文档库 最新最全的文档下载
当前位置:文档库 › 异面直线典型例题

异面直线典型例题

异面直线典型例题
异面直线典型例题

典型例题一

例1 若b a //,A c b = ,则a ,c 的位置关系是( ). A .异面直线 B .相交直线

C .平行直线

D .相交直线或异面直线

分析:判断两条直线的位置关系,可以通过观察满足已知条件的模型或图形而得出正确结论.

解:如图所示,在正方体1111D C B A ABCD -中,设a B A =11,b AB =,则b a //. 若设c B B =1,则a 与c 相交.若设c BC =,则a 与c 异面. 故选D .

说明:利用具体模型或图形解决问题的方法既直观又易于理解.一般以正方体、四面体等为具体模型.例如,a ,b 相交,b ,c 相交,则a ,c 的位置

b 异面,b ,

c 异面,则

关系是相交、平行或异面.类似地;a ,

a ,c 的位置关系是平行、相交或异

面.这些都可以用正方

体模型来判断.

典型例题二

例2 已知直线a 和点A ,α?A ,求证:过点A 有且只有一条直线和a 平行. 分析:“有且只有”的含义表明既有又惟一,因而这里要证明的有两个方面,即存在性和惟一性.

存在性,即证明满足条件的对象是存在的,它常用构造法(即找到满足条件的对象来证明);惟一性,即证明满足条件的对象只有..一个,换句话说,说是不存在第二个满足条件的对象.

因此,这是否定性...命题,常用反证法. 证明:(1)存在性.

∵ a A ?,∴ a 和A 可确定一个平面α,

由平面几何知识知,在α内存在着过点A 和a 平行的直线. (2)惟一性

假设在空间过点A 有两条直线b 和c 满足a b //和a c //.根据公理4,必有c b //与

A c b = 矛盾,

∴ 过点A 有一条且只有一条直线和a 平行.

说明:对于证明“有且只有”这类问题,一定要注意证明它的存在性和惟一性.

典型例题三

例3 如图所示,设E ,F ,G ,H 分别是空间四边形ABCD 的边AB ,BC ,CD ,DA 上的点,且

λ==AD AH AB AE ,μ==CD

CG CB CF ,求证: (1)当μλ=时,四边形EFGH 是平行四边形; (2)当μλ≠时,四边形EFGH 是梯形. 分析:只需利用空间等角定理证明FG EH //即可. 证明:连结BD ,

在ABD ?中,λ==AD AH

AB AE ,∴ BD EH //,且BD EH λ=. 在CBD ?中,μ==CD

CG

CB CF ,∴ BD FG //,且BD FG μ=.

∴ FG EH //,

∴ 顶点E ,F ,G ,H 在由EH 和FG 确定的平面内. (1)当μλ=时,FG EH =,故四边形EFGH 为平行四边形; (2)当μλ≠时,FG EH ≠,故四边形EFGH 是梯形. 说明:显然,课本第11页的例题就是本题(2)的特殊情况.

特别地,当2

1

==μλ时,E ,F ,G ,H 是空间四边形各边中点,以它们为顶点的四边形是平行四边形.

如果再加上条件BD AC =,这时,平行四边形EFGH 是菱形.

典型例题四

例4 已知b a 、是两条异面直线,直线a 上的两点B A 、的距离为6,直线b 上的两点

D C 、的距离为8,BD AC 、的中点分别为N M 、且5=MN ,求异面直线b a 、所成的角.

分析:解题的关键在于依据异面直线所成角的定义构造成和异面直线b a 、平行的两条相交直线,然后把它们归纳到某一三角形中求解.

解:如图,连结BC ,并取BC 的中点O ,连结ON OM 、, ∵ON OM 、分别是ABC ?和BCD ?的中位线, ∴AB OM //,CD ON //,即 a OM //,b ON //.

∴ON OM 、所成的锐角或直角是异面直线b a 、所成的角. 又∵ 6=AB ,8=CD , ∴3=OM ,4=ON . 在OMN ?中,又∵5=MN , ∴2

2

2

MN ON M =+, ∴

90=∠MON .

故异面直线b a 、所成的角是

90.

说明:在求两条异面直线所成的角时,一般要依据已知条件,找出与两条异面直线分别平行并且相交于一点的两条直线.但是,异面直线所成角的定义中的点O 一般是在图形中存在着的,需要认真观察分析图形的性质,从而找出这一点和过这一点与两异面直线平行的直线,以得到两条异面直线所成的角,在求这个角的大小时,一般是根据平面图形中解三角

形的知识求解的.

典型例题五

例5 已知四面体ABC S -的所有棱长均为a .求: (1)异面直线AB SC 、的公垂线段EF 及EF 的长; (2)异面直线EF 和SA 所成的角.

分析:依异面直线的公垂线的概念求作异面直线

AB SC 、的公垂线段,进而求出其距离;对于异面直线所

成的角可采取平移构造法求解.

解:(1)如图,分别取AB SC 、的中点F E 、,连结

CF SF 、.

由已知,得SAB ?≌CAB ?. ∴CF SF =,E 是SC 的中点, ∴SC EF ⊥. 同理可证AB EF ⊥

∴EF 是AB SC 、的公垂线段. 在SEF Rt ?中,a SF 23=

,a SE 2

1

=. ∴22SE SF EF -=

a a a 2

2

414322=-. (2)取AC 的中点G ,连结EG ,则SA EG //.

∴EF 和GE 所成的锐角或直角就是异面直线EF 和SA 所成的角. 连结FG ,在EFG ?中,a EG 21=,a GF 2

1

=,a EF 22=. 由余弦定理,得

222

2

2

124142412cos 2222

2

2

=??-+=??-+=∠a a a

a a EF EG GF EF EG GEF . ∴

45=∠GEF .

故异面直线EF 和SA 所成的角为

45.

说明:对于立体几何问题要注意转化为平面问题来解决,同时要将转化过程简要地写出来,然后再求值.

典型例题六

例6 如图所示,两个三角形ABC ?和'

''C B A ?的对应顶点的连线'AA 、'BB 、'

CC 交于同一点O ,且

3

2

'''===O C CO O B BO O A AO . (1)证明:'

'//B A AB ,'

'

//C A AC ,'

'

//C B BC ; (2)求

'

''C B A ABC

S S ??的值.

分析:证两线平等当然可用平面几何的方法.而求面积之比则需证两个三角形相似,由于三角形是平面图形,故也可用平面几何的方法证明.

