文档库 最新最全的文档下载
当前位置:文档库 › 第15章碱金属与碱土金属

第15章碱金属与碱土金属

第15章碱金属与碱土金属
第15章碱金属与碱土金属

第15章碱金属与碱土金属

教学要求

1.掌握碱金属、碱土金属单质的性质,了解其结构、制备、存在及用途与性质的关系。

2.掌握碱金属、碱土金属氧化物的类型及重要氧化物的性质及用途。

3.了解碱金属、碱土金属氢氧化物溶解性和碱性的变化规律。

4.掌握碱金属、碱土金属重要盐类的性质及用途,了解盐类热稳定性、溶解性的变化规律。

教学时数4学时

15-1 碱金属和碱土金属的通性

碱金属元素原子的价电子层结构为ns1。因此,碱金属元素只有+1氧化态。碱金属原子最外层只有一个电子,次外层为8电子(Li为2电子),对核电荷的屏蔽效应较强,所以这一个价电子离核校远,特别容易失去,因此,各周期元素的第一电离能以碱金属为最低。与同周期的元素比较,碱金属原子体积最大,只有一个成键电子,在固体中原子间的引力较小,所以它们的熔点、沸点、硬度、升华热都很低,并随着Li一Na—K一Rb一Cs的顺序而下降。随着原子量的增加(即原子半径增加),电离能和电负性也依次降低,见表17—1。

碱金属性质的变化一般很有规律,但由于锂原子最小,所以有些性质表现特殊。事实上,除了它们的氧化态以外,锂及其化合物的性质与本族其它碱金属差别较大,而与周期表中锂的右下角元素镁有很多相似之处。

碱金属元素在化合时,多以形成离子键为特征,但在某些情况下也显共价性。气态双原子分子,如Na2、Cs2等就是以共价键结合的。碱金属元素形成化合物时,锂的共价倾向最大,铯最小。

与碱金属元素比较,碱土金属最外层有2个s电子。次外层电子数目和排列与相邻的

碱金属元素是相同的。由于核电荷相应增加了一个单位,对电子的引力要强一些,所以碱土金属的原子半径比相邻的碱金属要小些,电离能要大些,较难失去第一个价电子。失去第二个价电子的电离能约为第一电离能的一倍。从表面上看碱土金属要失去两个电子而形成二价正离子似乎很困难,实际上生成化合物时所释放的晶格能足以使它们失去第二个电子。它们的第三电离能约为第二电离能的4—8倍,要失去第三个电子很困难,因此,它们的主要氧化数是+2而不是+1和+3。由于上述原因,所以碱土金属的金属活泼性不如碱金属。比较它们的标准电极电势数值,也可以得到同样的结论。在这两族元素中,它们的原了半径和核电荷都由上而下逐渐增大,在这里,原子半径的影响是主要的,核对外层电子的引力逐渐减弱,失去电子的倾向逐渐增大,所以它们的金属活泼性由上而下逐渐增强。

碱金属和碱土金属团体均为金属晶格,碱土金属由于核外有2个有效成键电子,原于间距离较小,金属键强度较大,因此,它们的熔点、沸点和硬度均较碱金属高,导电性却低于碱金属。碱土金属的物理性质变化不如碱金属那么有规律,这是由于碱土金属晶格类型不是完全相同的缘故。碱金属皆为体立方晶格,碱土金属中,Be、Mg为六方晶格,Ca、Sr为面心立方晶格,Ba为体立方晶格。

这两族元素的离子各有不同的味道特征,如Li+离子味甜;K+、Na+离子味咸;Ba+离子味苦。

Li+离子的极化力是碱金属中最强的,它的溶剂化作用和形成共价的趋势异常的大,有人提出有“锂键”的存在,类似于氢键,如H—F···Li—F和(LiF2)2。

15-2 碱金属和碱土金属的单质

15-2-1 存在和制备

一、存在

由于碱金属和碱土金属的化学性质很活泼,所以它们只能以化合状态存在于自然界中。在碱金属中,钠和锂在地壳中分布很广,两者的丰度都为2.5%。主要矿物有钠长石Na[AlSi3O8]、和钾长石K[A1Si3O8],光卤石KCl·MgCl2·6H 20及明矾石K2SO4·A12(SO4)3·24H2O等。海水中氯化钠的含量为2.7%,植物灰中也含有钾盐。锂的重要矿物为锂辉石Li2O·A1203 4SiO2,锂、铷和铯在自然界中储量较少且分散,被

列为希有金属。

碱土金属除镭外在自然界小分布也很广泛,镁除光卤石外,还有白云石CaCO3·MgCO3和菱镁矿MgCO3等。铍的最重要矿物是绿柱石3BeO·Al2O3·6SiO3。钙、锶、钡在自然界中存在的主要形式为难溶的碳酸盐和硫酸盐,如方解石CaCO3、碳酸锶矿SrCO3、碳酸钡矿、石膏CaSO4·2H2O、天青石SrSO4殉匝北石BaSO4等。海水中含有大量镁的氯化物和硫酸盐,1971年世界镁产量有一半以上是以海水为原料生产的。

二、制备

由于碱金属和碱土金属的性质很活泼,所以一般都用电解它们的熔融化合物的方法制取。钠和锂主要用电解熔融的氯化物制取。

1.电解熔融氯化钠制金属钠

图17—1为制取金属钠电解槽示意图。电解槽外有钢壳,内衬耐火材料。两极用隔墙分开。氯气从阳极区上部管道排出,钠从阴极区出口流出。

电解用的原料是氯化钠和氯化钙的混合盐。若只用氯化钠进行电解,不仅需要高温,而且电解析出的金属钠易挥发(氯化钠的熔点为1073K,钠的沸点为1156K),还容易分散在熔融盐中,难于分离出来。加入氯化钙后,一则可降低电解质的熔点(混合盐的熔点约873K),防止钠的挥发,再则可减小金属钠的分散性,因熔融混合物的密度比金属钠大,钠易浮在面上。

电解熔融盐时的电极反应如下:

阳极:2C1—=Cl2+2e—

阴极:2Na++2e—=2Na

总反应:2NaCl电解2Na+C12

电解得到的钠约含有1%的钙。

制取碱金属的方法还有热还原法、金属臵换法和热分解法。

2.热还原法

热还原法一般采用焦炭或碳化物为还原剂,例如:

K2CO2+2C 1473K、真空2K+3CO

2KF+CaC21273—1423K CaF2+2K+2C

3.金属臵换法

钾、铷和钠虽然也可以用电解法制取,但常用强还原性的金属如Na、Ca、Mg、Ba等在高温和低压下还原它们氯化物的方法制取,例如:

KCl+Na=NaCl+K↑

2RbCl+Ca=CaCl2+2Rb↑

铯可以用镁还原,CsAlO2制得:

2CsAlO2+Mg=MgAl2O4+2Cs

上面几个反应看起来那是较不活泼的金属把活泼金属从其盐类中臵换出来,这似乎与金属的标准电极电势排列的金属活动顺序相矛盾,我们已经知道用标准电极电势作反应方向的判断标准,只能在水溶液的情况下应用,而上述反应都是在高温下进行的,所以不能应用。将钠蒸气通入熔融的KCl中,可以得到一种钠—钾合金。从表17—3可知:钠的沸点为1155.9K,钾为1047.9K,钾在高温更易挥发。在一个分馏塔中加热。利用钾在高温时挥发度大而从合金中分离出来。另外钠和钾的同类型化合物的晶格能相比,钠比钾高,因而钠的化合物更稳定。

钾沸点低易挥发,钾易熔于熔融KCl中难分离,在电解过程中产生的KO2与K会发生爆炸,所以一般不用熔融盐电解法制取钾,主要用金属臵换法等制取。

4.热分解法

碱金属的化合物,如亚铁氰化物,氰化物和叠氮化物,加热能被分解成碱金属。

4KCN 加热4K+4C+2N2

2MN3 加热2M+3N2M=Na、K、Rb、Cs

铷、铯常用这种方法制备:

2RbN3 668K,高真空2Rb+3N2

2CsN3663K 2Cs+3N2

碱金属的叠氮化物较易纯化,而且不一发生爆炸。这种方法是精确定量制备碱金属的理想方法。锂因形成很稳定的Li3N,故不能用这种方法制备。

15-2-2 单质的物理性质

碱金属和碱土金属的重要物理性质列于表17—3中:

碱金属和碱土金属单质除铍呈钢灰色外,其它都具有银白色光泽。碱金属具有

密度小、硬度小,熔点低、导电性强的特点,是典型的轻金属。碱土金属的密度,熔点和沸点则较碱金属为高。

Li、Na、K都比水轻,锂是固体单质中最轻的,它的密度约为水的一半。碱土金属的密度稍大些,但钡的密度比常见金属如Cu、Zn、Fe还小很多。IA、IIA族金属单质之所以比较轻,是因为它们在同一周期里比相应的其它元素原子量较小,而原子半径较大的缘故。

由于碱金属的硬度小,所以钠、钾都可以用刀切割。切割后的新鲜表面可以看到银白色的金属光泽,接触空气以后,由于生成氧化物、氮化物和碳酸盐的外壳,颜色变暗。碱金属具有良好的导电性。碱金属(特别是钾、铷、铯)在光照之下,能够放出电子,对光特别灵敏的是铯,是光电池的良好材料。铷、铯可用于制造最准确的计时器——铷、铯原子钟。1967年正式规定用铯原子钟所定的秒为新的国际时间单位。

碱金属在常温下能形成液态合金(77.2%K和22.8%Na,熔点260.7K)和钠汞齐(熔点236.2K),前者由于具有较高的比热和较宽的液化范围而被用作核反应堆的冷却剂,后者由于具有缓和的还原性而常在有机合成中用作还原剂。钠在实验室中常用来除去残留在各种有机溶剂中的微量水分。

锂的用途愈来愈广泛,如锂和锂合金是一种理想的高能燃料。锂电池是一种高能电池。

碱土金属中实际用途较大的是镁。主要用来制造合金。铍作为新兴材料日益被重视。

这两族元素中有几种元素在生物界有重要作用。钠和钾是生物必需的重要元素。镁对于所有有机界都是必需的。

15-2-3 单质的化学性质

放出的热使钠熔化成小球。钾与水的反应更激烈,并发生燃烧,铷、铯与水剧烈反应并发生爆炸。

碱土金属也可以与水反应。铍能与水蒸气反应,镁能将热水分解,而钙、锶、钡与冷水就能比较剧烈地进行反应。

由此可知碱金属和碱土金属均为活泼金属,都是强还原剂;在同一族中,金属

的活泼性由上而下逐渐增强,在同一周期中从左到右金属活泼性逐渐减弱。

根据标准电极电势,锂的活泼性应比铯更大,但实际上与水反应还不如钠剧烈。这是因为(1)锂的熔点较高,反应时产生的热量不足以使它熔化,而钠与水反应时放出的热可以使钠熔化,因而固体锂与水接触的机会不如液态钠;(2)反应产物LiOH 的溶解度较小,它覆盖在锂的表面,阻碍反应的进行。

