文档库 最新最全的文档下载
当前位置:文档库 › Projection-Based Image Registration in the Presence of Fixed-Pattern Noise

Projection-Based Image Registration in the Presence of Fixed-Pattern Noise

Projection-Based Image Registration in the Presence of Fixed-Pattern Noise
Projection-Based Image Registration in the Presence of Fixed-Pattern Noise

Projection-Based Image Registration in the Presence of Fixed-Pattern Noise Stephen C.Cain,Majeed M.Hayat,Senior Member,IEEE,and Ernest E.Armstrong

Abstract—A computationally efficient method for image regis-tration is investigated that can achieve an improved performance over the traditional two-dimensional(2-D)cross-correlation-based techniques in the presence of both fixed-pattern and temporal noise.The method relies on transforming each image in the sequence of frames into two vector projections formed by accu-mulating pixel values along the rows and columns of the image. The vector projections corresponding to successive frames are in turn used to estimate the individual horizontal and vertical components of the shift by means of a one-dimensional(1-D) cross-correlation-based estimator.While gradient-based shift esti-mation techniques are computationally efficient,they often exhibit degraded performance under noisy conditions in comparison to cross-correlators due to the fact that the gradient operation amplifies noise.The projection-based estimator,on the other hand, significantly reduces the computational complexity associated with the2-D operations involved in traditional correlation-based shift estimators while improving the performance in the presence of temporal and spatial noise.To show the noise rejection capability of the projection-based shift estimator relative to the2-D cross correlator,a figure-of-merit is developed and computed reflecting the signal-to-noise ratio(SNR)associated with each estimator.The two methods are also compared by means of computer simulation and tests using real image sequences.

Index Terms—Fixed-pattern noise suppression,image registra-tion,motion estimation,vector projection.

I.I NTRODUCTION

I MAGE registration is commonly used to provide electronic

stabilization of sensors or to facilitate the processing of multiple motion-compensated frames in order to improve image quality(e.g.,by means of temporal averaging).Some new appli-cations of registration also include resolution enhancement from multiple frames of data[1]–[5]and nonuniformity correction in focal-plane arrays[1],[6]–[8].In many situations,the perfor-mance of algorithms that employ image registration information relies heavily on the accuracy of the shift estimates.The accuracy of the shift estimates generated using various registration algo-rithms is,in turn,strongly affected by the temporal and spatial Manuscript received July7,2000;revised August30,2001.This work was supported by the National Science Foundation(CAREER Program MIP-9733308).The associate editor coordinating the review of this manuscript and approving it for publication was Dr.Christoph Stiller.

S.C.Cain is with the Department of Electrical and Computer Engineering, University of Dayton,Dayton,OH45469-0245USA and also with the De-partment of Engineering,Purdue University at Fort Wayne,Fort Wayne,IN 46805-1499USA.

M.M.Hayat is with the Electro-Optics Program and the Electrical and Computer Engineering Department,University of Dayton,Dayton,OH 45469-0245USA and also with the Electrical and Computer Engineering Department,The University of New Mexico,Albuquerque,NM87131-1356 USA(e-mail:hayat@https://www.wendangku.net/doc/3611089350.html,;mhayat@https://www.wendangku.net/doc/3611089350.html,).

E.E.Armstrong is with OptiMetrics,Inc.,AFRL/SNJM,Wright Patterson AFB,OH45433-7700USA(e-mail:ernest.armstrong@https://www.wendangku.net/doc/3611089350.html,). Publisher Item Identifier S1057-7149(01)10571-3.noise inherent in all sensors[9].Temporal noise,which fluctuates randomly from frame to frame,includes photo-detection noise, background or stray light,dark current,read-out noise,etc.In contrast to temporal noise,spatial noise has the characteristic that its realizations do not vary from frame to frame resulting in an ambient spatial pattern which superimposes itself on the true scene[10].This spatial noise is often referred to as fixed-pattern noiseand is duetothe factthateverydetector inthe arrayresponds differently to light.Fixed-pattern noise is especially undesirable in image registration since any pattern that remains stationary in time will tend to bias any shift-estimation algorithm toward solutions that favor no shifts between the frames of image data. Fixed-pattern noise can be reduced by calibrating the sensor by means of imaging target scenes with uniform intensities. Fixed-pattern noise can also be reduced from sequences of video by post-processing algorithms[6],[7],[11].However,some of these methods inherently rely on accurate image registration of the raw video[8].It is therefore very desirable to have a registration algorithm that is tolerant to fixed-pattern noise.

A commonly used registration technique is based on max-imizing the two-dimensional(2-D)cross-correlation function between successive frames,in which case,the shift estimate is defined as the maximizing point[12].The2-D cross-corre-lator is generally regarded as a robust estimator in the presence of noise in comparison to more computationally-efficient es-timators.Unfortunately,its implementation involves three dis-crete-Fourier transforms(DFTs)at the size of the image.Gra-dient-based shift estimation techniques[2],[13],on the other hand,have a reduced computational complexity but are sensi-tive to fixed-pattern noise since they may measure false spatial gradients that will be consistently present in successive frames. In this paper,the concept of integral projection is employed to develop a projection-based registration technique that is com-putationally efficient and can achieve improved performance over the traditional2-D cross-correlation-based techniques in the presence of both fixed-pattern and temporal noise.This concept was first conceived from Huang’s observation that the linear phase associated with simple translations is encoded on the Fourier axes[14].Since then the integral projection shift-estimation technique had been introduced to help accom-plish inter-frame image encoding by registering subblocks within an image with subblocks within successive frames in a video sequence[15]–[17].Under the method considered in this paper,each image in a sequence is transformed into two vector projections,formed by accumulating pixel values along the rows and columns of the image,which are subsequently used to estimate the horizontal and vertical components of the shift by means of a one-dimensional(1-D)cross-correlation-based

1057–7149/00$10.00?2001IEEE

estimator.All of the 2-D DFTs associated with the traditional cross-correlator are therefore replaced by 1-D operations.Most importantly,by virtue of the row/column averaging mech-anism involved in the projections and the mutual statistical independence of the response characteristics of the detectors,the effect of fixed-pattern noise can be significantly reduced in many practical situations.Although this 1-D technique for image registration has been used in other similar applications [15]–[17],the notion that the projection operation improves performance over the 2-D correlator in the presence of either temporal or fixed-pattern noise has been either completely unknown or not well understood.It is the goal of this paper to reveal the mechanism by which this improved performance is realized and provide a mathematical framework by which the performance improvement can be understood and quantified.This paper is organized as follows.In Section II,a description of the projection-based estimator is given and an explanation is presented as to why the projections preserve the shift informa-tion.In Section III,a signal-to-noise ratio (SNR)analysis is per-formed that compares the performance of the 2-D cross-correla-tion shift estimator to that of the projection-based shift estimator in the presence of both temporal and fixed-pattern noise.A per-formance figure-of-merit is defined for both shift estimators and evaluated using two image models that reflect scenarios when the image possesses high and low degrees of statistical spatial correlation.In Section IV ,computer simulations are generated demonstrating the performance of the projection technique on simulated image sequences.In Section V ,real image sequences are used to demonstrate the performance of the projection tech-nique.The main conclusions are summarized in Section VI.