证明:(1)当ABC ?和'

''C B A ?在O 点两侧时,如图甲 ∵'AA 与'

BB 相交于O 点,且

O

B BO

O A AO ''=, ∴'

'//B A AB (因为'

AA 、'

BB 共面).

同理''//C A AC ,'

'//C B BC .

(2)∵'

'//B A AB ,且'

'

//C A AC ,AB 和''B A ,AC 和'

'

C A 的方向相反,∴

'''C A B BAC ∠=∠,同理'''C B A ABC ∠=∠.

因此,ABC ?∽'

''C B A ?.

又3

2'''==O A AO B A AB ,∴94322

'''=???

??=??C B A ABC S S .

当ABC ?和'

''C B A ?在O 点的同侧时,如图乙所示,同理可得(1)(2).

说明:此题ABC ?与'

''C B A ?是否共面并不重要,因为等角定理对各种位置已作说明.

典型例题七

例7 S 是矩形ABCD 所在平面外一点,BC SA ⊥,CD SB ⊥,SA 与CD 成?60角,

SD 与BC 成?30角,a SA =,求:

(1)直线SA 与CD 的距离; (2)求直线SB 与AD 的距离.

分析:要求出SA 与CD 、SB 与AD 的距离,必须找到它们的公垂线段,公垂线段的长度即为异面直线间的距离.

解:如图所示,在矩形ABCD 中,AD BC //. ∵BC SA ⊥,∴AD SA ⊥.

又AD CD ⊥,∴AD 是异面直线SA 、CD 的公垂线段, 其长度为异面直线SA 、CD 的距离.

在SAD Rt ?中,∵SDA ∠是SD 与BC 所成的角, ∴?=∠30SDA .又a SA =,∴a AD 3=

(2)在矩形ABCD 中,CD AB //,AD SB ⊥, ∴AB SB ⊥,又AD AB ⊥,

∴AB 是直线SB 、AD 的公垂线段,其长度为异面直线SB 、AD 的距离. 在SAB Rt ?中,SAB ∠是异面直线SA 与CD 所成的角,∴?=∠60SAB . 又a SA =,∴2

60cos a a AB =?=, ∴直线SB 与AD 的距离为

2

a . 说明:(1)求异面直线之间距离的步骤是:①找(作)线段;②证线段是公垂线段;③求公垂线段的长度.

(2)求异面直线间的距离的问题,高考中一般会给出公垂线段.

典型例题八

例8 a 、b 、c 是三条直线,若a 与b 异面,b 与c 异面,判断a 与c 的位置关系,并画图说明.

分析:这是一道考查异面直线概念及空间直线位置关系的问题,同时也考查了图形语言的表达能力.

解:直线a 与c 的位置关系有以下三种情形如图:

∴直线a 与c 的位置关系可能平行(图中的(1));可能相交(如图中的(2)); 可能异面(图中的(3)).

说明:本题也考查了空间想象能力和逻辑划分、分类讨论的能力.

典型例题九

例9 如果两条异面直线称作“一对”,那么在正方体的十二条棱中,共有几对异面直

线( ).

A .12对

B .24对

C .36对

D .48对

分析:一般地,立体几何中的计数问题,是由所数的量的性质,确定一规律,然后按此规律进行计数.正方体的各棱具有相同的位置关系.所以以一条棱为基量,考察与其异面的几对,问题可解.

解:如图,正方体中与AB 异面有C C 1,D D 1,11C B ,11D A ,

∵各棱具有相同的位置关系,且正方体有12条棱,排除两棱的重复计算成本, ∴异面直线共有

242

4

12=?对. 说明:分析清楚几何体特点是避免重复计数的关键.计数问题必须避免盲目乱数,做到“不重不漏”.

典型例题十

例10 如图,已知不共面的直线a ,b ,c 相交于O 点,M 、P 是直线a 上两点,N 、

Q 分别是b ,c 上一点.

求证:MN 和PQ 是异面直线.

证法1:假设MN 和PQ 不是异面直线, 则MN 与PQ 在同一平面内,设为α ∵a P M ∈、,α∈P M 、

∴α?a .

又a O ∈,∴α∈O . ∵α∈N 且b O ∈,b N ∈, ∴α?b . 同理:α?C

∴a ,b ,c 共面于α,与已知a ,b ,c 不共面相矛盾, ∴MN 、PQ 是异面直线.

证法2:∵O c a = ,∴直线a ,c 确定一平面设为β. ∵a P ∈,c Q ∈,∴β∈P ,β∈Q , ∴β?PQ 且β∈M ,PQ M ?. 又a ,b ,c 不共面,b N ∈,∴β?N , ∴MN 与PQ 为异面直线.

说明:证明两条直线异面的方法有两种.

(1)用定义证明(即定义法):此时需借反证法,假设两条直线不异面,根据空间两条直线的位置关系,这两条直线一定共面,即这两条直线可能相交也可能平行,然后,推导出矛盾即可.

(2)用定理证明(即定理法):用该法证明时,必须阐述出定理满足的条件:α?a ,

α?A ,a B ?,然后可以推导出直线a 与AB 是异面直线.

典型例题十一

例11 已知平面α与平面β相交于直线l ,A ,B 为直线l 上的两点.在α内作直线

AC ,在β内作直线BD .求证AC 和BD 是异面直线.

已知:平面α 平面β=l ,l A ∈,l B ∈,α?AC ,β?BD ,如图. 求证:AC 、BD 是异面直线.

证明:假设AC,BD不是异面直线,则它们必共面.

∴A、B、C、D在同一平面内.

即A、B、C所确定的平面α与A、B、D确定的平面β重合

这与平面α 平面β=l矛盾

∴AC、BD是异面直线.

说明:证明两条直线为异面直线,用反证法往往比较简单.

典型例题十二

例12已知空间四边形ABCD,求证它的对角线AC和BD是异面直线.证法一:(反证法)如图

假设AC和BD不是异面直线,则AC和BD在同一平面内.

∴A、B、C、D在同一平面内,即四边形ABCD是平面四边形,

这与已知条件矛盾,所以假设不成立.

因此AC和BD是异面直线.

证法二:(定理法)

过BC和CD作一平面α,则对角线BD在平面α内.

对角线AC与平面α交于BD外的一点C,即点C不在直线BD上,

且A点在平面α外.

∴根据异面直线判定定理知:AC和BD是异面直线.

说明:判定两条直线是异面直线的证明问题常用这两种方法,即(1)反证法,(2)用判定定理.

典型例题十三

例13 已知空间四边形ABCD ,AC AB ≠,AE 是ABC ?的BC 边上的高,DF 是

BCD ?的BC 边上的中线,求证:AE 和DF 是异面直线.