上述碱金属和碱土金属的活泼性及其变化规律,还表现在它们在空气中都容易和氧化合。碱金属在室温下能迅速地与空气中的氧反应,所以碱金属在空气中放臵一段时,金属表面就生成一层氧化物,在锂的表面上除生成氧化物外还有氮化物。钠、钾在空气中稍微加热就燃烧起来,而铷和铯在空温下遇空气就立即燃烧。

4Li+O2=2Li2O

6Li+N2=2Li3N

4Na+O2=2Na2O

它们的氧化物在空气中易吸收二氧化碳形成碳酸盐:

Na2O+CO2=Na2CO3

因此碱金属应存放在煤油中,因锂的密度最小,可以浮在煤油上,所以将其浸在液体石蜡或封存在固体石腊中。

碱土金属活泼性略差,室温下这些金属表面缓慢生成氧化膜。它们在空气中加热才显著发生反应,除生成氧化物外,还有氮化物生成。

3Ca + N2 = Ca3N2

因此在金属熔炼中常用Li、Ca等作为除气剂,除支溶解在熔融金属中的氮气和氧气。

在高温时碱金属和碱土金属还能夺取某些氧化物中的氧,如镁可使SiO2的硅还原成单质Si,或夺取氯化物中的氯,如金属钠可以从T1Cl4中臵换出金属钛。

SiO2+2Mg=Si+2MgO

T1C14+4Na=Ti+4NaCl

碱金属最有兴趣的细致之一是它们在液氨中表现的性质。碱金属的液氨稀溶液呈蓝色,随着碱金属溶解两的增加,溶液的颜色变深。当此溶液中钠的浓度超过1mol/L 以后,就在原来深蓝色溶液之上出现一个青铜色的新相。再添加碱金属,溶液就由蓝色变为青铜色。如将溶液蒸发,又可以重新得碱金属。

根据研究认为:在碱金属的稀氨溶液中碱金属离解生成碱金属正离子和溶剂合电子:

M(s)+(x+y)NH3(l)=M(NH3)+x+e(NH3)—y 因为离解生成氨合阳离子和氨合电子,所以溶液有导电性。此溶液具有高导电性主要是由于有溶剂合电子存在。溶液中因含有大量溶剂合电子,因此是顺磁性的。

痕量杂质如过渡金属的盐类、氧化物和氢氧化物的存在,以及光化作用都能促进溶液中的碱金属和液氨之间发生反应而生成氨基化物:

Na+NH3(l)=NaNH2+1/2H2

钙、锶、钡也能溶于液氨生成和碱金属液氨溶液相似的蓝色溶液,与钠相比,它们溶得要慢些,量也少些。

碱金属液氨溶液中的溶剂合电子是一种很强的还原剂。它们广泛应用在无机和有机制备中。

15-3 碱金属和碱土金属的化合物

碱金属与氧化合可以形成多种氧化物,普通氧化物M2O,过氧化物M2O2,超氧化物MO2和臭氧化物MO3。碱金属在过量的空气中燃烧时,生成不同类型的氧化物:如锂生成氧化锂Li2O,钠生成过氧化钠,而钾、铷、铯则生成超氧化物。碱土金属一般生成普通氧化物MO,钙、锶、钡还可以形成过氧化物和超氧化物。

15-3-1 氧化物

一、普通氧化物

在空气中燃烧时,只有锂生成氧化锂(白色固体)。尽管在缺氧的空气中可以制得除锂以外的其它碱金属普通氧化物,但这种条件不易控制,所以其它碱金属的氧物M2O必须采用间接方法来制备。例如用金属钠还原过氧化钠,用金属钾还原硝酸钾,分别可以制得氧化钠(白色团体)和氧化钾(淡黄色固体):

Na2O2+2Na=2Na2O

2KN03+10K=6K2O+N2

Rb2O为亮黄色,Cs2O为橙红色,氧化物的颜色依次加深。

碱金属氧化物M2O与水化合而生成氢氧化物MOH:

M2O+H2O=2MOH

碱金属氧化物与水反应的程度,从Li2O到Cs2O依次加强。Li2O与水反应很慢,但Rb2O 和Cs2O与水反应时会发生燃烧甚至爆炸。

碱土金属在室温或加热下,能和氧气直接化合而生成氧化物MO,比可以从它们的碳酸盐或硝酸盐加热分解制得MO,例如:

CaCO3=CaO+CO2↑

2Sr(NO3)2=2SrO+4NO2↑+O2↑

氧化钙与水反应而生成熟石灰并放出大量的热,熟石灰广泛应用在建筑工业上。

CaO+H2O=Ca(OH)2

碱土金属氧化物的水合热从Be到Ba依次增加。氧化钙的这种水合能力,常用来吸收酒精中的水分。在高温下氧化钙能同酸性氧化物SiO2作用:

CaO+ SiO2=CaSiO3

CaO与P2O5也有类似反应,这可用在炼钢中除去杂质磷。

碱土金属氮化物都是白色团体。除BeO外,都是氯化钠晶格的离子型化合物。由于正、负离子都是带有两个电荷,而M—O的距离又较小,所以MO具有较大的晶格能,因此它们的熔点和硬度都们当高。晶格中离子间距离依次降低,熔点除BeO 外也是依次下降。根据这种特性,BeO和MgO常用来制造耐火材料和金属陶瓷。

密度为2.949·cm-3的MgO为白色细末,称轻质氧化镁。密度为3.589·cm-3的MgO 称重质氧化镁。他们均难溶于水,易溶于酸和氨盐溶液。氧化镁浸于水中慢慢转变为氢氧化镁。

二、过氧化物

过氧化物M2O2中含有过氧化离子O22-或[—O—O—]2-。其分子轨道式如下:

[KK(δ2S)2(δ*2S)2(δ2P)2(π2P)4(π*2P)4]

成键和反键π轨道大致抵消,由填充δ2Px轨道的电子形成一个δ键,键级为1。

碱金属最常见的过氧化物是过氧化钠,实际用途也较大。将钠加热至熔化,通入一定量的除去CO2的干燥空气,维持温度在453-473K之间,钠即被氧化为Na2O;进而增加空气流量并迅速提高温度至573-673K,即可制得Na2O (淡黄色粉末):

4Na+O2453—473K 2Na2O

2Na2O + O2573—673K 2Na2O2

Na2O2与水或稀酸反应而产生H 2O2,H 2O2立即分解放出氧气:

Na2O2+2H2O=H 2O2+2NaOH

Na2O2+H2SO4=H2O2+Na2SO4

2 H 2O2=2 H 2O+O2↑

所以Na2O2可用作氧化剂、漂白剂和氧气发生剂。Na2O2与CO2反应,也能放出氧气:

2 Na2O2+2CO2=2Na2CO3+O2

利用这一性质,Na2O2在防毒面具、高空飞行和潜艇中用作CO2的吸收剂和供氧剂。

过氧化钠在碱性介质中是一种强氧化剂,例如在碱性溶液中,它可以把As(III)氧化成As(v)的化合物,把Cr(III)氧化成Cr(IV)的化合物等。在分析化学中,常用它来氧化分解(碱熔)某些矿物。例如,它能将矿石中硫、锰、铬、钒、锡等成分氧化成可溶的含氧酸盐,而自试样中分离出来,因此常用作分解矿石的熔剂。例如

Cr2O3+3 Na2O2=2Na2CrO4+Na2O

MnO2+ Na2O2=Na2MnO4

由于Na2O2有强碱性,熔融时不能采用瓷制器皿或石英器皿,宜用铁、镍器皿。由于它们强氧化性,熔融时遇到棉花、炭粉或铅粉会发生爆炸,使用时应十分小心。

碱土金属的过氧化物以BaO2较为重要。在773—793K时,将氧气通过氧化钡即可制得:

2BaO+O2773—793K 2BaO2

BaO2与稀酸反应生成H2O2,这是H2O2的实验室制法:

BaO2+H2SO4=BaSO4+ H2O2

过氧化钡还可作供氧剂、引火剂等

三、超氧化物

钾、铷、铯在过量的氧气中燃烧及得超氧化物MO2。KO2是橙黄色固体,RbO2是深棕色固体,CsO2是深黄色固体。超氧化物中含有超氧离子O2-,其结构为:

[O···O]-

其分子轨道式为:O2-[KK(δ2S)2(δ*2S)2(δ2P)2(π2P)4(π*2P)3]

在O2-中,有13个价电子,其中成键和反键轨道大致抵消,成键的(δ2P)2构成一个δ键,成键的(π2P)2和反键的(π*2P)1构成一个三电子π键键级为:(2+2-1)/2=1 因超氧离子O2-有一个末成对的电子,故它具有顺磁性,并呈现出颜色。由于O2-的键级比O2小,所以稳定性比O2差。实际上超氧化物是强氧化剂,与水剧烈地反应:2MO2+2H 2O=O2+H2O2+2MOH

也能和CO2反应放出氧气:

4M O2+2CO2=2M2CO3+3O2

故它们也能除去CO2和再生O2,也可用于急救器中和潜水、登山等方面。

此外臭氧和K、Rb、Cs的氢氧化物作用,可以制得臭氧化物,例如:

3KOH(s)+2O3(g)=2KO3(s)+KOH·H2O(s)+O2(g)

将KO3用液氨重结品,可得到桔红色的KO3晶体,它缓慢地分解成KO2和O2。

15-3-2 氢氧化物

碱金属的氢氧化物对纤维和皮肤有强烈的腐蚀作用,所以称它们为苛性碱。氢氧化钠和氢氧化钾通常分别称为苛性钠(又名烧碱)和苛性钾。它们都是白色晶状固体,具有较低的熔点。除氢氧化锂外,其余碱金属的氢氧化物都易溶于水,并放出大量的热。在空气中容易吸湿潮解,所以固体NaOH是常用的干燥剂。它们还容易与空气中的CO2反应而生成碳酸盐,所以要密封保存。但在NaOH表面总难免要接触空气而带有一些Na2CO3,如果在化学分析工作中需要不含Na2CO3的NaOH溶液,可先配制NaOH的饱和溶液,Na2CO3因不溶于饱和的NaOH溶液而沉淀析出,静臵取上层清液,用煮沸后冷却的新鲜水稀释到所需的浓度即可。

