究卫星,探索宇宙的信心。 下面我们就来探讨一下万有引力定律在天文学上应用的12个典型案例: 【案例1】天体的质量与密度的估算 下列哪一组数据能够估算出地球的质量 A.月球绕地球运行的周期与月地之间的距离 B.地球表面的重力加速度与地球的半径 C.绕地球运行卫星的周期与线速度 D.地球表面卫星的周期与地球的密度 解析:人造地球卫星环绕地球做匀速圆周运动。月球也是地球的一颗卫星。 设地球的质量为M ,卫星的质量为m ,卫星的运行周期为T ,轨道半径为r 根据万有引力定律: r T 4m r Mm G 22 2π=……①得: 2 32GT r 4M π=……②可见A 正确 而T r 2v π= ……由②③知C 正确 对地球表面的卫星,轨道半径等于地球的半径,r=R ……④ 由于3 R 4M 3 π= ρ……⑤结合②④⑤得: G 3T 2π = ρ 可见D 错误 地球表面的物体,其重力近似等于地球对物体的引力 由2R Mm G mg =得:G g R M 2=可见B 正确 【探讨评价】根据牛顿定律,只能求出中心天体的质量,不能解决环绕天体的质量;能够根据已知条件和已知的常量,运用物理规律估算物理量,这也是高考对学生的要求。总之,牛顿万有引力定律是解决天体运动问题的关键。 【案例2】普通卫星的运动问题 我国自行研制发射的“风云一号”“风云二号”气象卫星的运行轨道是不同的。“风云一号”是极地圆形轨道卫星,其轨道平面与赤道平面垂直,周期为12 h ,“风云二号”是同步轨道卫星,其运行轨道就是

万有引力定律优秀教案

六万有引力和天体运动 (一)开普勒行星定律 1.第一定律——轨道定律 所有行星围绕太阳运动的轨道都是椭圆,太阳处于所有椭圆的一个焦点上。 因此地球公转时有近日点和远日点 2.第二定律——面积定律 太阳和行星的连线在相等的时间内扫过的面积相等。 因此行星的公转速率是不均匀的,在近日点最快,在远日点最慢。 3.第三定律——周期定律 所有行星椭圆轨道的半长轴R的三次方与公转周期T的平方的比值都相等。 R 3 T 2 =k k是与行星无关,而与太阳有关的量。 (1)若公转轨道为圆,那么R就是指半径。 (2)第三定律针对的是绕同一中心天体运动的各星体,若中心天体不同,不能死套周期定律: 例如比较地球和火星,就有R地3 T地2 = R火3 T火2 =k k是一个与中心天体太阳有关的常数,与行星无关。 例如比较月球和人造卫星,就有R月3 T月2 = R卫3 T卫2 =k ′ k ′是一个与中心天体地球相关的常数,与卫星无关。 例如行星的卫星并非主要绕太阳运动,不能直接和行星比较,即R地3 T地2 ≠ R月3 T月2 例1.已知日地距离为1.5亿千米,火星公转周期为1.88年,据此可推算得火星到太阳的距离约为A. 1.2亿千米 B. 2.3亿千米 C. 4.6亿千米 D. 6.9亿千米 解:B (二)万有引力定律 1.基本概念 (1)表述:自然界中任何两个物体都是相互吸引的——引力普遍存在; 引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比——F万∝m1m2 R 2 (2)公式:F万=G m1m2 R 2 其中G称为引力常量,适用于任何物体,由卡文迪许首先测出。它在数值上等于两个质量都是1kg的质点相距1m时的相互作用力:G=6.67×10-11N·m2/kg2。 (3)定律的适用范围:

由万有引力定律推导开普列三定律

由万有引力定律推导开普列三定律 ——————《牛顿定律及万有引力》1,牛顿定律定义 牛顿运动定律包含以下三个定律: 牛顿第一运动定律: 孤立质点保持静止或做匀速直线运动;用公式表示为: , 式中为合力,为速度,为时间。 牛顿第二运动定律: 动量为的质点,在外力的作用下,其动量随时间的变化率同该质点所受的外力成正比,并与外力的方向相同;用公式表达为:。根据动量的定义, 。

若质点的质量不随时间变化(即),则质点运动的加速度的大小同作用在该质点上的外力的大小成正比,加速度的方向和外力的方向相同;用公式表达为: 。 牛顿第三运动定律: 相互作用的两个质点之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上; 用公式表达为:(式中表示质点受到的质点的作用力,表示质受到的质点的反作用力)。 开普列定律定义 开普勒在《宇宙谐和论》上的原始表述:绕以太阳为焦点的椭圆轨道运行的所有行星,其各自椭圆轨道半长轴的立方与周期的平方之比是一个常量。 常见表述:

绕同一中心天体的所有行星的轨道的半长轴的三次方( )跟它的公转周期的二次方( )的比值都相等,即,(其中M 为中心天体质量,k 为开普勒常数,这是一个只与被绕星体有关的常量[2] ,G 为引力常量,其2006年国际推荐数值为 )不确定度为。 2,推导过程 万有引力定律是用开普勒第三定律导出的,因此不能再用万有引力定律来推导开普勒第三定律,循环论证是不严谨的。开普勒第三定律是开普勒根据第谷的观测数据来计算出来的,没有见过推导,推导过程只能是与万有引力定律的联系,不能叫推导。 所以由万有引力定律推导开普勒第三定律 推导过程是逆历史发展顺序的。 首先由万有引力=向心力 r m Mm 2r 2 2??? ??=T G π 瞬间得出

万有引力定律公开课教案

第二节万有引力定律 【教材分析】 本节课内容主要讲述了万有引力发现的过程及牛顿在前人工作的基础上,凭借他超凡的数学能力推证了万有引力的一般规律的思路与方法. 这节课的主要思路是:由圆周运动和开普勒运动定律的知识,得出行星和太阳之间的引力跟行星的质量成正比,跟行星到太阳的距离的平方成反比,并由引力的相互性得出引力也应与太阳的质量成正比.这个定律的发现把地面上的运动与天体运动统一起来,对人类文明的发展具有重要意义。本节内容包括:发现万有引力的思路及过程、万有引力定律的推导. 【三维目标】 一、知识与技能 1.了解万有引力定律得出的思路和过程. 2.理解万有引力定律的含义并会推导万有引力定律,记住引力常量G并理解其内涵. 3.知道任何物体间都存在着万有引力,且遵循相同的规律. 二、过程与方法 1.培养学生在处理问题时,要抓住主要矛盾,简化问题,建立模型的能力与方法. 2.培养学生的科学推理能力. 三、情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性. 【教学重点】 1.万有引力定律的推导. 2.万有引力定律的内容及表达公式. 【教学难点】 1.对万有引力定律的理解. 2.使学生能把地面上的物体所受的重力与其他星球与地球之间存在的引力是同性质的力联系起来. 【教学方法】 1.对万有引力定律的推理——采用分析推理、归纳总结的方法. 2.对疑难问题的处理——采用讲授法、例证法. 【教学用具】 多媒体课件 【课时安排】 1课时 【教学设计】 导入 本节课主要以启发式教学为主。首先通过前面知识 的回顾和提出问题使学生产生对引力是否同一性质的探 究兴趣。 问题设置:师提问:太阳对行星的引力使得行星围绕太阳运动,月球围绕地球运动,是否能说明地球对月球有引力作用?抛出的物体总要落回地面,是否说明地球对物体有引力作用? 【新课教学】 课件展示:画面1:八大行星围绕太阳运动 画面2:月球围绕地球运动 演示3:地面上的人向上抛出物体,物体总落回地面

万有引力定律及其应用完美版

万有引力定律及其应用 教学目标: 1.掌握万有引力定律的内容并能够应用万有引力定律解决天体、卫星的运动问题 2.掌握宇宙速度的概念 3.掌握用万有引力定律和牛顿运动定律解决卫星运动问题的基本方法和基本技能 教学重点:万有引力定律的应用 教学难点:宇宙速度、人造卫星的运动 教学方法:讲练结合,计算机辅助教学 教学过程: 一、万有引力定律:(1687年) 适用于两个质点或均匀球体;r 为两质点或球心间的距离;G 为万有引力恒量(1798年由英国物理学家卡文迪许利用扭秤装置测出)2211/1067.6kg m N G ??=- 二、万有引力定律的应用 1.解题的相关知识: (1)在高考试题中,应用万有引力定律解题的知识常集中于两点:一是天体运动的向心力来源于天体之间的万有引力,即222r v m r Mm G ==r T m 22 4πr m 2ω=;二是地球对物体的万有引力近似等于物体的重力,即G 2R mM =mg 从而得出GM =R 2g 。 (2)圆周运动的有关公式:ω=T π2,v=ωr 。 讨论:1)由222r v m r Mm G =可得:r GM v = r 越大,v 越小。 2)由r m r Mm G 22ω=可得:3r GM =ω r 越大,ω越小。 3)由r T m r Mm G 222??? ??=π可得:GM r T 32π= r 越大,T 越大。

