文档库 最新最全的文档下载
当前位置:文档库 › 18李峰-预应力钢骨混凝土梁受弯性能试验研究

18李峰-预应力钢骨混凝土梁受弯性能试验研究

18李峰-预应力钢骨混凝土梁受弯性能试验研究
18李峰-预应力钢骨混凝土梁受弯性能试验研究

中国预应力技术五十年暨第九届后张预应力学术交流会论文 2006年

预应力钢骨混凝土梁受弯性能试验研究

李峰1 秦士洪1杨波1 丁智潮2

( 1重庆大学土木工程学院重庆400045) (2浙江省建筑科学研究院杭州 310012 )

提要:为了解和掌握预应力钢骨混凝土梁的受弯性能,进行了4 根模型梁的试验研究,描述了PSRC梁和对比SRC梁的受弯破坏过程,对截面平均应变、正截面受弯承载力等进行了分析研究。

关键词:钢骨混凝土梁预应力受弯性能极限承载力

1 前言

近年来,钢骨混凝土(Steel Reinforced Concrete,简称SRC)结构被广泛应用于大跨、超高、重载结构中,与普通钢筋混凝土(Reinforced Concrete,简称RC)结构相比,其具有承载能力高、抗震性能好等优点。由于SRC结构具有较高的承载能力,其构件的截面尺寸因而减小,在对结构刚度要求较高的情况下(例如结构转换层),裂缝和变形控制往往难以满足要求。通过对钢骨混凝土(SRC)结构施加预应力,不仅可以弥补SRC 结构的自身缺陷,而且还能提高其承载能力。作为一种新型结构,预应力钢骨混凝土(Prestressed Steel Reinforced Concrete,简称PSRC)结构在大跨度结构、高耸结构、巨型结构、转换层结构、重荷载结构具有广阔的应用前景。目前国内外对预应力钢骨混凝土(PSRC)结构的研究较少,多是结合一些工程实例进行的验证性试验,缺乏系统而全面的试验研究和理论分析。

本课题拟通过两阶段试验,研究PSRC梁的受力性能。第一阶段为2根SRC梁和2根PSRC梁的受力性能试验。本文根据第一阶段的试验结果,研究分析了不同钢骨布置PSRC 梁的基本受力性能及工作状况,并与钢骨混凝土梁进行了对比分析。

2 试验概况

2.1 试件设计

4根试验梁梁长均为3200mm,净跨3000mm。各试验梁的纵筋通长布置,箍筋沿梁全长等间距布置。所有纵筋均选用HRB335级钢筋,直径18mm;箍筋选用HPB235级钢筋,直径8mm。钢骨选用Q235热轧H型钢HN200×100×5.5×8;混凝土强度等级为C50,普通纵筋的混凝土保护层厚度均为20mm。

李峰,男,1980.8出生,硕士研究生

中国预应力技术五十年暨第九届后张预应力学术交流会论文 2006年

试验梁PSB-1、PSB-2施加预应力,采用有粘结后张法,一端张拉。金属波纹管直径40mm 。预应力筋选用直径5mm 的低松弛消除应力光面钢丝。在受拉区沿型钢腹板两侧对称配置两束各6根预应力钢丝。各试验梁参数见表1,截面详图见图1。

表1 试验梁参数表

2.2 加载及量测方案

试验在重庆大学结构试验室500t 液压试验机上完成,利用分配梁两点加载。采用分级单调加载方法,荷载控制,每级加载间隔时间为15分钟左右。试验加载装置如图2所示。 通过3个电子百分表测量试验梁在各级荷载下的挠度(左右两个加载点和跨中截面);在型钢及钢筋上粘贴应变片来测定其应变值;通过全过程加载来确定其开裂荷载、屈服荷 载和极限荷载;描绘裂缝开展曲线及宽度,并利用X-Y 函数记录仪绘制f P 曲线。

3 试验过程及现象描述

3.1试验梁PSB-1和SB-1破坏过程

中国预应力技术五十年暨第九届后张预应力学术交流会论文 2006年

PSB-1梁当加载至84KN 时,跨中截面混凝土受拉区出现肉眼可见垂直细微裂缝,继续加载,裂缝向上开展;当加载至96KN 时裂缝发展至受拉钢筋附近,此时在纯弯段出现了数条垂直裂缝;当加载至130KN 时裂缝发展至型钢下翼缘附近;当加载至180KN 时型钢下翼缘处混凝土表面处最大裂缝宽度达到0.1mm ,此时剪跨段出现指向加载点的斜向裂缝;当加载超过240KN 时垂直裂缝向上发展的趋势减缓,已开展的裂缝扩展速度加快;当加载超过300KN 时裂缝宽度随之扩展并迅速沿梁高向上延伸;当加载至420KN 时跨中受压区混凝土在型钢上翼缘位置处出现横向粘结劈裂裂缝,跨中受压区混凝土被压碎,正截面破坏。此时,垂直裂缝向上开展最大高度为200mm ,裂缝间间距约为100mm (箍筋间距为100mm ),跨中最大挠度为44mm 。

SB-1梁当加载至30KN 时,跨中截面混凝土受拉区出现肉眼可见细微裂缝,继续加载,裂缝向上开展;当加载至50KN 时纯弯段个别垂直裂缝发展至受拉钢筋附近;继续加载,裂缝向上发展较快,很快就达到型钢下翼缘处;当加载至60KN 时型钢下翼缘处混凝土表面最大裂缝宽度达到0.1mm ;当加载至160KN 左右时,裂缝向上发展趋势变慢;当加载至250KN 左右时裂缝宽度随之扩展并迅速沿梁高向上延伸;当加载至310KN 时跨中受压区混凝土在型钢上翼缘位置处出现横向粘结劈裂裂缝,跨中受压区混凝土被压碎,正截面破坏。此时,垂直裂缝向上开展最大高度为210mm ,裂缝间间距约为150mm (箍筋间距为150mm ),跨中最大挠度为47mm 。

3.2试验梁PSB-2和SB-2破坏过程

PSB-2梁当加载至115KN 时,跨中截面混凝土受拉区出现肉眼可见细微裂缝;当加载至180KN 时个别垂直裂缝已发展至型钢下翼缘附近;当加载至210KN 时,剪跨段出现斜向裂缝;当加载至260KN 左右时裂缝向上发展的趋势减缓;当加载至310KN 时型钢下翼缘处混凝土表面最大裂缝宽度达到0.1mm ;当加载至510KN 时型钢下翼缘处混凝土表面最大裂

缝宽度达到0.2mm ;当加载至520KN 左右时裂缝宽度随之扩展并迅速沿梁高向上延伸;当加载至620KN

时跨中受压区混凝土被压碎,正截面破坏。此时,垂直裂缝向上开展最大高

中国预应力技术五十年暨第九届后张预应力学术交流会论文 2006年

度为250mm,裂缝间间距约为80mm(箍筋间距为80mm),跨中最大挠度达到32.5mm。

SB-2梁当加载至30KN时,跨中截面混凝土受拉区出现肉眼可见细微裂缝;继续加载,裂缝向上开展;当加载至110KN时纯弯段个别裂缝发展至受拉钢筋附近;当加载至130KN 时裂缝向上发展达到型钢下翼缘处;当加载至150KN时型钢下翼缘处混凝土表面最大裂缝宽度达到0.1mm;当加载超过170KN时裂缝向上发展趋势变慢;当加载至400KN左右时裂缝宽度随之扩展并迅速沿梁高向上延伸;当加载至480KN时跨中受压区混凝土被压碎,正截面破坏。此时,垂直裂缝向上开展最大高度为320mm,裂缝间间距约为120mm(箍筋间距为120mm),跨中最大挠度达到35mm。