碱金属氢氧化物的突出化学性质是强碱性。它们的水溶液和熔融物,既能溶解某些金属及其氧化物,也能溶解某些非金民及其氧化物。

2A1+2NaOH+6H2O=2Na[Al(OH)4]+3H2↑

A12O3+2NaOH 熔融2NaAlO3+H2O

Si+2NaOH+H2O=Na2SiO3+2H2↑

SiO2+2NaOH=Na2SiO3+H2O

因为氢氧化钠、氢氧化钾易于熔化,又具有溶解某些金属氧化物、非金属氧化物的能力,因此工业生产和分析工作中常用于分解矿石。溶融的氢氧化钠腐蚀性更

强,工业上熔化氢氧化钠一般用铸铁容器,在实验室可用银或镍的器皿。

氢氧化钠能腐蚀玻璃,实验室盛氢氧化钠溶液的试剂瓶,应用橡皮塞,而不能用玻璃塞,否则存放时间较长,NaOH就和瓶口玻璃中的主要成分SiO2反应而生成粘性的Na2SiO3而把玻璃塞和瓶口粘结在一起。

氢氧化钠是一种重要的化工基本原料,在工业和科学研究上有很多重要用途,它在工业上是用电解食盐水溶液的方法制备的。(见第十一章)

如需用少量的氢氧化钠、也可用苛化法制备。即用消石灰或石灰乳与碳酸钠的浓溶液反应:

Na2CO3+Ca(OH)2=CaCO3↓+2NaOH

下面着重讨论一下碱金属和碱土金属氢氧化物溶解性和碱性的变化规律:

一、溶解度的变化

碱金属氢氧化物在水小的溶解度很大(LiOH例外),并全部电离。碱土金属氢氧化物的溶解度比碱金属氢氧化物的溶解度小得多。从表17—5可以看出,同族元素的过氧化物的溶解度从上到下是逐渐增大的。因为大多数情况下,离子化合物的溶解度与离子势(Z/r)成反比,(详见第十五章第四节)。碱金属氢氧化物从LiOH到CsOH 随着阳离子半径的增大,阳离子和阴离子之间的吸引力逐渐减小,ROH晶格愈来愈容易被水分子把它们拆开。同—周期中,碱土金属离子比碱金属离子小,而且带两个正电荷,因此水分子就不容易将它们拆开,溶解度就小得多。

二、碱性的变化

碱金属和碱土金属氢氧化物碱性呈现有规律性的变化。一般氢氧化物和含氧酸的酸碱性强弱可用Φ1/2值的大小来判断(风第十五章,第三节)。当金属离子(R)的电子构型相同时,则Φ1/2值愈小,碱性愈强;从表17—6所表示的Φ1/2值可知Be(OH)2是两性氢氧化物,其余碱土金属氢氧化物均为碱性氢氧化物,而且碱性依Be到Ba的顺序而增强。

由表l 7—6可知,同族元素的氢氧化物。由于R的电子层构型和电荷数均相同,其碱性强弱的变化,主要取决于离子半径的大小。所以碱金属、碱土金属氢氧化物的碱性,均随R离子半径的增大而增强,若把这两族同周期的相邻两个元素的氢氧化物加以比较,碱性的变化规律可以概括如下:

从上到下碱性增强;从左到右碱性减弱。

由上述可知:这两族元素氢氧化物碱性强弱的变化规律和在水中溶解度的变化规律是一致的。为什么碱金属氢氧化物的碱性特别强?这一方面由于它们在水溶液中有较大的溶解度,可以得到浓度较大的溶液;另一方面,它们在水溶液中几乎全部电离,因此可以得到高浓度的OH-离子,OH-离子浓度愈大,碱性就愈强。因此碱金属的氢氧化物是最强的碱。碱土金属的氢氧化物溶解度比碱金属小得多,碱式电离程度比较差,所以其碱性比碱金属氢氧化物来说要弱一些。

15-3-3 氢化物

化学活性很高的碱金属和碱土金属中较活泼的Ca、Sr、Ba能与氢在高温下直接化合,生成离子型氢化物:

2M+H2=2M+H-(M=碱全属)

M + H2=M2+H2-(M=Ca、Sr、Ba)

氢化锂约在998K时形成,氢化钠和氢化钾在573—673K时生成,其余氢化物在723K 时生成但在常压下反应进行缓慢。这些氢化物均为白色晶体,但常因混有痕量金属而发灰。由于碱金属和Ca、Sr、Ba与氢的电负性相差较大,氢从金属原子的外层电子中夺得1个电子形成阴离子H-,这些氢化物都是离子晶体,故称为离子型氢化物,又称为盐型氢化物。电解熔融的盐型氢化物,在阳极上放出氢气,证明在这类氢化物中的氢是带负电的组分。碱金属氢化物个的H-离子的半径介于碱金属氟比物中的F-离子和氯化物中的C1-离子之间,因此,碱金属氢化物的某些性质类似于相应的碱金属卤化物。

碱金属氢化物中以LiH最稳定。加热到熔点(961K)也不分解。其它碱金属氢化物稳定性较差,加热还不到熔点,就分解成金属和氢。

所有碱金属氢化物都是强还原剂。固态NaH在673K时能将TiCl4还原为金属钛:

TiCl4+4NaH=Ti+4NaCl+2H2

LiH和CaH2等在有机合成中常作为还原剂。在水溶液H2/H-电对的E0=225V,可见H-是最强的还原剂之一,它们遇到含有H+的物质,如水,就迅速反应而放出氢:

LiH+H2O=LiOH + H2

CaH2 + 2H2O=Ca(OH)2 + 2H2

由氢化钙与水反应而能放出大量的氢气,所以常用它作为野外发生氢气的材料。

15-3-4 盐类

碱金属和碱土金属的常见盐类有卤化物、碳酸盐、硝酸盐、硫酸盐和硫化物等,下面讨论它们的共性和一些特性,并简单介绍几种重要的盐。

一、碱金属和碱土金属盐类溶解性的特点

碱金属盐类的最大特征是易溶于水,并且在水中完全电离,所有碱金属离子都是无色的。只有少数碱金属盐是难溶的。它们的难溶盐一般都是由大的阴离子组成,而且碱金属离子越大、难溶盐的数目也越多。

难溶钠盐有白色粒状的六羟基锑酸钠Na[Sb(OH)6],醋酸双氧铀酰锌钠NaAc·Zn(Ac)2·3UO2(Ac)2,9H2O为黄绿色结晶。难溶的钾盐稍多,有:高试酸钾KClO4(白色)

四苯硼酸钾KB(C6H5)4](白色)

洒石酸氢钾KHC4H4O6(白色)

六氯铂酸钾K2[PtCl4](淡黄色)

钴亚硝酸钠钾K2Na[Co(NO2)6](亮黄色)

钠、钾的一些难溶盐常用在鉴定钠、钾离子。

碱土金属盐类的重要特征是它们的微溶性。除氯化物、硝酸盐、硫酸镁、铬酸镁易溶于水外,其余的碳酸盐、硫酸盐、草酸盐、铬酸盐等皆难溶。硫酸盐和铬酸盐的溶解度Ca、Sr、Ba的顺序降低。革酸钙的溶解度是所有钙盐中最小的,因此在重量分析中可用它来测定钙。

碱金属和碱土金属碳酸盐溶解度的差别也常用来分离Na+、K+和Ca2+、Ba2+。

二、钠盐和钾盐性质的差异

钠盐和钾盐性质很相似,但也有差别,重要的有三点:

1.溶解度钠、钾盐的溶解度都比较大,相对说来,钠盐更大些。仅NaHCO3的溶解度不大,NaCl的溶解度随温度的变化不大,这是常见的钠盐中溶解性较特殊的。

2、吸湿性钠盐的吸湿性比相应的钾盐强。因此,化学分析工作中常用的标准试剂许多是钾盐,如用邻苯二甲酸氢钾标定碱液的浓度,用重铬酸钾标定还原剂溶

液的浓度。在配制炸药时用KNO3或KClO3,而不用相应的钠盐。

3.结晶水含结晶水的钠盐比钾盐多。如Na2SO4·10H2O、K2SO4、Na2HPO4·10H2O等。

三、焰色反应

碱金属和钙、锶、钡的挥发性盐在无色火焰中灼烧时,能使火焰呈现出一定颜色。这叫“焰色反应”。碱金属和钙、锶、钡的盐,在灼烧时为什么能产生不同的颜色呢?因为当金属或其盐在火焰上灼烧时,原子被激发,电子接受了能量从较低的能级跳到较高能级,但处在较高能级的电子是很不稳定很快跳回到低能级,这时就将多余的能量以光的形式放出。原子的结构不同,就发出不同波长的光,所以光的颜色也不同。碱金属和碱土金属等能产生可见光谱,而且每一种金属原子的光谱线比较简单,所以容易观察识别。

利用焰色反应,可以根据火焰的颜色定性的鉴别这些元素的存在与否,但一次只能鉴别一种离子。同时利用碱金属和钙、锶、钡盐在灼烧时产生不同焰色的原理,可以制造各色焰火,例如红色焰火的简单配方:

质量百分比KClO334% Sr(NO3)2炭粉10% 镁粉4% 松香7%

绿色焰火配方:

质量百分比Ba(ClO3)2 38% Ba(NO3)2 40% S 22%

四、晶型

绝大多数碱金属和碱土金属的盐是离子型晶体,晶体大多数属NaCl型,铯的卤化物是CsCl型结构。它们的熔点均较高。由于Li+、Be2+离子最小,极化作用较强,才使得它们的其些盐(如卤化物)具有较明显的共价性。Mg2+盐也有一些是共价性的。

五、形成结晶水合物的倾向

一般来说,离子愈小,它所带的电荷愈多,则作用于水分子的电场愈强,它的水合热愈大。碱金属离子是最大的正离子,离子电荷最少,原它的水合热常小于其它离子。

碱金属离子的水合能力从Li→Cs是降低的.这也反映在盐类形成结晶水合物的倾向上。几乎所有的锂盐是水合的,钠盐约有75%是水合的,钾盐有25%是水合物,铷盐和铯盐仅有少数是水合盐。在常见的碱金属盐中,卤化物大多是无水的,硝酸

盐中只有锂形成水合物,LiNO 3·H 2O 和LiNO 3·3H 2O ,硫酸盐只有Li 2SO4·H 2O 和Na 2SO 4·10H 2O ,碳酸盐中除Li 2CO 3无水合物外,其余皆有不同形式的水合物,其水分子数分别为:

Na 2CO 3 K 2CO 3 Rb 2CO 3 Cs 2CO 3

1,7,10 1,5 1,5 3,5

六、形成复盐的能力

除锂以外,碱金属还能形成一系列复盐。复盐有以下几种类型:

光卤石类,通式为M ⅠC1?MgCl 2?H 2O ,其中M Ⅰ=K +、Rb +、Cs +,如光卤石KCl ?MgCl 2·6H 2O ;

通式为M Ⅰ2SO 4?MgSO 4?6H 2O 的矾类,其中M Ⅰ=K +、Rb +、Cs +,如软钾镁巩K 2SO 4·MgSO 4·6H 2O ;

通式为M ⅠM Ⅲ(SO 4)2 ·12H 2O 的矾类,其中M Ⅰ=Na +、K +、Rb +、Cs +,M Ⅲ=A13+、Cr 3+、Fe 3+、Co 3+、Ga 3+、V 3+等离子,如明矾KAl(SO 4)2·12H 2O 。

七、热稳定性

一般碱金属盐具有较高的热稳定性。卤化物在高温时挥发而难分解。硫酸盐在高温下既难挥发,又难分解。碳酸盐除Li 2CO 3在1543K 以上分解为Li 2O 和CO 2外,其余更难分解。唯有硝酸盐热稳定性较低,加热到一定温度就可分解,例如:

4LiNO 3

976K 2Li 2O+4NO 2↑+O 2↑ 2NaNO 3

2NaNO 2+O 2↑ 2KNO 3 2KNO 2 +O 2↑

碱土金属的卤化物、硫酸盐、碳酸盐对热也较稳定,但它们的碳酸盐热稳定性较碱金属碳酸盐要低。

BeCO 3 MgCO 3 CaCO 3 SrCO 3 BaCO 3

<373K 813K 11 73K 1563K 1633K

碱土金属碳酸盐热稳定性的规律也可用离子极化的观点来说明。

八、几种重要的盐

卤化铍是共价型聚合物(BeX 2)n ,不导电、能升华,蒸气中有BeCl 2和(BeCl 2)2分子。 943K 1003K

卤化物中用途最广的是氯化钠,有海盐、岩盐和井盐等。氯化钠除供食用外,它是制取金属钠、氢氧化钠、碳酸钠、氯气和盐酸等多种化工产品的基本原料。冰盐混合物可作为致冷剂。

无水氯化镁是制取金属镁的原料,光卤石和海水是取得氯化镁的主要资源。氯化镁常况下以MgCl 2·6H 2O 形式存在,用加热水合物的方法不能得到无水盐,因为它会水解:

MgCl 2·6H2O Mg(OH)Cl + HCl +5H 2O Mg(OH)C MgO +HCl

要得到无水的氯化镁,必须将六不氯化镁在干燥的氯化氢气流中加热脱水。工业上常用在高温下通氯气于焦炭和氧化镁的混合物制取。

氯化镁有吸潮性,普通食盐的潮解就是含有氯化镁之故。

六水氯化钙热至473K 失去水而成二水氯化钙,温度高于533K 完全脱水形成白色多孔的氯化钙,此这程有少许水解反应发生,故无水氯化钙中常含有微量氧化钙。无水氯化钙有很强的吸水性,是一种重要的干燥剂。由于它能与气态氨和乙醇形成加成物,所以不能用于干燥氨气和乙醇。氯化钙和冰(1.44:1)的混合物是实验室常用的致冷剂,可获得218K 的低温。

氯化钡为无色单斜晶体,一般为水合物二水氯化钡。加热至400K 变为无水盐。氯化钡用于医药、灭鼠剂和鉴定硫酸根离子的试剂。氯化钡可溶于水。可溶性钡盐对人、畜都有害,对人致死量为0.8g ,切忌入口。

氟化钙(萤石)是制取HF 和F 2的重要原料。在冶金工业中用作助熔剂也用于制作光学玻璃和陶瓷等。

常用的荧光灯中涂有荧光材料3Ca 3(PO 4)2Ca(F,Cl)2和少量Sb 3+、Mn 2+的化合物,卤磷酸钙称为母体,Sb 3+、Mn 2+离子为激活剂,用紫外光激发后,发出荧光。

碱金属碳酸盐有两类:正盐和酸式盐。碳酸钠俗称苏打或纯碱,其水溶液因水解而呈碱性。它是一种重要的化工原料。碳酸氢钠俗称小苏打,其水溶液呈弱碱性,主要用于医药和食品工业,煅烧碳酸氢钠可得到碳酸钠。

六水碳酸钙为无色单斜晶体,难溶于水,易溶于酸和氯化铵溶液,用于制二氧化碳酵粉和涂料等。碳酸钙为无色斜方晶体,热至1000K 转变为方解石。 770K >408K

硝酸钾在空气中不吸潮,在加热时有强氧化性,用来制黑火药。硝酸钾还是含氮肥、钾的优质化肥。

Na2SO4·10H2O俗称芒硝,由于它有很大的熔化热,是一种较好的相变贮热材料的主要组分,可用于低温贮存太阳能。白天它吸收太阳能而熔融,夜间冷却结晶就释放出热能。无水硫酸钠俗称元明粉,大量用于玻璃、造纸、水玻璃、陶瓷等工业中,也用于制硫化钠和硫代硫酸钠等。

CaSO4·2H2O俗称生石膏,加热至393K左右它部分脱水而成熟石膏CaSO4·1/2H2O,这个反应是可逆的:

393K

2CaSO4·2H2O 2CaSO4·1/2H2O+3H2O

熟石膏与水混合成糊状后放臵一段时间会变成二水合盐,这时逐渐硬化并膨胀,故用以制模型、塑像、粉笔和石膏绷带等。石膏还是生产水泥的原料之一和轻质建筑材料。把石英钟膏加热到773K以上,得到无水石膏,它不能与水化合。

重晶石硫酸钡是制备其它钡类化合物的原料。将重晶石粉与煤粉混合,在高温下(1173K-1473K)煅烧还原成可溶性硫化钡。

盐酸与硫钡反应,制得氯化钡。往硫化钡溶液中通入二氧化碳,则得碳酸钡。

重晶石可作白色涂料(钡白),在橡胶、造纸工业中作白色填料。硫酸钡是唯一无毒钡盐,用于肠胃系统X射线造影剂。

七水硫酸镁为无色斜方晶体。热至350K失去六分子水,在520K变为无水盐。硫酸镁微溶于醇,不溶于乙酸和丙酮,用作媒染剂、泻盐,也用于造纸、纺织、肥皂、陶瓷、油漆工业。

15-3-5 配位化合物

金属离子中,钠,钾,铷,铯离子因电荷少,半径大和没有晶体场稳定化效应,形成一般配合物的倾向最小。它们能与配位能力较强的螯合剂作用,生成螯合物。所有碱金属都可以和水杨醛作用,生成配位数为4的配位化合物。

碱土金属离中铍离半径最小,是较强的电子对接受体,能形成较多的配合物。

钙、锶、钡的离子半径较大,生成配合物的能力较弱,钡离子的配合物很少。

碱金属和碱土金属

第17章 碱金属和碱土金属 2. 以食盐为原料,如何制备下列物质?写出反应方程式。 Na NaOH Na 2O 2 Na 2CO 3 Na 2SO 3 Na 2S 2O 3 答:(1)电解熔融NaCl-CaCl 2混合物制备金属Na : 2 NaCl(l) ==== 2 Na(l) + Cl 2(g) (2)电解NaCl 饱和溶液制备NaOH : 2 NaCl + 2H 2O==== 2 NaOH + H 2(g) + Cl 2(g) (3)由步骤(1)中制备的 Na 在过量O 2中燃烧制备Na 2O 2 : 2Na + O 2 ==== Na 2O 2 (4)用NaCl 饱和溶液吸收NH 3和CO 2析出NaHCO 3,煅烧NaHCO 3即得到Na 2CO 3: + CO 2 ===== NaHCO 3↓+ NH 4Cl NH 3 + NaCl + H 2O ===== Na 2CO 3 + H 2O ↑+ CO 2↑ 2NaHCO 3 也可用步骤(2)制备的NaOH 溶液吸收CO 2制备Na 2CO 3: 2 NaOH + CO 2 ==== Na 2CO 3 + H 2O (5)用步骤(2)制备的NaOH 溶液吸收SO 2制备Na 2SO 3 : 2 NaOH + SO 2 ==== Na 2SO 3 + H 2O (6) 用步骤(5)制备的Na 2SO 3溶液与S 粉共煮制备Na 2S 2O 3 : 电解 Na 2SO 3 + S ==== Na 2S 2O 3 3. 碱土金属碳酸盐的热分解反应如下: MCO 3(s) === MO(s) + CO 2(g) 根据下表中分解反应的热力学数据,计算它们的分解温度,总结碱土金属碳酸盐热稳定性的变化规律并简要说明原因。 碳酸盐 MgCO 3 CaCO 3 SrCO 3 BaCO 3 Δr H o (298 )/kJ ?mol -1 117 176 238 268 Δr S o (298 )/J ?mol -1?K -1 168 148 168 168 解:根据 Δr G o(T)=Δr H o(298) - T ?Δr S o(298) = 0 得 T =Δr H o(298)/Δr S o(298) 将表中数据带入上式求得各碱土金属碳酸盐的分解温度T 如下: 燃烧 电解 加热 加热

-碱金属和碱土金属元素习题

第17章碱金属和碱土金属习题1.选择题 17-1下列氢化物中,稳定性最强的是…………………………………………..( ) (A) RbH (B) KH (C) NaH (D) LiH 17-2下列关于锂和镁性质上的相似性的说法错误的是……………………….( ) (A) 锂和镁的氢氧化物受热时,可分解为相应的氧化物 (B) 锂和镁的氟化物、碳酸盐和磷酸盐都难溶于水 (C) 锂和镁的氯化物都能溶于有机溶剂 (D) 锂和镁的固体密度都小于1g/cm3,熔点都很低 17-3下列各组化合物中,均难溶于水的是……………………………………...()(A) BaCrO4,LiF (B) Mg(OH)2,Ba(OH)2 (C) MgSO4,BaSO4(D) SrCl2,CaCl2 17-4下列氯化物在有机溶剂中溶解度最大的是……………………………….()(A) LiCl (B) NaCl (C) KCl (D) CaCl2 17-5下列碳酸盐的热稳定性顺序正确的是……………………………………. ( ) (A) BeCO3>MgCO3>CaCO3>SrCO3>BaCO3(B) BaCO3>CaCO3>K2CO3 (C) BaCO3>SrCO3>CaCO3>MgCO3>BeCO3(D) Li2CO3>NaHCO3>Na2CO3 17-6下列各金属在空气中燃烧生成的氧化物仅为普通氧化物的是…………( ) (A) K (B) Na (C) Li (D) Rb 17-7 已知Na +H2O == NaOH(aq) + 1/2H2Δr H m?=-185.77kJ·mol-1 NaH + H2O == NaOH(aq) + H2Δr H m?=-132.21 kJ·mol-1 则NaH 的生成热为………………………………………………………….( ) (A) –317.98 kJ·mol-1(B) +317.98 kJ·mol-1 (C) –53.56 kJ·mol-1(D) +53.96 kJ·mol-1 17-8下列各碳酸盐中溶解度最小的是………………………………………..( ) (A) NaHCO3(B) Na 2CO3 (C) Li2CO3(D) K2CO3 17-9 NaNO3和LiNO3都在1000K左右分解,其分解产物……………………( ) (A) 都是亚硝酸盐和O2(B) 都是氧化物和O2 (C) 都产生N2O和O2(D) 除了都有氧气外,其余产物均不同