证法一:(定理法)如图

由题设条件可知点E 、F 不重合,设BCD ?所在平面α.

∴?????

??

??∈??DF

E E A D

F αααAE 和DF 是异面直线. 证法二:(反证法)

若AE 和DF 不是异面直线,则AE 和DF 共面,设过AE 、DF 的平面为β. (1)若E 、F 重合,则E 是BC 的中点,这与题设AC AB ≠相矛盾. (2)若E 、F 不重合,

∵EF B ∈,EF C ∈,β?EF ,∴β?BC . ∵β∈A ,β∈D ,

∴A 、B 、C 、D 四点共面,这与题设ABCD 是空间四边形相矛盾. 综上,假设不成立. 故AE 和DF 是异面直线.

说明:反证法不仅应用于有关数学问题的证明,在其他方面也有广泛的应用. 首先看一个有趣的实际问题:

“三十六口缸,九条船来装,只准装单,不准装双,你说怎么装”

对于这个问题,同学们可试验做一做.

也许你在试验几次后却无法成功时,觉得这种装法的可能性是不存在的.那么你怎样才能清楚地从理论上解释这种装法是不可能呢

用反证法可以轻易地解决这个问题.假设这种装法是可行的,每条船装缸数为单数,则9个单数之和仍为单数,与36这个双数矛盾.只须两句话就解决了这个问题.

典型例题十四

例14 已知E 、1E 分别是正方体1111D C B A ABCD -的棱AD 、11D A 的中点. 求证:111C E B BEC ∠=∠.

分析:欲证两个角相等,可通过等角定理或其推论来实现. 证明:如图,连结1EE

∵1E ,E 分别为11D A ,AD 中点, ∴1

1E A AE ,

∴EA E A 11为平行四边形. ∴A A 1E E 1.

又∵A

A 1

B B 1,∴E E 1B B 1,

∴四边形11EBB E 是平行四边形.

∴EB B E //11.同理EC C E //11.又111B E C ∠与CEB ∠方向相同. ∴CEB B E C ∠=∠111.

说明:有关证明角相等问题,一般采用下面三种途径:(1)利用等角定理及其推论;(2)利用证三角形相似;(3)利用证三角形全等.

本例是通过第一种途径来实现.请同学们再利用第三种途径给予证明.

典型例题十五

例15 由四个全等的等边三角形的封面几何体称为正四面体,如图,正四面体ABCD 中,E、F分别是棱BC、AD的中点,CF与DE是一对异面直线,在图形中适当的选取一点作出异面直线CF、DE的平行线,找出异面直线CF与DE成的角.

分析1:选取平面ACD,该平面有以下两个特点,(1)该平面包含直线CF,(2)该平

DM//交AC的延长面与DE相交于点D,伸展平面ACD,在该平面中,过点D作CF

线于M,连结EM.可以看出:DE与DM所成的角,即为异面直线DE与CF所成的角.如图.

分析2:选取平面BCF,该平面有以下两个特点:(1)该平面包含直线CF,(2)该平面与DE相交于点E.在平面BCF中,过点E作CF的平行线交BF于点N,连结ND,可以看出:EN与ED所成的角,即为异面直线FC与ED所成的角.如图.

分析3:选取平面ADE,该平面有如下两个特点:(1)该平面包含直线DE,(2)该平

面与CF 相交于点F .在平面ADE 中,过点F 作DE FG //,与AE 相交于点G ,连结CG ,可以看出:FG 与FC 所成的角,即为异面直线CF 与DE 所成的角.

分析4:选取平面BCD ,该平面有如下特点:(1)该平面包含直线DE ,(2)该平面与CF 相交于点C ,伸展平面BCD ,在该平面内过点C 作DE CK //与BD 的延长线交于点K ,且BD DK =,连结FK ,则CF 与CK 所成的角,即为异面直线CF 与DE 所成的角.如图.

说明:(1)两条异面直线所成的角是非常重要的知识点,是每年高考的必考内容,要求牢固掌握两条异面直线所成的角的定义和两条异面直线互相垂直的概念,两条异面直线所成的角是刻划两条异面直线相对位置的一个量,是通过转化为相交直线成角来解决的,这里我们要注意:两条异面直线所成的角θ的范围是?≤

(2)本例题多方位、多角度思考问题,思路开阔、运用知识灵活,对我们解决异面直线所成角问题大有裨益,要认真理解.

典型例题十六

例16 如图,等腰直角三角形ABC 中,?=∠90A ,

2=BC ,AC DA ⊥,AB DA ⊥,

若1=DA ,且E 为DA 的中点.

求异面直线BE 与CD 所成角的余弦值.

分析:根据异面直线所成角的定义,我们可以选择适当的点,分别引BE 与DC 的平行线,换句话说,平移BE (或CD ).设想平移CD ,沿着DA 的方向,使D 移向E ,则C 移向AC 的中点F ,这样BE 与CD 所成的角即为BEF ∠或其补角,解EFB ?即可获解.

解:取AC 的中点F ,连结EF ,在ACD ?中,E 、F 分别是AD 、AC 的中点, ∴CD EF //,

∴BEF ∠即为所求的异面直线BE 与CD 所成的角或其补角. 在EAB Rt ?中,1=AB ,21

21==

AD AE ,∴25=BE . 在AEF Rt ?中,1=AC ,2

1

=

AE ,∴22=EF .

在ABF Rt ?中,1=AB ,2

1

=

AE ,∴25=BF .

在等腰三角形EBF 中,1010

2

5

4221cos ===∠BE EF

FEB , ∴异面直线BE 与CD 所成角的余弦值为

10

10. 说明:求角或求角的三角函数值的一般步骤是:①找(或作出)角,适合题意,②求角或求角的三角函数值,往往是化归成一个三角形的内角,通过解三角形求得.

典型例题十七

例17 在正四面体ABCD 中,已知E 是棱BC 的中点,求异面直线AE 和BD 所成角的余弦值.

分析:可在平面BCD 内过E 作BD 平行线,可在AEF ?中求得所成角的余弦值.

解:如图,取CD 的中点F ,连结EF ,AF , ∵E 为BC 的中点,

∴EF 为CBD ?的中位线,∴BD EF //,

∴AE 与EF 所成的锐角或直角就是异面直线AE 和BD 所成的角. 设正四面体的棱长为a ,由正三角形的性质知,

a AF AE 23=

=,a EF 2

1

=.在AEF ?中, 6

321cos =

=∠AE EF AEF ,即异面直线AE 和BD 所成角的余弦值为63. 说明:本题是利用三角形中位线达到平移的目的.这种作异面直线所成角的方法称为中位线平移法.