II.T HE P ROJECTION -B ASED S HIFT E STIMATOR

Consider observing two successive measurements (frames)of a

scene

matrix whose elements

are

(1)

where

is translated by an

amount

and

and

and

where the shifts are assumed for convenience to be circular.(Border effects resulting from the circular shift become negli-gible as ,

by the

rule

and

(3)

and

and

and

can be written

as

respectively,

where .We now substitute the above projections into the expression for the

projection-based shift estimator given in(3)and apply the con-volution property of the DFT to

obtain

,which is defined

by

,

which implies

that

.

In any real imaging system,the scene does not shift circularly,

which causes new information to enter the field of view.This

new information is similar to noise,which makes the Fourier

arguments for accurate image registration less valid.The pro-

jection-based estimator is sensitive to new information entering

the scene and so the following noncircular correlation estimate

is developed with the projections as opposed to a circular cor-

relation estimate.In order to help the projection-based shift es-

timation algorithm ignore new information entering the scene,

we introduce the window

function that has the following

spatial

structure:

if

and

otherwise.In the

inequality,

,

where

is the average value of this projection.Sim-

ilarly,the projection in the vertical direction is formed in the

following manner.The shift estimate is determined from(3)by

an exhaustive search over all

integers

,we define the SNR at

any

shift as the ratio between the effective signal squared

and the sum of the variance of the noise

at and the vari-

ance of the noise

at

,to de-

fine the

figure-of-merit

(5)

where the factors appearing in the denominator are condi-

tional variances

(e.g.,

)and the expectation in the denominator of(5)

represents ensemble averaging of the image

.If noise were

not present in the

system,

correlation is not always dependent on these differences,the figure-of-merit is a function

over

(6)

and

(8)

and

is assumed to be temporally fixed between the two observed

frames and its entries are assumed to be independent and

identically distributed random variables each with a variance

of

and

and

,appearing as the auto-correla-

tion

function

,An example of images

that possess this property include astronomical images of

unresolvable stars.With the above auto-correlation model,the

expression

for

that

minimizes

which can be maximized

over to yield the upper

bound

).In this special case,the

figures-of-merit

within and obtain a version

of only.This assumption does not

affect the computation

of

from which it follows

that

in the expression

for

that minimizes the

ratio

,the

ratio

and

Fig.2.Images showing a star in the presence of temporal noise at two different times.

shift estimator will have a higher SNR than the 2-D cross-cor-relation shift estimator

whenever

.IV .S IMULATION R ESULTS

In this section,a set of simulations is generated to demon-strate the validity of the conclusions established in the previous

section.The first set of simulations feature an image of a simu-lated star field.This image exhibits no spatial correlation (ap-proximating the uncorrelated image model considered in the previous section)and is corrupted with temporal Poissonian noise.(We use the Poisson model as a convenient approximation that captures the signal-dependent nature of temporal noise es-pecially in cases when shot noise dominates the sensor read-out noise.)These images are shown in Fig.2.The operation of generating two circularly shifted versions of the scene is re-peated 100times and shift estimates are generated using both the projection-based and 2-D correlation methods.These shift estimation algorithms are implemented exactly as described in Section II with a search range of seven pixels.The registra-tion

parameters

are integers as are the shifts gener-ated in the simulation.The cross-correlations are computed and the maximum is chosen over the entire range of shifts for both algorithms.Although real sequences of data generally possess noninteger and noncircular shifts,these assumptions are ade-

quate for comparing the performance of the shift estimation techniques.

The shift estimates are compared with the known synthetic shifts for accuracy.The shift estimation error in pixels is com-puted by squaring the difference between the known synthetic shifts and the estimated shifts and summing this squared error over all frames.The result of this summation is then divided by the number of frames used in the test and the square root of this result is taken as the average error with units of pixels.The 100trials are used to establish the statistical behavior of the shift estimation techniques.The results are shown in Table I.The performance of the two shift estimators are shown as a func-tion of the SNR.The SNR is defined as the amplitude of the signal divided by the standard deviation of the noise.The peak signal-to-noise ratio (PSNR)in an image is then the highest SNR achieved within the frame.These results verify that in-deed the 2-D cross-correlation shift estimator outperforms the projection-based shift estimator when the scene is spatially un-correlated.

Next,a fixed-pattern noise is added to each frame and the standard deviation of the fixed-pattern

noise

Fig.3.Example of star images with fixed-pattern noise added to them.

PSNR of the data is fixed at ten and the ratio of fixed-pattern noise variance to temporal noise variance is varied.These re-sults again verify that the lack of correlation in the scene causes the2-D cross-correlation shift estimator to outperform the pro-jection-based shift estimator.In general,we have observed that the performance of the two estimators becomes comparable as the fixed-pattern noise variance increases.The next set of data is generated in the same manner as in the previous simulations using the scene shown in Fig.4,which possesses strong spa-tial correlation.This scene was chosen because its auto-correla-tion is similar to the linear auto-correlation model used in Sec-tion III.The auto-correlation function of the scene is shown in Fig.5.The results,shown in Table III demonstrate that the pro-jection-based shift estimator outperforms the2-D cross-corre-lation shift estimator.Finally,Table IV shows the performance of the two estimators in the presence of fixed-pattern noise.The PSNR is fixed at26when the fixed-pattern noise is small with respect to the temporal noise.The fixed-pattern noise variance is adjusted to be a fraction of the temporal noise variance to produce the various ratios of fixed-pattern to temporal noise variance shown in Table IV.These results show that the perfor-mance improvement achieved using the projection-based shift estimator is more significant when fixed-pattern noise is a se-rious

concern.Fig.4.Cloud scene used to generate the data used to analyze the behavior of the shift estimators in the presence of high spatial correlation.

To demonstrate the correlation between the simulations and the analytic expressions for the figures-of-merit,the magnitudes

of

and

Fig.5.Auto-correlation function of the scene used to test the performance of shift estimation in the presence of high spatial correlation.