试验梁发生正截面破坏时的外观照片如图3所示。

4 正截面承载能力分析

4.1 试验过程分析

由实测绘制的荷载~挠度曲线(图4)和各应变值可以发现,类似于普通钢筋混凝土适筋梁破坏过程,可将试验梁正截面受弯全过程划分为三个阶段:①弹性工作阶段;②带裂缝工作阶段;③屈服破坏阶段。[1]

弹性工作阶段即混凝土开裂前的阶段。在这一阶段试验梁基本处于弹性工作状态,截面上各元素的应力与应变成正比。随着荷载的增加,受拉区混凝土达到其极限拉应变,随即开裂。此时原来由混凝土承担的拉力瞬即由受拉纵筋和型钢受拉部分承担,开裂截面刚度下降,其P~f曲线(图4)的斜率有微小变化(A点,A′点)。带裂缝工作阶段即混凝土开裂后至截面屈服前的阶段。混凝土开裂后裂缝向上发展,当其开展高度超过受拉纵筋和型钢下翼缘时,向上发展趋势变慢,裂缝底部变宽,分析其原因:①裂缝发展受到了型钢的阻止,型钢在沿梁高度方向约束混凝土的受拉变形;②受拉纵筋进入屈服状态。当荷载加大到一定程度,型钢下翼缘受拉屈服,随之腹板沿梁高度方向也逐步进入屈服状态,此时截面刚度迅速下降,反映于P~f曲线上有明显转折点(B点,B′点)。屈服破坏阶段

中国预应力技术五十年暨第九届后张预应力学术交流会论文 2006年

即截面屈服至正截面破坏阶段。进入这一阶段后,截面曲率和梁的挠度突然增大,裂缝宽度随之扩展并沿梁高向上延伸。荷载进一步增加,跨中受压区混凝土被压碎,发生正截面破坏。对于型钢沿梁高对称配置的梁PSB-1和SB-1,跨中受压区混凝土在型钢上翼缘位置处出现横向水平粘结劈裂裂缝,随即混凝土被压碎,正截面破坏。而型钢在受拉区配置的梁PSB-2、SB-2,破坏前无横向水平粘结劈裂裂缝出现。[2]

由于PSRC梁同时配有普通纵筋、型钢和预应力筋,如何确定其截面屈服?由绘制的P~f曲线(图4),采用“通用屈服弯矩法”可确定曲线屈服点及对应的“通用屈服弯矩”

[5],与实测受拉纵筋和型钢下翼缘屈服时的

截面弯矩值一起列入表2。可以看到,Array型钢下翼缘屈服时的截面弯矩值与通

用屈服弯矩值很接近,此外P~f曲线

上转折点B、B′对应的恰好是型钢下

翼缘屈服时,因此可将型钢下翼缘屈

服作为梁截面屈服的判定标准。

4.2 截面平均应变分析

根据在纯弯区段沿截面高度所测混凝土的应变,绘出其平均应变如图5所示(图中各条曲线分别对应于P/P

=0.0、0.1、0.3、0.5、0.7、0.9)。因为在型钢上翼缘表面焊接了

u

抗剪栓钉,构件在型钢上翼缘与混凝土交界处没有明显的横向水平裂缝,这表明型钢和混凝土之间没有产生相对滑移,抗剪栓钉能够有效地保证二者共同工作。在整个加载过程中,平截面假定近似成立,截面受压区高度变化不大。截面应变图中沿梁高度方向型钢位置处的混凝土应变发展明显滞后。[1]

型钢全截面应变发展如图6所示(图中各条曲线对应于P/P

=0.0、0.1、0.3、0.5、0.7、

u

0.9)。可以看出在整个受力过程中,型钢表现出了理想的弹塑性性质,其中和轴位置与梁

中国预应力技术五十年暨第九届后张预应力学术交流会论文 2006年

4.3 预应力效应

试验梁跨中挠度由电子百分表测定,不同受力阶段梁的挠度值和对应的弯矩值如表3所示。由表中试验数据可知:①施加预应力对截面屈服和破坏时的挠度值影响不大,但明显地提高了承载力;②型钢偏向受拉区布置不仅提高

了梁的承载力,而且还增强了其抗弯刚度,减小了变形值。

由上述试验现象及分析,不难发现:对钢骨混凝土构件施加预应力,能提高其承载力,改善其抗裂性,但却降低了截面的延性。实测表明施加预应力对混凝土极限压应变cu ε影响不大,但破坏时受压区高度明显加大,因而截面极限曲率减小,截面塑性转动能力降低,即延性有所下降。 4.4 受弯承载力分析

对于SRC 构件受弯承载力的计算,目前主要采用以下三种计算思路,即:①前苏联采用的基于RC 构件的设计方法;②以欧美为代表的基于钢结构的设计方法;③日本规范采用的叠加设计方法。对于PSRC 构件而言,目前尚无统一的计算理论和公式。无论采用哪种计算思路,一个需要解决的问题是:施加预应力后,如何将预应力对受弯承载力的提高作

用真实而合理地体现在计算公式中。 本文初步采用类似于RC 构件的计算

方法[3][4],即认为型钢、预应力钢筋与钢筋混凝土能够形成整体且变形协调,共同承担外部作用。在受弯承载力分析中,将型钢离散化为钢筋,将

中国预应力技术五十年暨第九届后张预应力学术交流会论文 2006年

预应力钢筋视为带有初始应力的普通钢筋处理,并强调纵筋和箍筋的作用。计算的受弯承

载力'

u M 和实测值u M 列表对比见表4。从表中可以看出,计算值较实测值普遍偏小,但误

差不大,计算结果偏于安全。

5 结语

通过对2根PSRC 梁和2根SRC 梁的试验研究,本文初步得到以下结论:

(1)预应力的施加对提高钢骨混凝土梁的承载能力和抗裂性能有明显有利作用,但却降低了延性;

(2)PSRC 梁和SRC 梁的正截面均以型钢受拉翼缘屈服作为截面屈服的标志; (3)型钢偏向受拉区布置对改善梁的受力性能和控制变形更为有利;

(4)只要截面配置合理,PSRC 梁的受弯破坏过程类似与普通钢筋混凝土适筋梁,并且也以受压区混凝土压溃为破坏标志;

(5)对于PSRC 梁的抗弯承载能力计算,采用基于钢筋混凝土结构的计算方法,计算结果误差较小,且偏于安全。

参考文献

[1] 周起敬,姜维山,潘泰华,钢与混凝土组合结构设计施工手册。北京:中国建筑工业出版社,1991 [2] 赵鸿铁,钢与混凝土组合结构。北京:科学出版社,2001

[3] 叶列平,钢骨混凝土梁的设计方法,建筑结构,1997(10):33-35

[4] 叶列平,方鄂华,钢骨混凝土构件正截面承载力计算,建筑结构,1999(8):56-60 [5] 李忠献,工程结构试验理论与技术。天津:天津大学出版社,2004