无机化学实验二十二_碱金属和碱土金属

实验二十二碱金属和碱土金属 [实验目的] 比较碱金属、碱土金属的活泼性。试验并比较碱土金属氢氧化物和盐类的溶解性。练习焰色反应并熟悉使用金属钾、钠的安全措施。 [实验用品] 仪器:烧杯、试管、小刀、镊子、坩埚、坩埚钳、离心机 固体药品:钠、钾、镁条、醋酸钠 液体药品:汞、NaCl(1mol·L-1)、KCl(lmol·L-1)、MgC12(0.5mol·L-1)、CaC12(0.5mol·L-1)、BaC12(0.5mol·L-1)、新配制的NaOH(2mol·L-1)、氨水(6mol·L-1)、NH4Cl(饱和)、 Na2CO3(0.5mol·L-1、饱和)、HCl(2mol·L-1)、HAc(2mol·L-1、6mol·L-1)、HNO3(浓)、 Na2SO4(0.5mol·L-1)、CaSO4(饱和)、K2CrO4(0.5mol·L-1)、KSb(OH)6(饱和)、 (NH4)2C2O4(饱和)、NaHC4H4O6(饱和)、AlCl3(0.5mol·L-1) 材料:铂丝(或镍铬丝)、pH试纸、钴玻璃、滤纸 [实验内容] 一、钠、钾、镁的性质 1.钠与空气中氧的作用 用镊子取一小块金属钠(绿豆大),用滤纸吸干其表面的煤油,切去表面的氧化膜,立即置于坩埚中加热。当钠开始燃烧时,停止加热。观察反应情况和产物的颜色、状态。冷却后,往坩埚中加入2ml蒸馏水使产物溶解,然后把溶液转移到一支试管中,用pH试纸测定溶液的酸碱性。再用2mol·L-1H2SO4酸化,滴加1~2滴0.01mol·L-1KMnO4溶液。观察紫色是否褪去。由此说明水溶液是有H2O2,从而推知钠在空气中燃烧是否有Na2O2生成。写出以上有关反应方程式。 现象和解释 2Na + O2Na2O2黄色粉末 Na2O2 + 2H2O == H2O2++ 2NaOH 5H2O2 + 2MnO4- + 6H+ == 2Mn2+ + 8H2O + 5O2 2、钠、钾、镁与水的作用 用镊子取一小块金属钾和金属钠,用滤纸吸干其表面的煤油,切去表面的氧化膜,立即将它们分别放入盛水的烧杯中。可将事先准备好的合适漏斗倒扣在烧杯上,以确保安全。观察两者与水反应的情况,并进行比较。反应终止后,滴入1~2滴酚酞试剂,检验溶液的酸碱性。根据反应

第15章碱金属碱土金属

第十五章碱金属碱土金属习题 一、选择题 1.在下列性质中,碱金属比碱土金属高(或大)的是( ) A. 熔点 B. 沸点 C. 硬度 D. 半径 2.下列性质中,碱金属和碱土金属都不具有的是( ) A. 与水剧烈反应 B. 与酸反应 C. 与碱反应 D. 与强还原剂反应 3.ⅠA,ⅡA族元素的电离势,电负性和分子中共价键的强度随着原子序数的增 加而( ) A. 逐渐增大 B. 逐渐减小 C. 无法推测 D. 变化不大 4.下列原子中哪一种原子第一电离势最大( ) A. Na B. Li C. Be D. Mg 5.碱土金属与碱金属相比较,碱土金属比相邻的碱金属多一个电子,即增加了一个 单位的核电荷,所以 A. 碱土金属原子半径比相邻的碱金属大些 B. 电离势大 C. 较易失去第一个电子 D. 比碱金属更活泼 6.下列元素中形成化合物时,共价倾向最小的是( ) A. Be B. Li C. Ba D. Cs 7.最轻的金属是以下金属中的( ) A. Be B. Li C. Na D. Mg 8.下列金属单质不能保存在煤油里的是( ) A. Li B. Na C. K D. Rb 9.金属钠应保存在( )

A. 酒精中 B. 液氨中 C. 煤油中 D. 空气中 10.下列金属单质表现两性的是( ) A. Li B. Mg C. Ba D. Be 11.因为,所以钠的化学性质比锂更活泼,此说 法( ) A. 因对果对 B. 因对果错 C. 因错果对 D. 因错果错 12.下列反应式所表示的反应与实验事实不符的是( ) 高温 2MgO+Si 燃烧 高温 Ti+4NaCl 13.可用于吸收酒精中水分的氧化物是( ) 14.因为Na2O2有强碱性,所以熔融Na=2时不宜采用的器皿是( ) A.铁器皿 B. 镍制器皿 C. 瓷制或石英器皿 D. 以上都不行 15.下列碱土金属氧化物中,硬度最大的是( ) A. CaO B. BaO C. MgO D. BeO 16.下列过氧化物中至今尚未发现的是( ) 17.下列氧化物不属于超氧化物的是( ) 18.实验室中用H2SO4与如下物质作用制备H2O2,这种物质是( )

第10章 碱金属和碱土金属元素练习题

第10xx碱金属和碱土金属元素 一、选择题。 1.下列化合物用煤气灯火焰加热时,其分解产物不是氧化物、二氧化氮和氧气的是()(A) NaNO 3(B) Mg(NO 3)2(C) LiNO 3(D) Pb(NO 3)2 2.下列卤化物中,共价性最强的是………………………………………………………()(A) LiF(B) RbCl(C) LiI(D) BeI2 3.下列化合物中可用于干燥氢气的是…………………………………………………()(A) CaCO 3(B) Ca 3(PO 4) 2(C) CaCl 2(D) Ca(OH)24.常温下和N 2能直接起反应的金属是…………………………………………………()(A) Na(B) K(C) Be(D) Li 5.至今未发现有过氧化物的是…………………………………………………………()(A) Be(B) K,Rb,Cs (C) IIA(D) Li 6.下列各对元素中化学性质最相似的是………………………………………………()(A) Na,Mg (B) Al,Si (C) Be,Al (D) H,Li

7.下列原子中半径最大的是……………………………………………………………()(A) Ba(B) Ca(C) As(D) At 8.下列元素中具有最大第二电离能的是………………………………………………()(A) Na(B) K(C) Be(D) Li 9.下列分子中,最可能存在的氮化物是…………………………………………………() (A) Na 3N (B) K 3N (C) Li 3N (D) Ca 2N3 10.离子的水合能(绝对值)小于Na+的是…………………………………………………() (A) Li+(B) K+(C) Mg2+(D) Al3+ 11.下列碳酸盐中最易分解为氧化物的是………………………………………………() (A) CaCO 3(B) BaCO 3(C) MgCO 3(D) SrCO3 12.在下列卤化物中,共价性最强的是……………………………………………………() (A)氟化锂(B)氯化铷(C)碘化锂(D)碘化铍 13.和水反应得不到H 2O 2的是……………………………………………………………()(A) K 2O

无机化学练习题(含答案)第17章s区金属(碱金属与碱土金属)

第17章s 区金属(碱金属与碱土金属) 17-1: 写出下列反应的方程式: (1) 金属钠与H 2O ﹑Na 2O 2﹑NH 3﹑C 2H 5OH ﹑TiCl 4﹑KCl ﹑MgO ﹑NaNO 2 的 反应; (2) Na 2O 2与H 2O ﹑NaCrO 2﹑CO 2﹑Cr 2O 3﹑H 2SO 4(稀)的反应; 解:(1) 2Na + 2H 2O = 2NaOH + H 2↑ 2Na + Na 2O 2 = 2Na 2O 2Na + 2NH 3 = 2NaNH 2 + 3H 2↑ 2Na + 2C 2H 5OH = 2NaOC 2H 5 + H 2↑ Na + TiCl 4 = 4NaCl + Ti Na + KCl= K↑ + NaCl 2Na + MgO = Mg + Na 2O 6Na + 2NaNO 2 = Na 2O + N 2↑ (2) 2Na 2O 2 + 2H 2O = 4NaOH + O 2 ↑ Na 2O 2 + 2NaCrO 2 = 2Na 2CrO 4 + O 2↑ 2Na 2O 2 + 2CO 2 = 2Na 2Cr 3+ O 2↑ Na 2O 2 + Cr 2O 3 = Na 2CrO 4 Na 2O 2 + H 2SO 4 = 2Na 2SO 4 + 2H 2O 2 17-2:以重晶石为原料,如何制备 BaCl 2﹑BaCO 3﹑BaO 和 BaO 2 ?写出有关的化学反应方程式。 解: BaSO 4 + 4C===== BaS + 4CO BaS + 2HCl = BaCl 2 + H 2S BaS + CO 2 + H 2O = BaCO 3 + H 2S BaCO 3 ===== BaO + CO 2 2BaO + O 2 ===== 2BaO 17-3: 简要说明工业上生产金属钠﹑烧碱和纯碱的基本原理。 解:2NaCl ====== 2Na + Cl 2↑ (1) 加入CaCl 2作助熔剂,以熔盐电解法制金属钠 (2) 电解NaCl 水溶液可得NaOH 2NaCl + 2H 2O ===== Cl 2↑ + H 2↑ + 2NaOH (3) 用氨碱法 NaCl + NH 3 + CO 2 + H 2O = NaHCO 3↓ + NH 4Cl 2NaHCO 3===== Na 2CO 3 + H 2O↑ + CO 2↑ 17-4:含有Ca 2+﹑Mg 2+ 和SO 42-离子的粗盐如何精制成纯的食盐,以反应式表示。 解:(1) SO 42- + Ba 2+ = BaSO 4↓ 1633K 773-793K 电解 ?

