文档库 最新最全的文档下载
当前位置:文档库 › 全国个地区重力加速度表

全国个地区重力加速度表

全国个地区重力加速度表

全国各地区重力加速度表

自己可以计算的用gps看出本地区的经纬度和海拔

用以下公式自己计算近似值

地球各点重力加速度近似计算公式:

g=g0(1-0.00265cos&)/1+(2h/R)

g0:地球标准重力加速度9.80665(m/平方秒)

&:测量点的地球纬度

h:测量点的海拔高度

R:地球的平均半径(R=6370km)

我国主要城市的重力加速度及风雪

我国主要城市的重力加速度: 北京:9.80151 天津:9.80106 唐山:9.80164 石家庄:9.79973 昆明:9.78363 南宁:9.78769 柳州:9.78850 乌鲁木齐:9.80146 武汉:9.79361 呼和浩特:9.79864 吉林:9.80480 长春:9.80476 西安:9.79136 成都:9.79134 哈尔滨:9.80665 开封:9.79660 南昌:9.79196 广州:9.78833 青岛:9.79849 南京:9.79494 上海:9.79460 福州:9.78910 杭州:9.79362 F=mg-V(&k)g=mg-(m/&f)g(&k) m:物体的质量 g:物体所在地的重力加速度 &k:空气密度(一般取1.2kg/立方厘米) &f:物体材料密度

地球各点重力加速度近似计算公式: g=g0(1-0.00265cos&)/1+(2h/R) g0:地球标准重力加速度9.80665(m/平方秒) &:测量点的地球纬度 h:测量点的海拔高度 R:地球的平均半径(R=6370km) s:时间 附录D 基本雪压和风压的确定方法 D.1基本雪压 D.1.1 在确定雪压时,观察场地应具有代表性。场地的代表性是指下述内容: ——观察场地周围的地形为空旷平坦; ——积雪的分布保持均匀; ——设计项目地点应在观察场地的地形范围内,或它们具有相同的地形。 对于积雪局部变异特别大的地区,以及高原地形的山区,应予以专门调查和特殊处理。 D.1.2 雪压是指单位水平面积上的雪重,单位以kN/㎡计。当气象台站有雪压记录时,应直接采用雪压数据计算基本雪压;当无雪压记录 时,可间接采用积雪深度,按下式计算雪压: 式中h—积雪深度,指从积雪表面到地面的垂直深度(m); ρ—积雪密度(t/m3); g—重力加速度,9.8m/s2。 雪密度随积雪深度、积雪时间和当地的地理气候条件等因素的变化有较大幅度的变异,对于无雪压直接记录的台站,可按地区的平均雪密度计算雪压。

重力加速度的测定

重力加速度的研究 一、单摆法 实验内容 1.学习使用秒表、米尺。 2.用单摆法测量重力加速度。 教学要求 1.理解单摆法测量重力加速度的原理。 2.研究单摆振动的周期与摆长、摆角的关系。 3.学习在实验中减小不确定度的方法。 实验器材 单摆装置(自由落体测定仪)秒表钢卷尺 重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值相差约1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探察。 伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的振幅无关,并用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。 应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长L,只需要量出摆长,并测定摆动的平均周期,就可以算出g值。 实验原理 单摆是由一不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右往返作周期性摆动,如图2-1所示。

图2-1 单摆原理图 摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。设摆长为L ,小球位移为x ,质量为m ,则 sin θ=L x f=psin θ=-mg L x =-m L g x (2-1) 由f=ma , 可知 a=-L g x 式中负号表示f 与位移x 方向相反。 单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式: a = m f =-ω2x 可得ω=l g 于是得单摆运动周期为: T =2π/ω=2π g L (2-2) T 2 = g 2 4πL (2-3) 或 g=4π2 2 T L (2-4) 一般作单摆实验时,采用某一个固定摆长L ,精密地多次测量周期T ,代入(2-4)式,即可求得当地的重力加速度g 。 由式(2-3)可知,T 2 和L 之间具有线性关系,g 2 4π为其斜率, 如就各种摆长测出各对应周期,则可从T 2—L 图线的斜率求g 值。 上述单摆测量g 的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差: 1. 单摆的摆动周期与摆角的关系,可通过测量θ<5°时两次不同摆角θ1、θ2的周期值进行比较。在本实验的测量精度范围内,验证出单摆的T 与θ无关。