浅谈型钢混凝土结构发展及设计方法的比较

87  科技创新导报 Science and Technology Innovation Herald工 程 技 术 2009 NO.09 Science and Technology Innovation Herald科技创新导报 1 前言 型钢混凝土(Steel Reinforced Concrete,以下简称SRC)结构是指在型钢周围布置钢筋,并浇筑混凝土的结构。型钢分为实腹式和空腹式。实腹式SRC构件具有较好的抗震性能,而空腹式SRC构件的抗震性能与普通混凝土(Reinforced Concrete,以下简称RC)构件基本相同。因此,目前在抗震结构中多采用实腹式SRC构件。实腹式型钢可由钢板焊接拼制而成或直接采用轧制型钢。 常用的SRC梁、柱构件截面形式见图1。 SRC构件的内部型钢与外包混凝土形成整体、共同受力,其受力性能优于这两种结构的简单叠加。与钢结构相比,SRC构件的外包混凝土可以防止钢构件的局部屈曲,并能提高钢构件的整体刚度,显著改善钢构件出平面扭转屈曲性能,使钢材的强度得以充分发挥。采用SRC结构,一般可比纯钢结构节约钢材达50%以上。此外,外包混凝土增加了结构的耐久性和耐火性,欧美国家最初发展SRC结构就是出于对钢结构防火和耐久性方面的考虑。与RC结构相比,由于配置了型钢,大大提高了构件的承载力,尤其是采用实腹型钢的SRC构件,其抗剪承载力有很大提高,并大大改善了受剪破坏时的脆性性质,提高了结构的抗震性能。 2 国内外型钢混凝土结构的发展 从20世纪50年代开始,很多学者对SRC构件的性能进行大量试验和研究,在计算模型、计算和分析方法及简化计算等方面做了大量工作。 1975年Virdi和Dowling[1]借助设计曲线与大量SRC理论的分析及100多根柱破坏试验结果,证明了利用纯钢柱欧洲曲线,并引入新长细比定义这一方法来计算SRC柱的轴向破坏荷载是行之有效的。这种方法不仅提高了设计精度,而且还证明了SRC柱与钢柱内在的联系。对于偏压柱采用特定系数表示的直线和抛物线逼近柱子M-N相关曲线,根据这些特定系数确定柱子界面强度[2]。该方法一直沿用,并编入了1985年欧洲统一规范EC4《组合结构》。 在1989年的美国钢筋混凝土设计规范ACI-318[3]中,将型钢视为等值的钢筋,然后再以RC结构的设计方法进行SRC构件设计,这种方法的优点在于对SRC结构设计时考虑了构件的“变形协调”和“内力平衡”,但没有考虑型钢材料本身的残余应力和初始位移。在1993年的钢结构设计规范AISC-LRFD[4]中,采用极限强度设计法来设计SRC结构,将RC部分转换为等值型钢,再以纯钢结构的设计方法进行组合结构设计,并考虑了残余应力和初始位移。此方法最突出的优点是很容易得到构件的弯矩与轴力,但由于它是以考虑初始位移和残余应力的纯钢结构为设计基础,是否符合组合结构的实际受力行为仍有待进一步探讨。 英国在理论分析的基础上,于1969年将建筑中的SRC柱列入英国钢结构规范BS449的第三部分,随后将桥梁中的SRC柱列入英国标准BS5400的第五部分。对SRC梁,英国钢结构设计规范按组合截面进行弹性设计,即取0.7倍型钢屈服强度用弹性方法计算型钢,然后按组合截面进行修正,忽略混凝土抗拉强度。欧洲四个国 际组织(CEB-ECCS-FIB-IABSE)于1979年联合制定组合结构典型规程草案,并于1981年正式出版了“典型规程”。该规程建议以SRC梁的腹板以及受压翼缘的钢板是否具有足够的刚度划分截面为密实和纤细。对两种截面梁的正负抵抗弯矩分别简化为按塑性理论计算和弹性理论计算。德国于1981年制定DIN18806的第一部分,形成SRC柱草案,并于1984年形成正式版本。1985年由英、德、法及荷兰四国共同制定了欧洲组合结构设计规范Eurocodes(European Codes, Commission of Euro-pean Communities)。此规范假定型钢与混凝土完全交互作用,构件截面仅有一个对称轴,将型钢与混凝土均按矩形应力块理论考虑,采用极限强度设计方法设计。 日本从1951年起开始对SRC结构进行了全面系统的研究,1958年制定了《钢骨钢筋混凝土计算标准及其说明》,此标准的最大特点是在承载力计算方面采用了强度叠加理论。从1963年到1987年,该标准先后进行了四次修订,最终成为SRC结构设计规范第三版(AIJ-SRC),基本形成较为完整的设计理论和方法[5]。该规范在忽略混凝土抗拉强度、遵从平截面假定及不考虑型钢与混凝土之间的粘结力等条件下,以“强度叠加法”作为理论基础。日本持续研究和发展SRC结构,主要是由于日本是多地震国家。 经过几年的研究和工程实践,参考日本钢骨混凝土设计标准[6],1998年我国冶金部颁布了我国第一部行业标准《钢骨混凝土结构设计规程YB9082-97》。此规程基本沿用了日本标准的设计方法,包括其名称在内。将型钢作为等效钢筋,参照我国的混凝土规范及国内外有关规范规程,2002年建设部颁布了行业标准《型钢混凝土组合结构技术规程》(JGJ138-2001)。此规程中的设计方法与我国的混凝土规范相近。 3 型钢混凝土结构设计方法比较[7] 综上所述,日本、美国等国的SRC结构 设计各具特色,下面分别阐述其优缺点。3.1 SRC结构设计规范使用范围 浅谈型钢混凝土结构发展及设计方法的比较 吕会文1 曲延增2 (1. 山东烟台市兴盛建筑工程有限公司 山东烟台 265000;2. 山东烟台百通建筑工程有限公司 山东烟台 265000)摘 要: 型钢混凝土结构是指在型钢周围布置钢筋,并浇筑混凝土的结构,具有较好的承载能力和抗震能力。本文主要介绍了型钢混凝土结构的发展概括,及设计方法的比较。关键词:型钢混凝土 发展 设计方法 比较 中图分类号 :TU7 文献标识码 :A 文章编号 :1674-098X(2009)03(c)-0087-02 (a)SRC梁 (b) SRC柱 图1 常用的SRC梁、柱构件截面形式

预应力高强混凝土的应用现状

预应力高强混凝土的应用现状 高强混凝土与普通混凝土相比,具有强度高、体积稳定性好、良好的耐久性、工作性能以及可持续发展等优势,节约材料的同时还可以有效地减轻结构自重,预应力能有效地改善混凝土结构的抗裂性能、增强结构的刚度,减小结构的变形,并且能够使得结构抗剪承载力提高、耐久性变好,同时还能够增强结构的抗疲劳性能,改善结构的使用性能,从而提高经济效益。 标签:高强混凝土;HSC;高性能混凝土;HPC;预应力 一、高强混凝土的应用现状 对于高强混凝土的定义,不同国家规范和标准都有所差异。我国《公路桥涵施工技术规范》中规定:高强混凝土是指抗压强度等级超过60MPa,即C60以上的混凝土;另外,美国、日本、俄罗斯等国的混凝土规范都对高强混凝土作了相应的定义,见表1。 作为建筑工程结构最重要的材料之一,混凝土自问世至今已有一百多年的历史,以其诸多方面的优势被广大业内人士所认可与青睐。但是,随着我国科技水平的进步、工业化和城市化的发展,生态环境问题日益严重,大量的生产和使用混凝土材料是非常重要的原因之一。因此,要想实现经济与环境的可持续发展,必须减少混凝土的使用,或者以一种新型材料取而代之。再者随着城市土地资源的日益紧缺,混凝土结构向着高强度、重荷载、高性能的发展必然成为建筑工程领域的趋势,于是,在这样的背景下,高强混凝土(简称HSC)、高性能混凝土(简称HPC)应运而生。 高强混凝土与普通混凝土相比,有以下优点:强度高、体积稳定性好、良好的耐久性、工作性能以及可持续发展等。 高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。 二、预应力混凝土技术的发展概况 混凝土结构工程正在向着通过不断提高设计水平、施工技术水平及采用高强度高性能材料建造高合理经济结构的总趋势发展。在混凝土结构使用前预先对混凝土施加一定的压力,使其在受拉时达到不开裂或延迟开裂的目的,可以改善混凝土抗拉强度低的缺陷,这里的壓力即预应力。美国混凝土协会(ACI)对预应力混凝土的定义是:预应力混凝土是根据需要人为地引入某一分布与数值的内应力,用以全部或部分抵消外荷载应力的一种混凝土。 在混凝土结构中施加预应力能够有效的改善混凝土结构的抗裂性能、增强结