第15章碱金属与碱土金属

第15章碱金属与碱土金属 教学要求 1.掌握碱金属、碱土金属单质的性质,了解其结构、制备、存在及用途与性质的关系。 2.掌握碱金属、碱土金属氧化物的类型及重要氧化物的性质及用途。 3.了解碱金属、碱土金属氢氧化物溶解性和碱性的变化规律。 4.掌握碱金属、碱土金属重要盐类的性质及用途,了解盐类热稳定性、溶解性的变化规律。 教学时数4学时 15-1 碱金属和碱土金属的通性 碱金属元素原子的价电子层结构为ns1。因此,碱金属元素只有+1氧化态。碱金属原子最外层只有一个电子,次外层为8电子(Li为2电子),对核电荷的屏蔽效应较强,所以这一个价电子离核校远,特别容易失去,因此,各周期元素的第一电离能以碱金属为最低。与同周期的元素比较,碱金属原子体积最大,只有一个成键电子,在固体中原子间的引力较小,所以它们的熔点、沸点、硬度、升华热都很低,并随着Li一Na—K一Rb一Cs的顺序而下降。随着原子量的增加(即原子半径增加),电离能和电负性也依次降低,见表17—1。 碱金属性质的变化一般很有规律,但由于锂原子最小,所以有些性质表现特殊。事实上,除了它们的氧化态以外,锂及其化合物的性质与本族其它碱金属差别较大,而与周期表中锂的右下角元素镁有很多相似之处。 碱金属元素在化合时,多以形成离子键为特征,但在某些情况下也显共价性。气态双原子分子,如Na2、Cs2等就是以共价键结合的。碱金属元素形成化合物时,锂的共价倾向最大,铯最小。 与碱金属元素比较,碱土金属最外层有2个s电子。次外层电子数目和排列与相邻的

碱金属元素是相同的。由于核电荷相应增加了一个单位,对电子的引力要强一些,所以碱土金属的原子半径比相邻的碱金属要小些,电离能要大些,较难失去第一个价电子。失去第二个价电子的电离能约为第一电离能的一倍。从表面上看碱土金属要失去两个电子而形成二价正离子似乎很困难,实际上生成化合物时所释放的晶格能足以使它们失去第二个电子。它们的第三电离能约为第二电离能的4—8倍,要失去第三个电子很困难,因此,它们的主要氧化数是+2而不是+1和+3。由于上述原因,所以碱土金属的金属活泼性不如碱金属。比较它们的标准电极电势数值,也可以得到同样的结论。在这两族元素中,它们的原了半径和核电荷都由上而下逐渐增大,在这里,原子半径的影响是主要的,核对外层电子的引力逐渐减弱,失去电子的倾向逐渐增大,所以它们的金属活泼性由上而下逐渐增强。 碱金属和碱土金属团体均为金属晶格,碱土金属由于核外有2个有效成键电子,原于间距离较小,金属键强度较大,因此,它们的熔点、沸点和硬度均较碱金属高,导电性却低于碱金属。碱土金属的物理性质变化不如碱金属那么有规律,这是由于碱土金属晶格类型不是完全相同的缘故。碱金属皆为体立方晶格,碱土金属中,Be、Mg为六方晶格,Ca、Sr为面心立方晶格,Ba为体立方晶格。 这两族元素的离子各有不同的味道特征,如Li+离子味甜;K+、Na+离子味咸;Ba+离子味苦。 Li+离子的极化力是碱金属中最强的,它的溶剂化作用和形成共价的趋势异常的大,有人提出有“锂键”的存在,类似于氢键,如H—F···Li—F和(LiF2)2。 15-2 碱金属和碱土金属的单质 15-2-1 存在和制备 一、存在 由于碱金属和碱土金属的化学性质很活泼,所以它们只能以化合状态存在于自然界中。在碱金属中,钠和锂在地壳中分布很广,两者的丰度都为2.5%。主要矿物有钠长石Na[AlSi3O8]、和钾长石K[A1Si3O8],光卤石KCl·MgCl2·6H 20及明矾石K2SO4·A12(SO4)3·24H2O等。海水中氯化钠的含量为2.7%,植物灰中也含有钾盐。锂的重要矿物为锂辉石Li2O·A1203 4SiO2,锂、铷和铯在自然界中储量较少且分散,被

第15章 s区元素

第十五章 s区元素 一、教学基本要求 1. 了解s区元素的物理性质和化学性质,能解释碱金属与水、醇和液氨反应的不同; 2. 了解主要元素的矿物资源及单质的制备方法,特别注意钾和钠制备方法的不同; 3. 了解s区元素的氢化物、氧化物、氢氧化物的性质,特别注意氢氧化物的碱性变化 规律; 4. 了解s区元素的重要盐类化合物,特别注意盐类溶解性的热力学解释; 5. 会用离子极化理论解释碳酸盐分解规律; 6. 了解对角线规则和锂、铍的特殊性。 二、要点 1. 汞齐(amalgam ) 又称汞合金,汞的特性之一是能溶解除铁以外的许多金属而生成汞齐。汞与一种 或几种金属形成汞齐时,含汞少时是固体,含汞多时是液体。天然的有金汞齐,银 汞齐,人工制备的有:钠汞齐、钾汞齐、锌汞齐、锡汞齐、铅汞齐等。 2. 熔盐电解法(Molten-salt electrolysis) 指以熔融态盐类为原料的电解方法,常用于制备不能由水溶液中制备的金属,如碱金属、碱土金属以及钍、钽混合稀土金属的生产。有时为降低熔体的熔点,节 省电能,须加入一定量的助熔剂。 3. 热还原法(Thermo-deoxidization) 用化学活性较强的金属,将被还原的金属从其化合物中置换出来,以制备金属或其 合金的方法。 4. 冠醚(Crown ether) 分子结构类似皇冠的“大环多醚”。最常用的有18-冠-6 (如下图中的a)、二环己基 -18-冠-6及二苯基18-冠-6等。冠醚对K+、Na+及其他阳离子有很强的选择性络合 ,F- ),提 K + X- 表示( X=MnO 4高了裸阴离子的活性。冠醚在有机合成中常用作“相转移反应的催化剂”。 5.穴醚(Cryptant) 分子结构类似地穴的“大环多醚”。穴醚几乎能够实现对K+和Na+离子的完全 分离,选择性可高达105:1。如下图中的(b) (c)所示。 (a) (b) (c)

碱金属碱土金属

第20章s区金属(ⅠA、ⅡA ) [教学要求] 1.掌握碱金属、碱土金属单质的性质,了解其存在、制备及用途与性质的关系。 2.掌握碱金属、碱土金属氧化物的类型及重要氧化物的性质及用途。 3.了解碱金属、碱土金属氢氧化物溶解性和碱性的变化规律。 4.掌握碱金属、碱土金属重要盐类的性质及用途,了解盐类热稳定性、溶解性的变化规律。[教学重点] 1.碱金属、碱土金属的单质、氧化物、氢氧化物、重要盐类的性质。 2.碱金属、碱土金属性质递变的规律。 [教学难点] 碱金属、碱土金属的氢氧化物性质递变规律。 [教学时数] 2学时(课堂讨论课) [主要内容] 1.碱金属、碱土金属的通性。 2.碱金属、碱土金属单质的性质、制法及用途。 3.碱金属、碱土金属的氧化物、氢氧化物、氢化物、盐类、配合物的性质。 [教学内容] 碱金属和碱土金属是周期表ⅠA族和ⅡA族元素。ⅠA族包括锂、钠、钾、铷、铯、钫六种金属元素。它们的氧化物溶于水呈碱性,所以称为碱金属。ⅡA族包括铍、镁、钙、锶、钡、镭六种金属元素。由于钙、锶、钡的氧化物在性质上介于“碱性的”和“土性的”(以前把粘土的主要成分,既难溶于水又难熔融的Al2O3称为“土”)之间。其中锂、铷、铯、铍是希有金属,钫和镭是放射性元素。钠、钾、镁、钙和钡在地壳内蕴藏较丰富,它们的单质和化合物用途广泛。 20-1 通性 1 结构:ns1-2 2 成键特征:+Ⅰ,+ Ⅱ离子型 3 I.E. χA在同周期最低。碱金属原子最外层只有一个电子,次外层为8电子(Li为2电子),对核电荷的屏蔽效应较强,所以这一个价电子离核校远,特别容易失去,因此,各周期元素的第一电离能以碱金属为最低。 4 m.p. b.p. 硬度低,且从上自下,有高到低。 导电性ⅠA>ⅡA 碱金属原子体积最大,只有一个成键电子,在固体中原子间的引力较小,所以它们的熔点、沸点、硬度、升华热都很低,并随着Li一Na—K一Rb一Cs的顺序而下降。碱金属和碱土金属团体均为金属晶格,碱土金属由于核外有2个有效成键电子,

第10章 碱金属和碱土金属元素学习要点和练习题

《无机化学》第十章(碱金属和碱土金属)学习要点和练习题 一、学习要点 1、碱金属和碱土金属单质的物理性质和化学性质 2、碱金属和碱土金属单质的制备 3、碱金属的氧化物、过氧化物、超氧化物 4、碱金属和碱土金属氢氧化物的性质 5、碱金属和碱土金属盐类的性质,重点是盐的溶解性、热稳定性的比较 6、了解碱金属和碱土金属矿石和复盐的名称和分子式 二、练习题 1. 写出分子式 生石膏重晶石方解石天青石明钒 2. 根据碱金属的性质的递变规律,预测钫的下列性质:主要物理性质(密度、硬度、熔点);在空气中燃烧的主要产物;与水反应的情况;FrClO4在水中的溶解性如何? 3. 写出Na2O2和KO2的成键特征,并用分子轨道理论分析O2-,O22-的键级。 4. 市售的氢氧化钠中为什么常含有碳酸钠?如何制备纯的NaOH溶液? 5. 完成并配平下列反应式 ①TiCl4+N a→②LiNO3(分解)→ ③Mg(NO3)2(分解)→④Be+ NaOH+ H2O→ ⑤KO3+ H2O→⑥Mg3N2+ H2O→ ⑦MgCl2·6H2O(加热)→⑧Be(OH)2+ NaOH→ ⑨CaH2+ H2O→⑩Na2O2+ Na→ 6. 锂的电极电势比钠的更负,但是锂与水反应还不如钠剧烈,为什么? 7. 碱土金属比相应的碱金属熔点高,硬度大,为什么? 8. 锂及其化合物与其它碱金属及其化合物在性质上有哪些不同?为什么? 9. 碱金属(除钫外),在过量氧气中燃烧时各生成何种氧化物?各类氧化物和水作用如何?写出有关方程式。 10. 碱土金属碳酸盐分解温度递变规律如何? 11 .用化学反应方程式表示下列物质间的转换 (1)Mg→Mg2N3→Mg(OH)2→Mg(NO3)2→MgO (2)BeO→BeCl2→Be(OH)2→Be(OH)42-→BeF42- 12. 列出下列几组物质熔点由高到低的顺序:(提示:比较晶格能) ①NaF ,NaCl ,NaBr ,NaI ②BaO ,SrO ,CaO ,MgO ③NaF ,CaO 13. 某碱土金属A在空气中燃烧时火焰呈橙红色,反应产物为B和C的固体混合物。该混合物与水反应生成D溶液,并放出气体E,E可使红色石蕊试纸变蓝,将CO2气体通入D 溶液中有白色沉淀F生成。试确定各字母所代表物质的化学式,写出有关反应方程式。14. 化合物A、B、C都是某碱金属元素的化合物,等物质的量的A和C反应可以生成B,加热C也可以生成B并放出气体D,向A的浓水溶液中通入D,可以生成B的水溶液,若长时间的通入D,可以生成一些C的结晶,A的焰色反应显示为黄色。试确定各字母所代表物质的化学式,写出有关反应方程式。

