文档库 最新最全的文档下载
当前位置:文档库 › 代谢题目

代谢题目

代谢题目
代谢题目

20. 简述抑制剂对酶活性的抑制作用与酶变性的不同点。

答案:(1)抑制剂对酶有一定的选择性,一种抑制剂只能引起某一类或某几类酶的抑制;而使酶变性失活的因素,如强酸、强碱等,对酶没有选择性;(2)抑制剂虽然可使酶失活,但它并不明显改变酶的结构,不引起酶蛋白变性,去除抑制剂后,酶又可恢复活性。而变性因素常破坏酶分子的非共价键,部分或全部地改变酶的空间结构,从而导致酶活性的降低或丧失。

21. 在很多酶的活性中心均有His残基参与,请解释?

答案:酶蛋白分子中组氨酸的侧链咪唑基pK值为6.0~7.0,在生理条件下,一半解离,一半不解离,因此既可以作为质子供体(不解离部分),又可以作为质子受体(解离部分),既是酸,又是碱,可以作为广义酸碱共同催化反应,因此常参与构成酶的活性中心。

1、有淀粉酶制剂1g,用水溶解成1000ml 酶液,测定其蛋白质含量和粉酶活力。结果表明,该酶液的蛋白质浓度为0.1mg/ml;其1ml 的酶液每5min 分解0.25g 淀粉,计算该酶制剂所含的淀粉酶总活力单位数和比酶活(淀粉酶活力单位规定为:在最适条件下,每小时分解 1 克淀粉的酶量为一个活力单位)。

答案要点:①1ml 的酶液的活力单位是60/5×0.25/1=3(2 分)酶总活力单位数是3×1000=3000U(1 分)②总蛋白是0.1×1000=100 mg(1 分),比活力是3000/100=30(1 分)。

22. 以糖原磷酸化酶激活为例,说明级联系统是怎样实现反应信号放大的?

答案:(1)级联系统:在连锁代谢反应中一个酶被激活后,连续地发生其它酶被激活,导致原始调节信号的逐级放大,这样的连锁代谢反应系统称为级联系统。糖原磷酸化酶的激活过程就是一个例子。

(2)放大过程:激素(如肾上腺素)使腺苷酸环化酶活化,催化A TP和生成cAMP;

cAMP使蛋白激酶活化,使无活力的磷酸化酶b激酶转变成有活力的磷酸化酶b激酶;磷酸化酶b激酶使磷酸化酶b转变成激活态磷酸化酶a;磷酸化酶a使糖原分解为磷酸葡萄糖。

23.对活细胞的实验测定表明,酶的底物浓度通常就在这种底物的Km值附近,请解释其生理意义?为什么底物浓度不是大大高于Km或大大低于Km呢?

答案:据V-[S]的米氏曲线可知,当底物浓度大大低于Km值时,酶不能被底物饱和,从酶的利用角度而言,很不经济;当底物浓度大大高于Km值时,酶趋于被饱和,随底物浓度改变,反应速度变化不大,不利于反应速度的调节;当底物浓度在Km值附近时,反应速度对底物浓度的变化较为敏感,有利于反应速度的调节。

24.举例说明竞争性抑制的特点及实际意义。有时别构酶的活性可以被低浓度的竞争性抑制剂激活,请解释?

答案:竞争性抑制剂的特点:(1)抑制剂以非共价键与酶结合,用超滤、透析等物理方法能够解除抑制;(2)抑制剂的结构与底物结构相似,可与底物竞争酶的活性中心;(3)抑制剂使反应速度降低,Km值增大,但对Vmax并无影响,(4)增加底物浓度可降低或解除对酶的抑制作用。

竞争性抑制作用的原理可用来阐明某些药物的作用原理和指导新药合成。例如某些细菌以对氨基苯甲酸、二氢喋呤啶及谷氨酸为原料合成二氢叶酸,并进一步生成四氢叶酸,四氢叶酸是细菌核酸合成的辅酶。磺胺药物与对氨基苯甲酸结构相似,是细菌二氢叶酸合成酶的竞争性抑制剂。它通过降低菌体内四氢叶酸的合成能力,阻碍核酸的生物合成,抑制细菌的繁殖,达到抑菌的作用。

27.简述酶耦联受体介导的跨膜信号转导的基本过程。

答案:(1)具有酪氨酸激酶的受体:该受体简单,只有一个横跨细胞膜的α螺旋,有两种类型,①受体具有酪氨酸激酶的结构域,即受体与酪氨酸激酶是同一个蛋白质分子;当与相应的化学信号结合时,直接激活自身的酪氨酸激酶结构域,导致受体自身或细胞内靶蛋白的磷酸化。②受体本身没有酶的活性,但当它被配体激活时立即与酪氨酸激酶结合,并使之激活,通过对自身和底物蛋白的磷酸化作用,把信号传入细胞内。

(2)具有鸟苷酸环化酶的受体:该受体也只有一个跨细胞膜的α螺旋,其膜内侧有鸟苷酸环化酶,当配体与它结合后,即将鸟苷酸环化酶激活,催化细胞内GTP生成cGMP,cGMP又可激活蛋白激酶G(PKG),PKG促使底物蛋白质磷酸化,产生效应。

上述几种跨膜信号转导过程并不是截然分开的,相互之间存在着错综复杂的联系,形成所谓的信号网络。

28. 1分子乙酰CoA彻底氧化生成CO2和H2O,可提供几分子ATP?为什么?

答案:可提供10分子A TP。具体情况如下:(1) 在异柠檬酸脱氢酶作用下,异柠檬酸脱下两个氢生成α-酮戊二酸和NADH+H+;(2)在α-酮戊二酸脱氢酶系作用下,α-酮戊二酸脱氢生成琥珀酰CoA 和NADH+H+;(3)在琥珀酰CoA合成酶作用下,琥珀酰CoA水解生成琥珀酸,产生1分子GTP;(4)在琥珀酸脱氢酶作用下,琥珀酸脱氢生成延胡索酸和FADH2;(5)在苹果酸脱氢酶催化下,苹果酸脱氢生成草酰乙酸和NADH+H+。

1分子NADH进入NADH呼吸链氧化可提供2.5分子A TP,而1分子FADH2进入FADH2呼吸链氧化可提供1.5分子A TP,所以1分子乙酰CoA彻底氧化生成CO2和H2O,可提供10分子A TP(3×2.5+1.5+1)。

7、乙酰CoA 可进入哪些代谢途径?请列出。

糖的有氧氧化】葡萄糖→丙酮酸→乙酰辅(5 酶A→CO2+H2O。【糖的无氧氧化】葡萄糖→丙酮酸→乳酸。【糖的磷酸戊糖途径】葡萄糖→5-磷酸核糖、NADPH。【糖原合成】葡萄糖→肝糖原、肌糖原。【糖转化为脂肪】葡萄糖→乙酰辅酶A→脂肪酸→脂肪。

30. 为什么说三羧酸循环是糖类、脂类和蛋白质分解的共同通路?

答案:(1)葡萄糖经甘油醛-3-磷酸、丙酮酸等物质生成乙酰CoA,而乙酰CoA必须进入三羧酸循环才能被彻底氧化分解。(2)脂肪分解产生的甘油和脂肪酸,甘油可以经磷酸二羟丙酮进入糖有氧氧化途径,最终的氧化分解也需要进入三羧酶循环途径;而脂肪酸经β-氧化途径产生乙酰CoA,乙酰CoA可进入三羧酸循环氧化。(3)蛋白质分解产生氨基酸,氨基酸脱去氨基后产生的碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架,接受NH3重新生成氨基酸。所以,三羧酸循环是三大物质共同通路。

32. 简述葡萄糖激酶和己糖激酶的差别。

答案:己糖激酶和葡萄糖激酶的主要差别在于:①葡萄糖激酶只存在于肝脏中,而己糖激酶在肝脏和肌肉中都存在;②己糖激酶的Km 值为0.1mmol/L,葡萄糖激酶的Km值为10mmol/L;③己糖激酶受产物葡萄糖-6-磷酸的反馈抑制,葡萄糖激酶不受产物葡萄糖-6-磷酸的反馈抑制。

所以,当血液中葡萄糖浓度低时,己糖激酶起主要作用;当血液中葡萄糖浓度高时,葡萄糖激酶起主要作用,结果肝脏糖原浓度高于肌

肉糖原浓度。

44. 在脂肪酸合成中,乙酰CoA.羧化酶起什么作用?乙酰CoA羧化酶受哪些因素调控?

答案:乙酰CoA羧化酶的作用是催化乙酰CoA和CO2合成丙二酸单酰CoA,为脂肪酸合成提供二碳化合物。乙酰CoA羧化酶是脂肪酸合成反应中的一种限速调节酶,柠檬酸和异柠檬酸可增强该酶的活性,而长链脂肪酸则抑制该酶的活性。此酶经磷酸化后活性丧失,胰高血糖素及肾上腺素等能促进这种磷酸化作用,从而抑制脂肪酸的合成;而胰岛素则能促进酶的去磷酸化作用、增强乙酰CoA 羧化酶的活性。

45.试比较脂肪酸β-氧化与其生物合成的差异。

答案:(1)进行的部位不同,脂肪酸β-氧化在线粒体内进行,脂肪酸的合成在胞液中进行。

(2)主要中间代谢物不同,脂肪酸β-氧化的主要中间产物是乙酰CoA,脂肪酸合成的主要中间产物是丙二酸单酚CoA 。

(3)脂肪酰基的转运载体不同,脂肪酸β-氧化的脂肪酰基转运载体是CoA,脂肪酸合成的脂肪酰基转运载体是ACP 。

(4)参与的辅酶不同,参与脂肪酸β-氧化的辅酶是FAD和NAD+,参与脂肪酸合成的辅酶是NADPH。

(5)脂肪酸β-氧化不需要CO2,而脂肪酸的合成需要CO2。

(6)反应发生时ADP/A TP比值不同,脂肪酸β-氧化在ADP/A TP 比值高时发生,而脂肪酸合成在ADP/ATP比值低时进行。

(7)柠檬酸发挥的作用不同,柠檬酸对脂肪酸β-氧化没有激活作用,但能激活脂肪酸的生物合成。

(8)脂酰CoA的作用不同,脂酰辅酶A对脂肪酸β-氧化没有抑制作用,但能抑制脂肪酸的生物合成。

47.简述天冬氨酸在体内转变成葡萄糖的主要代谢途径。

答案:(1)天冬氨酸经转氨基作用或联合脱氨基作用形成草酰乙酸;(2)草酰乙酸由磷酸烯醇式丙酮酸羧激酶催化形成磷酸烯醇式丙酮酸;(3)然后沿着糖酵解途径的逆反应,依次生成甘油酸-2-磷酸、甘油酸-3-磷酸、甘油酸-1,3-二磷酸、甘油醛-3-磷酸、磷酸二羟丙酮和果糖-1,6-二磷酸;果糖-1,6-二磷酸在果糖二磷酸酶的催化下形成果糖-6-磷酸、葡萄糖-6-磷酸;(4)葡萄糖-6-磷酸水解生成葡萄糖,反应由葡萄糖-6-磷酸酶催化。

48.鸟氨酸循环、三羧酸循环和转氨基作用是如何联系的?

答案:图略,

鸟氨酸循环过程中,天冬氨酸不断被消耗转变为延胡索酸。延胡索酸可以经过三羧酸循环转化为苹果酸,苹果酸再氧化成草酰乙酸,后者可再与谷氨酸进行转氨基反应,重新生成天冬氨酸。而谷氨酸又可通过其他的各种氨基酸把氨基转移给α-酮戊二酸生成。因此,其他的各种氨基酸的氨基可以通过天冬氨酸的形式用于合成尿素。天冬氨酸和延胡索酸可使尿素循环、三羧酸循环和转氨基作用联系起来。

简述酶的“诱导契合假说”。

酶在发挥其催化作用之前,必须先与底物密切结合。这种结合不是锁与钥匙式的机械关系,而是在酶与底物相互接近时,其结构相互诱导、相互变形和相互适应,这一过程称为没底物结合的诱导契合假说。酶的构象改变有利于与底物结合;底物也在酶的诱导下发生变形,处于不稳定状态,易受酶的催化攻击。这种不稳定状态称为过渡态。过渡态的底物与酶的活性中心在结构上最相吻合,从而降低反应的活化能。

酶与一般催化剂相比有何异同?

相同点:(1)反应前后无质和量的改变;(2)只催化热力学允许的反应;(3)不改变反应的平衡点;(4)作用的机理都是降低反应的活化能。

不同点:(1)酶的催化效率高;(2)对底物有高度特异性;(3)酶在体内处于不断的更新之中;(4)酶的催化作用受多种因素的调节;(5)酶是蛋白质,对热不稳定,对反应的条件要求严格。

说明酶原与酶原激活的意义。

有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下,这些酶的前体水解开一个或几个特定的肽键,致使其构象发生改变,表现出酶的活性。这种无活性的酶的前体称为酶原。酶原向酶的转化过程称为酶原的激活。酶原的激活实质上是酶的活性中心形成或暴露的过程。

酶原的激活具有重要的生理意义。消化管内蛋白酶以酶原形式分泌出来,不仅保护消化器官本身不遭酶的水解破坏,而且保证酶在其特定的部位和环境发挥其催化作用。此外,酶原还可视为酶的贮存形式。如凝血和纤维蛋白溶解酶类以酶原的形式在血液循环中运行,一旦需要便不失时机地转化为有活性的酶,发挥其对机体的保护作用。

说明温度对酶促反应速度的影响及其实用价值。

酶是生物催化剂,温度对酶促反应速度具有双重影响。升高温度一方面可加快酶促反应速度,但同时也增加酶变性的机会,有使酶促反应速度降低。温度升高到60oC以上时,大多数酶开始变性;80oC时,多数酶的变性已不可逆。综合这两种因素,酶促反应速度最大时的环境温度称为酶促反应的最适温度。在环境温度低于最适温度时,温度加快反应速度这一效应起主导作用,温度每升高10oC,反应速度可加大1~2倍。温度高于最适温度时,反应速度则因酶变性而降低。

临床上低温麻醉就是利用酶的这一性质以减慢组织细胞代谢速度,提高机体对氧和营养物质缺乏的耐受性,利于手术治疗。低温保存生物制品和菌种也是基于这一原理。生化实验中测定酶的活性时,应严格控制反应体系的温度。酶制剂应保存在冰箱中,从冰箱中取出后应立即应用,以免因酶的变性而影响测定结果。

金属离子作为酶的辅助因子有哪些作用?