预应力混凝土连续梁桥

一预应力混凝土连续梁桥 1.力学特点及适用范围 连续梁桥在结构重力和汽车荷载等恒、活载作用下,主梁受弯,跨中截面承受正弯矩,中间支点截面承受负弯矩,通常支点截面负弯矩比跨中截面正弯矩大。作为超静定结构,温度变化、混凝土收缩徐变、基础变位以及预加力等会使桥梁结构产生次内力。 由于预应力结构可以有效地避免混凝土开裂,能充分发挥高强材料的特性,促使结构轻型化,预应力混凝土连续梁桥具有比钢筋混凝土连续梁桥较大的跨越能力,加之它具有变形和缓、伸缩缝少、刚度大、行车平稳、超载能力大、养护简便等优点,所以在近代桥梁建筑中已得到越来越多的应用。 预应力混凝土连续梁桥适宜于修建跨径从30m到100多m的中等跨径和大跨径的桥梁。 2.立面布置 预应力混凝土连续梁桥的立面布置包括体系安排、桥跨布置、梁高选择等问题,可以设计成等跨或不等跨、等截面或变截面的结构形式(图1)。结构形式的选择要考虑结构受力合理性,同时还与施工方法密切相关。 a b a.不等跨不等截面连续梁 b. 等跨等截面连续梁 图1 连续梁立面布置 1.桥跨布置 根据连续梁的受力特点,大、中跨径的连续梁桥一般宜采用不等跨布置,但多于三跨的连续梁桥其中间跨一般采用等跨布置。当采用三跨或多跨的连续梁桥时,为使边跨与中跨的最大正弯矩接近相等,达到经济的目的,边跨取中跨的0.8倍为宜,当综合考虑施工和其他因素时,边跨一般取中跨的0.5~0.8倍。对于预应力混凝土连续梁桥宜取偏小值,以增加边跨刚度,减小活载弯矩的变化幅度,减少预应力筋的数量。若采用过小的边跨,会在边跨支座上产生拉力,需在桥台上设置拉力支座或压重。当受到桥址处地形、河床断面形式、通航(车)净空及地质条件等因素的限制,并且同时总长度受到制约时,可采用多孔小边跨与较大的中间跨相配合,跨径从中间向外递减,以使各跨内力峰值相差不大。 桥跨布置还与施工方法密切相关。长桥、选用顶推法施工或者简支—连续施工的桥梁,多采用等跨布置,这样做结构简单,统一模式。等跨布置的跨径大小

型钢混凝土施工工法精编版

型钢混凝土组合结构 施工工法 江西建工第二建筑有限责任公司 技术管理部 1、前言 型钢混凝土组合结构又称为劲性混凝土结构或包钢混凝土结构,是在型钢结构外面包裹与曾钢筋混凝土外壳形成的型钢混凝土组合结构。型钢混凝土可以做成多种构件,更能组成多种结构,他可代替钢筋混凝土结构和钢结构应用于各类建筑和桥梁中。型钢混凝土组合结构的外包混凝土可防止钢构件的局部屈曲并能提高钢结构的整体刚度,显著改善钢结构的平面扭转屈曲性能,使钢材的轻度得到充分的发挥,此外混凝土增加了结构的耐久性和耐火性。 另外为了满足建筑功能有高大空间的公用建筑向小空间的住宅建筑转换,为了满足建筑功能转变导致内部空间结构转换的需要,设计上采用型钢混凝土转换桁架结构。在钢筋混凝土中增加型钢,既可以满足高层建筑高压力高延性的前提下,减小截面,又改变其脆性破坏的性质。型钢柱与型钢梁的连接、型钢柱与钢筋混凝土柱的连接、型钢梁与钢筋混凝土梁的连接、型钢梁与剪力墙之间的连接、型钢梁腹板翼缘开孔补强以及节点箍筋做法上技术要求高,各工种的协作要求高,施工难度大,是型钢混凝土组合结构施工中需解决的技术要点。 2、工法特点 2.1通过对型钢混凝土组合结构中型钢柱与型钢梁连接,型钢柱与钢筋混凝土柱的连接、型钢梁与钢筋混凝土梁的连接,型钢梁与钢筋混凝土梁连接、型钢柱腹板翼缘开孔补强及节点箍筋做法等工艺的研究,解决了型钢混凝土结构施工难题、使型钢梁柱翼缘板开孔补强、型钢梁柱与混凝土结构的连接、梁柱节点箍筋做法等达到设计要求,保证结构受力的传递 2.2通过对型钢混凝土组合结构的每一个连接点绘制钢筋穿过型钢翼缘或腹板穿孔及补强 的节点大样,预先计划型钢混凝土结构梁柱节点纵向钢筋弯折和锚固及穿孔补强情况。型钢柱、梁构件实行工厂化制作,保证构件尺寸、精度及开孔位置的准确,保证了梁柱纵向受力钢筋能准确、顺利的穿过型钢梁、柱。避免了现场纠偏、补开孔的工作量,保证了质量和施工进度。

型钢混凝土结构介绍

一、钢—混凝土组合结构概况 (一)钢—混凝土组合结构的一般概念 组合结构定义:组合结构的种类繁多,从广义上讲,组合结构是指两种或多种不同材料组成一个结构或构件而共同工作的结构(Composite Structure)。钢—混凝土组合结构是继木结构、砌体结构、钢筋混凝土结构和钢结构之后发展兴起的第五大类结构。从广义概念上看,钢筋混凝土结构就是具有代表性的组合结构的一种。 组合结构分类:组合结构通常是指钢—混凝土组合结构,其中钢又分为钢筋和型钢,混凝土可以是素混凝土也可以是钢筋混凝土。国内外常用的钢—混凝土组合结构主要包括以下五大类:(1)压型钢板混凝土组合板;(2)钢—混凝土组合梁;(3)钢骨混凝土结构(也称为型钢混凝土结构或劲性混凝土结构);(4)钢管混凝土结构;(5)外包钢混凝土结构。 (二)钢—混凝土组合结构的发展概况 钢—混凝土组合结构这门学科起源于本世纪初期。于本世纪二十年代进行了一些基础性的研究。到了五十年代已基本形成独立的学科体系。至今组合结构在基础理论,应用技术等方面都有很大的发展。目前钢—混凝土组合结构在高层建筑、桥梁工程等许多土木工程中得到广泛的应用,并取得了较好的经济效益。 在国外,钢—混凝土组合结构最初大量应用于土木工程旨在二次世界大战结束后,当时的欧洲急需恢复战争破坏的房屋和桥梁,工程师们采用了大量的钢—混凝土组合结构,加快了重建的速度,完成了大量的道路桥梁和房屋的重建工程。1968年日本十胜冲地震以后,发现采用钢—混凝土组合结构修建的房屋,其抗震性能良好,于是钢—混凝土组合结构在日本的高层与超高层中得到迅速发展。60年代以后世界上许多国家(包括英、美、日、苏、法、德)根据本国的试验研究成果及施工技术条件制定了相应的设计与施工技术规范。1971年成立了由欧洲国际混凝土委员会(CES)、欧洲钢结构协会(ECCS)、国际预应力联合会(FIP)和国际桥梁及结构工程协会(IABSE)