重力加速度表

全国各地区重力加速度表 力加速度地区修正值 序号地区 g(m/s2) g/1kg g/3kg g/6kg g/15kg g/30kg 1 包头9.7986 -0.3981 -1.1943 -2.3886 -11.9430 -11.9430 2 北京9.8015 -0.7045 -2.1135 -4.2270 -10.5675 -21.1350 3 长春9.8048 -1.0413 -3.1239 -6.2478 -15.6195 -31.2390 4 长沙9.791 5 0.3267 0.9801 1.9602 9.8010 9.8010 5 成都9.7913 0.3267 0.9801 1.9602 4.9005 9.8010 6 重庆9.7914 0.326 7 0.9801 1.9602 4.9005 9.8010 7 大连9.8011 -0.6636 -1.9908 -3.9816 -9.9540 -19.9080 8 广州9.7833 0.6432 1.9296 3.8592 9.6480 19.2960 9 贵阳9.7968 0.7963 2.3889 4.7778 23.8890 23.8890 10 哈尔滨9.8066 -1.2251 -3.6753 -7.3506 -18.3765 -36.7530 11 杭州9.7936 0.1020 0.3060 0.6120 1.5300 3.0600 12 海口9.7863 0.8474 2.5422 5.0844 25.4220 25.4220 13 合肥9.7947 0.0204 0.0612 0.1224 0.3060 0.6120 14 吉林9.8048 -1.0413 -3.1239 -6.2478 -15.6195 -31.2390 15 济南9.7988 -0.3981 -1.1943 -2.3886 -5.9715 -11.9430 16 昆明9.7830 1.1230 3.3690 6.7380 16.8450 33.6900 17 拉萨9.7799 0.5513 1.6539 3.3078 16.5390 16.5390 18 南昌9.7920 0.2654 0.7962 1.5924 7.9620 7.9620 19 南京9.7949 -0.0306 -0.0918 -0.1836 -0.4590 0.9180 20 南宁9.7877 0.7044 2.1132 4.2264 10.5660 21.1320 21 青岛9.7985 -0.3981 -1.1943 -2.3886 -5.9715 -11.9430 22 上海9.7964 0.0000 0.0000 0.0000 0.0000 0.0000 23 沈阳9.8035 -0.9086 -2.7258 -5.4516 -13.6290 -27.2580 24 石家庄9.7997 -0.5513 -1.6539 -3.3078 -8.2695 -16.5390 25 太原9.7970 -0.2450 -0.7350 -1.4700 -3.6750 -7.3500

(完整版)重力加速度的测定实验报告

重力加速度的测定 一,实验目的 1,学习秒表、米尺的正确使用 2,理解单摆法和落球法测量重力加速度的原理。 3,研究单摆振动的周期与摆长、摆角的关系。 4,学习系统误差的修正及在实验中减小不确定度的方法。 二,实验器材 单摆装置,停表(精度为0.01s),钢卷尺(精度为1mm),游标卡尺(精度为0.02mm) 三,实验原理 单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。 f =F sinθf θ T=F cosθ F= mg L 单摆原理图

摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。设摆长为L ,小球位移为x ,质量为m ,则 L x = θsin f=θsin F =-L x mg - =-m L g x 由f=ma ,可知a=- L g x 式中负号表示f 与位移x 方向相反。 单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a = m f =-ω2 x 可得ω=l g ,即02 22=+x dt x d ω,解得)cos(0?ω+=t A x ,0A 为振幅,?为初相。 应有[])2cos())((cos )cos(000?πω?ω?ω++=++=+=t A T t A t A x 于是得单摆运动周期为:T =ωπ 2=2πg L 即 T 2=g 2 4πL 或 g=4π22 T L 又由于细线不是完全没有质量,他在外力作用下也不可能完成伸长,所以,单摆的重力加速度公式修正为 22 21 4T d L g +=π 四,实验步骤 1,数据采集 (1)测量摆长L 用米尺测量摆球支点和摆球顶点或最低点的间距l ,用游标卡尺测量小球的直径d,则摆长 d l L 2 1+= (2)测量摆动周期 用手把摆球拉至偏离平衡位置约? 5放开,让其在一个铅直面内自由摆动,当小球通过平衡位置的瞬间,开始计时,连续默数100次全振动时间为t ,再除以100,得到周期T 。 (3)将所测数据列于下表中,并计算出摆长、周期及重力加速度。

实验2 自由落体法测定重力加速度(详写).doc

《实验2 自由落体法测定重力加速度》 实验报告 一、实验目的和要求 1、学会用自由落体法测定重力加速度; 2、用误差分析的方法,学会选择最有利的测量条件减少测量误差。 二、实验描述 重力加速度是很重要的物理参数,本实验通过竖直安放的光电门测量自由落体时间来求重力加速度,如何提高测量精度以及正确使用光电计时器是 实验的重要环节。 三、实验器材 MUJ-5C型计时计数测速仪(精度0.1ms),自由落体装置(刻度精度0.1cm), 小钢球,接球的小桶,铅垂线。 四、实验原理 实验装置如图1。 在重力实验装作用下,物体的下落运动是匀加速直线运动, 其运动方程为 s=v0t+1/2g t2 该式中,s是物体在t时间内下落的距离;v0是物体运动的初 速度;g是重力加速度;若测得s, v0,t,即求出g值。 若使v0=0,即物体(小球)从静止释放,自由落体,则可 避免测量v0的麻烦,而使测量公式简化。但是,实际测量S 时总是存在一些困难。本实验装置中,光电转换架的通光孔总 有一定的大小,当小铁球挡光到一定程度时,计时-计数-计频 仪才开始工作,因此,不容易确定小铁球经光电转换架时的挡 光位置。为了解决这个问题,采用如下方法: 让小球从O点处开始下落,设它到A处速度为v0,再经过 t1时间到达B处,令AB间距离为s1,则 gt12 s1=v0t1?1 2 同样,经过时间t2后,小球由A处到达B’处,令AB’间 的距离为s2,则有 s2=v0t2+1/2g t22 化简上述两式,得: 图1 实验装置图g=2(s2t1-s1t2)/ t1t22-t2t12=2(s2/t2-s1/t1)/ t2-t1 --------------------------------------------(1)