4)由向ma r Mm G =2可得:2 r GM a =向 r 越大,a 向越小。 点评:需要说明的是,万有引力定律中两个物体的距离,对于相距很远因而可以看作质点的物体就是指两质点的距离;对于未特别说明的天体,都可认为是均匀球体,则指的是两个球心的距离。人造卫星及天体的运动都近似为匀速圆周运动。 2.常见题型 万有引力定律的应用主要涉及几个方面: (1)测天体的质量及密度:(万有引力全部提供向心力) 由r T m r Mm G 222?? ? ??=π 得2324GT r M π= 又ρπ?=33 4R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T =30 1s 。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。计算时星体可视为均匀球体。(引力常数G =6.67?1011-m 3/kg.s 2 ) 解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。 设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小物块质量为m ,则有 R m R GMm 22ω= T πω2= ρπ33 4R M = 由以上各式得23GT π ρ= ,代入数据解得:314/1027.1m kg ?=ρ。 点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。 (2)行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力) 表面重力加速度:2002R GM g mg R Mm G =∴= 轨道重力加速度:()()22h R GM g mg h R GMm h h +=∴=+

万有引力定律教案

3.2万有引力定律教案 威远竞力学校物理组朱海 教学目标 知识与技能 1.了解万有引力定律得出的思路和过程,知道地球上的重物下落与天体运动的统一性。 2. 知道万有引力是一种存在于所有物体之间的吸引力,知道万有引力定律的适用范围。 3. 会用万有引力定律解决简单的引力计算问题,知道万有引力定律公式中r的物理意义。 4. 了解万有引力定律发现的意义。 过程与方法 1.通过演绎牛顿当年发现万有引力定律的过程,体会在科学规律发现过程中猜想与求证的重要性。 2.体会推导过程中的数量关系. 情感、态度与价值观 1. 感受自然界任何物体间引力的关系,从而体会大自然的奥秘. 2. 通过演绎牛顿当年发现万有引力定律的过程让学生体会科学家们勇 于探索、永不知足的精神和发现真理的曲折与艰辛。 教学重点、难点 1.万有引力定律的推导过程,既是本节课的重点,又是学生理解的难点。 2.由于一般物体间的万有引力极小,学生对此缺乏感性认识。 教学方法 探究、讲授、讨论、练习 教学活动 (一)引入新课 复习回顾上节课的内容 如果行星的运动轨道是圆,则行星将作匀速圆周运动。根据匀速圆周运动的条件可知,行星必然要受到一个引力。牛顿认为这是太阳对行星的引力,那么,太阳对行星的引力F提供行星作匀速圆周运动所需的向心力。 学生活动:推导得= 2 r v m F

将V =2πr/T 代入上式得r T m F 22 4π= 利用开普勒第三定律K T r =23 代入上式 得到:22π4=r m K F 师生总结:由上式可得出结论:太阳对行星的引力跟行星的质量成正比,跟 行星到太阳的距离的二次方成反比。即:F ∝2r m 教师:牛顿根据其第三定律:太阳吸引行星的力与行星吸引太阳的力是同性 质的作用力,且大小相等。于是提出大胆的设想:既然这个引力与行 星的质量成正比,也应跟太阳的质量M 成正比。即:F ∝2r Mm 写成等式就是F =G2r Mm (其中G 为比例常数) (二)进行新课 教师:牛顿得到这个规律以后是不是就停止思考了呢?假如你是牛顿,你又 会想到什么呢? 学生回答基础上教师总结: 猜想一:既然行星与太阳之间的力遵从这个规律,那么其他天体之间的力是 否也遵从这个规律呢?(比如说月球与地球之间) 师生: 因为其他天体的运动规律与之类似,根据前面的推导所以月球与地球 之间的力,其他行星的卫星和该行星之间的力,都满足上面的规律,而且都是同一种性质的力。 教师:但是牛顿的思考还是没有停止。假如你是牛顿,你又会想到什么呢? 学生回答基础上教师总结: 猜想二:地球与月球之间的力,和地球与其周围物体之间的力是否遵从相同 的规律? 教师:地球对月球的引力提供向心力,即F =r m 2ω=ma 地球对其周围物体的力,就是物体受到的重力,即F ’=m ’g 从以上推导可知:地球对月球的引力遵从以上规律,即F =G2 r Mm 那么,地球对其周围物体的力是否也满足以上规律呢?即F ’=G2'R Mm 此等式是否成立呢? 已知:地球半径R=6.37×106m , 月球绕地球的轨道半径r=3.8×108 m ,

相关文档
相关文档 最新文档