高性能混凝土技术研究

客运专线施工技术研究 高性能混凝土技术研究 汇报资料 中铁四局集团公司试验检测中心 二〇〇五年九月

武广客运专线高性能混凝土技术研究 一、立项的必要性: 武广铁路客运专线的混凝土要求为耐久性混凝土,在铁路上应用高性能混凝土在集团公司尚属空白,因此有必要针对当地的原材料对高性能混凝土进行深入的研究,找出各种影响因素对混凝土性能的影响及既满足施工要求又具有较好的经济效益的高性能混凝土配合比。 二、研究内容: 以武广铁路客运专线为主要背景,根据《铁路混凝土结构耐久性设计规范》和《京沪高速铁路高性能混凝土技术条件》要求,试验配制出具有可靠性强和经济性好的高性能混凝土。研究内容主要包括: 1、高性能混凝土用原材料的优化比选; 2、不同强度等级、不同环境条件下的高性能混凝土配制方法与控制参数; 3、高性能混凝土的工作性能、物理和力学特性; 4、高性能混凝土各项耐久性指标,高性能混凝土施工的质量控制与质量保证措施。 三、应达到的目标: 总目标: 根据工程情况和特点,以本地区常用原材料为基础,配制出武广铁路客运专线所需的高性能混凝土。在具体配制设计中,通过优化比选,使其具有很高的可靠性和较好的经济性,以达到能在实际工作中

得以应用的目的。在试验研究中,对海工耐久混凝土的材料组成及配制技术中若干关键问题进行较深入研究探讨,寻找可为今后施工供借鉴的经验。 具体目标: 1、武广铁路客运专线高性能混凝土优化设计; 2、粉煤灰活化技术在高性能混凝土设计中的应用; 3、梁体高性能混凝土耐久性试验研究; 4、高性能混凝土平板及水泥环抗裂性试验的自动测试判别系统的研制; 5、高性能混凝土电通量性能快速推定; 6、高性能混凝土施工质量控制措施实施方案。 四、技术关键: 1、针对该项目目前磨细矿粉资源偏少、价格较高情况,应用粉煤灰活化技术,在满足技术性能指标的前提下,下部工程结构采用大掺量粉煤灰技术,最大限度减低磨细矿粉的掺量,降低工程成本; 2、应用综合技术措施(矿物及化学外加剂品种和配比的优选、养护制度优化等)提高梁体高性能混凝土耐久性试验研究,达到技术性和经济性俱佳的设计目的; 3、高性能混凝土平板及圆环约束抗裂性试验的自动测试判别系统的研制; 4、高性能混凝土电通量性能快速推定。 五、进度安排及预期目标:

预应力高强混凝土管桩

(简称PHC桩),是在近代高性能混凝土(HPC)和预应力技术的基础上发展起来的混凝土预制构件,它是建设部科技成果重点推广项目。 PHC桩是专业工厂里采用先张法预应力和离心成型工艺,经过蒸压养护而制成的一种空心圆简体的等截面构件,运往施工现场后,通过锤击或静压的方法沉入地下作为建(构)筑物的基础。这是一种新型的基桩,由于它的卓越性能,得到了建筑界人士的青睐,在国外发展迅速,日本、港澳地区及东南亚各国使用都很广泛。国内在八十年代开始研制生产PHC桩,到现在已有生产厂近百家,一年产量超过一千万米,应用在工业与民用建筑、桥梁、港口码头、水利工程等,在国家建设中发挥了愈来愈大的作用。 PHC桩的优越性 1、PHC桩的单桩承载力高,单位承载力价格便宜。桩身混凝土强度等级为C80,具有高强性能,φ600的PHC桩的单桩允许承载力达到2500~3200KN。可作为高层、超高层建筑的基础。其单位承载力的造价比预制混凝土方桩和钻孔灌注桩低。 2、抗弯性能好。PHC桩选用高强度、低松驰的阴螺纹钢筋作为预应力主筋,使桩身具有较高的预压应力,其抗弯性能良好,PHC桩有卓绝的贯入性能,能穿透密实的砂层,能适应复杂的环境与地理条件。 3、质量稳定可靠。由于采用工厂预制的生产方式,能利用先进的工艺和设备,质量容易控制,产品质量容易保证。 4、应用范围广。工厂生产、商品供应,可以有不同的规格,长度供选择,使设计选用范围广,容易布桩,对桩端持力层起伏变化大的地质条件适应性强。 5、施工速度快,工期短。PHC桩在工厂商品化生产,能按施工要求及时供桩,施工前期准备时间短,一般能缩短工期一~二月。 6、施工现场文明。施工现场无砂石、水泥,无泥浆污染,对施工现场狭窄的工程特别有利。 外径类型壁厚 PHC PC 400A75 500 A 100 AB 550 A 100 AB A 125 AB B 600 A 100 AB A 110 130 AB B PTC 400A 55 65 500A 60 65

高性能混凝土试验研究

高性能混凝土结构试验研究 吴欠欠 1 (1.大连大学,辽宁大连 226611) 摘要:高性能混凝土的性能需要不断地试验以了解其详细的参数,对两个方面的混凝土性能进行了试验研究。一是早期开裂是高性能混凝土应用中经常出现的问题,这不仅影响混凝土的外观质量,也给混凝土的耐久性带来不利影响。针对这一问题,利用平板法约束试验,研究自然环境下不同水胶比,大掺量粉煤灰以及聚丙烯纤维对海工高性能混凝土早期开裂的影响。二是高性能混凝土在工程中应用越来越广泛。本文对配筋和未配筋的高性能混凝土徐变进行了深入的试验和理论分析。对 12 个高性能混凝土试件进行了为期 360 天的分析研究。 关键词:高性能混凝土;早期开裂;聚丙烯纤维;大掺量粉煤灰;徐变 Abstract: In order to understand the performance of high performance concrete . There were two aspects of the test had been gong .The first is early-age cracking is a recurrent problem in the application of high performance concrete,it not only affects the outward appearance quality of concrete but also brings adverse effect on durability of concrete. Aiming at this problem. The influences of different water-binder ratio,large volume fly ash and polypropylene fiber on early cracking of maritime high performance concrete by using flat-restraint test on the natural environment were studied . The second is high performance concrete is widely used in different projects now.The creep of high performance concrete members is deeply analyzed,and the creeps of 12 specimens are measured in 360 days. Key words: high performance concrete;cracking at early age;polypropylene fiber;high volume fly ash;creep 0 引言 目前正是我国经济高速发展的时期,由此也带来了我国混凝土建设的高峰。许多耗资巨大的重要建筑(构筑)物,如高层建筑、超高层建筑、大型公共建筑、跨海大桥、海底隧道、海上采油平台、海岸和近海岸工程已经建成或正在兴建。这些重要的基础设施大部分是混凝土结构且耗资巨大,一般要求的使用期限是100 年以上。日本和欧美国家已提出500 年服役寿命的要求和概念。目前已建工程因结构高度和耐久性要求的提升,普通混凝土已经不能满足要求。海洋工程中钢筋与混凝土材料受海洋环境的侵蚀作用而过早破坏的现象非常严

后张法预应力钢筋混凝土梁

附件3-混凝土工程施工工艺 1、目的 为确保客运专线箱梁混凝土工程的施工质量,达到设计及施工规范要求,提高产品质量,特制定本施工工艺. 2、编制依据 《客运专线铁路桥涵工程施工质量验收暂行标准》铁建设[2005]160号《铁路混凝土工程施工质量验收补充标准》铁建设[2005]160号 《客运专线铁路桥涵工程施工技术指南》TZ213-2005 《混凝土结构耐久性设计与施工指南》(CCES01-2004) 《铁路混凝土工程施工技术指南》(TZ210-2005) 《铁路混凝土结构耐久性设计暂行规定》(铁建设〔2005〕157号) 《客运专线高性能混凝土暂行技术条件》(科技基[2005]101号) 《客运专线预应力混凝土预制梁暂行技术条件》(铁科技[2004]120号)《施工图设计文件》 3、主要设备、设施 1、混凝土搅拌站ZHL-150型2座。 2、生产区应设4台45吨箱梁生产台座的龙门吊,龙门吊跨越38米、高度18米。 3、装载机ZL50型,3台;卷扬机3T型2台。 4、箱梁生产台座。 5、混凝土输送泵HBT80-18型,3台;布料机HGY-18型,3台;提浆机15M 型,2台。