重力加速度的测量研究 大学物理实验期末论文

重力加速度的测量研究 姓名:*** 学号:******** 班级:********* 摘要: 重力加速度是一个重要的物理常数,其值会随纬度和海拔高度的不同而不同。准确测量不同地区的重力加速度在理论、生产和科学研究中都具有重要意义。目前能够准确测量重力加速度的方法有很多种。本文分析了传统多种测量重力加速度的方法,提出新的实验方法(用压力传感器测重力加速度),并对此方法进行了分析和应用。最后比较了几种方法的特点,说明新方法的可行性。 正文: 伽利略首先证明,如果空气摩擦的影响可以忽略不计,则所有落地的物体都可以以同一速度下降,也就是说物体都具有相同的加速度,这个加速度称为重力加速度g。重力加速度是一个重要的地球物理常数。准确测量它的量值,无论在理论上还是在科研和生产等方面都有极其重要的意义。在历史上,人们曾经花费了很多的精力和时间来研究这个问题,如波兹坦大地测量研究所曾用凯特摆花了八年的时间,才正确地测得了当地的重力加速度。现在我们高中就知道,重力是地球引力的一个分力。地球是绕着自转轴旋转的因此地球上的物体就需要一个垂直于自转轴的向心力,这个向心力就只能由万有引力提供,即向心力是万有引力的一个分力,另一个分力就是重力。 压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。常见的压力传感器有应压片压力传感器和压电式压力传感器(如下图):

重力加速度测量方法的研究

重力加速度测量方法的比较研究 错误!未找到引用源。错误!未找到引用源。摘 要: 重力加速度是物理学中的一个十分重要的物理量,在地面上不同的地区,重力加速度g 值不相同,它是由物体所在地区的纬度、海拔等因素决定,随着地球纬度和海拔高度的变化而变化,准确地确定 它的量值,无论从理论上、还是科研上、生产上以及军事上都有极其 重大的意义。 测量重力加速度的方法有很多,我所要做的就是通过学习前人的 理论知识,经过思考,在现有的实验室条件下,进行实验,做出归纳和总结,提出自己的看法与体会。且实验方法虽然多,但有的测量仪器的精确度受环境因素的影响比较大,不是每种方法都适用,所以有必要对测量方法进行研究,找出一种适合测量本地重力加速度的方法。 关键词:重力加速度;测量;比较。 1. 用单摆测重力加速度 1.1 实验原理 用长线把小球吊在支架上,构成一个单摆。用米尺测出摆线长 L ,用游标卡 尺测出小球直径 d 。用秒表测出 n 个周期所用时间 t ,根据单摆周期公式: T = g L 2/d 2+π=n t (1) 得: g= 22)/(2/d 4n t L )(+π (2) 求出的 g 即为重力加速度。 1.2 实验步骤 (1)用米尺量出悬线长 L ,准确到毫米,已知小球半径为 1cm 。 (2)把单摆从平衡位置拉开一个角度( θ < 5° )放开它,用秒表测量单摆完 成 30 次全振动所用的时间,求出完成一次全振动所需要的时间。反复测量五次, 取单摆周期平均值。 (3)把测得的周期和摆长的数值代入公式,求出重力加速度 g 的值来。 1.3 实验仪器 单摆,停表,钢卷尺,小球。

重力加速度测定的研究

实验三十四 重力加速度测定方法的研究 实验内容 1.精确测定本地区的重力加速度。 2.分析比较各种实验测量方法的优缺点。 教学要求 1.学习如何消除实际测量中的主要系统误差。 2.掌握实验结果的修正方法。 实验器材: 单摆,开特摆,自由落体仪,气垫导轨,计时计数计频仪,物理天平,米尺,千分尺等。 重力加速度是一个重要的地球物理常数。它首先由伽利略(1564-1642)证明,如果忽略空气阻力的影响,所有落地物体都将以同一加速度下降,这个加速度称为重力加速度g 。准确测定它的量值,不仅在理论上、生产上以至科研上都有极其重要的意义。历史上,人们曾花费了很多精力和时间研究这个问题,例如波茨坦大地测量研究所曾花了八年时间用开特摆准确测得当地的重力加速度。从设计思想和实验技能来看,本实验也使我们得到很多教益。地球上各地区重力加速度的数值,都随该地区的地理纬度和海拔高度不同而不同,赤道附近重力加速度最小,南北两极最大。本实验着重讨论在现有条件下,如何获得最佳结果。 内容提示 1.测定本地区的重力加速度值,测量结果至少有四位有效数字。 2.用单摆,开特摆研究重力加速度的测定,可供研究的问题:周期、摆长、摆角、摆球质量、摆动次数等对结果的影响。 3.用自由落体法研究重力加速度的测定,可供研究的问题:如何测得或消除初速度的影响?怎样选择光电门的位置? 4.用其他方法测定重力加速度。 问题讨论: 1.比较各种实验测量方法的优缺点。 2.讨论各种实验测量方法中,影响各量精确测量的各种因素。 附录 1.单摆 摆长为l 的单摆,其摆动周期T 与摆角θ的关系为 ??? ????????+??? ????? ??+??? ??+=2sin 23212sin 211242222θθπg l T 2.开特摆 开特摆是一种特殊形式的复摆,它可以颠倒悬挂,正倒两次周期为 g m h m h J T 12112+=π g m h m h J T 2 2222+=π 两式合并,消去J 和m ,得 )(2)(242122212122212h h T T h h T T g --+++=π