TABLE II

P ERFORMANCE OF THE P ROJECTION -B ASED E STIMATOR (1-D)V ERSUS THE 2-D C ROSS -C ORRELATION E STIMATOR (2-D)IN THE P RESENCE OF B OTH F IXED -P ATTERN AND T EMPORAL N OISE .N OTE T HAT THE I MAGE P OSSESSES

N O S PATIAL C ORRELATION IN T HIS E

XAMPLE

and

m wavelengths).

TABLE III

P ERFORMANCE OF THE P ROJECTION -B ASED E STIMATOR (1-D)V ERSUS THE 2-D C ROSS -C ORRELATION E STIMATOR (2-D)W HEN S PATIAL C ORRELATION I S

P RESENT IN THE I

MAGE

TABLE IV

P ERFORMANCE OF THE P ROJECTION -B ASED E STIMATOR (1-D)AND THE 2-D C ROSS -C ORRELATION E STIMATOR (2-D)A GAINST

T EMPORAL AND F IXED -P ATTERN N OISE W HEN S PATIAL C ORRELATION I S

P RESENT IN THE I

MAGE

Fig.6.

Plot showing the value of the figures-of-merit

F and F

=100; =10; =

0;w = =0;and z =1.

Two sample frames from this 80-frame sequence are shown in Fig.7.The 2-D cross-correlator is used to measure the shifts between frames of the sequence in integer amounts.This set of shifts is used as the true shifts for purposes of measuring the registration error when noise is added to the

Fig.7.Two sample frames from a sequence of infrared video data(top).Frame one of the sequence at a PSNR of2(bottom left)and PSNR of20(bottom right).

video sequence.In the first test,fixed-pattern noise is added to the sequence in varying amounts to produce19sequences each possessing a different PSNR between2and20.Fig.7 shows frame one of the sequence at a SNR of2and20. Fig.8shows the error performance of the projection-based technique(dotted line)and the2-D cross-correlator(solid line) plotted as a function of the PSNR in the data.The error metric used in this study is the root mean-squared error in units of pixels.Finally,Fig.9shows the performance of the algorithms as a function of the PSNR when the noise is temporal in nature(changes from frame to frame in the sequence).In both cases it is clear that the projection-based technique produces consistently lower registration root mean-squared error. The second sequence of video is taken with a visible camera of the planet Jupiter through severe atmospheric turbulence.This type of turbulence changes the impulse response of the imaging system between observations,which will cause the image to change in its appearance from frame to frame.Two sample frames from this40-frame sequence are shown in Fig.10.The2-D cross-correlator is again used to measure the shifts between frames of the sequence in integer amounts.In the first test,temporal noise is added to the sequence in varying amounts to produce ten video sequences each possessing a different PSNR between1and10.Fig.10shows frame one of the sequence at a SNR of1and10.Fig.11shows the error performance of the projection-based technique(dotted line) and the2-D cross-correlator(solid line)plotted as a function of the peak temporal SNR in the data.Finally,Fig.12shows the performance of the algorithms as a function of the PSNR when fixed-pattern noise is added to the data.In both cases it is

Fig.8.Root mean-squared registration error performance of the

projection-based technique (dotted line)and the 2-D cross-correlator (solid line)as a function of peak fixed-pattern SNR for the infrared data sequence.This demonstrates the improved noise-rejection capability of the projection-based

technique.

Fig.9.Root mean-squared registration error performance of the projection-based technique (dotted line)and the 2-D cross-correlator (solid line)as a function of peak temporal SNR for the infrared data sequence.

clear that the projection-based technique produces consistently lower root mean-squared registration error.

VI.C ONCLUSION

Image registration of adjacent frames in a video sequence is often desired in order to take advantage of temporal correlation in images.This process can be very computationally intensive relative to the scale dictated by real time processing.The pro-jection-based algorithm reported here has the potential of al-leviating much of the computational burden of image registra-tion by operating only on vectors as opposed to images.The proposed technique also has the benefit of being more robust against temporal and especially fixed-pattern noise,which can be a great impediment to achieving accurate image registration.

In this paper,the performance of the projection-based shift es-timator is compared to the performance of the 2-D cross-corre-lation shift estimator.A significant conclusion drawn from this work is that the relative performance of the two estimators varies depending on the auto-correlation function of the scene.

The two auto-correlation models considered in the analysis show the diverse dependence of these algorithms on the degree of spatial correlation in the image.Scenes that possess signifi-cant neighbor-to-neighbor correlation over large neighborhoods will allow the projection-based shift estimator to perform better than the 2-D cross-correlator,while scenes whose pixels are un-correlated allow the 2-D cross-correlator to produce superior re-sults.Both estimators work well when the standard deviation of the noise is small with respect to the contrast in the scene.The decision of which estimator to use would be a simple one at high SNRs because the projection-based technique,as described in Section II,operates

on pixels in comparison

to

.With this

auto-correlation model,the expression

for

that

minimizes

is minimized

if

1870IEEE TRANSACTIONS ON IMAGE PROCESSING,VOL.10,NO.12,DECEMBER

2001

Fig.10.(Top)Two sample frames from a sequence of video of the planet Jupiter,(bottom left)frame one of the sequence at a PSNR of 1,and (bottom right)PSNR of 10.

the numerator gives rise to the following

inequality:

Next,we wish to maximize the denominator or determine an upper bound for it.Because all the terms in the denominator are

strictly positive,if we choose them to be as large as possible,this will serve as an upper bound for the denominator.If all the impulse functions take on their maximum value,then the following inequality

results:

CAIN et al.:PROJECTION-BASED IMAGE REGISTRATION IN PRESENCE OF FIXED-PATTERN NOISE

1871

Fig.11.Root mean-squared registration error performance of the projection-based technique (dotted line)and the 2-D cross-correlator (solid line)as a function of peak temporal SNR for the Jupiter data

sequence.

Fig.12.Root mean-squared registration error performance of the projection-based technique (dotted line)and the 2-D cross-correlator (solid line)as a function of peak fixed-pattern SNR for the Jupiter data sequence.

For the projection-based estimator,the vertical-direction figure-of-merit can be computed and expressed

as

,re-sults

in

and ,then the numerator is

minimized.Because all the terms in the denominator are non-negative,if we choose the impulse functions to be equal to zero,then this will serve as a lower bound for the value of the de-nominator.Now that the numerator is as large as possible and

the denominator is as small as possible,the figure-of-merit is bounded above in the following

inequality:

.This means that

the inequality can be reduced to the following

expression:

If the ratio of the figures-of-merit is greater than one then the denominator subtracted from the numerator should be greater than

zero

,

if

1872IEEE TRANSACTIONS ON IMAGE PROCESSING,VOL.10,NO.12,DECEMBER2001 [13] A.Schaum and M.McHugh,“Analytic methods of image registration:

Displacement estimation and resampling,”,Naval Res.Rep.9298,Feb.