第一章 碱金属和碱土金属练习题

第一章碱金属和碱土金属练习题 一、完成并配平下列化学反应方程式: (1)钾的氧化物和水反应: ① K2O② K2O2③ KO2④ KO3 (2) 钾的氧化物吸收CO2。 ① K2O② K2O2③ KO2④ KO3 (3)下列化合物与水反应: ① NaH② Mg3N2③ XeOF4④ BaS⑤ NaAlH4⑥ NaBH4 (4) 下列化合物受热分解: ① NaNO3② LiNO3③ Mg(NO3)2 ④ CaO2⑤ KO2 ⑥ KO3 ⑦ MgCl2·6H2O⑧CaCl2·6H2O (5) 氢化物LiH与下列化合物反应。 ① B2H6② AlCl3③ TiCl4 (6)以重晶石为主要原料制备BaCl2和BaO2; (7) 以KCl为主要原料制备KClO3和O2

二、填空。 (1)比较在水中的溶解度的大小(用“>”或“<”填空)。 ① LiF NaF ② Li2CO3 Na2CO3 ③ Na2CO3 NaHCO3 ④ CaCO3 Ca(HCO3)2 ⑤ Na2SiF6 K2SiF6 ⑥ Na2PtCl6 K2PtCl6 ⑦ NaClO4 KClO4 ⑧ CaCO3 CaSO4 ⑨ BaCO3 BaSO4 ⑩ CaCO3 CaC2O4 (2) 给出下列物质的矿物名称。 a、NaNO3 b、NaCl c、 K Cl·MgCl2·6H2O d、Be3Al2Si6O18 e、 MgCO3 f、MgCO3·CaCO3 g、CaSO4·2H2O h、CaCO3 i、Ca5(PO4)3F j、CaF2 k、SrSO4 l、 BaSO4 (3) 比较化合物的热稳定性(用“>”或“<”填空)。

碱金属和碱土金属

新乡医学院无机化学实验课教案首页 授课教师姓名及职称: 新乡医学院化学教研室年月日

实验碱金属和碱土金属(I-II) 一、实验目的 1.了解金属镁和氢氧化镁的性质; 2.比较镁、钙、钡难溶盐的生成和性质; 3.掌握钠、钾的鉴定方法。 二、实验原理 周期系第ⅠA族元素称为碱金属元素,价电子层结构为ns1;周期系第ⅡA族元素称为碱土金属元素,价电子层结构为ns2。这两族元素是周期系中最典型的金属元素,化学性质非常活泼,其单质都是强还原剂。 除LiOH为中强碱外,碱金属氢氧化物都是易溶的强碱。碱土金属氢氧化物的碱性小于碱金属氢氧化物,在水中的溶解度也较小,都能从溶液中沉淀析出。 碱金属盐多数易溶于水,只有少数几种盐难溶(如醋酸铀酰锌钠、四苯硼酸钠等),可利用它们的难溶性来鉴定Na+、K+离子。 在碱土金属盐中,硝酸盐、卤化物(氟化物除外)、醋酸盐易溶于水;碳酸盐、硫酸盐、草酸盐、磷酸盐等难溶。可利用难溶盐的生成和溶解性的差异来鉴定Mg2+、Ca2+、Ba2+离子。 三、实验用品(略) 四、实验内容 (一)金属镁和氢氧化镁的性质 1.在2支试管中分别加入少量镁粉及蒸馏水约2mL,加热其中一支试管2~3min再分别加入酚酞指示剂1滴,观察溶液颜色变化,解释原因并写出反应式。 2.在2支试管中各加入0.1mol·L-1MgSO4溶液5滴,再分别滴加2mol·L-1NaOH溶液2~3滴,观察现象。然后在两试管中分别加入3mol·L-1NH4Cl溶液和2mol·L-1HCl数滴,观察现象并写出反应式。 (二)镁、钙、钡难溶盐的生成和性质 1.硫酸盐溶解度的比较 在3支试管中分别加入5滴0.1mol·L-1MgCl2、0.1mol·L-1CaCl2、0.1mol·L-1 BaCl2,然

碱金属和碱土金属

第 20 章 s 区元素 [ 教学要求] 1、了解碱金属和碱土金属的通性。 2、掌握碱金属和碱土金属的氢化物及氧化物的性质和用途。 3、掌握碱金属和碱土金属的氢氧化物及其盐类的性质和用途。[ 教学重点] 碱金属和碱土金属的单质及其重要化合物的性质变化规律 [ 教学难点] 碱金属和碱土金属的单质及其重要化合物的性质变化规律 [ 教学时数] 4 学时 [ 教学内容] 20-1 碱金属和碱土金属的通性 20-2 碱金属和碱土金属的单质 20-3 碱金属和碱土金属的化合物 [教学方法与媒体] 讲解,ppt展示 20-1 碱金属和碱土金属的通性 1、碱金属和碱土金属的基本性质 碱金属元素的一些基本性质 1决定碱金属的主要氧化态:+1 2溶剂化强度最大(水化能为519kJ·mol-1)。

碱土金属元素的一些基本性质 讨论:Li 的φθ值为什么最负?Be 的φθ值最小? 锂电对的数值乍看起来似乎反常,这个原子半径最小、电离能最高的元素倒成了最强的还原剂.显然与其溶剂化程度(水合分子数为25 . 3)和溶剂化强度(水合焓为-519 kJ ·mol -1 )都是最大的有关。 φθ(Be 2+/Be) 明显低于同族其余电对,与其高电离能有关。无法被水合焓补偿: I 1 (Be) + I 2 (Be) = 2 656 kJ ·mol -1。 2、碱金属和碱土金属的存在 由于碱金属和碱土金属的化学活泼性很强,因此在自然界均以化合态形式存在。钠、钾在地壳中分布很广,其丰度均为 2.5% 。锂、铷、铯在自然界中的储量很小且分散,被列为稀有金属。碱土金属的重要矿物较多,铍为稀有金属。 3、用途 一些元素的某些重要用途分述如下: 3 决定碱金属的主要氧化态:+3。 4 电离势很高,I1+I2=2567kJ·mol -1,无法补偿其水合焓。 Li +/Li Na +/Na K +/K Rb +/Rb Cs +/Cs -3.04 -2.71 -2.93 -2.92 -2.92 Be 2+/Be Mg 2+/Mg Ca 2+/Ca Sr 2+/Sr Ba 2+/Ba -1.97 -2.36 -2.84 -2.89 -2.92 S 区金属元素相关电对的标准电极电势φ (Ox/Red) (单位:V)

厦大无机7碱金属和碱土金属

碱金属和碱土金属 1.试说明为什么Be2+、Mg2+、Ca2+、Sr2+、Ba2+的水合热依次减弱? 2.某酸性BaCl2溶液中含少量FeCl3杂质。用Ba(OH)2或BaCO3调节溶液的pH值,均可把Fe3+沉淀为Fe(OH)3而除去。为什么?利用平衡移动原理进行讨论。 3.试解释为什么碱金属的液氨溶液,(1)有高的导电性;(2)是顺磁性的;(3)稀溶液呈兰色。 4.Rb2SO4的晶格能是-1729kJ·mol-1,溶解热是+24kJ·mol-1,利用这些数据求SO42-的水合热(已知Rb+的水合热为-289.5kJ·mol-1). 5.根据下图,可以由重晶石(BaSO4)作为原料,来制造金属钡及一些钡的化合物。试回答下列一些问题: C Na2CO3 C BaS BaCO3 BaSO 加热 BaO2 HCl HNO3 Ba Na2NO3 BaCl2·2H2O Ba(NO322 (1)现拟从重晶石制备BaCl2·2H2O。问应该采用哪些步骤,写出其化学方程式,并说明完成反应的理由。 (2)为何不能从BaS与硝酸作用直接制备Ba(NO3)2? (3)为何工业上不采用BaCO3直接加热分解方法来制备BaO? 6.利用下列数据计算KF和KI的晶格能。(单位kJ·mol-1) K+(g)F-(g)I-(g) 水合能(kJ·mol-1)-360.2 -486.2 -268.6 KF KI 溶解热(kJ·mol-1)-17.6 20.5 由计算结果再联系有关理论加以讨论。 7.讨论Li+、Na+、K+、Rb+、Cs+系列在水溶液的迁移率大小顺序?若在熔融盐中是否具有相同的顺序? 8.Na2O2可作为潜水密闭舱中的供氧剂,这是根据它的什么特点?写出有关反应式。 9.写出M2O、M2O2、MO2与水反应的方程式,并加以比较。 10.如何用离子势概念说明碱金属、碱土金属氢氧化物的碱性是随M+、M2+离子半径的增大增强。 11.如何证明碱金属氢化物中的氢是带负电的组分?预测CaH2、LiH与水反应的产物? 12.什么叫对角线规则?引起Li~Mg、Be~Al、B~Si三对元素性质上相似的原因是什么? 13.下列每对化合物中,哪一个在水中的溶解度可能更大些?