重力加速度的精确测量与研究

重力加速度的精确测量与研究 指导教师:孙爱民学生姓名:张禹 2006级物理学(3)班学号:200672010361 摘要:本文在总结传统测量重力加速度方法的基础上,通过搭建新的实验装置,探究一种新的测量重力加速度的方法。该方法具有操作方便、简单的优点,并且提高了实验数据精确度,符合探究式学习的教育理念。 关键词:自由落体;重力加速度;光电门;瞬时速度 Accurate measurement of gravitational acceleration and Research Zhang Yu,Sun Ai-min Abstract:This thesis explores a new approach to the accurate measurement of acceleration of gravity on account of a summary of existed approaches .the novel approach applies new experiment devices which improve much in the accuracy of experiment data. The presented approach is easy to operate and accords whit the education notion of exploratory study. Keywords :Free Fall;Acceleration of gravity;Optical gate;Instantaneous velocity 引言 重力加速度g是物理学中的一个重要参量,在实际工作中,常常需要知道重力加速度的大小。重力加速度g的测定是个传统的实验,其实验方法通常有落体法测量重力加速度、用摆测量重力加速度和用液体测量重力加速度[1]。其中落体法测量重力加速度又可分为自由落体法、气垫导轨法、斜槽法等[2]。每种方法都有各自的优缺点,测量结果的精确度也不尽相同,但总体来说所测出的实验数据精确度普遍较低。传统的用光电门测量重力加速度g时,通常存在多次测量时小球高度不固定、挡光部分不相同等缺点,并且用小球作重物时经过光电门因偏心引起的会引起误差[3]。为了提高测量结果的精确度,本文采用自己搭建的实

对地球大气密度随高度分布规律的讨论

书山有路勤为径,学海无涯苦作舟 对地球大气密度随高度分布规律的讨论 以NASA 大气模式MS 1、由玻耳兹受能分布律导出的大气密度随高度分布1687 年牛顿发表了万有引力定律, 1859 年麦克斯韦导出了平衡态下气体分子的速率分布定律,尔后,玻耳兹曼发展了麦克斯韦的分子运动学说,证明了在有势的力场中处于热平衡态的分子速度分布定律,即玻耳兹曼能量分布律。麦克斯韦-玻耳兹曼分布律是对相互作用可忽略的大量同类气体分子的集合,采用概率统计的方法导出的川。玻耳兹曼能量分布律的表达式为: 2、由大气模式得到的大气密度随高度分布2.1、大气层的温度分布大气 层可以被粗略地表征为环绕地球从海平面到大约1000Km 高度的区域,其间电中性气体可以被检测。50Km 以下该大气可以被假定为均匀混合的而且可以被当做一种理想气体。80Km 以上该流体静力学平衡因扩散而逐渐崩溃且垂直输运变得重要。在上层大气中主要的气体种类是N2,O,O2,H,He。按温度的垂直分布可将大气层分为对流层,从海平面直到大约10Km,其间温度逐渐降低,同温层,从10Km 直到大约45Km,其间温度逐渐上升,中间层,从45Km 直到大约95Km,其间温度再次逐渐降低,热层,从95Km 直到大约400Km,其间温度再次逐渐上升;而外逸层,大约在400Km 以上,其间温度是常数。 限于篇幅,文章第二章节的部分内容省略,详细文章请到论坛下载:对 地球大气密度随高度分布规律的讨论。 5、结论(1)MS (2)关心大气成分的数密度时,玻耳兹曼能量分布律仅适用于几公里至几十公里高度以内的分子态气体包括无所谓原子态还是分子态的惰性气体,但不包括

全国个地区重力加速度表

全国各地区重力加速度表 序号地区重力加速度地区修正值 g(m/s2) g/1kg g/3kg g/6kg g/15kg g/30kg 1 包头9.7986 -0.3981 -1.1943 -2.3886 -11.9430 -11.9430 2 北京9.8015 -0.7045 -2.1135 -4.2270 -10.5675 -21.1350 3 长春9.8048 -1.0413 -3.1239 -6.2478 -15.6195 -31.2390 4 长沙9.791 5 0.3267 0.9801 1.9602 9.8010 9.8010 -13.6290 -27.2580 24 石家庄9.7997 -0.5513 -1.6539 -3.3078 -8.2695 -16.5390 25 太原9.7970 -0.2450 -0.7350 -1.4700 -3.6750 -7.3500 26 天津9.8011 -0.6636 -1.9908 -3.9816 -9.9540 -19.9080 27 武汉9.7936 0.1020 0.3060 0.6120 1.5300 3.0600 28 乌鲁木齐9.8015 -0.7248 -2.1744 -4.3488 -21.7440