1992.

[14]T.S.Huang,Image Sequence Analysis.Berlin,Germany:Springer-

Verlag,1981.

[15]S.C.Cain and K.D.Sauer,“Fast block motion estimation using integral

projections,”presented at the IEEE Workshop Visual Communications

and Signal Processing,Raleigh,NC,1992.

[16]K.Sauer and B.Schwartz,“Efficient block motion estimation using in-

tegral projections,”IEEE Trans.Circuits Syst.Video Technol.,vol.6,pp.

513–518,Oct.1996.

[17]J.S.Kim and R.H.Park,“A fast feature-based block matching algorithm

using integral projections,”IEEE J.Select.Areas Commun.,vol.10,pp.

968–971,June1992.

[18] A.R.Hambley,Introduction to Communication Systems.Rockville,

MD:Computer Science,1990.

[19]H.Stark and J.W.Woods,Probability,Random Processes,and Estima-

tion Theory for Engineers.Englewood Cliffs,NJ:Prentice-Hall,1994.

[20]M.C.Roggemann and B.Welsh,Imaging Through Turbulence.Boca

Raton,FL:CRC,

1996.

Stephen C.Cain was born in Pontiac,MI,in 1969.He received the B.S.E.E.degree from the University of Notre Dame,Notre Dame,IN,in1992, the M.S.E.E.degree from Michigan Technological University,Houghton,in1994,and the Ph.D.degree in electrical engineering from the University of Dayton,Dayton,OH,in2001.

From1994to1997,he served as an Officer in the United States Air Force.From1997to1998,he was with Wyle Laboratories and from1998to2000,he was with ITT A/CD.In2000,he began teaching as

an Visiting Assistant Professor in the Department of Engineering,Purdue Uni-versity at Fort Wayne,Fort Wayne,IN,where he now teaches as an Assistant

Professor.

Majeed M.Hayat(S’89-M’92-SM’00)was born

in Kuwait in1963.He received the B.S.degree

(summa cum laude)in electrical engineering from

the University of the Pacific,Stockton,CA,in1985,

and the M.S.degree in electrical engineering and

the Ph.D.degree in computer engineering,from the

University of Wisconsin-Madison in1988and1992,

respectively.

From1993to1996,he was with the University

of Wisconsin-Madison as a Research Associate and

Co-Principal Investigator of a project on statistical minefield modeling and detection,which was funded by the Office of Naval Research.In1996,he joined the faculty of the Electro-Optics Graduate Pro-gram and the Department of Electrical and Computer Engineering,University of Dayton,Dayton,OH,where he was granted early tenure and promotion to As-sociate Professor in2000.He is currently an Associate Professor in the Depart-ment of Electrical and Computer Engineering at the University of New Mexico, Albuquerque.His research interests include modeling and design of high-per-formance photodetectors,optical communication systems,statistical communi-cation theory,communication networks,infrared imaging,and statistical signal and image processing.

Dr.Hayat is a recipient of a1998National Science Foundation Early Faculty Career Award.He is a member of SPIE and

OSA.

Ernest E.Armstrong received the B.S.degree

in computer science and the M.S.degree in X-ray

crystallography from Wright State University,

Dayton,OH,in1977and1980,respectively,and

received the Ph.D.degree in material analysis from

Case Western Reserve University,Cleveland,OH.

He is currently a Senior Scientist(image pro-

cessing)for OptiMetrics,Inc.,a defense contractor

at Wright Patterson AFB,OH.He previously held

positions with Exxon Production Research and

British Petroleum Research,where his research was primarily concerned with the application of signal and image processing techniques in materials analysis.He has authored and coauthored a number of publications in image processing,specializing in the area of image registration, resolution enhancement,and nonuniformity correction.

JPEG图像的编解码实现

毕业论文论文题目(中文)JPEG图像的编解码实现 论文题目(外文)Encoding and decoding of JPEG image

摘要 JPEG是一种十分先进的图像压缩技术,它用有损压缩方式去除冗余的图像数据,在获得极高的压缩率的同时能展现十分丰富生动的图像。本文设计和实现一个JPEG图像编解码器来进行图像转换,利用离散余弦变换、熵编码、Huffman编码等图像压缩技术将BMP图像转换成JPEG图像,即进行图像的压缩。验证JPEG压缩编码算法的可行性。通过比对图像压缩前后实际效果,探讨压缩比,峰值信噪比等评价图像数据压缩程度及压缩质量的关键参数,对JPEG 压缩编码算法的实用性和优越性进行研究。 关键词:JPEG;编码;解码;图像压缩

Abstract JPEG is a very advanced image compression technology, it uses lossy compression to remove redundant image data, in obtaining a very high compression rate can show a very rich and vivid image. In this project, a JPEG image codec is designed and implemented to transform image, using discrete cosine transform, entropy coding, Huffman coding and other image compression techniques to convert BMP images into JPEG images. Verifies the feasibility of JPEG compression coding algorithm. Through the comparison of the actual effect of image compression, the key parameters of compression ratio, peak Snr, and the compression quality of image data are discussed, and the practicability and superiority of JPEG compression coding algorithm are researched. Key words: JPEG; encoding; decoding; image compression

图像处理中值滤波器中英文对照外文翻译文献

中英文资料对照外文翻译 一、英文原文 A NEW CONTENT BASED MEDIAN FILTER ABSTRACT In this paper the hardware implementation of a contentbased median filter suitabl e for real-time impulse noise suppression is presented. The function of the proposed ci rcuitry is adaptive; it detects the existence of impulse noise in an image neighborhood and applies the median filter operator only when necessary. In this way, the blurring o f the imagein process is avoided and the integrity of edge and detail information is pre served. The proposed digital hardware structure is capable of processing gray-scale im ages of 8-bit resolution and is fully pipelined, whereas parallel processing is used to m inimize computational time. The architecturepresented was implemented in FPGA an d it can be used in industrial imaging applications, where fast processing is of the utm ost importance. The typical system clock frequency is 55 MHz. 1. INTRODUCTION Two applications of great importance in the area of image processing are noise filtering and image enhancement [1].These tasks are an essential part of any image pro cessor,whether the final image is utilized for visual interpretation or for automatic an alysis. The aim of noise filtering is to eliminate noise and its effects on the original im age, while corrupting the image as little as possible. To this end, nonlinear techniques (like the median and, in general, order statistics filters) have been found to provide mo re satisfactory results in comparison to linear methods. Impulse noise exists in many p ractical applications and can be generated by various sources, including a number of man made phenomena, such as unprotected switches, industrial machines and car ign ition systems. Images are often corrupted by impulse noise due to a noisy sensor or ch annel transmission errors. The most common method used for impulse noise suppressi on n forgray-scale and color images is the median filter (MF) [2].The basic drawback o f the application of the MF is the blurringof the image in process. In the general case,t he filter is applied uniformly across an image, modifying pixels that arenot contamina ted by noise. In this way, the effective elimination of impulse noise is often at the exp ense of an overalldegradation of the image and blurred or distorted features[3].In this paper an intelligent hardware structure of a content based median filter (CBMF) suita ble for impulse noise suppression is presented. The function of the proposed circuit is to detect the existence of noise in the image window and apply the corresponding MF