典型例题十八

例18 在正方体1111D C B A ABCD -中,求正方体对角线1BD 和面对角线AC 所成角的大小.

解:如图.

取D D 1上中点N ,则有:DN N D =1, 连结BD .令O AC BD = ,则DO BO =, 连结NO ,NA ,NC

∵N ,O 分别为D D 1,BD 的中点, ∴NO

12

1

BD , ∴NOA ∠(或NOC ∠)是异面直线1BD 和AC 所成的角. 在NAD Rt ?及NCD Rt ?中, ∵CD AD =,ND ND =, ∴NAD Rt ?≌NCD Rt ?, ∴NC NA =,

∴ANC ?为等腰三角形. 又O 为AC 中点, ∴AC NO ⊥,

∴异面直线1BD 和AC 所成角为?90.

说明:(1)由于异面直线所成角最大为直角,所以,在把异面直线平移得到的两个夹角中,必须选取其中较小的角为异面直线的所成角.

(2)实际上,正方体的体对角线与任意一条面对角线所成角均为直角.

典型例题十九

例19 在正方体1111D C B A ABCD -中,E 、F 分别为1BB 、1CC 的中点,求AE 、BF

所成角的余弦值.

分析1:可平移BF 至1EC ,可得到角1AEC ,再解三角形即可.但要注意到1AEC ∠为钝角.

解法1:如图,

连结1EC ,则BF EC //1,

由AE 与1EC 所成的锐角或直角,就是AE 与BF 所成的角, 连1AC ,令正方体的棱长为a , 有a EC AE 2

5

1=

=,a AC 31= 在1AEC ?中,5

1

5612122cos 22

122

121-=-=-=-=∠AE AC AE AC AE AEC ,

∴1AEC ∠的补角为异面直线AE 与BF 所成角. ∴AE 、BF 所成角的余弦值是

5

1. 分析2:连结DB 、FD ,可得DFB ∠即为异面直线AE 和BF 所成的角.进而求其余弦值.

解法2:连结DB 、FD ,可证得AE FD //.(∵EF

AD )

DFB ∠(或其补角)即为异面直线AE 、BF 所成的角.

a BF DF 2

5

=

=,a BD 2=. 由余弦定理,有

(

)

512

52

45452

525222525cos 2

2

2=-+=??-??

?? ??+???? ?

?=∠a a a

a a DFB ,

∴AE 、BF 所成角的余弦值是5

1

说明:异面直线所成角的范围是]90,0(??,当求得某角的余弦值为负值时,则此角的补角是异面直线所成角.

典型例题二十

例20 在空间四边形ABCD 中:CD AB =,BD AC =,E ,F 分别是AD ,BC 的中点.求证:线段EF 是异面直线AD ,BC 的公垂线.

证明:如图.

连结AF 、DF 、BE 、CE . 在ABD ?和ACD ?中,

CD AB =,BD AC =,AD 公用

∴ABD ?≌ACD ?. 又E 是AD 中点, ∴CE BE =.

在BEC ?中,F 是BC 的中点, ∴BC EF ⊥. 同理AD EF ⊥,

∴EF 是异面直线AD 、BC 的公垂线.

说明:证明某一条直线是两条异面直线的公垂线,须证明以下两点:(1)与两条异面直

线都垂直;(2)与两条异面直线都相交.

典型例题二十一

例21 如图,空间四边形ABCD 中,四边AB 、BC 、CD 、DA 和对角线AC 、BD 都等于a ,E 、F 分别为AB 、CD 的中点.

(1)求证:EF 是异面直线AB 、CD 的公垂线. (2)求异面直线AB 和CD 的距离.

分析:要证明EF 是异面直线AB 与CD 的公垂线,必须说明两个方面的问题,一个方面EF 与AB 、CD 都相交,另一个方面AB 、CD 与EF 都垂直.

(1)证明:连结AF 、BF ,由已知BCD ?和ACD ?均为正三角形,E 、F 分别为AB 、

CD 的中点,∴BF AF =,AB EF ⊥.

同理CD EF ⊥,又EF 与AB 、CD 都相交, ∴EF 为异面直线AB 、CD 的公垂线.

(2)解:∵空间四边形各边及对角线AC 、BD 的长均为a , ∴a BF AF 23=

=,而a AE 2

1

=, ∴在AEF Rt ?中,a AE AF EF 2

2

22=

-=

. ∴异面直线AB 和CD 之间的距离为

a 2

2

. 说明:(1)求线段的长度一般地要把该线段放到一个三角形中去求解,尤其是放到特殊三角形中去求解,如直角三角形、等腰三角形等.

(2)满足条件的该空间四边形其实质是空间正四面体,该问题实质上是求正四面体对棱之间的距离.

数学必修2 直线与方程典型 例题

第三章直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型一求直线的倾斜角 例 1 已知直线的斜率的绝对值等于,则直线的倾斜角为(). A. 60° B. 30° C. 60°或120° D. 30°或150° 变式训练: 设直线过原点,其倾斜角为,将直线绕原点沿逆时针方向旋转45°, 得到直线,则的倾斜角为()。 A. B. C. D. 当0°≤α<135°时为,当135°≤α<180°时,为 题型二求直线的斜率 例2如图所示菱形ABCD中∠BAD=60°,求菱形ABCD各边和两条对角线所在直线的倾斜角和斜率. 变式训练:已知过两点, 的直线l的倾斜角为45°,求实数的值. 题型三直线的倾斜角与斜率的关系 例3右图中的直线l1、l2、l3的斜率分别为k1、k2、k3,则(). A .k1<k2<k3 B. k3<k1<k2 C. k3<k2<k1 D. k1<k3<k2

拓展一三点共线问题 例4 已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值. 变式训练: 若三点P(2,3),Q(3,),R(4,)共线,那么下列成立的是(). A. B. C. D. 拓展二与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线与线段AB始终有公共点,求直线的斜率的取值范围. 变式训练: 已知两点,直线过定点且与线段AB相交,求直线的斜率的取值范围.