29 西安9.7944 0.0204 0.0612 0.1224 0.3060 0.6120 30 西宁9.7911 0.3267 0.9801 1.9602 9.8010 9.8010 31 张家口9.8000 -0.5513 -1.6539 -3.3078 -8.2695 -16.5390 32 郑州9.7966 -0.2041 -0.6123 -1.2246 -3.0615 -6.1230 自己可以计算的用gps看出本地区的经纬度和海拔

重力加速度的研究

实验二重力加速度的测定 一、单摆法 实验内容 1.学习使用秒表、米尺。 2.用单摆法测量重力加速度。 教学要求 1.理解单摆法测量重力加速度的原理。 2.研究单摆振动的周期与摆长、摆角的关系。 3.学习在实验中减小不确定度的方法。 实验器材 单摆装置(自由落体测定仪),秒表,钢卷尺 重力加速度是物理学中一个重要参量。地球上各个地区重力加速度的数值,随该地区的地理纬度和相对海平面的高度而稍有差异。一般说,在赤道附近重力加速度值最小,越靠近南北两极,重力加速度的值越大,最大值与最小值之差约为1/300。研究重力加速度的分布情况,在地球物理学中具有重要意义。利用专门仪器,仔细测绘各地区重力加速度的分布情况,还可以对地下资源进行探测。 伽利略在比萨大教堂内观察一个圣灯的缓慢摆动,用他的脉搏跳动作为计时器计算圣灯摆动的时间,他发现连续摆动的圣灯,其每次摆动的时间间隔是相等的,与圣灯摆动的幅度无关,并进一步用实验证实了观察的结果,为单摆作为计时装置奠定了基础。这就是单摆的等时性原理。 应用单摆来测量重力加速度简单方便,因为单摆的振动周期是决定于振动系统本身的性质,即决定于重力加速度g和摆长L,只需要量出摆长,并测定摆动的周期,就可以算出g值。 实验原理 单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。 θ 图2-1 单摆原理图

摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。设摆长为L ,小球位移为x ,质量为m ,则 sin θ= L x f=psin θ=-mg L x =-m L g x (2-1) 由f=ma ,可知a=- L g x 式中负号表示f 与位移x 方向相反。 单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a =m f =-ω2 x 可得ω= l g 于是得单摆运动周期为: T =2π/ω=2π g L (2-2) T 2 =g 2 4πL (2-3) 或 g=4π22T L (2-4) 利用单摆实验测重力加速度时,一般采用某一个固定摆长L ,在多次精密地测量出单摆的周期T 后,代入(2-4)式,即可求得当地的重力加速度g 。 由式(2-3)可知,T 2 和L 之间具有线性关系,g 2 4π为其斜率,如对于各种不同的 摆长测出各自对应的周期,则可利用T 2—L 图线的斜率求出重力加速度g 。 上述单摆测量g 的方法依据的公式是(2-2)式,这个公式的成立是有条件的,否则将使测量产生如下系统误差: 1. 单摆的摆动周期与摆角的关系,可通过测量θ<5°时两次不同摆角θ1、θ2的周期值进行比较。在本实验的测量精度范围内,验证出单摆的T 与θ无关。 实际上,单摆的周期T 随摆角θ增加而增加。根据振动理论,周期不仅与摆长L 有关,而且与摆动的角振幅有关,其公式为: T=T 0[1+( 21)2sin 22θ+(4231??)2sin 22 θ+……] 式中T 0为θ接近于0o 时的周期,即T 0=2πg L 2.悬线质量m 0应远小于摆球的质量m ,摆球的半径r 应远小于摆长L ,实际上任何一个单摆都不是理想的,由理论可以证明,此时考虑上述因素的影响,其摆动周期为:

重力加速度

重力加速度g的方向总是竖直向下的。在同一地区的同一高度,任何物体的重力加速度都是相同的。重力加速度的数值随海拔高度增大而减小。当物体距地面高度远远小于地球半径时,g变化不大。而离地面高度较大时,重力加速度g数值显著减小,此时不能认为g为常数。 距离地面同一高度的重力加速度,也会随着纬度的升高而变大。由于重力是万有引力的一个分力,万有引力的另一个分力提供了物体绕地轴作圆周运动所需要的向心力。物体所处的地理位置纬度越高,圆周运动轨道半径越小,需要的向心力也越小,重力将随之增大,重力加速度也变大。地理南北两极处的圆周运动轨道半径为0,需要的向心力也为0,重力等于万有引力,此时的重力加速度也达到最大。 通常指地面附近物体受地球引力作用在真空中下落的加速度,记为g。为了便于计算,其近似标准值通常取为980厘米/秒或9.8米/秒。在月球、其他行星或星体表面附近物体的下落加速度,则分别称月球重力加速度、某行星或星体重力加速度。 在近代一些科学技术问题中,需考虑地球自转的影响。更精确地说,物体的下落加速度g是由地心引力F(见万有引力)和地球自转引起的离心力Q (见相对运动)的合力W产生的(图1)。Q的大小为mω(R E+H)cos嗞,m 为物体的质量;ω为地球自转的角速度;R E为地球半径;H为物体离地面的高度;嗞为物体所在的地球纬度。这个合力即实际见到的重力W=m g。地球重力加速度是垂直于大地水准面的。在海平面上g随纬度嗞变化的公式(1967年国际重力公式)为: g=978.03185(1+0.005278895sin嗞 +0.000023462sin嗞)厘米/秒。 在高度为H的重力加速度g(1930年国际重力公式)同H和嗞有关,即 g =978.049(1+0.005288sin嗞-0.000006sin2嗞 - 0.0003086H)厘米/秒, 式中H为以米为单位的数值。 最早测定重力加速度的是伽利略。约在1590年,他利用斜面将g的测定改为测定微小加速度a=gsinθ,θ是斜面的倾角。测量重力加速度的另一方式是阿脱伍德机。1784年,G.阿脱伍德将质量同为Μ的重块用绳连接后,放在光滑的轻质滑车上,再在一个重块上附加一重量小得多的重块m(图2)。这时,重力拖动大质量物块,使其产生一微小加速度,测得a后,即可算出g。后人又用摆和2Μ+m各种优良的重力加速度计测定g。 地球上几个不同纬度处的g值见下表;从中可以看出g值随纬度的变化情况: 由于地球是微椭球形的,加之有自转,在一般情况下,重力加速度的方向不通过地心。重力加速度的测定,对物理学、地球物理学、重力探矿、空间科学等都具有重要意义