图像编码技术的研究和应用

图像编码技术的研究和应用 一幅二维图像可以表示为将一个二维亮度函数通过采样和量化而得到的一个二维数组。这样一个二维数组的数据量通常很大,从而对存储、处理和传输都带来了许多问题,提出了许多新的要求。为此人们试图采用对图像新的表达方法以减少表示一幅图像需要的数据量,这就是图像编码所要解决的主要问题。压缩数据量的主要方法是消除冗余数据,从数学角度来讲是要将原始图像转化为从统计角度看尽可能不相关的数据集。这个转换要在图像进行存储、处理和传输之前进行,而在这之后需要将压缩了的图像解压缩以重建原始图像或其近似图像.图像压缩和图像解压缩,通常也分别称为图像编码和图像解码。 图像编码系统模型模型主要包括2个通过信道级连接的结构模块 :编码器和解码器。当一幅输入图像送入编码器后 ,编码器根据输入数据进行信源编码产生一组信号。这组信号在进一步被信道编码器编码后进入信道。通过信道传输后的码被送入信道解码器和信源解码器 ,解码器重建输出的图像。一般来说 ,输出图是输入图的精确复制 ,那么系统是无失真的或者信息保持型的 ;否则 ,称系统是信息损失的。 现代编码方法 这里介绍了几种比较热的编码方法:第二代编码方法、分形编码、模型编码、神经网络编码、小波变换编码。 1.第二代图像编码方法 第二代图像编码方法是针对传统编码方法中没有考虑人眼对轮廓、边缘的特殊敏感性和方向感知特性而提出的。它认为传统的第一代编码技术以信息论和数字信号处理技术为理论基础 ,出发点是消除图像数据的统计冗余信息 ,包括信息熵冗余、空间冗余和时间冗余。其编码压缩图像数据的能力已接近极限 ,压缩比难提高。第二代图像编码方法充分利用人眼视觉系统的生理和心理视觉冗余特性以及信源的各种性质以期获得高压缩比,这类方法一般要对图像进行预处理,将图像数据根据视觉敏感性进行分割。 2.分形图像编码 分形图像编码是在分形几何理论的基础上发展起来的一种编码方法。分形理论是欧氏几何相关理论的扩展,是研究不规则图形和混沌运动的一门新科学。它描述了自然界物体的自相似性,这种自相似性可以是确定的,也可以是统计意义上的。这一理论基础决定了它只有对具备明显自相似性或统计自相似性的图像,例如海岸线,云彩,大树等才有较高的编码效率。而一般图像不具有这一特性,因此编码效率与图像性质学特性有关 ,而且分形图像编码方法实质上是通过消除图像的几何冗余度来压缩数据的 ,根本没有考虑人眼视觉特性的作用。 3.基于模型的图像编码 基于模型的图像编码技术是近几年发展起来的一种很有前途的编码方法。它利用了计算机视觉和计算机图形学中的方法和理论 ,其基本出发点是在编、解码两端分别建立起相同的模型 ,针对输入的图像提取模型参数或根据模型参数重建图像。模型编码方法的核心是建模和提取模型参数,其中模型的选取、描述和建立是决定模型编码质量的关键因素。为了对图像数据建模, 一般要求对输入图像要有某些先验知识。目前研究最多、进展最快的是针对可视电话应用中的图像序列编码。这类应用中的图像大多为人的头肩像。 4.神经网络图像编码

图像处理在航天航空中的应用-结业论文

图像处理在航天航空中的应用-结业论文

论文题目:图像处理在航天和航空技术方面的运用 学院:机械电气工程学院 班级: 2012级机制3班 姓名:张娜 学号: 20125009077

摘要:图像处理技术的研究和应用越来越受到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术的特点、优势,列举了数字图像处理技术的应用领域并详细介绍了其在航天航空领域中的发展。 关键字:图像处理简介技术的优点发展技术应用 一、引言 数字图像处理是通过计算机采用一定的算法对图像图形进行处理的技术,它已经在各个领域上都有了较广泛的应用。图像处理的信息量很大,对处理速度要求也很高。本文就简单的介绍图像处理技术及其在各个领域的应用,详细说明图像处理在航天航空技术方面的应用。 二、数字图像处理简介 (一)图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 (二)数字图像处理技术 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。数字图像处理的早期应用是对宇宙飞船发回的图像所进行的

图像处理外文翻译 (2)

附录一英文原文 Illustrator software and Photoshop software difference Photoshop and Illustrator is by Adobe product of our company, but as everyone more familiar Photoshop software, set scanning images, editing modification, image production, advertising creative, image input and output in one of the image processing software, favored by the vast number of graphic design personnel and computer art lovers alike. Photoshop expertise in image processing, and not graphics creation. Its application field, also very extensive, images, graphics, text, video, publishing various aspects have involved. Look from the function, Photoshop can be divided into image editing, image synthesis, school tonal color and special effects production parts. Image editing is image processing based on the image, can do all kinds of transform such as amplifier, reducing, rotation, lean, mirror, clairvoyant, etc. Also can copy, remove stain, repair damaged image, to modify etc. This in wedding photography, portrait processing production is very useful, and remove the part of the portrait, not satisfied with beautification processing, get let a person very satisfactory results. Image synthesis is will a few image through layer operation, tools application of intact, transmit definite synthesis of meaning images, which is a sure way of fine arts design. Photoshop provide drawing tools let foreign image and creative good fusion, the synthesis of possible make the image is perfect. School colour in photoshop with power is one of the functions of deep, the image can be quickly on the color rendition, color slants adjustment and correction, also can be in different colors to switch to meet in different areas such as web image design, printing and multimedia application. Special effects production in photoshop mainly by filter, passage of comprehensive application tools and finish. Including image effects of creative and special effects words such as paintings, making relief, gypsum paintings, drawings, etc commonly used traditional arts skills can be completed by photoshop effects. And all sorts of effects of production are