拓展三利用斜率求最值 例 6 已知实数、满足当2≤≤3时,求的最大值与最小值。 变式训练:利用斜率公式证明不等式:且 3.1.2 两条直线平行与垂直的判定 【知识点归纳】 1.直线平行的判定 2.两条直线垂直的判定(注意垂直与x轴和y轴的两直线): 【典型例题】 题型一两条直线平行关系 例 1 已知直线经过点M(-3,0)、N(-15,-6),经过点R(-2,)、S(0,),试判断与是否平行? 变式训练:经过点和的直线平行于斜率等于1的直线,则的值是(). A.4 B.1 C.1或3 D.1或4

直线与方程(经典例题)

直线与方程 知识点复习: 一、直线与方程 (1)直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值围是0°≤α<180° (2)直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k 表示。即tan k α=。斜率反映直线与轴的倾斜程度。 当[ ) 90,0∈α时,0≥k ; 当( ) 180,90∈α时,0

数学必修2---直线与方程典型例题(精)

第三章 直线与方程 3.1 直线的倾斜角与斜率 3.1.1 倾斜角与斜率 【知识点归纳】 1.直线的倾斜角: 2.直线的斜率: 3.直线的斜率公式: 【典型例题】 题型 一 求直线的倾斜角 例 1 已知直线l 的斜率的绝对值等于3,则直线的倾斜角为( ). A. 60° B . 30° C. 60°或120° D. 30°或150° 变式训练: 设直线l 过原点,其倾斜角为α,将直线l 绕原点沿逆时针方向旋转45°,得到直线1l ,则 1l 的倾斜角为( )。 A. 45α+? B . 135α-? C. 135α?- D. 当0°≤α<135°时为45α+?,当135°≤α<180°时,为135α-? 题型 二 求直线的斜率 例 2如图所示菱形ABCD 中∠BAD =60°,求菱形A BCD 各边和两条对角线所在直线的倾斜角和斜率. 变式训练: 已知过两点22(2,3)A m m +-, 2(3,2)B m m m --的直线l 的倾斜角为45°,求实数m 的值. 题型 三 直线的倾斜角与斜率的关系 例3右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k3? B. k3

变式训练: 若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B.1b a -= C.23a b -= D.23a b -= 拓展 二 与参数有关问题 例 5 已知两点A (-2,- 3) , B (3, 0) ,过点P (-1, 2)的直线l 与线段AB 始终有公共点,求直线l 的斜率k 的取值范围. 变式训练: 已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB相交,求直线l 的斜率k 的取值范围. 拓展 三 利用斜率求最值 例 6 已知实数x 、y 满足28,x y +=当2≤x ≤3时,求y x 的最大值与最小值。 变式训练: 利用斜率公式证明不等式:(0a m a a b b m b +><<+且0)m > 3.1.2 两条直线平行与垂直的判定 【知识点归纳】

高考数学大题经典习题

1. 对于函数()3 2 1(2)(2)3 f x a x bx a x =-+-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 22sin cos t t t -+t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()3 2 1 (2)(2)3 f x a x bx a x =-+-+-,则()2'(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02 (2)323(2)0a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得224a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3 )((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B 分别为函数)(x f 的极大值点和极小值点,且|AB|=2,αββα-=-)()(f f .

[高考数学]高考数学函数典型例题

?0x时,总有 00 ?01}的四组函数如下: ①f(x)=x2,g(x)=x;②f(x)=10-x+2,g(x)=2x-3 x;

③ f(x)= , g(x)= ; ④ f(x)= , g(x)=2(x-1-e -x ) . 年 高 考 江 苏 卷 试 题 11 ) 已 知 函 数 f ( x ) = ? x + 1, x ≥ 0 , 则 满 足 不 等 式 ) 剪成两块,其中一块是梯形,记 S = ,则 S 的最小值是____▲____。 2 x 2 +1 xlnx+1 2x 2 x lnx x+1 其中, 曲线 y=f(x) 和 y=g(x) 存在“分渐近线”的是( ) A. ①④ B. ②③ C.②④ D.③④ 33. (20XX 年 高 考 天 津 卷 理 科 16) 设 函 数 f ( x ) = x 2 - 1 , 对 任 意 3 x x ∈[ , +∞) , f ( ) - 4m 2 f ( x ) ≤ f ( x - 1) + 4 f (m ) 2 m 恒成立,则实数 m 的取值范围是 。 34 .( 20XX ? 2 ?1, x < 0 f (1- x 2 )> f ( 2x 的 x 的范围是__▲___。 35.(20XX 年高考江苏卷试题 14)将边长为 1m 正三角形薄片,沿一条平行于底边的直线 (梯形的周长) 梯形的面积 36 已知函数 f ( x ) = ( x + 1)ln x - x + 1 . (Ⅰ)若 xf '(x) ≤ x 2 + ax + 1 ,求 a 的取值范围; (Ⅱ)证明: ( x - 1) f ( x ) ≥ 0 .

《直线与方程》教案+例题精析

考点1:倾斜角与斜率 (一)直线的倾斜角 例1例1. 若θ为三角形中最大内角,则直线0tan :=++m y x l θ的倾斜角的范围是( ) A.??? ?????? ??32,22,0πππ B.??? ?????? ??32223ππππ,, C.??? ?????? ??πππ,,330 D.?? ? ?????? ??πππ,,3220 2 若直线:l y kx =2360x y +-=的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .,63ππ?????? B .,62ππ?? ??? C .,32ππ?? ??? D .,62ππ?????? (二)直线的斜率及应用 3、利用斜率证明三点共线的方法:已知112233(,),(,),(,),A x y B x y C x y 若123AB AC x x x k k ===或,则有A 、B 、C 三点共线。 例2、设,,a b c 是互不相等的三个实数,如果333(,)(,)(,)A a a B b b C c c 、、在同一直线上,求证:0a b c ++= 1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b a B .1=-b a C .0=+b a D .0=-b a 2.过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为() A.1 B.4 C.1或3 D.1或4 3.已知直线l 则直线的倾斜角为( ) A. 60° B. 30° C. 60°或120° D. 30°或150° 4.若三点P (2,3),Q (3,a ),R (4,b )共线,那么下列成立的是( ). A .4,5a b == B .1b a -= C .23a b -= D .23a b -= 5.右图中的直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则( ). A .k 1<k 2<k 3 B. k 3<k 1<k 2 C. k 3<k 2<k 1 D. k 1<k 3<k 2 6.已知两点A (x ,-2),B (3,0),并且直线AB 的斜率为2,则x = . 7.若A (1,2),B (-2,3),C (4,y )在同一条直线上,则y 的值是 . 8.已知(2,3),(3,2)A B ---两点,直线l 过定点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围. 9、直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________. 考点2:求直线的方程 例3. 已知点P (2,-1).(1)求过P 点且与原点距离为2的直线l 的方程; (2)求过P 点且与原点距离最大的直线l 的方程,最大距离是多少? (3)是否存在过P 点且与原点距离为6的直线?若存在,求出方程;若不存在,请说明理由. 1、求过点P (2,-1),在x 轴和y 轴上的截距分别为a 、b,且满足a=3b 的直线方程。 2、设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为x -y +1=0,则直线PB 的方程是( )A. x +y -5=0 B. 2x -y -1=0 C. 2y -x -4=0 D. 2x +y -7=0 3、直线过点(-3,4),且在两坐标轴上的截距之和为12,则该直线方程为________. 4、过点P (-2,3)且在两坐标轴上的截距相等的直线l 的方程为_____________. 5、已知点A (2,-3)是直线a 1x +b 1y +1=0与直线a 2x +b 2y +1=0的交点,则经过两个不同点P 1(a 1,b 1)和P 2(a 2,b 2)的直线方程是( )A .2x -3y +1=0 B .3x -2y +1=0 C .2x -3y -1=0 D .3x -2y -1=0 6、.过点P (0,1)且和A (3,3),B (5,-1)的距离相等的直线方程是( ) A .y =1 B .2x +y -1=0 C .y =1或2x +y -1=0 D .2x +y -1=0或2x +y +1=0 7.如图,过点P (2,1)作直线l ,分别为交x 、y 轴正半轴于A 、B 两点。(1)当⊿AOB