(1)作为酶活性中心的催化基团参加反应;

(2)作为连接酶与底物的桥梁,便于酶对底物起作用;

(3)为稳定酶的空间构象所必需;

(4)中和阴离子,降低反应的静电斥力。

比较三种可逆性抑制作用的特点。

(1)竞争性抑制:抑制剂的结构与底物结构相似,共同竞争酶的活性中心。抑制作用大小与抑制剂和底物的浓度比以及酶对它们的亲和力有关。此类抑制作用最大速度Vmax不变,表观Km值升高。

(2)非竞争性抑制:抑制剂与底物结构不相似或完全不同,只与酶的活性中心以外的必需基团结合。不影响酶在结合抑制剂后与底物的结合。该抑制作用的强弱只与抑制剂的浓度有关。此类抑制作用最大速度Vmax下降,表观Km值不变。

(3)反竞争性抑制:抑制剂只与酶-底物复合物结合,生成的三元复合物不能解离出产物。此类抑制作用最大速度Vmax和表观Km 值均下降。

举例说明竞争性抑制作用在临床上的应用。

以磺胺类药物为例。1)对磺胺类药物敏感的细菌在生长繁殖时,不能直接利用环境中的叶酸,而是在菌体内二氢叶酸合成酶的催化下,以对氨基苯甲酸、二氢蝶呤和谷氨酸为底物合成二氢叶酸。二氢叶酸是核苷酸合成过程中饿辅酶之一四氢叶酸的前体。2)磺胺类药物的化学结构与对氨基苯甲酸相似,是二氢叶酸合成酶的竞争性抑制剂,抑制二氢叶酸的合成。细菌则因核苷酸乃至核酸的合成受阻而影响其生长繁殖。人类能直接利用食物中的叶酸,体内的核酸合成不受磺胺类药物的干扰。3)根据竞争性抑制的特点,服用磺胺类药物时必须保持血液中药物的高浓度,以发挥其有效的竞争性抑菌作用。

许多属于抗代谢物的抗癌药物,如氨甲蝶呤、5-氟尿嘧啶、6-巯基嘌呤等,几乎都是酶的竞争性抑制剂,它们分别抑制四氢叶酸、脱氧胸苷酸及嘌呤核苷酸的合成,以抑制肿瘤的生长。

糖代谢与脂代谢通过哪些反应联合起来的:

糖酵解过程中产生的磷酸二羟基丙酮可转变3-磷酸甘油,可作为脂肪合称的原料和脂肪酸进一步合成TG

糖有氧氧化过程中产生的乙酰CoA是脂肪酸和酮体的合成原料

脂肪酸分解产生的乙酰CoA最终也进入三羧酸循环

酮体氧化分解产生的乙酰CoA最终也进入三羧酸循环

甘油经磷酸甘油激酶作用,最终转变为磷酸二羟丙酮进入糖酵解或糖的有氧氧化

三羧酸循环的特点?为什么说三羧酸循环是糖脂肪蛋白质在体内氧化的共同途径和相互联系的枢纽?三羧酸循环的生理意义特点:1CO2由两次脱羧生成

2.循环中多个反应可逆,但由于柠檬酸合成酶,异柠檬酸脱氢酶和a-同戊二酸脱氢酶催化的反应不可逆,循环

单向进行

3.4次脱氢,3次以NAD+为受氢体,1次以FAD为受氢体

4.循环中各中间产物不断被消耗和补充,使循环处于动态平衡状态

5.释放大量能量

起始物乙酰CoA不仅由糖氧化分解产生也由甘油,脂肪酸,AA氧化分解产生,实际上是糖,脂肪,蛋白质在体内氧化的共同途径。

糖和甘油代谢生成的a-同戊二酸和草酰乙酸中间产物可转变某些AA;很多AA分解产物是循环中间产物,经糖异生变成糖或者甘油。可见三羧酸循环是三大营养物质的纽带是三大营养物质氧化分解的共同途径;是三大营养物质代谢联系的枢纽;为其它物质代谢提供小分子前体;为呼吸链提供H+ + e。

什么是酮体?酮体生成及氧化中的主要酶及酮体代谢特点及生理意义

酮体是脂肪酸在肝内分解代谢产生的一类特殊中间产物,乙酰乙酸,B-羧丁酸,丙酮

酮体在肝内生成,限速酶是HMGCoA合成酶酮体在肝外组织被氧化利用,主要酶类为琥珀酰CoA和乙酰乙酸流激酶

酮体代谢特点:肝内生成肝外氧化利用;肝脏为肝外组织提供了另一种能源物质,是心脑肾肌肉等重要器官在糖代谢利用障碍的可利用的能源

酮症:在糖尿病或者糖供给障碍等病理情况下胰岛素分泌减少或作用低下而胰高血糖素,肾上腺素等分泌上升,导致脂肪动员增强,脂肪酸在肝脏的分解增强,酮体生成也增多;同时,由于主要来源的糖代谢和丙酮酸减少,因此草酰乙酸减少,导致乙酰CoA 的堆积,此时肝外组织的酮体氧化利用减少,结果就出现酮体过多积累在血中的酮症

脂肪肝:肝细胞的脂肪来源多,去路少,导致脂肪堆积。原因1.肝功能低下,糖代谢障碍导致肝内脂肪运出障2.糖代谢障碍导致脂肪运动增强,进入肝脏的脂肪酸增多3.肝细胞内用于合成脂蛋白的磷脂缺乏4患肝炎后,活动过少,消耗减少,糖转变成脂肪而积存

动脉粥样硬化:血浆中LDL增多或HDL下降均可使血浆胆固醇易在动脉内膜下沉积,久之则导致动脉粥样硬化。

生物氧化的特点:细胞内由酶催化的氧化反应,反应是在温和条件下逐步进行和完成的;释放的能量相当一部分用于ADP磷酸化为ATP;细胞自动调节和控制速度;能量的生成大多伴有H2O的形成;CO2是在有机酸的酶催化下脱羧产生

试从底物或产物浓度即变构剂对糖代谢的调节,讨论饥饿的条件下糖异生作用增强的机制饥饿时脂肪动员增强,脂肪酸氧化产生大量乙酰CoA

乙酰CoA反馈抑制丙酮酸脱氢酶,使丙酮酸积聚,成为糖异生的原料

乙酰CoA与草酸乙酰缩合形成柠檬酸,柠檬酸是糖酵解限速酶PFK-1的强烈抑制剂,有利于糖异生作用进行

乙酰CoA激活丙酮羧化酶,加速糖异生作用

柠檬酸和ATP还是糖有氧氧化途径中许多关键酶的抑制剂,糖分解代谢减弱,可加强糖异生作用

当饥饿时肌肉蛋白质分解AA,也可作为原料,使糖异生增强

简述肝脏在物质代谢的作用

肝脏在糖代谢中的作用,是通过肝糖原的合成、分解与糖异生作用来维持血糖浓度的恒定,确保全身组织的能量供应

肝脏在脂类的消化,吸收,分解,合成及运输过程均起着重要的作用

肝脏能够合成多种血浆蛋白质,并在蛋白质的分解代谢中起着重要的作用

肝脏在维生素的吸收,储存和转化方面均有重要作用

肝脏参与激素的灭活

核苷酸及其衍生物在体内物质代谢中的生理作用有:

(1)组成核酸(DNA或RNA),贮存遗传信息,通过转录、翻译传递遗传信息,参与蛋白质的生物合成。

(2)与维生素衍生物共同组成辅酶(如NAD+、NADP+、FAD、CoASH等),辅酶再与酶蛋白结合组成全酶,催化体内代谢反应的进行。

(3)参与代谢调控,如cAMP,cGMP为第二信使,是激素膜受体调节方式的中间步骤。

(4)ATP、ADP、AMP是体内贮能、放能的重要方式;UTP、CTP和GTP分别参与糖原、磷脂和蛋白质的生物合成;糖异生作用也需消耗GTP。

(5)参与NADH和FAD两条氧化呼吸链的组成,通过氧化磷酸化作用生成ATP,这是体内生成ATP的主要方式。

(6)核苷酸是其合成途径的反馈抑制剂,是许多酶的变构剂。

简述变构酶的定义和生理意义,并在糖、脂、氨基酸、核酸代谢中各举出一例关键酶是变构酶的例子。

(1)当特异性的代谢物分子非共价地可逆结合到酶活性中心以外的一个或几个部位时可改变酶的构象,进而改变酶的活性。这种酶叫变构酶,起这种作用的特异性代谢物称为变构剂。

(2)变构调节是细胞水平代谢调节中一种常见的快速调节方式。代谢途径中的关键酶

大多是关键酶,故它在细胞内起着控制代谢通路的阀门作用。根据生理活动的需要,

此类酶活性的增加或降低,可控制代谢通路上代谢物分子的流动,能控制代谢物分子

的量在正常变化的范围内。

(3)举例

糖代谢:糖酵解和有氧氧化的关键酶磷酸果糖激酶的激活变构剂和抑制变构剂分别为

FDP和柠檬酸。

脂代谢:脂肪酸合成的限速酶乙酰辅酶A羧化酶的激活变构剂是柠檬酸、异柠檬酸;

抑制变构剂是长链脂肪酰CoA。

氨基酸代谢:氨基酸分解所需谷氨酸脱氢酶的激活变构剂是ADP、亮氨酸和蛋氨酸;

抑制变构剂是GTP、ATP和NADH。

核酸代谢:核酸合成所需脱氧胸苷激酶的激活变构剂是dCTP而抑制变构剂是dTTP。

氨基酸代谢与核酸代谢有何联系

两者之间的代谢联系突出表现在嘌呤核苷酸循环与一碳单位代谢两个方面。嘌呤核苷酸循环与转氨基作用的偶联,是肌肉等组织中氨基酸脱氨基的重要方式;一碳单位主要来自甘氨酸、组氨酸、丝氨酸等的代谢,它通过四氢叶酸的携带和转移,用以合成嘌呤的C-8以及胸腺嘧啶的甲基。此外,甘氨酸、天冬氨酸、谷氨酰胺等是合成嘌呤和嘧啶环的直接原料。

试述肝功低下的患者产生低血糖、脂肪肝、蜘蛛痣及血氨增高肝昏迷的生化机理

(1)低血糖糖原合成↓,贮备↓;糖异生功能↓

(2)脂肪肝合成磷脂、脂蛋白的功能↓,脂肪外运障碍

(3)血氨增高,肝昏迷肝功↓→鸟氨酸循环↓→尿素合成↓,NH3的去路↓→

血氨↑。氨通过血脑屏障,在脑细胞中—α-酮戊二酸——谷氨酸——谷氨酰胺

以上反应使α-酮戊二酸↓→糖氧化供能↓神经细胞机能障碍→昏迷

试述糖尿病病人在糖类,脂类,蛋白质,水电,酸碱平衡等方面可能出现紊乱的生化机制

1.胰岛素的功能是增加肌肉和脂肪组织细胞膜对葡萄糖的通透性,有利于代谢;促进糖原合成,抑制糖原分解;促进糖转变为脂肪,减少甘油三酯动员。糖尿病患者胰岛素缺乏或者对胰岛素的敏感性下降,故出现血糖升高,糖耐量下降,有糖尿现象

2.正常人主要依靠糖的氧化分解供给机体能量,当患者由于糖的氧化分解减少,机体缺乏ATP,只好动用体内的脂肪,酮体生成增多,但酮体需要有草酰乙酸才能正常氧化,由于酮体氧化受阻出现酮中毒

3.组织蛋白质分解增加,以提供糖异生的原料-氨基酸;由于磷酸戊糖途径减少,使DNA,RNA合成也减少,进而蛋白质合成下降

4.由于血糖过高,超过肾糖阈,出现渗透性利尿。是水过多,引起细胞外液渗透压升高,刺激下丘脑渗透压感受器,引起口渴反射,导致多饮

5.患者糖尿病和蛋白质分解增加,合成减弱,K+由细胞内进入血浆,由于多尿,K+随尿排出体外,有可能从高血钾转变成低血钾

6.酮体中的B羟丁酸和乙酰乙酸占了酮体的绝大部分,丙酮含量极微,前两者均为酸性物质,超出了肾肺的调节能力,形成失代偿性代谢酸中毒,血液pH下降。酸中毒时肾小管上皮细胞H-Na交换增加,K-Na交换减少,易导致高血钾

参与血红素的生物合成的调节因素有哪些

最主要的调节步骤是ALA的合成。参与血红素生物合成的调节因素有:

ALA合酶的调节:ALA合酶是血红素生物合成的限速酶,受血红素的反馈性抑制。如果血红素的合成速度大于珠蛋白的合成速度,,过多的血红素氧化成高铁血红素,后者对ALA合酶有强烈的抑制作用。磷酸吡咯醛是ALA合酶的辅酶,维生素B6的缺乏将减少血红素的合成。某些类固醇激素能诱导ALA合酶的合成,从而促进血红素的生物合成

ALA脱水酶及亚铁螯合酶的调节:ALA脱水酶及亚铁螯合酶不属于血红素合成的关键酶,但对铅和重金属的抑制非常敏感,血红素合成的抑制是铅中毒的重要体征,还原剂的缺乏也会抑制血红素的合成

促红细胞生成素(EPO)的调节:EPO主要在肾脏合成,缺氧时释放入血。能加速有核红细胞的成熟以及血红素和血红蛋白的合成,促进原始红细胞的繁殖和分化,是红细胞生长的主要调节剂。

试述乳酸异生为葡萄糖的主要反应过程及其酶。

(1)乳酸经LDH催化生成丙酮酸。(2)丙酮酸在线粒体内经丙酮酸羧化酶催化生成草酰乙酸,后者经GOT催化生成天冬氨酸出线粒体,在胞液中经GOT催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙酮酸。(3)磷酸烯醇式丙酮酸循酵解途径至1,6—二磷酸果糖。(4)1,6—二磷酸果糖经果糖二磷酸酶—1催化生成6—磷酸果糖,再异构为6—磷酸葡萄糖。(5)6—磷酸葡萄糖在葡萄糖—6—磷酸酶作用下生成葡萄糖。

简述肝糖原合成代谢的直接途径与间接途径。

肝糖原合成时由葡萄糖经UDPG合成糖原的过程称为直接途径。

由葡萄糖先分解成三碳化合物如乳酸、丙酮酸,再运至肝脏异生成糖原的过程称为三碳途径或间接途径。

概述肾上腺素对血糖水平调节的分子机制。

肾上腺素通过促进肝脏和肌肉组织中的糖原分解而抑制糖原合成,使血糖水平升高。其分子机制如下:肾上腺素作用于肝及肌细胞膜上的β受体后,促使G蛋白与GDP解离而与GTP结合,从而激活G蛋白。活化的G蛋白能激活腺苷酸环化酶,使cAMP生成增加,cAMP激活蛋白激酶A;后者催化细胞中许多酶类和功能蛋白质的磷酸化,从而引起肾上腺素的生理效应。

(1)使无活性的磷酸化酶b激酶磷酸化为有活性的磷酸化酶b激酶。后者催化无活性的磷酸化酶b磷酸化为磷酸化酶a;则可促进糖原分解,升高血糖。

(2)使有活性的糖原合酶a磷酸化成无活性的糖原合酶b。从而抑制糖原合成,致使血糖浓度升高。

(3)cAMP—蛋白激酶系统还通过磷酸化改变某些酶的活性调节血糖水平。如抑制肝丙酮酸激酶减少糖的分解代谢,激活果糖双磷酸酶—1促进糖异生,升高血糖。

简述糖异生的生理意义。

(1)空腹或饥饿时利用非糖化合物异生成葡萄糖,以维持血糖水平恒定。

(2)糖异生是肝脏补充或恢复糖原储备的重要途径。

(3)饥饿时,糖异生增强有利于维持酸碱平衡。

简述血糖的来路和去路。

血糖的来源:(1)食物经消化吸收的葡萄糖;(2)肝糖原的分解;(3)糖异生。

血糖的去路:(1)氧化供能;(2)合成糖原;(3)转变为脂肪

某些非必需氨基酸;(4)转变为其他糖类物质。

在糖代谢过程中生成的丙酮酸可进入哪些代谢途径?

在糖代谢过程中生成的丙酮酸具有多条代谢途径:

(1)在供氧不足时,丙酮酸在LDH催化下,接受NADH+H+的氢原子还原生成乳酸。

(2)在供氧充足时,丙酮酸进入线粒体,在丙酮酸脱氢酶复合体的催化下,氧化脱羧生成乙酰CoA,再经三羧酸循环和氧化磷酸化,彻底氧化生成CO2、H2O和A TP。

(3)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者经磷酸烯醇式丙酮酸羧激酶催化生成磷酸烯醇式丙酮酸,再异生为糖。

(4)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者与乙酰CoA缩合成柠檬酸,可促进乙酰CoA进入三羧酸循环彻底氧化。

(5)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者与乙酰CoA缩合成柠檬酸;柠檬酸出线粒体在胞液中经柠檬酸裂解酶催化生成乙酰CoA,后者可作为脂肪酸、胆固醇等的合成原料。

(6)丙酮酸可经还原性氨基化生成丙氨酸等非必需氨基酸。

决定丙酮酸代谢的方向是各条代谢途径中关键酶的活性,这些酶受到别构效应剂与激素的调节。

糖异生过程是否为糖酵解的逆反应?为什么?

糖异生过程不是糖酵解的逆过程,因为糖酵解中己糖激酶、6—磷酸果糖激酶—1、丙酮酸激酶催化的反应是不可逆反应,所以非糖物质必须依赖葡萄糖—6—磷酸酶、果糖二磷酸酶—1、丙酮酸羧化酶和磷酸烯醇式丙酮酸羧激酶的催化才能异生为糖,亦即酶促反应需要饶过三个能障以及线粒体膜的膜障。

简述乳酸循环形成的原因及其生理意义。

乳酸循环的形成是由于肝脏和肌肉组织中酶的特性所致。肝内糖异生很活跃,又有葡萄糖—6—磷酸酶可水解6—磷酸葡萄糖,释放出葡萄糖。肌肉组织中除糖异生的活性很低外,又没有葡萄糖—6—磷酸酶;肌肉组织内生成的乳酸既不能异生成糖,更不能释放出葡萄糖。乳酸循环的生理意义在于避免损失乳酸(能源物质)以及防止因乳酸堆积引起酸中毒。

试述人体胆固醇的来源与去路。

人体胆固醇的来源有:①从食物中摄取。②机体细胞自身合成。去路有:①用于构成细胞膜。②在肝脏可转化成胆汁酸。③在性腺、肾上腺皮质可转化成性激素、肾上腺皮质激素。④在皮肤可转化成维生素D3。⑤还可酯化成胆固醇酯,储存在胞液及血浆脂蛋白中。脂肪酸的β-氧化与生物合成的主要区别是什么?

脂肪酸的β-氧化与生物合成的主要区别有:①进行的部位不同,脂肪酸β-氧化在线粒体内进行,脂肪酸的合成在胞液中进行。②主要中间代谢物不同,脂肪酸β-氧化的主要中间产物是乙酰CoA,脂肪酸合成的主要中间产物是丙二酸单酰CoA。③脂肪酰基的运载体不同,脂肪酸β-氧化的脂肪酰基运载体是CoA,脂肪酸合成的脂肪酰基运载体是ACP。④参与的辅酶不同,参与脂肪酸β-氧化的辅酶是FAD和NAD+,参与脂肪酸合成的辅酶是NADPH+H+。⑤脂肪酸β-氧化不需要HCO3-,而脂肪酸的合成需要HCO3-。⑥ADP/ATP比值不同,脂肪酸β-氧化在ADP/ATP比值增高是发生,而脂肪酸合成在ADP/ATP比值降低时进行。⑦柠檬酸发挥的作用不同,柠檬酸对脂肪酸β-氧化没有激活作用,但能激活脂肪酸的生物合成。⑧脂酰CoA的作用不同,脂酰CoA对β-氧化无抑制作用,但能抑制脂肪酸的生物合成。⑨所处膳食状况不同,β-氧化通常是在禁食或饥饿时进行,而合成通常是在高膳食状况下进行。

人体生成ATP的方法有哪几种?请详述具体生成过程。

ATP是生物体能量的储存和利用中心,其生成或来源主要有两种,一种是底物水平磷酸化,另一种是氧化磷酸化。具体过程如下:

底物水平磷酸化:利用代谢分子中的能量使ADP磷酸化生成A TP的过程,称为底物水平磷酸化,在物质分解利用过程中,有三个典型的底物水平磷酸化反应,糖酵解过程中,磷酸甘油酸激酶催化1,3二磷酸甘油酸生成3磷酸甘油酸以及丙酮酸羧激酶催化磷酸烯醇式丙酮酸生成烯醇式丙酮酸这两步反应均伴有ADP磷酸化生成A TP,三羧酸循环中琥珀酰CoA合成酶催化琥珀酰CoA生成琥珀酸,同时催化Pi和GDP生成GTP,而GTP又可在酶促作用下能量转移生成A TP;

氧化磷酸化:即在呼吸链电子传递过程中偶联ADP磷酸化,生成A TP。如物质脱下的2H经NADH氧化呼吸链可偶联生成3个A TP;经琥珀酸氧化呼吸链则偶联生成2个A TP。这是机体内A TP生成的主要方式。

物质在体内氧化和体外氧化有哪些异同点?请加以说明。

物质在生物体内氧化的过程被称为生物氧化,主要指糖、脂肪、蛋白质等通过氧化作用逐步释放能量,最终生成CO2和H2O这一过程。与物质的体外氧化相比主要有以下异同点:

相同点:(1)两种氧化方式都遵循氧化还原反应的一般规律,有加氧、脱氢、失电子过程;

(2)两种氧化方式所消耗的氧量、综产物(CO2,H2O)和释放的能量均相同。

不同点:(1)反应的环境与条件不同,生物氧化是在生物细胞内进行的,恒温,PH接近中性,可有水参与,而体外氧化则需高温和干燥的环境;

(2)反应的方式不同,生物氧化在一系列酶的催化下逐步进行,O2接受电子后与H+生成水,CO2由脱羧基产生,而体外氧化无需酶催化,反应剧烈,H和C直接与O2 化合成H2O 及CO2;

(3)释放能量过程不同,生物氧化能量逐步释放,能量部分以化学能方式储存,部分以热能释放,而体外氧化全部以热和光的形式骤然释放。

讨论鸟氨酸循环、丙氨酸-葡萄糖循环、甲硫氨酸循环的基本过程与生理意义。

鸟氨酸循环:经鸟氨酸、瓜氨酸及精氨酸等步骤合成尿素后,又重新回到鸟氨酸的一种循环过程。不断地将体内有毒性的氨转变成尿素,达到解除氨毒的作用。

丙氨酸-葡萄糖循环:将肌肉蛋白分解的氨经丙酮酸转氨基生成丙氨酸后随血液转运到肝,丙氨酸经肝脱氨基生成丙酮酸和氨,丙酮酸经肝糖异生形成葡萄糖,而氨经肝鸟氨酸循环合成尿素,葡萄糖经血液回到肌肉经肌肉经酵解过程再生成丙酮酸。将肌肉中代谢产生的氨通过丙酮酸形式转运到肝而合成尿素。

甲硫氨酸:甲硫氨酸经SAM、同型半胱氨酸等中间代谢,进而重新生成甲硫氨酸的循环过程。为体内甲基化反应提供活性甲基的供体(SAM)

概述体内氨基酸的来源和主要代谢去路。

体内氨基酸主要来源:食物蛋白质的消化吸收;组织蛋白质的分解;经转氨基反应合成非必需氨基酸。主要的去路有:合成组织蛋白

质;脱氨基作用产生的氨合成尿素;α-酮酸转变成糖和/或酮体,并氧化产能;脱羧基作用生成胺类;转变为嘌呤、嘧啶等其他含氮化合物。

试讨论各类核苷酸抗代谢物的作用原理。

5-氟尿嘧啶、6-巯基嘌呤、氨基蝶呤和氨甲蝶呤、氮杂丝氨酸等核苷酸抗代谢物均可作为临床抗肿瘤药物,其各自的机理如下表所示:

抗肿瘤药物 5-氟尿嘧啶 6-巯基嘌呤 氨基蝶呤和 氨甲蝶呤

氨杂丝氨酸 核苷酸代谢中类似物

胸腺嘧啶 次黄嘌呤 叶酸 谷氨酰胺 作用机理 抑制胸腺嘧核苷酸合成酶;影响RNA 的正常结构和功能 抑制IMP 转变为AMP 和GMP 的反应;抑制IMP 和GMP 的补救合成和从头合成

抑制二氢叶酸还原酶 干扰嘌呤、嘧啶核苷酸的合成

糖、脂、蛋白质在体内是否可以相互转变?简要说明可转变的途径及不能转变的原因。

糖与脂:糖容易转变为脂类

脂变糖可能性小,仅甘油,丙酮,丙酰CoA 可异生成糖,其量甚微。蛋白质与糖、脂:蛋白质可以转变为糖、脂,但数量较小,生糖氨基酸异生成糖,生酮、生糖氨基酸可生成脂类。

糖、脂不能转变为蛋白质,糖、脂不能转变为必需氨基酸,虽可提供非必需氨基酸的碳骨架,但缺乏氮源。

比较脑、肝、骨骼肌在糖、脂代谢和能量代谢上的主要特点。

脑:是机体耗能的主要器官,一般主要以葡萄糖供能,耗用葡萄糖由血糖供应,不能直接分解脂肪酸,糖供给不足时,可以酮体作为能源物质。

肝:是机体糖脂代谢的主要器官,对维持血糖恒定起到重要作用。合成储存糖原可达肝重的10%;糖异生;具有葡萄糖-6-磷酸酶,可使储存的糖原分解为葡萄糖释放入血,维持血糖恒定。合成甘油三酯、胆固醇、磷脂的主要器官,合成的脂类主要以VLDL 运输到其他组织储存;肝合成HDL 具有胆固醇逆向转运及抗LDL 氧化的作用,有抗动脉粥样硬化的作用;具有高活性的脂酸β-氧化酶类,可大量合成酮体供肝外组织利用。肝是机体耗能的主要器官之一。

