文档库 最新最全的文档下载
当前位置:文档库 › 大功率变频器的拓扑结构及其谐波抑制技术_王明彦

大功率变频器的拓扑结构及其谐波抑制技术_王明彦

大功率变频器的拓扑结构及其谐波抑制技术_王明彦
大功率变频器的拓扑结构及其谐波抑制技术_王明彦

变频器谐波干扰及抑制

变频器谐波干扰及抑制 0 引言 近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其他许多优点而被国内外公认为最有发展前途的调速方式。但是由于变频器中普遍有晶闸管、整流二极管及大功率IGBT开关等非线性元器件,在使用中会产生大量谐波,从而干扰周围电器正常运行。如果变频器的干扰问题解决不好,不但系统无法可靠运行,还会影响其他电子、电气设备的正常工作,因此有必要对变频器应用系统中的干扰问题进行探讨。 1 变频调速系统谐波的产生 变频器的主电路一般由交-直-交组成,外部输入的380 V/50 Hz 的工频电源经三相桥路晶闸管整流成直流电压信号后,经滤波电容滤波及大功率晶体管开关器件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅里叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR 大功率逆变器件,其PWM的载波频率为2耀3 kHz,而IGBT大功率逆变器件的PWM最高载频可达15 kHz。同样,输出回路电流信号也可分解为只含正弦波的基波和其他各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 用于电机调速的交-直-交型通用变频器一般是6脉动装置,其谐波电流含有率如表1所列。此外,交-交型变频器通过一套可关断晶闸管和斩波技术,不经过整流这个环节,把电网工频直接变成交流调速电机所需要的交流频率。交-交型变频器除了向电网系统注入高次谐波外,还注入谐间波(即频率不是工频倍数)电流。谐波电流的频率和含量随电机的工况变化而变化。 2 谐波的传播途径 变频器能产生功率较大的谐波,对系统其他设备干扰性较强,其干扰途径与一般电磁干扰途径是一致的,主要分传导(即电路耦合)、电磁辐射、感应耦合。具体为:首先对周围的电子、电气设备产生电磁辐射,这是频率很高的谐波分量的主要传播方式;其次对直接驱动的电动机产生电磁噪声,使得电机铁耗和铜耗增加;并传导干扰到电源,通过配电网络传导给系统其他设备,这是变频器输入电流干扰信号的主要传播方式;最后变频器对相邻的其他线路产生感应耦合,感应出干扰电压或电流,感应的方式又有两种:即电磁感应方式,这是电流干扰信号的主要方式;静电感应方式,这是电压干扰信号的主要方式。同样,系统内的干扰信号通过相同的途径干扰变频器的正常工作。 3 谐波的危害 1)谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。 2)谐波可以通过电网传导到其他的电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。 3)谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。 4)谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。