高二数学直线与方程典型习题教师版

【知识点一:倾斜角与斜率】 (1)直线的倾斜角 ①关于倾斜角的概念要抓住三点:1、与x 轴相交;2、x 轴正向;3、直线向上方向。 ②直线与x 轴平行或重合时,规定它的倾斜角为0 0 ③倾斜角α的范围0 0180α≤< (2)直线的斜率 ①直线的斜率就是直线倾斜角的正切值,而倾斜角为0 90的直线斜率不存在. 记作tan k α=0(90)α≠ ⑴当直线l 与x 轴平行或重合时, 00α=,0tan 00k == ⑵当直线l 与x 轴垂直时, 090α=,k 不存在. ②经过两点1112212(,),(,)P x y P x y x x ≠( )的直线的斜率公式是21 21 y y k x x -=- ③每条直线都有倾斜角,但并不是每条直线都有斜率. (3)求斜率的一般方法: ①已知直线上两点,根据斜率公式21 2121 ()y y k x x x x -= ≠-求斜率; ②已知直线的倾斜角α或α的某种三角函数根据tan k α=来求斜率; (4)利用斜率证明三点共线的方法: 已知112233(,),(,),(,)A x y B x y C x y ,若123AB BC x x x k k ===或,则有A 、B 、C 三点共线。 【知识点二:直线平行与垂直】 (1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =? 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行 (2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=??⊥k k l l 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确; 由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直. (2)线段的中点坐标公式 【知识点四 直线的交点坐标与距离】 (1)两条直线的交点

数学必修2---直线与方程典型例题

第三章直线与方程 【典型例题】 题型一求直线的倾斜角与斜率 设直线I斜率为k且1

3.1.2两条直线平行与垂直的判定 【 【典型例题】 题型一两条直线平行关系 例1 已知直线l i 经过点M (-3, 0)、N (-15,-6), 12 经过点R (-2, - )、S (0, 2 5),试判断^与12是否平行? 2 变式训练:经过点P( 2,m)和Q(m,4)的直线平行于斜率等于1的直线,贝U m的值是(). A . 4 B. 1 C. 1 或3 D. 1 或4 题型二两条直线垂直关系 例2已知ABC的顶点B(2,1), C( 6,3),其垂心为H( 3,2),求顶点A的坐标. 变式训练:(1) h的倾斜角为45 ° 12经过点P (-2,-1 )、Q (3,-6),问h与12是否垂直? (2)直线11,12的斜率是方程x2 3x 1 0的两根,则h与12的位置关系是—. 题型三根据直线的位置关系求参数 例3已知直线h经过点A(3,a)、B (a-2,-3),直线S经过点C (2,3)、D (-1,a-2) (1)如果I1//I2,则求a的值;(2)如果11丄12,则求a的值 题型四直线平行和垂直的判定综合运用 例4四边形ABCD的顶点为A(2,2 2 2)、B( 2,2)、C(0,2 2.. 2)、D(4,2),试判断四边形ABCD的形状.

最新直线与方程知识点及典型例题

第三章 直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时 ,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即k=tan α。斜率反映直线与轴的倾斜程度。 当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在. 当[ ) 90,0∈α时,0≥k ; 当( ) 180 ,90∈α时,0

高考数学大题经典习题

1. 对于函数()32 1(2)(2)3 f x a x bx a x =- +-+-。 (1)若()f x 在13x x ==和处取得极值,且()f x 的图像上每一点的切线的斜率均不超过 2 2sin cos t t t -+ t 的取值范围; (2)若()f x 为实数集R 上的单调函数,设点P 的坐标为(),a b ,试求出点P 的轨迹所形成的图形的面积S 。 1. (1)由()32 1(2)(2)3 f x a x bx a x =- +-+-,则 ()2 '(2)2(2)f x a x bx a =-+-+- 因为()13f x x x ==在和处取得极值,所以()13'0x x f x ===和是的两个根 22 1(2)121(2)02(2)323(2)0 a a b a b a b a ?=--+?-?+-=????=--+?-?+-=?? ()2 '43f x x x ∴=-+- 因为()f x 的图像上每一点的切线的斜率不超过2 2sin cos t t t -+ 所以()2 '2sin cos f x t t t x R ≤-+ ∈恒成立, 而()()2 '21f x x =--+,其最大值为1. 故2 2sin cos 1t t t -+ ≥ 72sin 21,3412t k t k k Z πππππ? ??-≥?+≤≤+∈ ??? (2)当2a =-时,由()f x 在R 上单调,知0b = 当2a ≠-时,由()f x 在R 上单调()'0f x ?≥恒成立,或者()'0f x ≤恒成立. ∵()2 '(2)2(2)f x a x bx a =-+-+-, 2244(4)0b a ∴?=+-≤可得22 4a b +≤ 从而知满足条件的点(),P a b 在直角坐标平面aob 上形成的轨迹所围成的图形的面积为 4S π= 2. 函数cx bx ax x f ++=2 3)((0>a )的图象关于原点对称,))(,(ααf A 、)) (,(ββf B

人教A版高中数学必修2第三章 直线与方程3.1 直线的倾斜角与斜率习题(3)