肌肉:通常以氧化脂肪酸为主,剧烈运动时,以糖无氧酵解补充能量,能合成糖原,但缺乏葡萄糖-6-磷酸酶,因此肌糖原基本不能分解成葡萄糖以补充血糖。

给动物以丙氨酸,它在体内可转变为哪些物质?写出可转变的代谢途径名称。

(1)丙酮酸 转氨基 丙酮酸

(2)丙酮酸 无氧酵解 乳酸

(3)丙酮酸 糖异生 葡萄糖

(4)丙酮酸 酵解逆行 磷酸二羟丙酮 甘油

(5)丙酮酸 氧化脱羧 乙酰CoA 呼吸链 CO2+H2O

(6)丙酮酸 氧化脱羧 乙酰CoA 脂肪酸合成 脂肪酸

(7)丙酮酸 氧化脱羧 乙酰CoA 酮体合成 酮体

(8)丙酮酸 氧化脱羧 乙酰CoA 胆固醇合成 胆固醇

(9)丙酮酸 羧化 草酰乙酸

试述乙酰CoA 在脂质代谢中的作用。

在脂质代谢中,乙酰CoA 主要来自脂肪酸的β-氧化,也可来自甘油的氧化分解。在肝脏,乙酰CoA 可被转化成酮体向肝外输送。在脂肪酸生物合成中,乙酰CoA 是基本原料之一。乙酰CoA 也是胆固醇合成的基本原料之一。

试述乙酰CoA 在物质代谢中的作用。

乙酰CoA 是糖、脂、氨基酸代谢共有的重要中间代谢物,也是三大营养代谢联系的枢纽。乙酰CoA 的生成:糖有氧氧化;脂酸B 氧化;氨基酸分解代谢;甘油及乳酸分解。乙酰CoA 的代谢去路:进入三羧酸循环彻底氧化分解,体内能量的主要来源;在肝细胞线粒体生成酮体,为缺糖时重要能源之一;合成脂肪酸;合成胆固醇;合成神经递质乙酰胆碱。

简述草酰乙酸在糖代谢中的重要作用。

草酰乙酸在葡萄糖的氧化分解及糖异生代谢中起着十分重要的作用。

(1)草酰乙酸是三羧酸循环中的起始物,糖氧化产生的乙酰CoA 必须首先与草酰乙酸缩合成柠檬酸,才能彻底氧化。

(2)草酰乙酸可以作为糖异生的原料,循糖异生途径异生为糖。

(3)草酰乙酸是丙酮酸、乳酸及生糖氨基酸等异生为糖时的中间产物,这些物质必须转变成草酰乙酸后再异生为糖。

15.影响酶促反应的因素有哪些?用曲线表示并说明它们各有什么影响?

pH 、温度、紫外线、 重金属盐、 抑制剂、 激活剂等通过影响酶的活性来影响酶促反应的速率, 紫外线、 重金属盐、 抑制剂都会降低酶的活性,使酶促反应的速度降低,激活剂会促进酶活性来加快反应速度, pH 和温度的变化情况不同,既可以降低酶的活性,也可以提高,所以它们既可以加快酶促 反应的速度,也可以减慢;酶的浓度、底物的浓度等不会影响酶活性,但可以影响酶促反应 的速率。酶的浓度、底物的浓度越大,酶促反应的速度也快。

16.试比较酶的竞争性抑制作用与非竞争性抑制作用的异同。 共同点: 抑制剂与酶通过非共价方 式结合。不同点: (1)竞争性抑制 抑制剂结构与底物类似,与酶形成可逆的 EI 复合物但不 能分解成产物 P 。抑制剂与底物竞争活性中心,从而阻止底物与酶的结合。可通过提高底物 浓度减弱这种抑制。竞争性抑制剂使 Km 增大,Km'=Km×(1+I/Ki ) ,Vm 不变。 (2)非竞 争性抑制 酶可以同时与底物和抑制剂结合,两者没有竞争。但形成的中间物 ESI 不能分解 成产物,因此酶活降低。非竞争抑制剂与酶活性中心以外的基团结合,大部分与巯基结合, 破坏酶的构象,如一些含金属离子(铜、汞、银等)的化合物。非竞争性抑制使 Km 不变, Vm 变小。

16.什么是米氏方程,米氏常数Km 的意义是什么?试求酶促反应速度达到最大反应速度的99%时,所需求的底物浓度(用Km 表示)

⑴当反应速度为最大速度一半时,米氏方程可以变换如下:1/2Vmax=Vmax[S]/(Km+[S])→ Km=[S]可知,Km 值等于酶反应速度为最大速度一半时的底物浓度。⑵ Km 值是酶的特征性常数,只与酶的性质,酶所催化的底物和酶促反应条件(如温度、pH、有无抑制剂等)有关,与酶的浓度无关。⑶ 1/Km 可以近似表示酶对底物亲和力的大小⑷利用米氏方程,我们可以计算在某一底物浓度下的反应速度或者在某一速度条件下的底物浓度。

17.何谓三羧酸循环?它有何特点和生物学意义?

特点。1。乙酰CoA 进入三羧酸循环后,是六碳三羧酸反应2。在整个循环中消耗2 分子水,1 分子用于合成柠檬酸,一份子用于延胡索酸的水和作用。3 在此循环中,最初草酰乙酸因参加反应而消耗,但经过循环又重新生成。所以每循环一次,净结果为 1 个乙酰基通过两次脱羧而被消耗。循环中有机酸脱羧产生的二氧化碳,是机体中二氧化碳的主要来源。4 在三羧酸循环中,共有 4 次脱氢反应,脱下的氢原子以NADH+H+和FADH2 的形式进入呼吸链,最后传递给氧生成水,在此过程中释放的能量可以合成A TP。

5 三羧酸循环严格需要氧气6。琥珀CoA 生成琥珀酸伴随着底物磷酸化水平生成一分子GTP,能量来自琥珀酰CoA 的高能硫酯键意义。1 三羧酸循环是机体将糖或者其他物质氧化而获得能量的最有效方式2,三羧酸循环是糖,脂和蛋白质 3 大类物质代谢和转化的枢纽。

18.磷酸戊糖途径有何特点?其生物学意义何在?

特点:A TP 生成,无不是机体产能的方式。1)为核酸的生物合成提供5-磷酸核糖,肌组织内缺乏6-磷酸葡萄糖脱氢酶,磷酸核糖可经酵解途径的中间产物3- 磷酸甘油醛和6-磷酸果糖经基团转移反应生成。2)提供NADPH a.NADPH 是供氢体,参加各种生物合成反应,如从乙酰辅酶A 合成脂酸、胆固醇;α-酮戊二酸与NADPH 及氨生成谷氨酸,谷氨酸可与其他α-酮酸进行转氨基反应而生成相应的氨基酸。 b.NADPH 是谷胱甘肽还原酶的辅酶,对维持细胞中还原型谷胱甘肽的正常含量进而保护巯基酶的活性及维持红细胞膜完整性很重要,并可保持血红蛋白铁于二价。 c.NADPH 参与体内羟化反应,有些羟化反应与生物合成有关,如从胆固醇合成胆汁酸、类固醇激素等;有些羟化反应则与生物转化有关。物学意义1,产生大量的NADPH,为细胞的各种合成反应提供还原力2,产生NADPH(注意:1 不是NADH!NADPH 不参与呼吸链)2 生成磷酸核糖,为核酸代谢做物质准备3 分解戊糖意义:1 补充糖酵解2 氧化阶段产生NADPH,促进脂肪酸和固醇合成。3 非氧化阶段产生大量中间产物为其它代谢提供原料

19.糖酵解和发酵有何异同?糖酵解过程需要那些维生素或维生素衍生物参与?

1. 相同点:(1) 都要进行以下三个阶段:葡萄糖——>1,6-二磷酸果糖;1,6-二磷酸果糖——>3-磷酸甘油醛;3-磷酸甘油醛——>丙酮酸。(2)都在细胞质中进行。不同点:通常所说的糖酵解就是葡萄糖——>丙酮酸阶段。根据氢受体的不同可以把发酵分为两类:(1)丙酮酸接受来自3-磷酸甘油醛脱下的一对氢生成乳酸的过程称为乳酸发酵。(有时也将动物体内的这一过程称为酵解。)(2)丙酮酸脱羧后的产物乙醛接受来自3-磷酸甘油醛脱下的一对氢生成乙醇的过程称为酒精发酵。糖酵解过程需要的维生素或维生素衍生物有:NAD+。

21.试说明丙氨酸的成糖过程。

(1)丙氨酸经GPT 催化生成丙酮酸;(2)丙酮酸在线粒体内经丙酮酸羧化酶催化生成草酰乙酸,后者经苹果酸脱氢酶催化生成苹果酸出线粒体,在胞液中经苹果酸脱氢酶催化生成草酰乙酸,后者在磷酸烯醇式丙酮酸羧激酶作用下生成磷酸烯醇式丙酮酸;(3)磷酸烯醇式丙酮酸循糖酵解途径至1,6-双磷酸果糖;(4)1,6-双磷酸果糖经果糖双磷酸酶-1 催化生成6-磷酸果糖,在异构为6-磷酸葡萄糖;(5)6-磷酸葡萄糖在葡萄糖-6磷酸酶作用下生成葡萄糖

22.什么是ATP,?简述其生物学功能?

中文名称为腺嘌呤核苷三磷酸,又叫三磷酸腺苷(腺苷三磷酸),简称为A TP,其中 A 表示腺苷,T 表示其数量为三个,P 表示磷酸基团,即一个腺苷上连接三个磷酸基团。A TP 是生命活动能量的直接来源动物细胞再通过呼吸作用将贮藏在有机物中的能量释放出来,除了一部分转化为热能外,其余的贮存在A TP 中。一类是无氧供能,即在无氧或氧供应相对不足的情况下,主要靠A TP、CP 分解供能和糖元无氧酵解供能

25.试述糖代谢、脂类代谢及蛋白质代谢三者之间的相互关系?

糖代谢和脂类代谢:糖酵解产物还原成甘油,丙酮酸氧化脱羧形成乙酰辅酶 A 是脂肪酸合成原料,甘油和脂肪酸合成脂肪。脂肪又可分解成甘油和脂肪酸,沿不同途径转变成糖。糖代谢与蛋白质代谢:糖代谢分解产生的能量用于蛋白质合成。蛋白质降解产生的氨基酸经脱氨后生成产物可氧化放能,经糖异生生成糖。蛋白质代谢与脂类代谢:脂肪分解成甘油经进一步反应能产生谷氨酸族和天冬氨酸族氨基酸。在蛋白质氨基酸中,生糖氨基酸通过丙酮酸变甘油,也可氧化脱所成乙酰辅酶A,用于脂肪酸合成。生酮氨基酸可生成乙酰乙酸,所合成脂肪酸。丝氨酸脱羧后形成胆氨,甲基化后变成胆碱,是合成磷脂的组成成分

26.解释盐析法沉淀蛋白质的基本原理?答:蛋白质在水溶液中的溶解度是由蛋白质周围亲水基团与水形成水化膜的程度,以及蛋白质分子带有电荷的情况决定的。而当蛋白质在等电点处时,蛋白质不带电,溶解度小,当用中性盐加入蛋白质溶液,中性盐对水分子的亲和力大于蛋白质,于是蛋白质分子周围的水化膜层减弱乃至消失。同时,中性盐加入蛋白质溶液后,由于离子强度发生改变,蛋白质表面电荷大量被中和,更加导致蛋白溶解度降低,使蛋白质分子之间聚集而沉淀。

1.怎样证明酶是蛋白质?

答:(1)酶能被酸、碱及蛋白酶水解,水解的最终产物都是氨基酸,证明酶是由氨基酸组成的。

(2)酶具有蛋白质所具有的颜色反应,如双缩脲反应、茚三酮反应、米伦反应、乙醛酸反应。

(3)一切能使蛋白质变性的因素,如热、酸碱、紫外线等,同样可以使酶变性失活。

(4)酶同样具有蛋白质所具有的大分子性质,如不能通过半透膜、可以电泳等。

(5)酶同其他蛋白质一样是两性电解质,并有一定的等电点。总之,酶是由氨基酸组成的,与其他已知的蛋白质有着相同的理化性质,所以酶的化学本质是蛋白质。

6.Vmax 与米氏常数可以通过作图法求得,试比较V~[S]图,双倒数图,V~V/[S]作图,[S]/V~[S]作图及直接线性作图法求Vmax 和Km 的优缺点?

答:(1)V~[S]图是双曲线的一支,可以通过其渐近线求Vmax,V=1/2Vmax 时对应的[S]为Km;优点是比较直观,缺点是实际上测定时不容易达到Vmax,所以测不准。

(2)1/V~1/[S]图是一条直线,它与纵轴的截距为1/Vmax,与横轴的截距为-1/Km,优

点是使用方便,Vmax 和Km 都较容易求,缺点是实验得到的点一般集中在直线的左端,作图时直线斜率稍有偏差,Km 就求不准。(3)V~V/[S]图也是一条直线,它与纵轴的截距为Vmax,与横轴的截距为Vmax/Km,斜率即为-Km,优点是求Km 比较方便,缺点是作图前计算较繁。

(4)[S]/V~[S]图也是一条直线,它与纵轴的截距为Km/Vmax,与横轴的截距为-Km,优缺点与V~V/[S]图相似。

(5)直接线性作图法是一组交于一点的直线,交点的横坐标为Km,纵坐标为Vmax,是求Vmax 和Km 的最好的一种方法,不需计算,作图方便,结果准确。

11.有时别构酶的活性可以被低浓度的竞争性抑制剂激活,请解释?