5、高频附着式振捣器1.5KW,50台;插入式振捣器2.2KW,8台;高频机GFZ-B1型2台。 6、蒸养锅炉。 4、高性能混凝土原材料 满足耐久性要求的高性能混凝土原材料必须满足《混凝土结构耐久性设计与施工指南》(CCES01-2004)、《铁路混凝土结构耐久性设计暂行规定》(铁建设〔2005〕157号)、《客运专线高性能混凝土暂行技术条件》(科技基[2005]101号)《客运专线预应力混凝土预制梁暂行技术条件》(铁科技[2004]120号)以及国家和行业等其它标准和规范的要求。 原材料必须有供应商提供的出厂检验合格证书,并按有关检验项目、批次规定,严格实施进场检验,不合格的材料不准进场。 5、混凝土的搅拌与运输 1.混凝土的搅拌 1.1拌合设备 混凝土的拌合设备及投料计量装置,应保持良好工作状态,所用的投料计量装置应请地方计量部门定期检验。 梁场制梁混凝土拌合设备选用上海华东建筑机械厂的ZHL-150型拌和站,其技术性能能满足高性能混凝土的生产要求。 1.2材料的称量精度 混凝土原材料严格按照施工配合比进行准确称量,其最大允许偏差符合下列规定(按重量计):胶凝材料(水泥、矿物掺和料等)±1%;高性能混凝土用外加剂±1%;粗、细骨料±2%;拌合用水±1%。

型钢混凝土转换结构模板支撑体系研究

111111111111111111111111111111111111111111111 111111********* 111111111111111111111111111111111111111111111 111111********* 1转换层模板支撑体系的研究现状转换层结构能满足上部办公住宅小空间,下部商业娱乐大开间的综合性建筑功能使用要求。因此,近年来,随着我国经济和土木工程技术的发展,带转换层复杂结构已逐渐成为竖向不规则高层建筑中经常采用的一种满足其建筑功能及美学要求的结构布置方式。型钢混凝土由内部型钢与外包混凝土形成整体,共同受力,能够充分发挥材料各自的特性,具有强度高、刚度大、延性好、抗震能力强、防火、防腐性好、利于施工新工艺的采用,适用于大跨、重载等一系列优点,鉴于转换层结构设计的特殊性以及型钢混凝土结构的优良特性,型钢混凝土结构应用到转换层结构设计中,能发挥型钢混凝土结构优点,解决转换层结构设计所遇到的问题,尤其是结构抗震问题。 苏州科技学院唐兴荣针对高层建筑转换层结构施工技术中支撑体系与混凝土浇筑的关键问题进行了论述。文中详细介绍了一次性支模、荷载传递法支模和叠合浇筑法支模方法,提出转换结构混凝土浇筑时防止温度裂缝产生的一系列措施。湖南大学李永贵在对梁式转换构件受力性能进行浅析 基础上,综合多个实际工程,详细介绍了转换构件的模板支撑设计、钢筋连接与安装以及混凝土施工技术,重点分析防止大体积混凝土开裂的施工技术。西南交大曹裕阳对转换结构施工特点进行分析后,使用通用有限元程序SAP2000对梁式转换结构施工阶段进行模拟分析,其认为随着转换层跨度增加,传统分析方法所得结果与结构实际施工阶段受力状态相差甚远,并且由于混凝土的收缩与徐变使得结构承受的施工荷载增大,这可通过减少施工周期来降低结构在施工过程中所承受的施工荷载。利用型钢混凝土梁柱中的钢骨架这个强度很刚度较大的结构体系,作为浇筑混凝土时的吊模骨架,这样不仅可以节省大量模板支撑材料,简化支模工程,创造出较大的工作面,而且还能提高施工效率,解决决定施工进度的关键问题“模板工程”,加快施工进度。型钢混凝土转换构件施工阶段研究多为实际工程应用,重点研究转换构件施工中关键问题:支撑工程和混凝土施工。 西安工业学院赵敏等人对某高层建筑的转换大梁进行施工设计,根据转换大梁其跨度大(12.6m ),截面尺寸大(1200mm ×4870mm )的特点, 型钢混凝土转换结构模板 支撑体系研究 ○张明星 姜华 李海洋(中天建设集团有限公司广东分公司) 【摘 要】型钢混凝土转换结构模板支撑体系相互作用机理的研究,对确保型钢混凝土转换 结构施工安全至关重要。现就转换层模板支撑体系的研究现状作一综述,并在分析已有研究的基础上,提出目前存在的问题及对未来的研究展望,以期为广大施工管理者提供参考依据。 【关键词】型钢混凝土 转换层结构 模板支撑 研究进展 49

预应力混凝土桥梁发展概况

预应力混凝土桥梁发展概况 同济大学混凝土桥梁研究室 事○○三年十月

一、引言 预应力混凝土桥梁自出现以来的每次重大技术収展,都和材料、结极体系和施工工艺等 创新密切联系在一起,它们相互促进不断収展: 1. 预应力材料 ?高强、高性能及轻质混凝土技术収展,使混凝土受力性能改善、耐久性提高、浇筑更方便,也使预应 力混凝土桥梁结极自重荷载下降 ?高强、低松弛预应力钢材収展,使预应力混凝土的效率大大提高,也促进了预应力器具和设备収展

一、引言 1. 预应力材料 ?纤维增强聚合物预应力筋技术収展,使预应力筋兼轻质、高强、耐腐蚀、耐疲劳、非磁性等优点于一 体,一些钢材难以兊服的弱点消除,将预应力混凝 土桥梁带入了一个崭新的収展领域 ?利用现代传感和通讯等技术的智能化预应力混凝土材料,不间断监视结极的工作状态、生命轨迹,将 对预应力混凝土桥梁健康、安全运行提供有利保障

一、引言 2. 预应力桥梁结极体系 ?部分预应力混凝土结极,兼有预应力和钢筋混凝土结极的优点,兊服了全预应力混凝土结极的缺点?无粘结体内预应力混凝土结极,消除了后张预应力筋管道的压浆,降低了预应力摩阻损失 ?双向预应力、预弯预应力体系是预应力概念的新収展,它们使结极的高跨比显著减小,满足了一些特 殊的使用要求

一、引言 2. 预应力桥梁结极体系 ?体外预应力混凝土结极,极造简化、补索方便、施工简单,维护方便、总体经济性优越,逐步成为在 经济、施工质量和安全性方面最有竞争力的方案?钢—混凝土组合式预应力桥梁,利用钢腹、预应力混凝土顶板与底板在受力、极造及施工等方面的优 点,成为预应力桥梁一种新的収展方向