第10章碱金属与碱土金属习题解答

第十章碱金属和碱土金属 思考题解析 1(10-1)钾和钠在地壳中的丰度相近(2.74%),但为什么海洋中钾的含量远小于钠?(参看牟保磊编.元素地球化学.26页,北京大学出版社,1999年;曹素忱编.无机化学.283页.高等教育出版社,1993年)解:(1)不少钾盐在水中的溶解度比钠盐小,又钾与土壤里的硅酸盐、硅铝酸盐结合得很牢; (2)钾是植物生长的要素,从岩石中溶解出的大部分被植物所吸收。 2(10-2)碱金属及其氢氧化物为什么不能在自然界中存在? 解:因为碱金属的化学性质活泼,可与空气中的氧、自然界中的水直接反应;碱金属的氢氧化物均为强碱,易于自然界中的酸性物质(如空气中的CO2 、雨中的硝酸等)作用生成盐,所以碱金属及其氢氧化物不能在自然界中存在。 3(10-3)金属钠着火时能否用H2O、CO2、石棉毯扑灭?为什么? 解:金属钠着火时不能用H2O、CO2扑灭,可用石棉毯扑灭。因为金属钠着火时,若用H2O灭火,钠可与水反应产生易燃易爆的H2;若用CO2灭火,钠着火是表面生成的Na2O2会与CO2作用产生助燃的O2。石棉(CaO·3MgO·4SiO2)与钠不作用,可用于扑灭钠着火。 4(10-4)为什么人们常用Na2O2作供氧剂? 解:因为Na2O2在室温下与H2O、CO2反应生成O2,即 Na2O2 + 2H2O 2NaOH + H2O2 2H2O2 2H2O + O2 2Na2O2 + 2CO22NBa2CO3 + O2 5(10-5)某地的土壤现碱性主要是由于Na2CO3引起的,加入石膏为什么有降低碱性的作用? 解:石膏为CaSO4,他虽然不容于水,但与Na2CO3作用可生成更难溶的CaCO3,则降低了由于Na2CO3水解而引起的土壤碱性。 6(10-6)盛Ba(OH)2溶液的瓶子,在空气中放置一段时间后,其内壁会被蒙上一层白色薄膜,这成薄膜是什么物质?欲除去应采用下列何种物质来洗涤,并说明理由。 水(2)盐酸(3)硫酸 解:薄膜是BaCO3,因为Ba(OH)2可与空气CO2中反应,即 Ba(OH)2+CO2BaCO3+H2O 用盐酸可将BaCO3除出,因为可发生下列反应:

第二十章碱金属碱土金属之教案

第二十章碱金属碱土金属之教案 20-1.1: 定性解释碱金属和碱土金属从上到下和从左到右的金属活泼性变化规律(C级重点掌握)解:同族从上到下金属活泼性增强的原因是从上到下金属的原子半径依次增大,有效核电荷减小,对最外层电子的吸引力依次减小,所以更易失去电子,金属活泼性依次增强,第一电离势从上到下依次减小.同理从左到右金属活泼性减弱也是因为原子半径减小,有效核电荷增大,对最外层电子的吸引力增大,电子难失去,金属活泼性减弱. 二:Li和Be的特殊性(C级了解) 由于锂和铍分别是ⅠA和ⅡA中原子半径最小的,所以它们的性质与本族其它金属差别较大,表现出特殊。事实上,锂的性质与周期表中它右下角元素镁有很多相似之处,同样铍与周期表中它右下角的铝性质也相似。 20-1.2: 请从理论上解释锂和铍为什么出现以上的特殊性质?(C级掌握) 解:对于锂:单质熔沸点高,硬度大是因为原子半径小,金属键强导致;电极电势反常的低是因为Li+半径特别小,水合能突出的大,虽然锂的升华热和电离势比较大,但整个电极反应过程所需的能量较小,所以电极电势负值较大;Li+水合能较大,易形成含水化合物是因为离子的Z/r值越大,则水合能就越大;其化合物的共价倾向比较显著,溶解度小,且热稳定性差是因为Li+的Z/r值大,离子极化能力强,导致化合物的共价倾向明显增大,溶解度减小,稳定性减弱. 对于铍:电离势高是因为其原子半径小,有效核电荷大导致;形成共价键的倾向比较显著,化合物熔点都较低是因为Be2+的Z/r值大,离子极化能力强,导致化合物的共价倾向显著增大,化合物熔点降低;铍盐最易溶于水,且极易水解是由于Be2+的离子Z/r值大,水合能大导致;毒性极高是因为有极高溶解度和容易生成配合物;铍为两性金属是因对角线规则,性质与金属Al相似. 20-1.3: Li、Mg为对角元素,Li+、Mg2+半径十分接近,但它们的碳酸盐分解成氧化物的温度却相差悬殊.在没有热力学数据的条件下,你能作出谁高谁低的判断吗?(B级掌握) 解:对于分解反应: Li2CO3 == Li2O + CO2 MgCO3 == MgO + CO2 虽Li+和Mg2+半径接近,但+2价的Mg2+离子势(Z/r)大,对CO32-的极化作用大,盐的稳定性就会减小,所以MgCO3分解温度更低. 20-2 碱金属和碱土金属的单质 20-2-1 单质的性质和用途 一:性质: 1。比较(C级掌握) 2。典型反应:(C级掌握) 1)与空气的反应 从Li—Cs剧烈程度依次增强 4Li + O2==2Li2O 4Na + O2==2NaO 2M + O2==M2O2 M=Na,K,Rb,Cs M + O2==MO2 M=K,Rb,Cs 碱土金属活泼性略差,在空气中加热才显著反应生成氧化物。 20-2.1: 总结Li到Cs与空气和过量氧气反应的剧烈程度和生成产物的特点(C级重点掌握)

第17章 碱金属和碱土金属习题

第17章碱金属和碱土金属习题目录 一判断题;二选择题;三填空题;四完成反应方程式;五计算和解释 一判断题(返回目录) 1 重水是由H和18O组成的水。() 2 氢在自然界中主要以单质形式存在。() 3 由于H2是双原子分子,所以H2比He的扩散速率小。() 4 氢气是最轻的单质,所以它的熔点和沸点在所有单质中最低。() 5 因为氢分子的极化率大于氦分子的极化率,所以氢的熔点比氦高。() 6 常温下H2的化学性质不很活泼,其原因之一是H-H键键能较大。() 7 在HMn(CO)5中,H原子与Mn原子以Mn-H键相结合。() 8 在H[Cr(CO)5]2分子中存在着Cr-H-Cr氢桥键。()。 9 如果某氢化物的水溶液为碱性,则此氢化物必为离子型氢化物。() 10 碱金属氢化物都具有NaCl型晶体结构。() 11 H-在水溶液中不能存在。() 12 通常,s区元素只有一种稳定的氧化态。() 13 由于s区、p区元素性质活泼,它们都不能以单质的形式存在于自然界。() 14 s区元素在自然界不以单质形式存在。() 15 金属钙保存在煤油中。() 16 由于s区元素单质的密度很小,它们都可以浸在煤油中保存。() 17 碱金属熔点的高低次序为Li>Na>K>Rb>Cs。() 18 碱土金属的E(M2+/M)从Be到Ba依次变大。() 19 N2只能与碱土金属直接作用形成氮化物。() 20 在周期表中,处于对角线位置的元素性质相似,这称为对角线规则。() 21 所有碱金属和碱土金属都能形成稳定的过氧化物。() 22 s区元素形成的化合物大多是离子型化合物。() 23 由于E(Li+/Li)最小,所以锂是金属性最强的元素。() 24 碱土金属氢化物的熔点比同周期碱金属的氢化物熔点高。() 25 碱金属的所有盐类都是无色的。()

第二十章 S区金属(碱金属与碱土金属)

第二十章S区金属(碱金属与碱土金属) 总体目标: 1.掌握碱金属、碱土金属单质的性质,了解其性质、存在、制备及用途之间的关系 2.掌握碱金属、碱土金属氧化物的类型及重要氧化物的性质及用途 3.掌握碱金属、碱土金属氢氧化物溶解性和碱性的变化规律 4.掌握碱金属、碱土金属盐类的性质;认识锂和镁的相似性 各节目标: 第一节金属单质 1.了解碱金属和碱土金属单质的物理性质,包括颜色、状态、熔点、沸点、硬度、密度、导电性 2.掌握碱金属和碱土金属单质的化学性质,主要包括:①与水的反应②与非金属的反应(O2、Cl2、N2、H2等等)③与液氨的反应④与其他物质反应 3.了解碱金属和碱土金属的存在、熔盐电解法和热还原法制备方法及用途 第二节含氧化合物 1.掌握碱金属、碱土金属氧化物的类型,包括普通氧化物、过氧化物、超氧化物和臭氧化物及一些重要氧化物的性质和用途 2.掌握碱金属、碱土金属氢氧化物在同族从上到下溶解性增大及随离子半径的增大碱性增强的变化规律 第三节盐类 1.掌握碱金属、碱土金属重要盐类的热稳定性和溶解性的变化规律及用途 2.认识锂和镁的相似性,掌握它们的特性 Ⅱ习题 一选择题 ⒈下列氮化物中最稳定的是()(吉林大学《无机化学例题与习题》) A. Li3N B. Na3N C. K3N D. Ba3N2 ⒉已知一碱金属含氧化合物,遇水、遇CO2均可放出氧气,在过量氧气中加此 碱金属,可直接生成该含氧化合物,此氧化物之阴离子具有抗磁性,此物质为()

A.正常氧化物 B.过氧化物 C.超氧化物 D.臭氧化物 ⒊超氧离子-2O ,过氧离子-22O 与氧分子O 2相比较,稳定性低的原因是( ) A. -2O 、-22O 反键轨道上的电子比O 2的少,从而它们的键级小 B. -2O 、-22O 反键轨道上的电子比O 2的少,从而它们的键级大 C. -2O 、-22O 反键轨道上的电子比O 2的多,从而它们的键级小 D. -2O 、-22O 反键轨道上的电子比O 2的多,从而它们的键级大 ⒋电解熔融盐制金属钠所用的原料是氯化钠和氯化钙的混合物,在电解过程中阴极析出的是钠而不是钙,这是因为( ) A.)/()/(200Ca Ca Na Na ++>??,钠应先析出 B.还原一个钙离子需要2个电子,而还原一个钠离子只需一个电子, C.在高温熔融条件下,金属钠的析出电位比金属钙低 D.析出钙的耗电量大于析出钠的耗电量 ⒌已知)/()/(00Na Na Li Li ++>??,这是由于( ) A.锂的电离能大于钾、钠 B.锂与水的反应速度较钾、钠与水的更为强烈 C.锂与水的反应速度较钾、钠与水的更为缓慢 D.Li 的水化能大于Na +和K +的水化能 ⒍碱金属氢氧化物的溶解度较碱土金属氢氧化物为大,这是由于( ) A.它们的氢氧化物碱性强 B.它们的氢氧化物电离度大 C.碱金属离子的离子势大 D.碱金属离子的电离势小 ⒎锂和镁性质上的相似性是由于( ) A.锂、镁的离子极化能力相似 B.锂、镁的离子变形性相似 C.两者离子均为8电子层构型 D.两者离子半径相近、离子电荷相同 ⒏下列硫酸盐中热稳定性最高者是( ) A. Fe 2(SO 4)3 B. K 2SO 4 C. BeSO 4 D. MgSO 4 ⒐用金属钠在高温下能把KCl 中的K 还原出来,原因是( ) A.金属钠比金属钾更活泼

相关文档
相关文档 最新文档