答:底物与别构酶的结合,可以促进随后的底物分子与酶的结合,同样竞争性抑制剂与酶的底物结合位点结合,也可以促进底物分子与酶的其它亚基的进一步结合,因此低浓度的抑制剂可以激活某些别构酶。

4.在体内ATP 有哪些生理作用?

答:ATP 在体内有许多重要的生理作用:

(1)是机体能量的暂时贮存形式:在生物氧化中,ADP 能将呼吸链上电子传递过程中所释放的电化学能以磷酸化生成ATP 的方式贮存起来,因此ATP 是生物氧化中能量的暂时贮存形式。

(2)是机体其它能量形式的来源:ATP 分子内所含有的高能键可转化成其它能量形式,以维持机体的正常生理机能,例如可转化成机械能、生物电能、热能、渗透能、化学合成能等。体内某些合成反应不一定都直接利用ATP 供能,而以其他三磷酸核苷作为能量的直接来源。如糖原合成需UTP 供能;磷脂合成需CTP 供能;蛋白质合成需GTP 供能。这些三磷酸核苷分子中的高能磷酸键并不是在生物氧化过程中直接生成的,而是来源于ATP。

(3)可生成cAMP 参与激素作用:ATP 在细胞膜上的腺苷酸环化酶催化下,可生成cAMP,作为许多肽类激素在细胞内体现生理效应的第二信使。

8.何为能荷?能荷与代谢调节有什么关系?

答:细胞内存在着三种经常参与能量代谢的腺苷酸,即ATP、ADP 和AMP。这三种腺苷酸的总量虽然很少,但与细胞的分解代谢和合成代谢紧密相联。三种腺苷酸在细胞中各自的含量也随时在变动。生物体中ATP-ADP-AMP 系统的能量状态(即细胞中高能磷酸状态)在数量上衡量称能荷。能荷的大小与细胞中ATP、ADP 和AMP 的相对含量有关。当细胞中全部腺苷酸均以ATP 形式存在时,则能荷最大,为100 ,即能荷为满载。当全部以AMP形式存在时,则能荷最小,为零。当全部以ADP 形式存在时,能荷居中,为50%。若三者并存时,能荷则随三者含量的比例不同而表现不同的百分值。通常情

况下细胞处于80 的能荷状态。能荷与代谢有什么关系呢?研究证明,细胞中能荷高时,抑制了ATP 的生成,

但促进了ATP 的利用,也就是说,高能荷可促进分解代谢,并抑制合成代谢。相反,低能荷则促进合成代谢,抑制分解代谢。

能荷调节是通过ATP、ADP 和AMP 分子对某些酶分子进行变构调节进行的。例如糖酵解中,磷酸果糖激酶是一个关键酶,它受ATP 的强烈抑制,但受ADP和AMP 促进。丙酮酸激酶也是如此。在三羧酸环中,丙酮酸脱氢酶、柠檬酸合成酶、异柠檬酸脱氢酶和α-酮戊二酸脱氢酶等,都受ATP 的抑制和ADP 的促进。呼吸链的氧化磷酸化速度同样受ATP 抑制和ADP 促进。

9.氧化作用和磷酸化作用是怎样偶联的?

答:目前解释氧化作用和磷酸化作用如何偶联的假说有三个,即化学偶联假说、结构偶联假说与化学渗透假说。其中化学渗透假说得到较普遍的公认。该假说的主要内容是:

(1)线粒体内膜是封闭的对质子不通透的完整内膜系统。(2)电子传递链中的氢传递体和电子传递体是交叉排列,氢传递体有质子(H+)泵的作用,在电子传递过程中不断地将质子(H+)从内膜内侧基质中泵到内膜外侧。

(3)质子泵出后,不能自由通过内膜回到内膜内侧,这就形成内膜外侧质子(H+)浓度高于内侧,使膜内带负电荷,膜外带正电荷,因而也就形成了两侧质子浓度梯度和跨膜电位梯度。这两种跨膜梯度是电子传递所产生的电化学电势,是质子回到膜内的动力,称质子移动力或质子动力势。

(4)一对电子(2eˉ)从NADH 传递到O2 的过程中共有3 对H 十从膜内转移到膜外。复合物Ⅰ、Ⅲ、Ⅳ着质子泵的作用,这与氧化磷酸化的三个偶联部位一致,每次泵出2 个H 十。

(5)质子移动力是质子返回膜内的动力,是ADP 磷酸化成ATP 的能量所在,在质子移动力驱使下,质子(H+)通过F1F0-ATP 合酶回到膜内,同时ADP 磷酸化合戚ATP。

2.为什么说三羧酸循环是糖、脂和蛋白质三大物质代谢的共通路?

答:(1)三羧酸循环是乙酰CoA 最终氧化生成CO2 和H2O 的途径。

(2)糖代谢产生的碳骨架最终进入三羧酸循环氧化。

(3)脂肪分解产生的甘油可通过有氧氧化进入三羧酸循环氧化,脂肪酸经β-氧化产生乙酰CoA 可进入三羧酸循环氧化。

(4)蛋白质分解产生的氨基酸经脱氨后碳骨架可进入三羧酸循环,同时,三羧酸循环的中间产物可作为氨基酸的碳骨架接受氨后合成必需氨基酸。所以,三羧酸循环是三大物质代谢共同通路。

3.糖代谢和脂代谢是通过那些反应联系起来的?

答:(1)糖酵解过程中产生的磷酸二羟丙酮可转变为磷酸甘油,可作为脂肪合成中甘油的原料。

(2)有氧氧化过程中产生的乙酰CoA 是脂肪酸和酮体的合成原料。

(3)脂肪酸分解产生的乙酰CoA 最终进入三羧酸循环氧化。

(4)酮体氧化产生的乙酰CoA 最终进入三羧酸循环氧化。

(5)甘油经磷酸甘油激酶作用后,转变为磷酸二羟丙酮进入糖代谢。

3. 什么是乙醛酸循环,有何生物学意义?

答:乙醛酸循环是一个有机酸代谢环,它存在于植物和微生物中,在动物组织中尚未发现。乙醛酸循环反应分为五步(略)。总反应说明,循环每转1 圈需要消耗2分子乙酰CoA,同时产生1 分子琥珀酸。琥珀酸产生后,可进入三羧酸循环代谢,或者变为葡萄糖。

乙醛酸循环的意义有如下几点:(1)乙酰CoA 经乙醛酸循环可琥珀酸等有机酸,这些有机酸可作为三羧酸循环中的基质。(2)乙醛酸循环是微生物利用乙酸作为碳源建造自身机体的途径之一。(3)乙醛酸循环是油料植物将脂肪酸转变为糖的途径。

4. 在脂肪酸合成中,乙酰CoA.羧化酶起什么作用?

答:在饱和脂肪酸的生物合成中,脂肪酸碳链的延长需要丙二酸单酰CoA。乙酰CoA羧化酶的作用就是催化乙酰CoA 和HCO3 . 合成丙二酸单酰CoA,为脂肪酸合成提供三碳化合物。乙酰CoA 羧化酶催化反应(略)。乙酰CoA 羧化酶是脂肪酸合成反应中的一种限速调节酶,它受柠檬酸的激活,但受棕榈酸的反馈抑制。

畜牧兽医专业自考复习要点-02795动物营养与代谢病防治复习资料及参考答案

判断题答案 1. (√)动物营养代谢病是新陈代谢障碍病和营养缺乏病的总称。 2. (√)动物营养代谢病造成的主要经济损失是生长发育受阻和生产性能下降。 3. (×)奶牛酮病在临床上主要是糖供给不足,脂肪大量分解所致,临床表现神经型和呼吸型两种。 4. (×)胆碱、含硫氨基酸缺乏是鸡脂肪肝和肾综合征发生的主要原因。 5. (√)生物素缺乏是鸡脂肪肝和肾综合征发生的主要原因。 6. (√)佝偻病是幼畜和幼禽的钙磷代谢障碍性疾病,其主要病理特征是成骨细胞钙化不足。 7. (×)佝偻病是一种骨营养不良性疾病,常在成年动物软骨内骨化作用完成后发生。 8. (×)饲料中临床推荐的合理的钙与磷供给比例一般为1:2。 9. (√)骨软病是一种骨营养不良性疾病,常在成年动物软骨内骨化完成后发生。 10.(×)微量元素是指动物体内含量不足百分之一的元素,在体内发挥重要的生物学作用。 11.(√)硒-维生素E缺乏在牛上可引起营养性肌营养不良和胎衣滞留。 12.(√)猪的桑葚心是由于硒-维生素E缺乏引起的。 13.(×)肝营养不良和桑葚心是羊硒-维生素E缺乏最常见的形式。 14.(√)雏鸡渗出性素质是由于饲料中缺乏硒和维生素E引起的。 15.(×)羔羊摆腰病是因为硒缺乏所引起的疾病。 16.(√)铜缺乏症的患畜,临床上表现以贫血、腹泻、运动失调和被毛褪色为特征症状。

17.(√)动物体内维生素A及胡萝卜素不足或缺乏可导致以上皮角化、夜盲和繁殖机能障碍为特征的维生素A缺乏症。 18..(×)猪食盐中毒表现明显的神经症状,主要是大脑血管周围有大量的淋巴细胞浸润,形成所谓的“袖套”现象。 19..(×)食盐中毒本质上是由Cl- 引起的中毒。 填空题答案 1. 营养代谢病是新陈代谢障碍病和营养缺乏病的总称。 2. 奶牛酮病的临床特征是:酮血、酮尿、酮乳和低血糖。 3. 酮病发生的主要原因是糖供给不足。 4. 家禽痛风是在饲喂含大量核蛋白和嘌呤碱饲料而同时伴有肾脏损伤时发生的。 5. 禽痛风的临床表现有两种类型:内脏型和关节型。 6. 禽痛风的实验室诊断依据是血液中尿酸盐水平升高。 7. 胆碱和含硫氨基酸缺乏是引起禽脂肪肝综合征的主要原因。 8. 维生素D又名钙化醇。 9. 饲料中钙磷比例不当,是造成家畜发生钙、磷代谢紊乱性疾病的重要原因。临床推荐的合理的钙与磷供给比例一般为2:1 。 10. 动物钙磷和维生素D代谢紊乱在成年动物发生骨软症。 11. 动物钙磷和维生素D代谢紊乱在幼龄动物发生佝偻病。 12. 佝偻病是幼龄动物维生素D缺乏或钙、磷代谢障碍所致的以消化紊乱、

高考真题汇编完整版精华版

第1页 即墨实验高中卓峰班物理3-5测试题 选择题(本题共36个小题,每题4分,共144分。每题给出的选项中,1-26只有一个选项符合题意,27-36题有多个选项符合题意,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分) 1. 下 列 说 法 中 正 确 的 是 ( ) A.质子与中子的质量不等,但质量数相等 B.两个质子之间,不管距离如何,核力总是大于库仑力 C.同一种元素的原子核有相同的质量数,但中子数可以不同 D.除万有引力外,两个中子之间不存在其它相互作用力 2.铀裂变的产物之一氪90(Kr 9036)是不稳定的,它经过一系列衰变最终成为 稳 定 的 锆 90 ( Zr 90 40 ),这些衰变 是 ( ) A.1次α衰变,6次β衰变 B.4次β衰变 C.2次α衰变 D.2次α衰变,2次β衰变 3.原子从一个能级跃迁到一个较低的能级时,有可能不发射光子。例如在某种条件下,铬原子的n =2能级上的电子跃迁到n =1能级上时并不发射光子,而是将相应的能量转交给n =4能级上的电子,使之脱离原子,这一现象叫做俄歇效应。以这种方式脱离了原子的电子叫做俄歇电子。已知铬原子的能级公式可简化表示为2 n A E n - =,式中n=1,2,3…表示不同 的能级,A 是正的已知常数。上述俄歇电子的动能是 ( ) A.A 16 3 B.A 16 7 C.A 16 11 D.A 16 13 4.在核反应方程(X)O N He 17 814742+→+的括弧中,X 所代表的粒子是 ( ) A.H 11 B.H 21 C.e 01- D.n 10 5.爱因斯坦由光电效应的实验规律,猜测光具有粒子性,从而提出光子说。从 科 学 研 究 的 方 法 来 说 , 这 属 于 ( ) A.等效替代 B.控制变量 C.科学假说 D.数学归纳 6.下面列出的是一些核反应方程 ( ) X P +→30143015 Y B H Be +→+1052194 Z Li He He +→+734242 其中 A. X 是质子,Y 是中子,Z 是正电子 B. X 是正电子,Y 是质子,Z 是中子 C. X 是中子,Y 是正电子,Z 是质子 D. X 是正电子,Y 是中子,Z 是质子 7.如图,当电键K 断开时,用光子能量为2.5eV 的一束光照射阴极P ,发现电流表读数不为零。合上电键,