完整word版,高性能混凝土

高性能混凝土技术(应用推广) 河北省高速公路石安改扩建筹建处马洪忠 2013年12月沧州

高性能混凝土技术应用推广 一高性能混凝土简介 1 定义 对于高性能混凝土的定义,不同国家、不同学者由于各自认识、实践、应用范围和目的要求存在差异,对高性能混凝土有着不同的定义和解释。 我国著名混凝土专家、中国工程院院士吴中伟教授在其与廉慧珍教授合著的《高性能混凝土》中总结了国外学者的观点,结合中国实际情况,提出以下定义:高性能混凝土是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土,它以耐久性作为设计的主要指标。针对不同用途要求,对下列性能有重点地予以保证:耐久性、工作性、适用性、强度、体积稳定性、经济性。为此,高性能混凝土在配制上的特点是低水胶比,选用优质原材料,并除水泥、水、集料外,必须掺加足够数量的矿物掺和料和高效外加剂。 这一定义目前已被我国工程界广泛接受。 2 高性能混凝土的优点 与普通混凝土相比,高性能混凝土具有如下优点: (1)具有一定的强度和高抗渗能力,但不一定具有高强度,中、低强度亦可。 (2)具有良好的工作性,混凝土拌和物具有较高的流动性,混凝土在成型过程中不分层、不离析,易充满模型;泵送混凝土、自密实混凝土还具有良好的可泵性、自密实性能。(3)使用寿命要长,对于一些特殊工程的特殊部位,控制结构设计的并不是混凝土的强度,而是其耐久性。能够使混凝土结构安全可靠地工作50~100年以上,是高性能混凝土应用的主要目的。 (4)具有较高的体积稳定性,即混凝土在硬化早期具有较低的水化热,硬化后期具有较小的收缩变形。 因此可以说,高性能混凝土可以为社会各个方面、各个层次的人员带来无穷的好处:◆对业主或用户——因耐久性好,工程安全使用期延长,可减少维修费,保证安全,这实际上是最大的经济效益。 ◆对社会——降低能耗、料耗,利用工业废渣、减少噪声污染,对环境有利,并消除不安全感。

预应力高强混凝土管桩

预应力高强混凝土管桩 (简称PHC桩),是在近代高性能混凝土(HPC)和预应力技术的基础上发展起来的混凝土预制构件,它是建设部科技成果重点推广项目。 PHC桩是专业工厂里采用先张法预应力和离心成型工艺,经过蒸压养护而制成的一种空心圆简体的等截面构件,运往施工现场后,通过锤击或静压的方法沉入地下作为建(构)筑物的基础。这是一种新型的基桩,由于它的卓越性能,得到了建筑界人士的青睐,在国外发展迅速,日本、港澳地区及东南亚各国使用都很广泛。国内在八十年代开始研制生产PHC桩,到现在已有生产厂近百家,一年产量超过一千万米,应用在工业与民用建筑、桥梁、港口码头、水利工程等,在国家建设中发挥了愈来愈大的作用。 PHC桩的优越性 1、PHC桩的单桩承载力高,单位承载力价格便宜。桩身混凝土强度等级为C80,具有高强性能,φ600的PHC 桩的单桩允许承载力达到2500~3200KN。可作为高层、超高层建筑的基础。其单位承载力的造价比预制混凝土方桩和钻孔灌注桩低。 2、抗弯性能好。PHC桩选用高强度、低松驰的阴螺纹钢筋作为预应力主筋,使桩身具有较高的预压应力,其抗弯性能良好,PHC桩有卓绝的贯入性能,能穿透密实的砂层,能适应复杂的环境与地理条件。 3、质量稳定可靠。由于采用工厂预制的生产方式,能利用先进的工艺和设备,质量容易控制,产品质量容易保证。 4、应用范围广。工厂生产、商品供应,可以有不同的规格,长度供选择,使设计选用范围广,容易布桩,对桩端持力层起伏变化大的地质条件适应性强。 5、施工速度快,工期短。PHC桩在工厂商品化生产,能按施工要求及时供桩,施工前期准备时间短,一般能缩短工期一~二月。 6、施工现场文明。施工现场无砂石、水泥,无泥浆污染,对施工现场狭窄的工程特别有利。种类外径类型壁厚 PHC PC 400 A 75 500 A 100 AB 550 A 100 AB A 125 AB B 600 A 100 AB A 110 130 AB B PTC 400 A 55 65 500 A 60 65

预应力混凝土连续梁式桥结构问题分析及对策探讨(2021年)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 预应力混凝土连续梁式桥结构问题分析及对策探讨(2021年) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

预应力混凝土连续梁式桥结构问题分析及 对策探讨(2021年) 摘要:预应力混凝土连续梁式桥在市政工程中重要的一种形式。本文就预应力混凝土连续梁式桥结构存在的问题进行了归纳并进行了分析,最后从设计、施工技术等方面提出了解决措施,具有较强的意义和价值,供参考。 关键词:预应力混凝土;连续箱梁;裂缝;设计;施工技术 1引言 预应力混凝土连续梁式桥以其结构刚度大、变形小、行车平顺舒适、伸缩缝少、养护容易、抗震能力强等优点在目前市政桥梁、公路桥梁等建设中得到广泛应用。预应力混凝土连续箱梁(等截面)一般跨径大于20m,小于60m,采用整体现浇、分段预制拼装或整体预制安装,主要用于长大桥引桥、分离式或城市立交。大跨径预应

力混凝土连续箱梁(刚构)一般主跨跨径大于60m,连续梁桥主跨多小于200m,连续刚构小于300m,施工主要采用悬臂拼装(浇筑)。 2预应力混凝土连续梁式桥结构存在的问题 目前,国内外修建的大量预应力混凝土连续箱型梁桥,随着运营期的增长和交通量的增长,尤其是重载交通的影响,导致部分箱梁出现了程度不同的病害,引起了桥梁养护管理部门和设计施工部门的广泛关注。 预应力混凝土连续箱型梁桥病害概括起来有两大类,即跨中下挠和梁体开裂。据统计,跨径80~100m以下的梁桥,病害较少;跨径100~160m的梁桥,病害较多;跨径160m以上的梁桥,病害就更多。 已直接威胁到桥梁结构使用和行车安全。 在调查中发现,在预应力混凝土箱梁桥出现的裂缝类型,主要有以下7类17种裂缝。 (1)腹板斜向、竖向与水平裂缝; (2)顶板斜向与横向裂缝;

预应力钢骨混凝土框架梁抗弯承载力计算

预应力钢骨混凝土框架梁抗弯承载力计算 摘要:本文基于平截面假定,考虑预应力超静定结构次内力,根据截面中钢骨所处的位置不同,建立了预应力钢骨混凝土梁的抗弯承载力计算公式,并对预应力钢骨混凝土梁正截面承载力进行实验验证,计算值与试验的结果吻合较好。 关键词:预应力钢骨混凝土框架;次轴力;次弯矩;抗弯承载力 1 预应力钢骨混凝土梁正截面承载力的计算方法 1.1 基本假定 符合平截面假定:不考虑受拉区混凝土的受拉作用;破坏时梁受压区边缘混凝土的极限压应变为εcu=0.0033,达到极限状态时混凝土受压区的应力图形可取矩形分布;钢骨、钢筋和预应力筋的应力等于其弹性模量与应变的乘积,但其绝对值不大于相应的强度设计值;由于混凝土对钢骨的嵌固和约束作用,承载力极限阶段不考虑钢骨的屈曲。 1.2 界限压区高度 预应力钢骨混凝土梁的破坏形态与钢筋混凝土梁类似,其极限承载能力的丧失同样以受压区混凝土压碎为标志。普通钢筋、预应力钢筋和钢骨下翼缘中屈服时,受压区高度的最小值可以认为是预应力钢骨混凝土梁的截面界限压区高度,如图1所示,设普通钢筋、预应力钢筋和钢骨下翼缘中屈服时,受压区高度分别为xs、xp、xa。 1.3 中和轴在钢骨腹板中()正截面承载力计算 根据中和轴位置的不同分为3种情况:中和轴在钢骨腹板中;中和轴不通过钢骨截面,在钢骨上翼缘与混凝土梁受压边缘之间;中和轴恰好在钢骨上翼缘上。中和轴恰好在钢骨上翼缘上可作为判别其他两种情况的界限。 由表1可以看出,混凝土内钢骨产生滑移使平截面假定已经不再成立,本公式推导时假定钢骨与混凝土之间无滑移,来达到计算简单的目的,所以实际承载力低于钢滑移的公式计算值,因此应用此公式进行计算时,建议预应力钢骨混凝土构件正截面承载力乘以0.8的折减系数。 3 结语 对于一般的框架结构,柱子截面并不十分巨大,柱子的侧向刚度对预应力梁中的预应力效应的影响较小,一般都在5%以下;推导计算公式时,忽略了各部分之间的粘结滑移,从而大大简化了计算方法。因此应用此公式进行计算时,建