数字视频技术及应用复习题

第一章数字视频概述 1.什么是复合视频?2页,可改为填空题 例如:黑白视频信号是一个已经经过加工处理并包含扫描同步和消隐的图像信号,通常也叫做复合视频,简称视频。由于频带范围在1-6MHZ人们又把它叫做电视基带视频。 2.什么是视频技术?它主要应用在哪些领域?3页,可以改为填空题 例如:在不考虑电视调制发射和接收等诸多环节时,单纯考虑和研究电视基带信号的摄取、改善、传输、记录、编辑、显示的技术就叫做视频技术。 主要应用领域:广播电视的摄录编系统、安全及监控、视频通信和视频会议、远程教育及视听教学、影像医学、影音娱乐和电子广告。 3.什么是数字视频?5页 广义的数字视频表述为数字视频是指依据人的视觉暂留特性,借着计算机或微处理器芯片的高速运算,加上Codec技术、传输存储技术等来实现的以比特流为特征的,能按照某种时基规律和标准在显示终端上再现活动影音的信息媒介。狭义的数字视频时指与具体媒体格式所对应的数字视频。 第二章彩色数字视频基础 1.彩色电视系统是根据色光三基色原理来再现彩色图像的。按照此原理,任何一种色光颜色都可以用R G B三个彩色分量按一定的比例混合得到。7页 2.匹配兼容制彩色电视亮度信号的公式是:8页(2-2) 3.两个色差信号正交调制的目的是什么?10页 4.电视扫描分为逐行扫描和隔行扫描两种。 5.电视基带视频有复合视频、亮色分离视频和分量视频三种。13页 6.彩色电视制式有哪三种?制式差异主要体现在哪些方面?14页或改为填空 世界上现行的彩色电视制式有NTSC制式、PAL制式和SECAM制式三大制式。制式差异主要体现在亮度合成公式、色差信号提取、色副载选取及其正交调制类型、扫描方式、同步时基确定等方面的参数。 7.彩色电视图像的数字化有信号上游数字化和信号下游数字化两种。 8.A/D转换主要包括哪些环节?量化的实质是什么?编码的实质是什么?17,18页,可改为填空 A/D转换就是指对幅值连续变化的模拟视频电信号进行脉冲抽样保持、量化、编码等环节后形成二进制码流的技术处理过程。 9.一般常用的线性D/A转换器,其输出模拟电压U和输入数字量D之间成正比关系。19页 10.YCbCr信号和YUV信号是正比关系。21页,或选择A正比B反比C非线性D平方11.CCIR601标准为NTSC、PAL、和SECAM制式规定了共同的图像采样频率是13.5MHZ。21页 12.PAL制NTSC制的现行标准数字电视有效显示分辨率(清晰度)各为720X576像素和720X480像素。公用中分辨率为352X288像素。23页 第三章广义数字视频及分类 1.广义数字视频的定义?28页 2.广义的数字视频是依据人的视觉暂留特性,借助计算机或微处理器芯片的高速运算加上Codec编解码技术、传输存储技术等来实现的比特流为特征的全新的信息媒介。 3.图像序列的特点有哪些?33页 特点是每帧的分辨率相同,图像内容相关、图像文件名连续编号,而且有表示开始的图像序列头和表示结束的图像终止码。

(完整版)导数与函数图像问题

导数与函数图像问题 1.函数()y f x =的图像如右图,那么导函数,()y f x =的图像可能是( ) 2.函数)(x f 的定义域为开区间),(b a ,导函数)(x f ' 在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( ) A. 1个 B.2个 C.3个 D.4个 3.设()f x '是函数()f x 的导函数,将()y f x =和 ()y f x '=的图象画在同一个直角坐标系中,不可能正确的是( ) 4若函数f (x )=x 2+bx+c 的图象的顶点在第四象限,则函数f′(x )的图象是( ) A . B . C . D . 5.设函数f (x )在R 上可导,其导函数为f′(x ),且函数f (x )在x=-2处取得极小值,则函数y=xf′(x )的图象可能是( ) A . B . C . D . a b x y ) (x f y ?=O

6.设函数f(x)=ax2+bx+c(a,b,c∈R),若x=-1为函数y=f(x)e x的一个极值点,则下列图象不可能为y=f(x)的图象是() A.B.C.D. 7.若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a,b]上的图象可能是() A.B.C.D. 8.已知函数y=xf′(x)的图象如上中图所示(其中f′(x)是函数f(x)的导函数),下面四个图象中y=f(x)的图象大致是() A.B.C.D. 9.设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如上右图所示,则下列结论中一定成立的是()

图像处理技术原理及其在生活中的应用探讨

图像处理技术原理及其在生活中的应用探讨 摘要在社会生活实践中,图像处理技术获得了广泛的应用。这种技术之所以可以得到广泛应用,与其极强的功能所分不开的。在计算机算法不断改善的过程中,图像处理技术的发展前景是非常广阔的。笔者对图像处理技术的原理进行了分析,并其对在生活中的应用进行了探究[1]。 关键词图像处理技术原理;生活;应用 1 图像处理技术的原理分析 所谓的图像处理技术,就是通过计算机技术以及相关的技术来对图像进行处理,从而使图像更好地为我们所利用的一种技术。在这个过程中,需要运用到几个技术要点。第一个就是使图像进行转换,从而得到计算机容易识别的矩阵,这种矩阵被称为是“数字矩阵”。这样得到的矩阵更容易被计算机所存储。第二就是通过多种算法来实现对计算机所存储的图像进行有关处理,其中用到的常用算法就有基于人眼视觉特性的阈值算法、具有去噪功能的图像增强算法等。第三就是在进行了一些技术性的处理,然后获取图像信息。通过中国知网、万方数据库等平台所查阅到的图像类型相关资料可知,图像的类型主要可以分为两大类,一类是数字化图像,另一类是模拟图像。前者不仅处理便捷,而且精度较高,能够适应现代社会的发展要求,后者在现实生活中的应用更为常见,比如在相机图片中的应用。模拟图像输出较为简单,灵活性和精度不太高,因此其使用的限制性较大[2]。 2 图像处理技术原理在生活中的应用探讨 2.1 图像处理技术原理在安全防范中的应用 在安全防范监控系统不断发展的过程中,系统从模拟向数字的方向发展,这跟人们要求图像的精准度越来越高有关。在安防领域,图像处理技术如果能够得到很好的利用,那么就可以实现对图像的去噪声处理,对失真的图像进行矫正处理。在公安部门破案的过程中,有时会根据犯罪现场的指纹特征来对视频采集参数进行调节,比如色彩补偿就是一种很好的调節方法,这样方便公安部门更快地破案。尽管现在的监控系统越来越完善,但是如果遇到暴风暴雨和雾霾或者光线较弱的天气,那么监控得到的视频图像往往还是比较模糊的,对于这些模糊的图像,可以通过图像增强技术进行一些处理,从而为后续的公安部门调查和取证提供便利,模糊图像处理技术这时就排上了用场[3]。 2.2 图像处理技术原理在娱乐休闲领域的应用 在娱乐休闲领域,图像处理技术原理主要的应用场合就是平时我们利用手机或数码相机摄影以及电影特效制作等场合。在数码相机出现以前,图像只能使用传统相机通过胶片的形式保存。在数码相机出现之后,人们就可以短时间内对相