动物营养学

《动物营养学》理论教学部分 复习思考题 一、术语与概念 二、思考题 1.NPN的利用原理及合理利用措施。 2.什么叫必需氨基酸?半必需氨基酸及非必需氨基酸?猪、禽各有哪些必需氨基酸? 3.什么叫限制性氨基酸?第一限制性氨基酸在蛋白质营养中有何意义?猪、禽饲料最常见的第一限制性氨基酸各是什么? 4.比较抗生素和益生素的作用及发展前景。5.比较非反刍动物和反刍动物脂肪类消化、吸收和代谢的异同。 6.比较非反刍动物和反刍动物蛋白质营养原理的异同。 7.水在动物体内的作用。 8.水的质量包括哪些指标?与动物的营养有何关系? 9.孕期合成代谢的含义与生物学意义。 10.必需脂肪酸的概念、作用及来源。11.生长肥育动物的采食量、日增重及料肉比有何关系? 12.生产实践中怎样考虑单胃非草食动物维生素的需要? 13.动物营养需要及饲料营养价值评定的主要方法。 14.各种动物机体化学成分随年龄增长的变化规律?掌握这些规律对研究营养需要有何作用?15.各种矿物元素的主要缺乏症及其机理。16.各种维生素的主要缺乏症及其机理。 17.如何用析因法来确定妊娠母畜的营养需要?18.如何合理应用饲养标准。 19.如何应用动物营养学的理论和技术解决动物生产中存在的主要问题。 20.如何提高饲粮的适口性? 21.论述“维持营养需要”在实际生产中的意义。22.论述母猪怀孕期和哺乳期营养的差别。23.论述产蛋家禽的钙磷营养特点。 24.论述单胃非草食动物和反刍动物在消化营养上的主要差别。 25.论述矿物质的营养特点。 26.论述采食量在动物生产中的作用和意义。27.论述非反刍动物和反刍动物对碳水化合物消化、吸收和代谢的异同。 28.论述饲料添加剂在动物营养中的作用及发展方向。 29.论述养分间的相互关系及饲粮养分平衡的意义。 30.论述热应激时动物的热调节的途径及缓解热应激的营养措施。 31.论述能量与三大有机养分的相互关系及实践意义。 32.论述维生素的营养特点。 33.论述概略养分分析体系的优缺点。 34.论述影响采食量的因素及实践意义。 35.论述瘤胃内环境稳定的含义及营养生理意义。36.何为可消化、可利用及有效氨基酸?何为理想蛋白?二者有何关系? 37.何谓生态营养?发展趋势如何? 38.何谓脂肪的额外能量效应?简述其可能的机制。

2795动物营养与代谢病防治

2795 动物营养与代谢病防治 一、课程性质及其设置目的与要求 (一)课程性质和特点 《动物营养与代谢病防治》课程是我省高等教育自学考试畜牧兽医专业的一门重要的专业课程,主要是研究动物非传染性群发病为主的一门临床学科。随着畜牧业生产向集约化和产业化发展,动物营养代谢病与中毒病已成为危害动物健康的主要疾病之一,其在动物生产中的重要性并不亚于传染性疾病,因为这些病也时常以群发的形式出现,给养殖业造成巨大的经济损失,并直接影响动物源性食品的质量和安全。本课程的教学主要是让学生掌握营养代谢病与中毒病的流行病学、发病机理、早期诊断、预测预报和防治措施。 (二)本课程的基本要求 本课程主要包括营养代谢病与中毒病两部分。要求学生通过系统的理论学习,能够将教材上学到的基本理论用于临床实践,解决畜牧业生产中的实际问题。在教学中,务必使学生扎实地掌握基础理论、基本知识和基本技能,了解随着畜牧业结构的调整,疾病发生的新特点,特别是要清楚地认识到非传染性群发性疾病的特异性诊断和亚临床疾病的监测、预报已成为现代畜牧业生产中急需解决的问题。 (三)本课程与相关课程的联系 本课程内容涉及其它课程较多,先修课程包括动物生物化学、动物解剖学、动物生理学、动物病理解剖学、兽医药理及毒理学、兽医临床诊断学、动物营养学基础等;后续课程主要是兽医临床实践。 二、课程内容与考核目标 绪论 (一)课程内容 第一节动物营养代谢病概述 1.动物营养代谢病的概念与特点 2.动物营养代谢病的病因 3.动物营养代谢病的诊断 4.动物营养代谢病的防治

5.动物营养代谢病防治的研究进展 第二节动物中毒病概述 1.与中毒病有关的一些基本概念 2.动物中毒病的常见原因 3.动物中毒病的诊断与防控 4.动物中毒病防治研究概况 (二)学习要求 了解和掌握动物营养代谢病的概念、病因、临床特点、诊断和防治原则;毒物与中毒的概念、中毒病的特点、毒物的代谢及作用方式、中毒病的诊断和防治。在理解基本概念的基础上,认识我国目前动物营养代谢病与中毒病的防控现状,增加学习该课程的兴趣和紧迫感。 (三)考核知识点和考核要求 1、了解:动物营养代谢病防治的研究进展;动物中毒病防治研究概况。 2、掌握:动物营养代谢病的病因、诊断及防治;动物中毒病的常见原因及诊断。 3、重点掌握:动物营养代谢病的概念与特点;毒物与中毒的概念;动物中毒病的防治原则。 第一章碳水化合物、脂肪及蛋白质代谢紊乱性疾病 (一)课程内容 介绍新生仔猪低血糖症;马麻痹性肌红蛋白尿病;犬、猫糖尿病;奶牛酮病;禽脂肪肝综合征;肉鸡脂肪肝和肾综合征;黄脂病;犬猫脂肪肝综合征;羊妊娠毒血症;肥胖母牛综合征;禽痛风;营养性衰竭症等的概念、病因、发病机理、临床症状、病理变化、诊断及鉴别诊断、防治。 (二)学习要求 在复习三大营养物质在体内的代谢的基础上,了解和掌握新生仔猪低血糖症;马麻痹性肌红蛋白尿病;奶牛酮病;禽脂肪肝综合征;肉鸡脂肪肝和肾综合征;黄脂病;禽痛风的概念、病因、发病机理、临床症状、病理变化、诊断及鉴别诊断、防治。学习重点应侧重于基本概念、发病机理的理解。

(最新最全)2012年高考试题 细胞的代谢

C单元细胞的代谢 C1 酶、ATP及代谢类型 30.[2012·重庆卷] Ⅱ.C1乙醇可部分替代石油燃料,利用纤维素酶、酵母菌等可将纤维素转化成乙醇,耐高温纤维素酶可以加速催化纤维素的水解,从而有利于酵母菌发酵产生乙醇。 (1)某研究小组将产纤维素酶的菌株,通过诱变和高温筛选获得新菌株。为探究新菌株 结果与结论:①若____________________________,则表明该纤维素酶能耐受80 ℃高温; ②若______________________________________,则表明该纤维素酶不能耐受80 ℃高温。 (2)酶母菌发酵产生的乙醇属于__________(填“初级”或“次级”)代谢产物。 30.Ⅱ.(1)80 ℃水浴保温适量纤维素液斐林试剂或班氏糖定性试剂 ①试管1内呈蓝色,试管2内有砖红色沉淀产生 ②试管1和2内均呈蓝色 (2)次级 [解析] Ⅱ.本小题利用纤维素生产乙醇为背景,对酶的相关实验及微生物的代谢产物的有关知识和学生的实验设计能力进行考查。(1)该实验的目的是探究纤维素酶能否耐受80 ℃高温,试管1为对照组,试管2为实验组,首先要对纤维素酶用80 ℃高温处理,为使试管受热均匀,通常采用水浴加热的方法。对酶进行高温处理后,再加入适量的反应底物纤维素溶液,乙醇发酵的底物是葡萄糖,由题干可知纤维素酶能将纤维素水解为葡萄糖,葡萄糖是还原糖,可用斐林试剂或班氏糖定性试剂检测。如果纤维素酶能耐受80 ℃高温,则经80 ℃高温处理后,试管2中有葡萄糖生成,可产生砖红色沉淀,试管1仍为蓝色。若两支试管中加斐林试剂水浴后都呈蓝色,说明80 ℃高温处理后,纤维素酶已经失活。(2)乙醇对酵母菌无明显生理功能,也并非是酵母菌生长和繁殖所必需的物质,因此属于次级代谢产物。 33.C1[2012·全国卷] 某同学为了探究pH对人唾液淀粉酶活性的影响,设计了如下实验步骤: ①在A、B、C、D、E 5 支试管中分别加入pH 5.0、6.0、7.0、8.0、9.0的适宜浓度缓冲液5 mL,再分别加入质量分数为1%的淀粉液1 mL。 ②各试管中分别加入适当浓度的唾液稀释液1 mL,摇匀。 ③将5支试管放入70 ℃恒温水浴中,保温时间相同且合适。 ④取出各试管,分别加入斐林试剂2 mL,摇匀。 ⑤观察各试管溶液的颜色,通过颜色深浅判断唾液淀粉酶作用的最适pH。 上述实验步骤中有2处错误,请更正并说明更正的理由(不考虑试剂的浓度和加入量、pH梯度以及实验重复次数),以便实验能得到正确的预期结果。 (1)________________________________________________________________________。 (2)________________________________________________________________________。 33.(1)③中70 ℃应改为37 ℃。因为人唾液淀粉酶作用的最适温度为37 ℃

三年高考真题汇编详解参考答案

三年高考真题汇编详解参考答案 (思想政治) 二、主观题部分 1.上述材料反映出我国消费品供给存在什么突出问题?我国生产企业应如何应对?(14分) 结合材料,说明为什么必须由全国人大常委会对香港基本法第一百零四条作出解释以及这一解释的重要意义。(12分) (1)《中国诗词大会》是传承中国优秀传统文化的成功案例,运用文化生活知识说明其成功的原因。(10分) (2)结合材料,运用社会历史主体的知识说明在传承发展中华优秀文化中如何坚持以人民为中心。(12分) (3)请就学校如何开展中华优秀文化教育提两条建议。(4分) (1)结合材料,运用经济知识分析国内玉米价格下降对玉米市场可能产生的影响。(8分)(2)玉米价格的下降,影响了一些玉米种植户的收入。政府和种植户可采取哪些应对措施?(6分)

概括材料所体现的政府、人大和人民三者之间的关系,并分析当前政府履行公共文化服务职能特点。(12分) (1)运用“辩证法的革命批判精神与创新意识”的知识并结合材料,分析科技领航者实现科技创新的主体原因。(12分) (2)运用文化作用的知识并结合材料,说明弘扬创新精神对于推动创新发展的作用。(10分)(3)班级举行主题班会探究批判性思维与创新精神的关系,请围绕主体提出两个观点。(4分)(1)运用经济知识分析中国高铁“走出去”对中国相关产业发展的积极作用,并就如何加快高铁更好地“走出去”提出两条政策建议。(14分)(2)运用文化传播的知识并结合材料,说明中国铁路“走出去”的文化意义。(10分)

(1)结合材料,运用国际社会知识,说明我国为什么要大力倡导构建人类命运共同体。(12分)(2)构建人类命运共同体需要世界各国共商共建共享,运用整体与部分的知识并结合材料加以阐述。(10分) (3)人类命运共同体的理念传承着中华优秀传统文化的基因,请列举两个与人类命运共同体理念相契合的名言或名句。(6分)(1)运用“当代国际社会”知识,分析“一带一路”建设为什么能为世界和平发展增添新的正能量。(12分) (2)运用经济生活知识并结合材料,说明推动“一带一路”国际产能合作对沿线国家和中国是双赢的选择。(14分)

02795 动物营养与代谢病防治

高纲0977 江苏省高等教育自学考试大纲 02795动物营养与代谢病防治 扬州大学编 江苏省高等教育自学考试委员会办公室

一、课程性质及其设置目的与要求 (一)课程性质和特点 《动物营养与代谢病防治》课程是我省高等教育自学考试畜牧兽医专业的一门重要的专业课程,主要是研究动物非传染性群发病为主的一门临床学科。随着畜牧业生产向集约化和产业化发展,动物营养代谢病与中毒病已成为危害动物健康的主要疾病之一,其在动物生产中的重要性并不亚于传染性疾病,因为这些病也时常以群发的形式出现,给养殖业造成巨大的经济损失,并直接影响动物源性食品的质量和安全。本课程的教学主要是让学生掌握营养代谢病与中毒病的流行病学、发病机理、早期诊断、预测预报和防治措施。 (二)本课程的基本要求 本课程主要包括营养代谢病与中毒病两部分。要求学生通过系统的理论学习,能够将教材上学到的基本理论用于临床实践,解决畜牧业生产中的实际问题。在教学中,务必使学生扎实地掌握基础理论、基本知识和基本技能,了解随着畜牧业结构的调整,疾病发生的新特点,特别是要清楚地认识到非传染性群发性疾病的特异性诊断和亚临床疾病的监测、预报已成为现代畜牧业生产中急需解决的问题。 (三)本课程与相关课程的联系 本课程内容涉及其它课程较多,先修课程包括动物生物化学、动物解剖学、动物生理学、动物病理解剖学、兽医药理及毒理学、兽医临床诊断学、动物营养学基础等;后续课程主要是兽医临床实践。 二、课程内容与考核目标 绪论 (一)课程内容 第一节动物营养代谢病概述 1.动物营养代谢病的概念与特点 2.动物营养代谢病的病因 3.动物营养代谢病的诊断 4.动物营养代谢病的防治 5.动物营养代谢病防治的研究进展