混凝土梁钢筋与型钢柱组合连接技术

逆施混凝土梁钢筋与正施型钢柱组合连接技术 【摘 要】 xxxxx 广场工程逆施结构与正施型钢混凝土组合结构中采用了“逆施混凝土梁钢筋与正施型钢柱组合连接技术”,解决了窄间隙下逆施混凝土梁筋与正施型钢柱连接钢筋不同心、钢筋无伸缩的连接难题,为正逆施粗直径钢筋连接、特别是正施结构采用型钢混凝土组合结构钢筋连接技术作出了成功的探索。 【关键词】 可焊接套筒 熔槽帮条焊 型钢混凝土组合结构 钢筋连接 正逆施 前言:随着施工技术的发展,高层建筑越来越多,鉴于逆作法施工在工程周期方面的优势、型钢混凝土组合结构在抗震、防火及造价方面的优势,逆作法施工工艺及型钢混凝土组合结构在高层、超高层建筑中应用越来越多。而高层、超高层结构中混凝土梁配筋量大、钢筋排数多、钢筋间距较小,加之结构体系抗震等级高,钢结构体系不允许开洞,且正逆施连接部位空间较小,如何实现逆施混凝土梁钢筋与正施型钢柱的合理连接,成为此类工程施工的难点。 1 工程概况 xxxx 广场工程包含1栋办公楼,3栋公寓楼及商业裙楼,设有4层地下室。1栋办公楼及3栋公寓楼为超高层建筑,办公楼共53层,总高度258m ;A 、B 、C 三栋公寓分别为57层、53层、49层, 总高度分别为191m 、179m 、168m 。 工程抗震设防烈度为7度,主体结构 抗震等级为特一级或一级。 本工程地下结构采用敞开式逆作法施工工艺,逆施结构与正施结构型钢柱间距最小为600mm 如图1所 示。由于抗震等级高,与型钢柱连接 的逆施混凝土梁钢筋直径大(最大达 ф32)、排数多(大部分为3排),为保证结构的整体性,设计禁止在型钢柱上开洞,要求梁钢筋与型钢柱连接采用机械连接方式直接连接。 图1 逆施混凝土与正施型钢柱对接平面图

5高性能混凝土浇筑作业指导书(new)

怀安制梁场后张法预应力混凝土箱梁预制 编号:HAZLZYZDS-05高性能混凝土施工作业指导书 单位:中铁四局集团张呼铁路 怀安制梁场 编制: 复核: 审批: 2014年6月1日发布 2014年7月1日实施

高性能混凝土施工作业指导书 1.适用范围 适用于中铁四局集团张呼铁路怀安制梁场后张法预应力混凝土简支箱梁预制的高性能混凝土工程施工作业。 2.作业准备 2.1、内业技术准备 在开工前组织技术人员认真学习实施性施工组织设计,阅读、审核施工图纸,澄清有关技术问题,熟悉规范和技术标准,并编制作业指导书,制定施工安全保证措施和应急预案。对施工人员进行技术交底,对参加施工人员进行上岗前技术培训,考核合格后持证上岗。 2.2、外业技术准备 施工作业所涉及的各种外部技术数据收集。配置所需要施工设备、技术人员,满足施工现场技术需求。 3.技术要求 3.1、《客运专线预应力混凝土预制梁暂行技术条件》铁科技[2004]120号 3.2、《铁路混凝土工程施工技术指南》(铁建设[2010]241号) 3.3、《铁路桥涵工程施工质量验收标准》(TB10415-2003) 3.4、《高速铁路桥涵工程施工质量验收标准》(TB10752-2010) 3.5、《混凝土泵送施工技术规程》(JGJ/T10-2011) 3.6、《混凝土用水标准》(JGJ63-2006) 3.7、《铁路混凝土结构耐久性设计规范》TB10005-2010 3.8、《时速250公里客运专线铁路有砟轨道后张法预应力混凝土简支整孔箱梁(双线、单箱单室)》(通桥(2009)2229-Ⅰ、Ⅱ、Ⅲ) 4、施工程序与工艺流程 混凝土灌筑工序流程为:质检工程师签发混凝土浇筑令→试验室出具施工配合比→试验技术负责人签认→搅拌站根据施工配合比搅拌混凝土→混凝土搅拌运输车运输→砼输送泵泵送→布料机布料入模。

预应力钢筋混凝土及普通钢筋混凝土连续箱梁设计要点说明

预应力钢筋混凝土及普通钢筋混凝土连续箱梁设计要点本说明适用于常规等梁高的普通钢筋混凝土及预应力钢筋混凝土连续梁桥。本说明主要目的在于为设计人员在连续梁设计中提供一些建议,以期保证我院设计文件的统一性和完整性。实际工程的设计中,根据具体项目的具体特点,需仰赖设计人的独立思考以确保工程质量。 1、跨径及梁高的选取 1.1、一般连续梁(跨径<50m)在桥梁分跨时,宜将边跨取为中跨的0.75~0.8倍。 1.2、普通钢筋混凝土连续梁边跨不宜大于20m,且中跨取22m以上并小于25m为好。 1.3、将边跨跨径除以0.75并与中跨跨径相比较,取较大者为L,用于确定梁高。 1.4、普通钢筋混凝土梁高应大于L/20,预应力连续梁梁高应大于L/25。 1.5、为适应梯度温差、基础不均匀沉降等附加荷载,连续梁梁高不应无节制加高。对于普通钢筋混凝土连续梁,梁高应小于L/15;对于预应力连续梁,梁高应小于L/20。 1.6、为使平面杆系计算模型能最大限度的符合工程实际,在无特殊要求下,应将桥梁墩位按照桥梁中线的法线布置,且各墩位的支点间距不大于4倍梁高为好。 1.7、主梁顶、底面横坡与桥面横坡一致。无特殊情况,腹板高度全梁一致。 2、主梁截面选取 2.1、确定翼板宽度。对于有匝道的立交桥,首先确定匝道桥的翼板宽度,主线桥一般宽度与之相同为好。在任一情况下,翼板宽度不应大于2倍梁高。 2.2、主梁箱室宽度不应大于3倍梁高。 2.3、在满足局部计算的情况下,主梁顶、底板的厚度取20cm,此为一般值和最小值。在中支点底板包络应力不大于0.5f ck(C50为16.2MPa)时,不要加厚底板,这样更利于模制作。 2.4、主梁顶、底板与腹板通过承托过渡,一般取顶板承托60x20cm,底板承托20x20cm。为方便混凝土分层浇筑,一般将翼板根部与顶板承托根部布置于同一水平。 2.5、腹板厚度的选取 2.5.1、普通钢筋混凝土箱梁的腹板应使布置于其中的钢筋骨架间距大于10cm。建议标准厚度35cm,支点附近加厚至55cm。边支点腹板加厚段长度取4m,中支点两侧加厚段长度各为该跨跨径的1/5,并取整为0.5m的整数倍。 2.5.2、预应力连续梁的腹板标准厚度根据采用预应力钢束的规格确定,在钢束不大于15-19时,采用40cm。腹板在支点附近加厚,厚度根据腹板钢束的锚固要求确定。对于无锚固要求的梁段,在边支点腹板加厚段长度取为跨径的1/6,且取整为0.5m的整数倍;在中支点两侧加厚段长度各为该跨跨径的1/5,并取整为0.5m的整数倍。对于有锚固要求的梁段,加厚段长度应超过钢束锚固点2m。

相关文档