图像处理中常用英文词解释

Algebraic operation 代数运算一种图像处理运算,包括两幅图像对应像素的和、差、积、商。 Aliasing 走样(混叠)当图像像素间距和图像细节相比太大时产生的一种人工痕迹。Arc 弧图的一部分;表示一曲线一段的相连的像素集合。 Binary image 二值图像只有两级灰度的数字图像(通常为0和1,黑和白) Blur 模糊由于散焦、低通滤波、摄像机运动等引起的图像清晰度的下降。 Border 边框一副图像的首、末行或列。 Boundary chain code 边界链码定义一个物体边界的方向序列。 Boundary pixel 边界像素至少和一个背景像素相邻接的内部像素(比较:外部像素、内部像素) Boundary tracking 边界跟踪一种图像分割技术,通过沿弧从一个像素顺序探索到下一个像素将弧检测出。 Brightness 亮度和图像一个点相关的值,表示从该点的物体发射或放射的光的量。 Change detection 变化检测通过相减等操作将两幅匹准图像的像素加以比较从而检测出其中物体差别的技术。 Class 类见模或类 Closed curve 封闭曲线一条首尾点处于同一位置的曲线。 Cluster 聚类、集群在空间(如在特征空间)中位置接近的点的集合。 Cluster analysis 聚类分析在空间中对聚类的检测,度量和描述。 Concave 凹的物体是凹的是指至少存在两个物体内部的点,其连线不能完全包含在物体内部(反义词为凸) Connected 连通的 Contour encoding 轮廓编码对具有均匀灰度的区域,只将其边界进行编码的一种图像压缩技术。 Contrast 对比度物体平均亮度(或灰度)与其周围背景的差别程度 Contrast stretch 对比度扩展一种线性的灰度变换 Convex 凸的物体是凸的是指连接物体内部任意两点的直线均落在物体内部。Convolution 卷积一种将两个函数组合成第三个函数的运算,卷积刻画了线性移不变系统的运算。 Corrvolution kernel 卷积核1,用于数字图像卷积滤波的二维数字阵列,2,与图像或信号卷积的函数。 Curve 曲线1,空间的一条连续路径,2 表示一路径的像素集合(见弧、封闭曲线)。 Deblurring 去模糊1一种降低图像模糊,锐化图像细节的运算。2 消除或降低图像的模糊,通常是图像复原或重构的一个步骤。 Decision rule 决策规则在模式识别中,用以将图像中物体赋以一定量的规则或算法,这种赋值是以对物体特征度量为基础的。 Digital image 数字图像 1 表示景物图像的整数阵列,2 一个二维或更高维的采样并量化的函数,它由相同维数的连续图像产生,3 在矩形(或其他)网络上采样一连续函数,并才采样点上将值量化后的阵列。 Digital image processing 数字图像处理对图像的数字化处理;由计算机对图片信息进

导数与函数图像

导数与函数图像问题
1.函数 y ? f (x) 的图像如右图,那么导函数 y ? f , (x) 的图像可能是( )
2.函数 f (x) 的定义域为开区间 (a, b) ,导函数 f ?(x) 在 (a, b) 内的图象如图所示,则函数 f (x) 在开区间 (a, b)
内有极小值点( )
A. 1个 B. 2 个 C. 3 个 D. 4 个
a
3 . 设 f ?(x) 是 函 数 f (x) 的 导 函 数 , 将 y ? f (x) 和
y
y ? f ?(x)
b
O
x
y ? f ?(x) 的图象画在同一个直角坐标系中,不可能正确的是( )
4若 函 数 f( x) =x2+bx+c 的 图 象 的 顶 点 在 第 四 象 限 , 则 函 数 f′ ( x) 的 图 象 是 (

A.
B.
C.
D.
5.设 函 数 f( x) 在 R 上 可 导 , 其 导 函 数 为 f′ ( x), 且 函 数 f( x) 在 x=-2处 取 得 极 小 值,则函数 y=xf′(x)的图象可能是( )
A.
B.
C.
D.
1

6. 设 函 数 f( x) =ax2+bx+c( a, b, c∈ R), 若 x=-1为 函 数 y=f( x) ex 的 一 个 极 值 点 , 则下列图象不可能为 y=f(x)的图象是( )
A.
B.
C.
D.
7.若函数 y=f(x)的导函数在区间[a,b]上是增函数,则函数 y=f(x)在区间[a,b] 上的图象可能是( )
A.
B.
C.
D.
8.已 知 函 数 y=xf′( x)的 图 象 如 上 中 图 所 示( 其 中 f′( x)是 函 数 f( x)的 导 函 数 ),
下面四个图象中 y=f(x)的图象大致是( )
A.
B.
C.
D.
9.设函数 f(x)在 R 上可导,其导函数为 f′(x),且函数 y=(1-x)f′(x)的图象如上
右图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) 值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) 值 f(2)
B.函数 f(x)有极大值 f(-2)和极小 D.函数 f(x)有极大值 f(-2)和极小
2