2020年高考生物考题--细胞的代谢

专题二细胞的代谢 1.(2020·高考浙江卷)人体肝细胞内CO2分压和K+浓度高于细胞外,而O2分压和Na+浓度低于细胞外,上述四种物质中通过主动转运进入该细胞的是 A.CO2B.O2 C.K+D.Na+ 2.(2020·高考福建卷)下列有关豌豆的叙述,正确的是 A.萌发初期,种子的有机物总重量增加 B.及时排涝,能防止根细胞受酒精毒害 C.进入夜间,叶肉细胞内ATP合成停止 D.叶片黄化,叶绿体对红光的吸收增多 3.(2020·高考江苏卷)下图表示细胞呼吸作用的过程,其中1~3代表有关生理过程发生的场所,甲、乙代表有关物质。下列相关叙述正确的是(多选) A.1和3都具有双层生物膜 B.1和2所含酶的种类不同 C.2和3都能产生大量A TP D.甲、乙分别代表丙酮酸、[H] 4.(2020·高考山东卷)夏季晴朗的一天,甲乙两株同种植物在相同条件下CO2吸收速率的变化如图所示。下列说法正确的是 A.甲植株在a点开始进行光合作用 B.乙植株在e点有机物积累量最多 C.曲线b~c段和d~e段下降的原因相同 D.两曲线b~d段不同的原因可能是甲植株气孔无法关闭 5.(2020·高考天津卷) 设置不同CO2浓度,分组光照培养蓝藻,测定净光合速率和呼吸速率(光合速率=净光合速率+呼吸速率),结果见右图。据图判断,下列叙述正确的是 A.与d3浓度相比,d1浓度下单位时间内蓝藻细胞光反应生成的[H]多 B.与d2浓度相比,d3浓度下单位时间内蓝藻细胞呼吸过程产生的A TP多

C.若d1、d2、d3浓度下蓝藻种群的K值分别为K1、K2、K3,则K1>K2>K3 D.密闭光照培养蓝藻,测定种群密度及代谢产物即可判断其是否为兼性厌氧生物 6.(2020·高考新课标全国卷)(11分)将玉米种子置于25 ℃、黑暗、水分适宜的条件下萌发,每天定时取相同数量的萌发种子,一半直接烘干称重,另一半切取胚乳烘干称重,计算每粒的平均干重,结果如图所示。若只考虑种子萌发所需的营养物质来源于胚乳,据图回答下列问题。 (1)萌发过程中胚乳组织中的淀粉被水解成__________,再通过__________作用为种子萌发提供能量。 (2)萌发过程中在______小时之间种子的呼吸速率最大,在该时间段内每粒种子呼吸消耗的平均干重为______mg。 (3)萌发过程中胚乳的部分营养物质转化成幼苗的组成物质,其最大转化速率为 __________mg·粒-1·d-1。 (4)若保持实验条件不变,120小时后萌发种子的干重变化趋势是______,原因是 ________________________________。 7.(2020·高考安徽卷)(10分)为探究酵母菌的细胞呼吸,将酵母菌破碎并进行差速离心处理,得到细胞质基质和线粒体,与酵母菌分别装入A~F试管中,加入不同的物质,进行了如下实验(见下表)。 试管编号 加入的物质 细胞质基质 A B 线粒体 C D 酵母菌 E F 葡萄糖-+-+++ 丙酮酸+-+--- 氧气+-+-+- 注:“+”表示加入了适量的相关物质,“-”表示未加入相关物质。 (1)会产生CO2和H2O的试管有________,会产生酒精的试管有________,根据试管________的实验结果可判断出酵母菌进行无氧呼吸的场所。(均填试管编号) (2)有氧呼吸产生的[H],经过一系列的化学反应,与氧结合形成水。2,4-二硝基苯酚(DNP)对该氧化过程没有影响,但使该过程所释放的能量都以热的形式耗散,表明DNP使分布在________的酶无法合成ATP。若将DNP加入试管E中,葡萄糖的氧化分解________(填“能”或“不能”)继续进行。 8.(2020·高考重庆卷)长叶刺葵是棕榈科热带植物。为了解其引种到重庆某地后的生理状况,某研究小组在水分充足、晴朗无风的夏日,观测得到了该植物光合速率等生理指标日变化趋势图。

2015-2017 形容词高考真题汇编

2015-2017 形容词高考真题汇编 单句语法填空 1.Even________ (bad), the amount of fast food that people eat goes up.( 2017·Ⅰ) 2.However, be ________ (care) not to go to extremes.( 2017·全国卷Ⅰ) 3.Steam engines were used to pull the carriages and it must have been ________ (fair) unpleasant for the passengers( 2017·全国卷II) 3.The Central London Railway was one of the most ________ (success) of these new lines, and was opened in 1900.( 2017·全国卷II) 5.It is ________ (certain) fun but the lifestyle is a little unreal. I don't want to have nothing else to fall back on when I can't model any more.”( 2017·全国卷III) 4.. But something made her look closer, and she noticed a .________ (shine) object.( 2017·浙江) 5.Sixteen years ________ (early), Pahlsson had removed the diamond ring to cook a meal. ( 2017·浙江) 6.The title will be ________(official) given to me at a ceremony in London. But my connection with pandas goes back to my days on a TV show in the mid-1980s( 2016·全国卷Ⅰ) 7.If you feel stressed by responsibilities at work, you should take a step back and identify (识别)those of ________(great)and less importance.( 2016·全国卷II) 8.Recent studies show that we are far more productive at work if we take short breaks ________(regular). ( 2016·全国卷II) 9.Food in small pieces could be eaten easily with twigs which ________(gradual) turned into chopsticks.( 2016·全国卷III) 10.U p to a certain point, the more stress you are under, the ________(good) your performance will be.( 2016 上海) 11.S he was a very ________(care)mother.For 25days,she never left her baby,not even to find something to eat.( 2016·四川) 13.Abercrombie & Kent, a travel company in Hong Kong, says it ________

影响药效的因素

第四章影响药效的因素 一.教材精要 掌握:个体差异,遗传药理学,时间药理学,药物剂型,给药方式,协同作用,相加作用,拮抗作用,耐受性,依赖性,撤药症状。 熟悉:影响药物作用的生理因素、精神因素、病理因素。 了解:药物治疗原则。 (一) 药物因素 1.药物剂量和剂型及给药途径 由于剂型不同,给药途径亦不同。不同给药途径的药物吸收速度不同,一般规律是静脉注射>(快于)吸入>肌肉注射>皮下注射>口服>直肠>贴皮。 2.联合用药及药物相互作用 临床常联合应用两种或两种以上药物,主要是利用药物间的协同作用以增加疗效或利用拮抗作用以减少不良反应。 (1)药动学方面的作用机制:①妨碍药物吸收(胃肠道pH改变、形成络合物、影响胃排空和肠蠕动);②竞争与血浆蛋白结合;③影响药物代谢(加速药物代谢、减慢药物代谢);④影响药物排泄。 (2)药效学方面的作用机制:①协同作用(相加作用、增强作用、增敏作用);②拮抗作用(药理性拮抗、生理性拮抗、生化性拮抗、化学性拮抗)。 协同作用:合并用药作用增加。 拮抗作用:合并用药作用减弱。 相加作用:两药合用的效应是两药分别作用的代数和。 3.反复用药

耐受性:连续用药后机体对药物的反应强度递减,需加大剂量才能显效,称为耐受性。抗药性:在化学治疗中,病原体或肿瘤细胞对药物的敏感性降低称为抗药性或耐药性 (resistance)。 药物依赖性:指某些麻醉药品或精神药品,直接作用于中枢神经系统,使之兴奋或抑制,连续使用能产生依赖性。分为躯体依赖性和精神依赖性。 (二) 机体因素 1.年龄和性别 小儿及老人用药的注意事项。 对已知有致畸作用的药物,在妊娠第一期即胎儿器官发育期内应严格禁用。 2.功能和病理状态 病人的功能状态可影响药物的作用。 肝肾功能损害时分别影响在肝转化及自肾排泄药物的清除率,可以适当延长给药间隔及(或)减少剂量加以解决。 3.个体差异和遗传因素 个体差异:在基本条件相同的情况下,少数病人对药物的反应不同,称个体差异。分为:量的差别和质的差异。 遗传因素主要表现在对药物体内转化的异常,分为快代谢型和慢代谢型。它主要影响药物血浆浓度及效应强弱久暂。 4.种属差异 动物种属差异和人种、民族差异。 5.机体对药物反应的变化 机体对药物反应的变化包括以下四种: (1)致敏反应。 (2)快速耐受性:药物在短时间内反复应用数次后药效递减直至消失。

动物营养与代谢病防治

名词解释答案 1.奶牛酮症:是由于奶牛体碳水化合物及挥发性脂肪酸代紊乱所引起的一种全身性功能失调的代性疾病。。 2.禽痛风:是指禽血液中尿酸盐大量蓄积,不能被迅速排出体外,形成高尿酸血症,进而尿酸盐沉积在关节囊、关节软骨、软骨周围及胸腹腔、各种脏器表面和其它间质组织上的一种代病。临床上以运动迟缓、关节肿大、跛行、厌食、衰弱及腹泻为特征。 3.蛋鸡脂肪肝出血综合征:又称脂肝病,由于体脂肪代发生障碍,多量脂肪蓄积于肝脏,腹腔及皮下脂肪组织引起肝脏发生脂肪病变。 5.肉鸡脂肪肝和肾综合征:肉用仔鸡发生的一种以肝、肾肿胀,肝苍白、肾呈各种色变,表现嗜睡、麻痹和突然死亡为特征的疾病。 6.佝偻病:幼龄动物维生素D缺乏及钙、磷代障碍所致的以消化紊乱、异嗜癖、跛行及骨骼变形为特征的疾病。 7.骨软病:成年动物软骨骨化完成后由于钙磷代紊乱而发生的以骨质脱钙、骨质疏松和骨骼变形为特征的一种骨营养不良。 8.营养性肌营养不良:由于硒-维生素E缺乏,幼畜发生的一种以骨骼肌、心肌纤维及肝组织等发生变性、坏死为主要特征的疾病。 10.渗出性素质:雏禽由于饲料中缺乏硒和维生素E而引起的以胸部、腹部、翅下及大腿侧皮下发生水肿为特征的一种疾病。 11.铜缺乏症:是动物体铜含量不足所致的以贫血、腹泻、运动失调和被毛褪色为特征的一种营养代性疾病。 12.铁缺乏症:由于饲草料中铁含量不足或机体铁摄入量减少,引起动物以贫血

和生长受阻为主要特征的一种营养代性疾病。 13.锰缺乏症:是动物体锰含量不足引起的以生长缓慢、骨骼发育异常和繁殖机能障碍为特征的营养代性疾病。 14.维生素A缺乏症:由于动物体维生素A及胡萝卜素不足或缺乏所致的以上皮角化、夜盲和繁殖机能障碍为特征的营养代性疾病。 15.维生素B1缺乏症:由于体硫胺素缺乏或不足所引起的一种以神经机能障碍为主要特征的营养代病。 16.维生素B2缺乏症:由于动物体维生素B2不足或缺乏所致的以生长缓慢、皮炎、肢麻痹(禽)、胃肠道及眼损伤为主要特征的营养代性疾病。 17.酮病,反刍动物体物质代和能量生成障碍而发生的以酮血、酮尿、酮乳和低血糖为特征的代性疾病。 18.肉鸡腹水综合征:是危害快速生长的幼龄肉鸡,以浆液性液体过多的积累在腹腔,右心扩肥大,肺部淤血水肿和肝脏病变为特征的非传染性疾病。 23.毒物:任何物质(固、液、气体)进入动物机体,干扰和破坏机体的正常生理机能,导致暂时或持久的病理过程,甚至危害生命者,都应该称为毒物。 24.中毒:是由毒物引起的疾病之总称。 25.饱潲病:猪亚硝酸盐中毒常在饱食后不久发生,并迅速窒息死亡,故又称“饱潲病”。以黏膜发绀、呼吸困难为临床特征。 27.氢氰酸中毒:家畜采食富含氰苷配糖体的青饲料植物,在体水解生成氢氰酸,引起以呼吸困难、震颤、惊厥为特征的中毒性疾病。 28.棉籽饼中毒:畜禽因长期、大量吃棉籽、棉籽饼,发生一种以胃肠炎为主要特征的疾病。