直线的倾斜角和斜率 3.1倾斜角和斜率 1、直线的倾斜角的概念:当直线l 与x 轴相交时, 取x 轴作为基准, x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.特别地,当直线l 与x 轴平行或重合时, 规定α= 0°. 2、 倾斜角α的取值范围: 0°≤α<180°. 当直线l 与x 轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,也就是 k = tan α ⑴当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l 与x 轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l 的倾斜角α一定存在,但是斜率k 不一定存在. 4、 直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 3.1.2两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k 1=k 2, 那么一定有L 1∥L 2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即 基础卷 一.选择题: 1.下列命题中,正确的命题是 (A )直线的倾斜角为α,则此直线的斜率为tan α (B )直线的斜率为tan α,则此直线的倾斜角为α (C )任何一条直线都有倾斜角,但不是每一条直线都存在斜率 (D )直线的斜率为0,则此直线的倾斜角为0或π 2.直线l 1的倾斜角为30°,直线l 2⊥l 1,则直线l 2的斜率为 (A )3 (B )-3 (C )33 (D )-3 3 3.直线y =x cos α+1 (α∈R )的倾斜角的取值范围是 (A )[0, 2π] (B )[0, π) (C )[-4π, 6π] (D )[0, 4π]∪[4 3π,π) 4.若直线l 经过原点和点(-3, -3),则直线l 的倾斜角为 (A )4π (B )54π (C )4π或54 π (D )-4π 5.已知直线l 的倾斜角为α,若cos α=-5 4,则直线l 的斜率为

直线与方程知识点及典型例题.docx

第三章直线与方程知识点及典型例题 1. 直线的倾斜角 定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0 度。因此,倾斜角的取值范围是0°≤α<180° 2. 直线的斜率 ① 定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。 直线的斜率常用k 表示。即 k=tan 。斜率反映直线与轴的倾斜程度。 当直线 l 与 x 轴平行或重合时 ,α=0°,k = tan0 =0;° 当直线 l 与 x 轴垂直时 ,α= 90k°不,存在 . 当0,90时, k0 ;当90 ,180时, k0;当90 时,k不存在。 例 .如右图,直线l 1的倾斜角 =30°,直线 l1⊥ l 2,求直线 l1和 l2的斜率 . y 解: k1=tan30° =3∵ l1⊥ l2∴ k1· k2 =— 1l 1 3 ∴ k2 =—32x 1 例:直线 x 3 y50 的倾斜角是()o l2 °°°° ②过两点 P1 (x1, y1)、P1(x1,y1) 的直线的斜率公式: k y2y 1 ( x1x 2 ) x2x1 注意下面四点: (1)当x1x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与 P1、 P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 例 .设直线l1经过点A(m,1)、B(—3,4),直线l2经过点C(1,m)、D(—1,m+1), 当 (1) l / / l 2(2) l⊥l时分别求出 m 的值 111 ※三点共线的条件:如果所给三点中任意两点的斜率都有斜率且都相等,那么这三点共线。 3. 直线方程 ① 点斜式:y y1k( x x1 )直线斜率k,且过点x1, y1 注意:当直线的斜率为0°时, k=0,直线的方程是y=y1。 当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都

人教版高中数学必修 知识点考点及典型例题解析全

必修二 第一章 空间几何体 知识点: 1、空间几何体的结构 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 2、长方体的对角线长2222c b a l ++=;正方体的对角线长a l 3= 3、球的体积公式:33 4  R V π= ,球的表面积公式:24 R S π= 4、柱体h s V ?=,锥体h s V ?=31,锥体截面积比:22 2 1 21h h S S = 5、空间几何体的表面积与体积 ⑴圆柱侧面积; l r S ??=π2侧面 ⑵圆锥侧面积: l r S ??=π侧面 典型例题: ★例1:下列命题正确的是( ) A.棱柱的底面一定是平行四边形 B.棱锥的底面一定是三角形 C.棱柱被平面分成的两部分可以都是棱柱 D.棱锥被平面分成的两部分不可能都是棱锥 ★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( ) A 21 倍 B 42倍 C 2倍 D 2倍 ★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是( ) A.上部是一个圆锥,下部是一个圆柱 B.上部是一个圆锥,下部是一个四棱柱 C.上部是一个三棱锥,下部是一个四棱柱 D.上部是一个三棱锥,下部是一个圆柱

★★例4:一个体积为38cm 的正方体的顶点都在球面上,则球的表面积是 A .28cm π B 2 12cm π. C 216cm π. D .220cm π 二、填空题 ★例1:若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________. ★例2:球的半径扩大为原来的2倍,它的体积扩大为原来的 _________ 倍. 第二章 点、直线、平面之间的位置关系 知识点: 1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。 2、公理2:过不在一条直线上的三点,有且只有一个平面。 3、公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点 的公共直线。 4、公理4:平行于同一条直线的两条直线平行. 5、定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。 6、线线位置关系:平行、相交、异面。 7、线面位置关系:直线在平面内、直线和平面平行、直线和平面相交。 8、面面位置关系:平行、相交。 9、线面平行: ⑴判定:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简 称线线平行,则线面平行)。 ⑵性质:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与 该直线平行(简称线面平行,则线线平行)。 10、面面平行: ⑴判定:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简 称线面平行,则面面平行)。 ⑵性质:如果两个平行平面同时和第三个平面相交,那么它们的交线平行(简称 面面平行,则线线平行)。 11、线面垂直: ⑴定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和 这个平面垂直。 ⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直 (简称线线垂直,则线面垂直)。 ⑶性质:垂直于同一个平面的两条直线平行。 12、面面垂直: ⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直。 ⑵判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直(简称线面垂直,

高考数学典型例题详解

高考数学典型例题详解 奇偶性与单调性 函数的单调性、奇偶性是高考的重点和热点内容之一,特别是两性质的应用更加突出.本节主要帮助考生学会怎样利用两性质解题,掌握基本方法,形成应用意识. ●难点磁场 (★★★★★)已知偶函数f (x )在(0,+∞)上为增函数,且f (2)=0,解不等式f [log 2(x 2+5x +4)]≥0. ●案例探究 [例1]已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,设不等式解集为A ,B =A ∪{x |1≤x ≤5},求函数g (x )=-3x 2+3x -4(x ∈B )的最大值. 命题意图:本题属于函数性质的综合性题目,考生必须具有综合运用知识分析和解决问题的能力,属★★★★级题目. 知识依托:主要依据函数的性质去解决问题. 错解分析:题目不等式中的“f ”号如何去掉是难点,在求二次函数在给定区间上的最值问题时,学生容易漏掉定义域. 技巧与方法:借助奇偶性脱去“f ”号,转化为x cos 不等式,利用数形结合进行集合运算和求最值. 解:由? ??<<-<

∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2f (0)对所有θ∈[0, 2 π ]都成立? 若存在,求出符合条件的所有实数m 的范围,若不存在,说明理由. 命题意图:本题属于探索性问题,主要考查考生的综合分析能力和逻辑思维能力以及运算能力,属★★★★★题目. 知识依托:主要依据函数的单调性和奇偶性,利用等价转化的思想方法把问题转化为二次函数在给定区间上的最值问题. 错解分析:考生不易运用函数的综合性质去解决问题,特别不易考虑运用等价转化的思想方法. 技巧与方法:主要运用等价转化的思想和分类讨论的思想来解决问题. 解:∵f (x )是R 上的奇函数,且在[0,+∞)上是增函数,∴f (x )是R 上的增函数.于是不等式可等价地转化为f (cos2θ-3)>f (2m cos θ-4m ), 即cos2θ-3>2m cos θ-4m ,即cos 2θ-m cos θ+2m -2>0. 设t =cos θ,则问题等价地转化为函数g (t ) =t 2-mt +2m -2=(t - 2 m )2 -4 2 m +2m -2在[0,1]上的值恒为正,又转化为函数g (t )在[0,1]上的最小值为正. ∴当 2 m <0,即m <0时,g (0)=2m -2>0?m >1与m <0不符; 当0≤2 m ≤1时,即0≤m ≤2时,g (m )=-42m +2m -2>0 ?4-221,即m >2时,g (1)=m -1>0?m >1.∴m >2 综上,符合题目要求的m 的值存在,其取值范围是m >4-22.

直线与方程经典例题-

直线与方程经典例题 【考点指要】 关于直线的方程,直线的斜率、倾斜角,两点间距离公式,点到直线的距离公式,夹角与到角公式,两直线的垂直、平行关系等知识的试题,都属于基本要求。解决问题的基本方法和途径:数形结合法、分类讨论法、待定系数法。

【综合例题分析】 例1. 已知圆2 2 440x x y --+=的圆心是P ,则点P 到直线10x y --=的距离是 __________。 答案: 22 解析:由题意圆的方程22 440x x y --+=可化为() 2 228x y -+=∴圆心()2,0P ,代入点到直线距离公式得2 2)1(1| 1-(-1)012|d 2 2=-+?+?= 例2.若曲线2 1y x =+与直线y kx b =+没有公共点,则k b 、分别应满足的条件是____________。 答案:k=0且-1-+>=+y x y B. )0,0(12 332 2 >>=-y x y x C. )0,0(132322 >>=-y x y x D. )0,0(132 322 >>=+y x y x 答案:D 解析:设过点()P x y ,的直线方程为)0,0(><+=b k b kx y ,则(),0,0,b A B b k ?? - ??? , 由题意知点Q 与点P 关于y 轴对称,得(),Q x y -,又()0,0O

(完整word版)高中直线与方程练习题--有答案.doc

一、选择题: 1.直线 x- 3 y+6=0 的倾斜角是( ) A 60 B 120 C 30 0 D 150 2. 经过点 A(-1,4), 且在 x 轴上的截距为 3 的直线方程是( ) A x+y+3=0 B x-y+3=0 C x+y-3=0 D x+y-5=0 3.直线 (2m 2+m-3)x+(m 2 -m)y=4m-1 与直线 2x-3y=5 平行,则的值为( ) A- 3 或1 B1 C- 9 D - 9 或 1 2 8 8 4.直线 ax+(1-a)y=3 与直线 (a-1)x+(2a+3)y=2 互相垂直,则 a 的值为( ) A -3 B 1 C 0 3 D 1 或-3 或- 2 5.圆( x-3 ) 2+(y+4) 2 =2 关于直线 x+y=0 对称的圆的方程是( ) A. (x+3) 2 +(y-4) 2 =2 B. (x-4) 2 +(y+3) 2=2 C .(x+4) 2 +(y-3) 2=2 D. (x-3) 2 +(y-4) 2=2 6、若实数 x 、y 满足 ( x 2) 2 y 2 3,则 y 的最大值为( ) x A. 3 B. 3 C. 3 3 D. 3 3 7.圆 (x 1) 2 ( y 3) 2 1 的切线方程中有一个是 A . x -y =0 B .x + y =0 C .x =0 D . y =0 8.若直线 ax 2 y 1 0 与直线 x y 2 0 互相垂直,那么 a 的值等于 A . 1 B . 1 C 2 D . 2 3 . 3 9.设直线过点 (0, a), 其斜率为 1,且与圆 x 2 y 2 2 相切,则 a 的值为 ( ) A. 4 B. 2 2 C. 2 D. 2 10. 如果直线 l 1 ,l 2 的斜率分别为二次方程 x 2 4x 1 0 的两个根,那么 l 1 与 l 2 的夹角为( A . B . 4 C . D . 3 6 8 11.已知 M {( x, y) | y 9 x 2 , y 0}, N {( x, y) | y x b} ,若 M I N b A .[ 3 2,3 2] B . ( 3 2,3 2) ( ) ( ) ) ,则 ( ) C . ( 3,3 2] D . [ 3,3 2]

直线与方程典型基础练习题

直线与方程练习题 一、选择题1. 设直线0ax by c ++=的倾斜角为α,且s i n c o s 0αα+=,则,a b 满足( ) A. 1=+b a B. 1=-b a C. 0=+b a D. 0=-b a 2. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y x B. 052=-+y x C. 052=-+y x D. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( )A. 0 B. 8- C. 2 D. 10 4. 已知0,0ab bc <<,则直线ax by c +=通过( ) A. 第一、二、三象限 B. 第一、二、四象限 C. 第一、三、四象限 D. 第二、三、四象限 5.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 2 1 C 1 D 2 7 6. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2) 7. 直线0202=++=++n y x m y x 和的位置关系是 A 平行 B 垂直 C 相交但不垂直 D 不能确定 8.已知A (1,2)、B (-1,4)、C (5,2),则ΔABC 的边AB 上的中线所在的直线方程为( ) A x+5y-15=0 B x=3 C x-y+1=0 D y-3=0 9.若直线l:y=kx-1与直线x+y-1=0的交点位于第一象限,则实数k 的取值范围是( ) A.(-∞,-1) B.(-∞,-1] C.(1,+∞) D.[1,+∞) 10.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足 A. 0≠m B. 23-≠m C. 1≠m D. 1≠m ,2 3 -≠m ,0≠m 11.将直线y=3x 绕原点逆时针旋转90°,再向右平移1个单位,所得到的直线为 A.y=3131+-x B.y=13 1 +-x C.y=3x-3 D.y=13 1 +x

相关文档
相关文档 最新文档