测量重力加速度实验报告.docx

一、复摆法测重力加速度 一.实验目的 1.了解复摆的物理特性,用复摆测定重力加速度, 2.学会用作图法研究问题及处理数据。 二.实验原理 复摆实验通常用于研究周期与摆轴位置的关系,并测定重力加速度。复摆是一刚体绕固定水平轴在重力作用下作微小摆动的动力运动 体系。如图 1, 刚体绕固定轴O在竖直平面内作左右摆动, G是该物体 的质心,与轴 O的距离为h,为其摆动角度。若规定右转角为正, 此时刚体所受力矩与角位移方向相反,则有 Mmgh sin ,(1) 又据转动定律,该复摆又有

M I ,(2) (I 为该物体转动惯量)由( 1)和( 2)可得2 sin,(3) 其中2mgh 。若很小时(在5°以内)近似有 I 2,(4) 此方程说明该复摆在小角度下作简谐振动,该复摆振动周期为 I,(5) T 2 mgh

设I G为转轴过质心且与O轴平行时的转动惯量,那么根据平行轴定律可知 I I G mh 2,(6) 代入上式得 T 2I G mh 2,(7) mgh 设( 6)式中的I G mk2,代入()式,得 7 T 2mk2mh22k 2h2,(11) mgh gh k 为复摆对 G(质心)轴的回转半径 ,h 为质心到转轴的距离。对(11)式平方则有 T 2h 4 2k 2 4 2h2,(12) g g 设 y T 2 h, x h2,则(12)式改写成 y 4 2k 2 4 2x ,(13) g g (13)式为直线方程,实验中 ( 实验前摆锤 A 和 B 已经取下 )测出 n 组(x,y) 值,用作图法求直线的截距 A 和斜率 B,由于A 4 2k 2 ,B 4 2, g g 所以

测重力加速度

设计性实验 重力加速度的测量 重力加速度g 是一个反映地球引力强弱的地球物理常数,它与地球上各个地区的经纬度、海拔高度及地下资源的分布有关,一般说来,两极的g 最大,赤道附近的g 最小,两者相差约1/300。重力加速度的测定在理论、生产和科学研究中都具有重要意义。 实验研究课题 1、测定本地区重力加速度g 值,测量结果至少有4 位有效数字,并要求百分误差小于1%。 2、试比较各种实验测量方法的优缺点。讨论各种实验测量方法中,哪些量可测得精确?哪些量不易测准?并说明如何减小或消除影响精确测量的各种因素等。 可选择的仪器 单摆、三线摆、复摆、圆球、重锤、米尺、游标卡尺、光电门、数字毫秒计(手机秒表代替)、杨氏模量测量仪等。 设计方案举例: 测量重力加速度的方法很多,有单摆、复摆、开特摆、三线摆、气垫导轨法和自由落体仪法等等,它们各有特点。 下面例举几种比较典型的方案。 方案一、单摆法 一、实验目的: 1、掌握实验原理及方法,进一步熟悉根据什么以及如何选择实验仪器和测量工具; 2、利用单摆测定重力加速度g 值; 3、分析受力情况,讨论误差原因,评价测量结果。 二、实验原理 单摆是用重量可忽视的细线吊起一质量为m 的小重锤,使其左右摆动,当摆角为θ时,重锤所受合外力大小sin =-f mg θ(图1),其中g 为当地的重力 加速度,这时锤的线加速度为sin -g θ。设单摆长为 L ,则摆的角 加速度 sin /=-g L αθ。当摆角很小时(小于 5°),可认为 ,这 时sin ≈θθ,即振动的角加速度和角位移成比例,式中的负号表示 角加速度和角位移的方向总是相反。此时单摆的振动是简谐振动。 从理论分析得知,其振动周期 T 和上述比例系数的关系是 2=T π ω,所以 2=T (2),式中L 为单摆摆长,是摆锤重心到悬点的距离, g 为当地的重力加速度。 将测出的摆长L 和对应和周期 T 代入上