2014高考真题+模拟新题 生物分类汇编:C单元 细胞的代谢 纯word版解析可编辑

C1 酶、ATP 及代谢类型 2.C1[2014·全国卷] ATP 是细胞中重要的高能磷酸化合物。下列有关ATP 的叙述,错误的是( ) A .线粒体合成的ATP 可在细胞核中发挥作用 B .机体在运动时消耗ATP ,睡眠时则不消耗ATP C .在有氧与缺氧的条件下细胞质基质中都能形成ATP D .植物根细胞吸收矿质元素离子所需的ATP 来源于呼吸作用 2.B [解析] 本题考查ATP 的有关知识,线粒体中合成的ATP 可用于除光合作用以外的耗能反应,A 项正确。机体无论是在运动还是睡眠时,都会消耗ATP ,B 项错误。细胞质基质是有氧呼吸与无氧呼吸第一阶段进行的场所,这一过程有ATP 产生,C 项正确。植物根细胞吸收矿质元素离子的方式是主动运输,该过程所需A TP 来自于细胞呼吸,D 项正确。 5. C1 [2014·重庆卷] 如图为乙醇在人体内主要的代谢过程。下列相关叙述,正确的是 ( ) 乙醇――→氧化肝脏乙醛氧化,F乙酸CO 2、H 2O A .乙醇转化为乙酸发生的氧化反应,均由同一种氧化酶催化 B .体内乙醇浓度越高,与乙醇分解相关的酶促反应速率越快 C .乙醇经代谢产生的[H]可与氧结合生成水,同时释放能量 D .正常生理情况下,人体分解乙醇的速率与环境温度呈正相关 5.C [解析] 图示信息显示:乙醇在人体内的代谢主要靠体内的两种酶,一种是乙醇脱氢酶,另一种是乙醛脱氢酶。前者使乙醇转化为乙醛,后者使乙醛进一步转化为乙酸,最终分解为二氧化碳和水,A 项错误。一般情况下,底物浓度会对酶促反应速率产生影响,但在酶已达到饱和的情况下,即使增加底物浓度,反应速率也不会加快,且在体内乙醇对细胞有毒害作用,乙醇浓度不会越来越高,B 项错误。细胞有氧呼吸第三阶段[H]与氧结合生成水,同时释放大量能量, C 项正确。温度能影响酶的活性,但人体体温调节使体温保持相对恒定, D 项错误。 1.C1、C2、H2、I1[2014·四川卷] 在生物体内,下列生理活动只能单向进行的是( ) A .质壁分离过程中水分子的扩散 B .生长素在胚芽鞘中的极性运输 C .肝细胞中糖原与葡萄糖的转化 D .活细胞内ATP 与ADP 的转化 1.B [解析] 本题综合考查了水的吸收、生长素的运输、糖类的转化、ATP 与ADP 的转化。细胞渗透吸水实际是水分子的自由扩散,是双向的;生长素极性运输只能由形态学的上端向下端运输,为单向的;在肝细胞中糖原与葡萄糖能相互转化,从而维持血糖的相对稳定;细胞通过ATP 与ADP 的相互转化为生命活动提供能量,所以本题选B 。 4.A1、D1、G2、C1[2014·山东卷] 下列有关实验操作的描述,正确的是( ) A .鉴定待测样液中的蛋白质时,先加NaOH 溶液,振荡后再加CuSO 4溶液 B .制作细胞的有丝分裂装片时,洋葱根尖解离后直接用龙胆紫溶液染色 C .低温诱导染色体加倍实验中,将大蒜根尖制成装片后再进行低温处理 D .探究温度对酶活性的影响时,将酶与底物溶液在室温下混合后于不同温度下保温

2019年高考真题分类汇编(全)

2019年高考真题分类汇编 第一节 集合分类汇编 1.[2019?全国Ⅰ,1]已知集合{} }2 42{60M x x N x x x =-<<=--<,,则M N ?= A. }{43x x -<< B. }{42x x -<<- C. }{22x x -<< D. }{23x x << 【答案】C 【解析】【分析】 本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{} 42,23M x x N x x =-<<=-<<,则 {}22M N x x ?=-<<.故选C . 【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 2.[2019?全国Ⅱ,1]设集合A ={x |x 2-5x +6>0},B ={ x |x -1<0},则A ∩B = A. (-∞,1) B. (-2,1) C. (-3,-1) D. (3,+∞) 【答案】A 【解析】【分析】 本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题. 【详解】由题意得,{}{} 2,3,1A x x x B x x ==<或,则{} 1A B x x ?=<.故选A . 【点睛】本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分. 3.[2019?全国Ⅲ,1]已知集合{}{} 2 1,0,1,21A B x x ,=-=≤,则A B ?=( ) A. {}1,0,1- B. {}0,1 C. {}1,1- D. {}0,1,2 【答案】A 【解析】【分析】 先求出集合B 再求出交集. 【详解】由题意得,{} 11B x x =-≤≤,则{}1,0,1A B ?=-.故选A . 【点睛】本题考查了集合交集的求法,是基础题. 4.[2019?江苏,1]已知集合{1,0,1,6}A =-,{} 0,B x x x R =∈,则A B ?=_____. 【答案】{1,6}.

动物营养学试题及答案A

甘肃农业大学成人高等教育(函授)《动物营养学》课程考试 (A)卷 注意事项:1. 考生务必将自己姓名、学号、专业名称写在指定位置; 2. 密封线和装订线 4.营养物质代谢后产生代谢水最多的是()。 A.粗蛋白质 B.粗脂肪 C.粗纤维 D.无氮浸出物 5.动物摄入饲料的总能减去粪能的差值称为()。 A.消化能 B.代谢能 C.气体能 D.生产净能 6.反刍动物如奶牛饲粮中粗纤维严重不足或粉碎过细时,会产生()。 A.蹄叶炎 B.乳酸中毒 C.瘤胃不完全角化 D.皱胃位移 E.乳蛋白率降低 7.动物摄入饲料的总能减去粪能的差值称为()。 A.消化能 B.代谢能 C.气体能 D.生产净能 8.使用禾谷类及其它植物性饲料配制家禽饲料时,()常为第一限制性氨基酸。 A.蛋氨酸 B.赖氨酸 C.色氨酸 D.苏氨酸 9.维生素B1又叫硫胺素,对于禽类的典型缺乏症表现为()。 A.脚气病 B.多发性神经炎 C.麻痹症 D.佝偻病 10.以下( )的吸收主要是以被动吸收的方式进行吸收。 A.电解质 B.短链脂肪酸 C.水 D.氨基酸 11.反刍动物比单胃动物能更好的利用()。 A.蛋白质 B.脂肪 C.无氮浸出物 D.粗纤维

12.反刍动物使用高精料饲粮时,容易出现酸中毒,饲粮中添加缓冲剂,可以 提高瘤胃的消化功能,防止酸中毒,生 产中常用的缓冲剂为()。 A.碳酸氢钠 B.氢氧化钠 C.硫酸铜 D.氯化钠 13.鸡体内缺硒的主要表现为()。 A.贫血 B.佝偻病 C.夜盲症 D.渗出性素质 14.寡肽是含有()氨基酸残基的蛋白质。 个以上个以上个以下个 15.动物体内缺锌的典型症状为()。 A.贫血 B.佝偻病 C.夜盲症 D.皮肤角质化不全 答: 1、B 2、D 3、A 4、B 5、A 6、 A,B,C,D 7、A 8、A 9、B 10、D 11、D 12、A 13、D 14、D 15、D 二、填空题(30分,每空2分) 1.钙和磷的典型缺乏症有()()()。 2.反刍动物日粮中使用非蛋白氮作为 氮源时,氮硫比例大于()可能引起硫缺乏。 3.引起动物白肌病是因为动物缺乏微 量元素()或维生素()。 4.与家禽产软壳蛋有关的维生素是(),鸡发生渗出性素质症,是因为缺乏维生素()或微量元素();禽类的硫胺素的典型缺乏症()。 5.寡糖的营养和益生作用表现为 ()、结合并排出外源性病原菌、()和寡聚糖的能量效应等四个方面。 6.水中有毒的物质包括()、()、()等。 答:1、佝偻病骨质软化症软骨症产褥热任意填三个 2、10-12:1 3、硒E 4、维生素D E 硒多发性神经炎 5、促进机体肠道内微升态平衡调节体内的免疫系统 6、硝酸盐重金属盐亚硝酸盐或氟化物 三、名词解释(15分,每题3分) 1.动物营养 答:动物营养指动物摄取、消化、吸收、利用饲料中营养物质的全过程,是一系列物理、化学及生理变化过程的总称。 2.瘤胃降解蛋白质(RDP) 答:RDP瘤胃内被微生物降解饲料蛋白质称为瘤胃降解蛋白。 3.理想蛋白 答:理想蛋白是指氨基酸组成和比例与畜禽氨基酸需要完全一致的蛋白质。 4.美拉德反应 答:饲料热处理温度过高或者时间过长,对氨基酸的消化有不利影响,在干燥的条件下,使得蛋白质肽链上的游离氨基酸与还原糖中的醛基形成一种氨糖复合物,不能为蛋白酶消化称为美拉德反应。 5.随意采食量 答:随意采食量指动物在充分接触饲料的情况下,在一定时间内才是饲料的数量。

02795动物营养与代谢病防治

本科《家畜营养与代谢病学》(课程代码2795)复习提纲 第一章绪论 定义:营养物质代谢过程发生障碍引起的疾病称营养代谢性疾病。其主要包括:营养物质缺乏;三大物质的吸收障碍;中间代谢障碍;排泄障碍;参与代谢调节的物质(矿质、维生素)质和量的改变。 营养代谢疾病的一般原因 1).来源不足:土壤、水和饲料中某种营养物质的不足,或过多,拮抗使另一种营养物质不足。此种现象、集约化养殖场出现较多。 2)吸收障碍:胃肠道炎症、先天性消化酶缺乏(如乳糖酶缺乏→单糖吸收障碍)。 3)消耗过多:妊娠、泌乳、产蛋、产毛、生长发育、慢性消耗性疾病。 4)肝功能障碍:许多代谢物质的代谢中断。 5)调节机能障碍:神经、激素、酶的组成成分(微量元素、维生素)不足。 6)排泄障碍:肾功能障碍。 营养代谢疾病的特征(诊断要点) 1)发病慢:呈渐进性发展,从病因到症状一般需数周、数月,甚至更长。 2)群发、呈地方性发生。 3)临床和病理变化常呈现某种营养物不足的特有症状,体温正常或稍偏低。 4)饲料和动物组织检测,有某种营养物质过低。 5)试验性治疗和血清酶活性降低有诊断意义。 营养代谢病的防治 1)合理搭配饲料,补充所缺乏的营养物质。 2)注重作为饲料的收获、贮藏,防止霉变,合理加工,排除营养物质缺乏原因。 3)配制全价日粮。 第二章糖、脂肪与蛋白质营养紊乱性疾病 奶牛酮病 定义:奶牛酮病是由于奶牛体内碳水化合物及挥发性脂肪代谢紊乱所引起的一种全身性功能失调的代谢性疾病 病因 1)瘤胃生成丙酸减少,血糖浓度降低,丙酸是在瘤胃消化过程中产生(乙:丙:丁=70:20:10),糖主要是丙酸通过糖异生途径转化为葡萄糖。 2)产前,产后,采食量降低,前胃消化功能降低,挥发性脂肪酸减少,饲料中碳水化合物供给不足。精料太多,粗纤维不足。 以上均可造成丙酸浓度降低。丙酸需先转化为丙酰COA,在VB12的参与下,转化为琥珀酰COA,然后经糖异生,合成所需要的葡萄糖。 3)缺钴时,VB12合成减少,影响丙酸代谢和糖生成。 4)体内糖消耗过多,过快,造成糖供与消耗不平衡→使血糖降低。 乳牛泌乳高峰期。 发病机理:当血糖浓度降低,脂肪组织中的脂肪分解加强,产生脂肪酸和甘油,甘油可作为生糖生质转化为葡萄糖以弥补血糖不足,但大量的脂肪酸不仅使血中浓度增高,而且引起肝内脂肪酸的β-氧化加快,所产生的乙酰COA因得不到足够的草酸乙酰,不能进入三羧酸循环,沿着合成乙酰COA的途径,最终形成大量酮体。 胴体产生后对机体的影响是:1)酸中毒; 2)瘤胃酸度高,M区系改变—→前胃消化不良;3)抑制中枢,造成瘫痪。 主要临床特征 1)消瘦型: 呈顽固性前胃弛缓,消瘦。

高三生物二轮复习必修一专题二教学设计----细胞代谢

专题二教学设计:细胞代谢 【高考要求】 (1)酶在代谢中的作用II (2)ATP在能量代谢中的作用II (3)光合作用的基本过程II (4)影响光合作用速率的环境因素II (5)细胞呼吸II 实验: 探究影响酶活性的因素 探究酵母菌的呼吸方式 叶绿体色素的提取和分离 【命题趋势】 1、酶和ATP ①ATP知识点命题角度始终和细胞内稳定能量供应系统结合,预计在2010年高考中,这种 选择题命题角度还会存在。 ②在近几年高考中,酶的考点以图表的形式联系生产生活实际综合考查酶的特性实验分析 和影响酶活性的曲线分析较多,预计2010年高考这种简答题命题趋势还会出现。 ③以选择题的形式考查有关高中生物阶段酶的种类、作用总结和消耗ATP的生理过程总结 是近几年的热点,我们在2010年高考复习时应该多加注意。 ④预计2010年本专题试题赋分稳定,约为6%左右,试题难度维持在0.62左右。 2、细胞呼吸 ①细胞呼吸内容往往是综合性试题的命题材料,往往与光合作用联系在一起,尤其以生产实 践为材料背景的综合性试题更为常见,试题中所占的分值约占25%左右。 ②预计2010年高考试题中,单纯的细胞呼吸过程仍然会以选择题的方式出现,试题难度0.65 左右;与光合作用联系的实验题则是选择题、简答题都有可能,难度在0.55左右。 3、光合作用 ①新课标省份近3年高考试题中,光合作用考题普遍存在,与呼吸作用相联系的综合性试题 也非常多,试题赋分比重始终非常高,和遗传变异专题大致相同,约占试卷总分的25%左右,这也反映了高考试题从不回避主干知识的重复考查。 ②光合作用知识是生物学科的命题重点,也是高考的热点,年年都考,常考常新,其试题综 合性大、灵活性强、开放度大,命题形式灵活多变,选择题、简答题、图表题和实验探究题均有涉及,预计这种命题趋势还会继续,试题难度一般维持在0.55左右,较难得分。【课时安排】 本专题安排三课时完成 第一课时:酶和ATP,细胞呼吸 第二课时:光合作用 第三课时:专题检测与讲评 【重难点突破策略】 第一课时:酶和ATP,细胞呼吸 课时重点 ①“酶在代谢中的作用”主要包括酶的本质、特性、作用和酶特性实验分析、设计。 ②“ATP在能量代谢中的作用”主要包括ATP的结构与转化、ATP在细胞内稳定能量供应 系统中的作用。

相关文档
相关文档 最新文档