变频器谐波的影响及控制作用分析

龙源期刊网 https://www.wendangku.net/doc/3b11131183.html, 变频器谐波的影响及控制作用分析 作者:孟涛曹美乐 来源:《城市建设理论研究》2013年第09期 摘要:随着电子技术的迅速发展,开关电源的应用日益普及,给电网造成污染,干扰其它设备的正常工作。针对变频器广泛应用的现状,本文简单地探讨了变频器谐波的影响及控制作用。 关键词:变频器;谐波影响;控制作用 中图分类号:F407.63 文献标识码:A 文章编号: 引言:变频器的使用给人们带来了方便和巨大的利益,它必将更为普遍的使用。但是由于它所特有的工作方式,给公用电网带来了一定的破坏,成为电网谐波污染源之一,所以,分析和研究抑制谐波的方法将成为一个非常重要的课题。 1谐波的危害我们知道,变频器对电容量大的电网和大型的电力系统所造成的影响几乎没有,对于那些容量小的电力系统,变频器谐波产生的危害是巨大的,谐波电压和电流对于公共电网的干扰是明显的,使用电设备的环境改变,给他周围的通信系统和其他设备都能带来一定的危害。那么,谐波对电力系统及其周围环境带来的危害都有哪些呢?供电线路的电能损失 严重。供电线路的肌肤效应和临近效应,使其本身的电阻会随着频率的提高而增大,这就造成了电能的浪费。中性线平时的电流过流量极小,因此导线较细,可是刚线路存在大量的三次谐波通过中线是,会因电阻突然增大产生大量的热,以至于导线绝缘皮层老化、损坏、使用寿命缩短,极有可能造成火灾。最近发生的好多商业大厦火灾,专家分析极有可能是导线的电流过大造成的。谐波影响其共同工作环境中其他设备正常使用。谐波对发电机的影响主要有功率 损耗过大、发热、震动、噪音、过电压。对短路器的影响主要是延长其故障时的断开电源的时间。这也是工业电机使用发生伤亡事故的主要原因。供电系统电网产生谐振。共同频率下, 用于供电系统的装备电容器有着不同的用途,他们的抗干扰能力要比其他电路强的多,不可能有谐振产生。但谐波频率时,抗敢能力大幅下降而感抗值是成倍增长的,这样就极有可能出现谐振,谐波电流增大,导致电容器及其他设备即刻被烧毁。谐波能引起公用电网其连接的局 部电网的并联、串联谐振,使谐波放大,造成极大的危害。谐波使安全保护设备失灵。谐波 的产生会使电磁继电器和自动保护装置发出错误的指令,使工业仪表和电能计量表产生的误差加大。谐波的产生的危害进一步扩大到了对电力用户的危害,对通信系统的通信信号产生干扰,严重的能使通信系统处于瘫痪。影响电子仪表的工作精密度,设备的使用寿命缩短,家用电器使用工况下降等。 2谐波危害的解决措施变电器的使用极大的方便了人们的生活,可它的危害也是并存的。电脑和一些电子敏感产品的普遍使用,使人们对供电的质量要求也越来越高,全球许多国家和地区都制定了各自谐波的标准,用来减少谐波造成的污染。总体来说,谐波危害的解决措施有

电力电子装置的谐波危害及抑制

随着电力电子技术的快速发展,电力电子装置越来越多地应用于冶金、化工、煤炭和运输等诸多领域,已成为实现生产自动化的重要基础设备。然而,随着这些电力电子装置的广泛应用,将大量的谐波和无功功率注入电网,使电网的电能质量下降,引起“电网污染”问题,这已成为阻碍电力电子技术发展的重大障碍之一。因此,认识和分析电力电子装置谐波产生的原因及其危害,探讨综合治理的方法,抑制谐波污染,提高电网功率因数已成为电力电子技术中的一个重大研究课题。 谐波的危害 电网中日益严重的谐波污染常常对设备的工作产生严重的影响,其危害一般表现为: 1)谐波电流使输电电缆损耗增大,输电能力降低,绝缘加速老化,泄漏电流增大,严重的甚至引起放电击穿。 2)使电动机损耗增大,发热增加,过载能力、寿命和效率降低,甚至造成设备损坏。 3)容易使电网与用作补偿电网无功功率的并联电容器发生谐振,造成过电压或过电流,使电容器绝缘老化甚至烧坏。 4)谐波电流流过变压器绕组,增大附加损耗,使绕组发热,加速绝缘老化,并发出噪声。 5)使大功率电动机的励磁系统受到干扰而影响正常工作。 6)影响电子设备的正常工作,如:使某些电气测量仪表受谐波的影响而造成误差,导致继电保护和自动装置误动作,对邻近的通信系统产生干扰,非整数和超低频谐波会使一些视听设备受到影响,使计算机自动控制设备受到干扰而造成程序运行不正常等。 电力电子装置中的谐波产生 电网中的谐波主要是由各种大容量功率变换器以及其他非线性负载产生的,其中主要的谐波源是各种电力电子装置,如整流装置、交流调压装置等,这其中,整流装置所占的比例最大,它几乎都是采用带电容滤波的二极管不控整流或晶闸管相控整流,它们产生的谐波污染和消耗的无功功率是众所周知的;除整流装置外,斩波和逆变装置的应用也很多,而其输入直流电源也来自整流装置,因此其谐波问题也很严重,尤其是由直流电压源供电的斩波和逆变装置,其直流电压源大多是由二极管不控整流后经电容滤波得到的,这类装置对电网的谐波污染日益突出。 谐波的抑制 为了抑制电网中的谐波,减小谐波的危害,在加强科学化、法制化管理的同