探究重力加速度

探究单摆振动周期的影响因素 教学任务: 通过实验,运用控制变量法探究得出单摆振动周期和哪些物理量有关,提出单摆周期公式。 教学目标: 1、通过实验得出单摆振动周期和振幅无关,和摆球质量无关,和摆长有关,且摆长越长周期越大,和重力加速度有关,且重力加速度越大周期越小,提出单摆周期公式。 2、培养学生观察现象、分析处理问题的能力,会运用等效的思想处理问题。教学设计思想: 1、采用控制变量法探究单摆振动周期的影响因素。 2、用超失重和电场等效增大或减小重力加速度。 3、用效果积累的思想处理实验结果。教学流程图: 实验仪器: 三个摆球:两个摆长相同,质量不同;两个摆长不同。 一个特制单摆,铁架台,绝缘夹子数个,金属铝板两块(其中一块有细缝),学生电源组,静电起电机,红外线探灯,电键开关一个,导线若个。 教学过程: 前面我们已经学习了单摆的回复力,知道单摆在摆角很小时作简谐振动。今天我们来研究单摆的振动周期。 教师:请大家思考一下,单摆的振动周期T应该和哪些因素有关呢? 引导学生得出可得相关的因素:振幅A,摆球质量m,摆长I,重力加速度g o (若有 学生提出体积、球半径等因素可通过分析归纳到m和I。) 教师:在物理里面,要研究一个物理量和几个物理量间的关系,是怎样一种关系,通常采用什么方法? 学生:控制变量法。 (1研究T和A的关系,可先令m、l、g保持不变,改变振幅A值。 【演示1】: 取两摆长摆球质量均相同的两单摆(展示单摆,摆已固定在铁架台上),装置如 图1。 将两摆拉到不同高度同时释放(摆角不能太大)。 现象:两摆球同步振动。 教师:请问同学们看到了什么现象,说明了什么问题?

测量重力加速度的方法教案

一、测量重力加速度的几种方法 1、平衡法。用弹簧秤掉一钩码,使其处于静止状态,利用重力等于拉力,求出g。 2、自由落体法。从高处由静止释放一重物,测出高度h及下落时间t求出g。 3、滴水法。 (1)让水滴落到垫起来的盘子上,可以听到水滴每次碰盘子的声音,仔细地调整水龙头的阀门,使第一滴水碰到盘的瞬间,同时第二滴水正好从阀门处开始下落。 (2)从听到某个水滴的声音时开始计时,并数“0”,以后每听到一次响声,顺次加1,直到数到“100”,计时停止,秒表上时间为40s。 (3)用米尺量出水龙头滴水处到盘子的距离为78.56cm,根据上述实验所得的数据,计算出重力加速度的值为__________。 4、频闪照片法。 测出高度h,知道频闪光源时间间隔T,即可求出g. 5、打点计时器测重力加速度 二、学生实验:打点计时器测重力加速度 实验原理物体做自由落体运动,根据自由落体运动规律有:h=1/2gt2得g= 实验器材打点计时器,纸带,重锤,米尺,电源 实验步骤 1.打点计时器应该竖直固定在桌面边沿上 2.在手释放纸带的瞬间,打点计时器刚好打下一个点子,纸带上最初两点间的距离约为2毫米。为什么? 测量的量:

a.从起始点到某一研究点之间的距离,就是重锤下落的高度h,则距离为h1;测多个点到起始点的高h1、h2、h3、h4(各点到起始点的距离要远一些好) b.不必测重锤的质量 注意事项 1.选择纸带的条件:打点清淅;第1、2两点距离约为2毫米。 2.打点计时器应竖直固定,纸带应竖直。 3.实验操作关键:先合上电源,再松开纸带。 4.为减小误差,重锤应适当大一些。 误差分析: 由于重锤受到___________作用,所以重力加速度的测量值略_____________真实值。某同学用下图所示装置测量重力加速度g,所用交流电频率为50 Hz。在所选 纸带上取某点为0号计数点,然后每3个点取一个计数点,所有测量数据及 其标记符号如图所示。 该同学用两种方法处理数据(T为相邻两计数点的时间间隔): 方法一:由,取平均值 方法二:由,取平均值 哪种方法更合理?