图像处理技术及其应用

图像处理技术及其应用 姓名: (班级:学号:) 【摘要】图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 【关键字】图像处理;发展;技术应用 1 引言 计算机图像处理技术是在20世纪80年代后期,随着计算机技术的发展应运而生的一门综合技术。图像处理就是利用计算机、摄像机及其它有关数字技术,对图像施加某种运算和处理,使图像更加清晰,以提取某些特定的信息,从而达到特定目的的技术。随着多媒体技术和网络技术的快速发展,数字图像处理已经广泛应用到了人类社会生活的各个方面,如:遥感,工业检测,医学,气象,通信,侦查,智能机器人等。无论在哪个领域中,人们喜欢采用图像的方式来描述和表达事物的特性与逻辑关系,因此,数字图像处理技术的发展及对其的要求就越来显得重要。 2 图像处理技术发展现况 进入21世纪,随着计算机技术的迅猛发展和相关理论的不断完善,数字图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就。随着计算机技术和人工智能、思维科学研究的迅速发展,数字图像处理向更高、更深层次发展。人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,这被称为图像理解或计算机视觉。 从图像变换方面来讲,目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用;而图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等,目前主要在指纹图像增强处理技术,医学影像学方面有显著的成果。这项技术使得各自图像的空间分辨率和对比度有了更大的提高,而最新的医学图像融合则是指对医学影像信息如CT、MRI、SPECT和PET所得的图像,利用计算机技术将它们综合在一起,实现多信息的同步可视化,对多种医学影像起到互补的作用。图像分割图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。 图像描述图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法;图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。 3 图像处理技术应用现状 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 3.1航天和航空技术方面的应用 数字图像处理技术在航天和航空技术方面的应用,许多国家每天派出很多侦察飞

图像编解码技术及应用

图像编解码技术及应用 1.图像编解码技术概论: 在当前的图像压缩领域中常用的技术有: BMP、EPS、GIF、JPG、PDF、PIC、PNG、PSD、TIF。上述技术间的差异主要存在于图像编解码的算法不同,通过对算法的研究可以使我们更加容易的理解图像压缩的原理。 位图格式(BMP)是在DOS时代就出现的一种元老级文件格式,因此它是DOS和WINDOWS操作系统上的标准的WINGDOWS点阵图像格式,以此文件格式存储时,采用一种非破坏性的RLE压缩,不会省略任何图像的细部信息。 EPS是最常见的线条稿共享文件格式,它是以PostScript语言为开发基础,所以EPS文件能够同时兼容矢量和点阵图形,所有的排版或图像处理软件如PageMaker或Illustrator等,都提供了读入或置入EPS格式文件的能力,而且RGB和CMYK对象也可以保有各自的原始的色彩模式。 GIF应该是在网络上最常见的一种压缩文件格式,它的英文全名Graphic Interchange format,当初研发的目的是为了最小化电缆上的传输,因此能采用LZW方式进行压缩,但可显示的颜色范围只局限于256索引色,目前所采用 的GIF图形共有两种格式:87a和89a,常见于网页上建议的小动画制作,其中GIF89a还可提供透明色效果,点阵图形,灰度图形或者索引颜色模式皆可存储为此种文件格式 JPG跟GIF一样为网络上最常见道的图像格式,其英文正式名称为Joint Photographic Experts Group,它是以全彩模式进行显示色彩,是目前最有效率的一种压缩格式,常用于照片或连续色调的显示,而且没有GIF去掉图像细 部信息的缺点,但需要注意的是此类图像需要自行设置压缩程度,在打开时JPG 图像会自动解压缩,不过要注意的是JPG采用的压缩是破坏性的压缩,因此会在一定程度上减损图像本身的品质。

导数的切线方程和图像知识点与习题

导 数 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即 )(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)]()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→ ). ()(0)()(lim lim ) ()(lim )]()()([ lim 000'0000000000x f x f x f x f x x f x x f x f x x x f x x f x x x x =+?=+??-?+=+???-?+=→?→?→?→?⑵如果)(x f y =点0x 处连续,那么)(x f y =在点0x 处可导,是不成立的. 例:||)(x x f =在点00=x 处连续,但在点00=x 处不可导,因为x x x y ??= ??| |,当x ?>0时,1=??x y ;当x ?<0时, 1-=??x y ,故x y x ??→?0lim 不存在. 注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数. 3. 导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为).)((0'0x x x f y y -=- 4. 求导数的四则运算法则:

图像处理技术的应用论文

图像处理技术的应用先展示一下自己用Photoshop处理的图片(做的不好望见谅)

摘要:图像处理技术的研究和应用越来越收到社会发展的影响,并以自身的技术特点反过来影响整个社会技术的进步。本文主要简单概括了数字图像处理技术近期的发展及应用现状,列举了数字图像处理技术的主要优点和制约其发展的因素,同时设想了图像处理技术在未来的应用和发展。 关键字:图像处理发展技术应用 1.概述 1.1图像的概念 图像包含了它所表达的物体的描述信息。我们生活在一个信息时代,科学研究和统计表明,人类从外界获得的信息约有百分之七十来自视觉系统,也就是从图像中获得,即我们平常所熟知的照片,绘画,动画。视像等。 1.2图像处理技术 图像处理技术着重强调在图像之间进行的变换,主要目标是要对图像进行各种加工以改善图像的视觉效果并为其后的目标自动识别打基础,或对图像进行压缩编码以减少图像存储所需要的空间或图像传输所需的时间。图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。 1.3优点分析 1.再现性好。数字图像处理与模拟图像处理的根本不同在于,它不会因图像的存储、传输或复制等一系列变换操作而导致图像质量的退化。 2.处理精度高。按目前的技术,几乎可将一幅模拟图像数字化为任意大小的二维数组,这主要取决于图像数字化设备的能力。现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高,这意味着图像的数字化精度可以达到满足任一应用需求。 3.适用面宽。图像可以来自多种信息源,它们可以是可见光图像,也可以是不可见的波谱图像(例如X射线图像、射线图像、超声波图像或红外图像等)。从图像反映的客观实体尺度看,可以小到电子显微镜图像,大到航空照片、遥感图像甚至天文望远镜图像。即只要针对不同的图像信息源,采取相应的图像信息采集措施,图像的数字处理方法适用于任何一种图像。 4.灵活性高。图像处理大体上可分为图像的像质改善、图像分析和图像重建三大部分,每一部分均包含丰富的内容。而数字图像处理不仅能完成线性运算,而且能实现非线性处理,即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。 2.应用领域 2.1图像技术应用领域

图像处理英文翻译

数字图像处理英文翻译 (Matlab帮助信息简介) xxxxxxxxx xxx Introduction MATLAB is a high-level technical computing language and interactive environment for algorithm development, data visualization, data analysis, and numeric computation. Using the MATLAB product, you can solve technical computing problems faster than with traditional programming languages, such as C, C++, and Fortran. You can use MATLAB in a wide range of applications, including signal and image processing, communications, control design, test and measurement, financial modeling and analysis, and computational biology. Add-on toolboxes (collections of special-purpose MATLAB functions, available separately) extend the MATLAB environment to solve particular classes of problems in these application areas. The MATLAB system consists of these main parts: Desktop Tools and Development Environment This part of MATLAB is the set of tools and facilities that help you use and become more productive with MATLAB functions and files. Many of these tools are graphical user interfaces. It includes: the

相关文档