对重力加速度的几点辨析

对重力加速度的几点辨析 湖北省恩施高中陈恩谱 重力与万有引力的关系,现行高中教材只在两处提及,一处是《相互作用》一章里重力的定义:“地面附近一切物体都受到地球的吸引,由于受到地球的吸引而使物体受到的力,叫做重力”,另一处是《万有引力与航天》一章里提到了“若不考虑地球自转的影响,地面上质量为m 的物体所受的重力mg 等于地球对物体的引力,即2 R Mm G mg =”。其他各处,包括课后习题,再不超出这个定义和定量关系。然而,我们常常看到各种习题包括高考题总是涉及到地球自转对重力加速度的影响,以及人造卫星环绕地球运动时所受的重力的问题。这就要求老师们教学过程中必须对各种情况下重力的概念做清晰的界定,并将重力加速度g 与引力加速度2R M G a =引的关系作清晰的交代。同学们也需要清楚习题在各种情况下谈到重力或重力加速度时的具体所指。 一、地表物体的重力加速度 1、不考虑地球自转的影响 当题目明确说明不考虑地球自转的影响,或者没有提及地球自转、赤道两极重力加速度区别时,我们就不对重力和万有引力进行区分,也就是认为两者是同一个力。 (1)地表的重力加速度由2R Mm G mg =,有2R M G g =。通常谈到星球表面的重力加速度,就是指用这个表达式计算出来的引力加速度。 (2)地面上空离地H 高度处的重力加速度由2)h R Mm G mg +=(,有2) h R M G g +=(。这里,h 往往是几千米,甚至十几千米,也就是考虑的是飞机等高空物体所受的重力(万有引力)的变化;这个表达式也可以定性的说明,随着海拔高度的增加,重力加速度的微弱减小。当然,由于R h <<,这个减小并不明显。 很多题目谈到,在星球表面竖直上抛、水平抛出某物体,或使物体做自由落体运动,据此计算星球表面的重力加速度,进而计算星球质量,有些往往在依据抛体运动落体运动算出重力加速度后,用 2 )h R M G g +=(计算天体质量,这实在是对抛体运动落体运动中h 的大小的一个错误的夸张——实际上,这些情景里,h 是很小的,往往只有几米的大小,完全没必要上升到考虑海拔高度变化对重力加速度的影响上来。 【例1】(2018·广元模拟)“玉兔号”登月车在月球表面登陆的第一步实现了中国人“奔月”的伟大梦想。“玉兔号”在月球表面做了一个自由落体实验,测得物体从静止自由下落h 高度的时间t ,已知月球半径为R ,自转周期为T ,引力常量为G 。则() A .月球表面重力加速度为t 22h B .月球的第一宇宙速度为Rh t C .月球的质量为hR 2Gt 2 D .月球同步卫星离月球表面的高度为3hR 2T 22π2t 2 -R 解析:由自由落体运动规律有h =12gt 2,所以g =2h t 2,故A 错误;月球的第一宇宙速度为月球表面附近物体的运行速度,月球表面附近满足G Mm R 2=mg ,根据万有引力提供向心力有G Mm R 2=mv 12R ,所以v 1=gR =

重力加速度几种测量方法比较(论文)

重力加速度几种测量方法的比较 摘要: 重力加速度是物理学中的一个十分重要的物理量,在地面上不同的地区,重力加速度g值不相同,它是由物体所在地区的纬度、海拔等因素决定,随着地球纬度和海拔高度的变化而变化,准确地确定它的量值,无论从理论上、还是科研上、生产上以及军事上都有极其重大的意义。 测量重力加速度的方法有很多,我所要做的就是通过学习前人的理论知识,经过思考,在现有的实验室条件下,进行实验,做出归纳和总结,提出自己的看法与体会。且实验方法虽然多,但有的测量仪器的精确度受环境因素的影响比较大,不是每种方法都适用,所以有必要对测量方法进行研究,找出一种适合测量本地重力加速度的方法。 一、重力加速度的测量方法 (一)用自由落体法测量重力加速度 1.实验仪器:自由落体装置(如图一),数字毫秒计,光电门(两个),铁球。 图一自由落体装置

2.实验原理、步骤、注意事项 实验原理:设光电门A 、B 间的距离为s ,球下落到A 门时的速度为0v ,通过A 、B 间的时间为t ,则成立: 2 /2 0gt t v s += (1) 两边除以t ,得: 2 //0 gt v t s += (2) 设t x =,t s y /=,则: 2/0 gx v y += (3) 这是一直线方程,当测出若干不同s 的t 值,用t x =和t s y /=进行直线拟合,设所得斜率为b ,则由2/g b = 可求出g , b g 2= (4) 实验步骤: (1)调节实验装置的支架,使立柱为铅直,再使落球能通过A 门B 门的中点。 (2)测量A 、B 两光电门之间的距离s 。 (3)测量时间t 。 (4)计算各组的x ,y 值,用最小二乘法做直线拟合,求出斜率b 及其标准偏差b S 、)(b u (注意:在取b 的时,由于立柱调整不完善,落球中心未通过光电门的中点,立柱上米尺的误差均给s 值引入误差,也是b 的不确定度来源,一般此项不确定度(B 类评定)较小,可略去不计,所以b S b u = )()。 (5)计算g 及其标准不确定度)(g u 。

大学物理重力加速度的测定实验报告范本

Record the situation and lessons learned, find out the existing problems and form future countermeasures. 姓名:___________________ 单位:___________________ 时间:___________________ 大学物理重力加速度的测定实 验报告

编号:FS-DY-20118 大学物理重力加速度的测定实验报告 一、实验任务 精确测定银川地区的重力加速度 二、实验要求 测量结果的相对不确定度不超过5% 三、物理模型的建立及比较 初步确定有以下六种模型方案: 方法一、用打点计时器测量 所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g. 方法二、用滴水法测重力加速度

调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃杯的形状为旋转抛物面 重力加速度的计算公式推导如下: 取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知: ncosα-mg=0 (1) nsinα=mω2x (2) 两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g,∴y/x=ω2x/2g. ∴ g=ω2x2/2y. .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g. 方法四、光电控制计时法 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出

相关文档
相关文档 最新文档