变频器谐波危害分析及解决措施

变频器谐波危害分析及解决措施 摘要:本文从谐波的概念入手,结合变频器的内部结构的相关知识,分析变频器谐波产生的原因及其危害,在此基础上提出了抑制谐波的常用方法. 关键词:变频器谐波危害抑制 前言:在工业调速传动领域中,与传统的机械调速相比,用变频器调速有诸多优点,顾其应用非常广泛,但由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载,变频器在现场通常与其它设备同时运行,例如计算机和传感器,这些设备常常安装得很近,这样可能会造成相互影响。因此,以变频器为代表的电力电子装置是公用电网中最主要的谐波源之一,其对电力系统中电能质量有着重要的影响。 一、变频器原理及其谐波的产生 变频器是工业调速领域中应用较广泛的设备之一,目前已在企业大量使用。变频器一般采用是交-直-交结构(如图一所示),它是把工频(50HZ)变换成各种频率的交流电源,以实现电机的变速运行的设备。其中控制电路完成对主电路的控制,变频调速装置用于交流异步电动机的调速,调速范围广、节能显著、稳定可靠。

(图一)一般通用变频器为交-直-交结构 众所周知,电机的转速和电源的频率是线性关系。 变频器就是利用这一原理将50Hz的工频电通过整流和逆变转换为频率可调方向的交流电源。变频器输入部分为整流电路,输出部分为逆变电路,这些都是由非线性原件组成的,在开断过程中,其输入端和输出端都会产生高次谐波。另外变频器输入端的谐波还会通过输入电源线对公用电网产生影响。 从结构上来看,变频器有交-直-交变频器和交-交变频器之分。目前应用较多的还是交-直-交变频器。变频器主电路为交-直-交,外部输入380V/50HZ工频电源,经三相桥式不可控整流成直流电压,经滤波电容滤波及大功率晶体管开关元件逆变为频率可调的交流信号。 在电力电子装置大量应用以后,电力电子装置成为最主要的谐波源。 变频器输入侧产生谐波机理:对于变频器而言,只要是电源侧有整流回路的,都将产生因非线性引起的谐波。以三相桥整流电路为例,交流电网电压为一正弦波,交流输入电流波形为方波,对于这个波形,

UPS供电系统中的谐波及其抑制

供电系统中的谐波及其抑制 一、概述 在理想的情况下,优质的电力供应应该提供具有正弦波形的电压。但在实际中供电电压的波形会由于某些原因而偏离正弦波形,即产生谐波。我们所说的供电系统中的谐波是指一些频率为基波频率(在我国取工业用电频率50Hz为基波频率)整数倍的正弦波分量,又称为高次谐波。在供电系统中,产生谐波的根本原因是由于给具有非线性阻抗特性的电气设备(又称为非线性负荷)供电的结果。这些非线性负荷在工作时向电源反馈高次谐波,导致供电系统的电压、电流波形畸变,使电力质量变坏。因此,谐波是电力质量的重要指标之一。 谐波的危害表现为引起电气没备(电机、变压器和电容器等)附加损耗和发热:使同步发电机的额定输出功率降低,转矩降低,变压器温度升高,效率降低,绝缘加速老化,缩短使用寿命,甚至损坏:降低继电保护、控制、以及检测装置的工作精度和可靠性等。谐波注入电网后会使无功功率加大,功率因数降低,甚至有可能引发并联或串联谐振,损坏电气设备以及干扰通信线路的正常工作。 供电系统中的谐波问题已引起各界的广泛关注,为保证供电系统中所有的电气,电子设备能在电磁兼容意义的基础上进行正常、和谐的工作,必须采取有力的措施,抑制并防止电网中因谐波危害所造成的严重后果。 二、谐波产生的原因 在电力的生产,传输、转换和使用的各个环节中都会产生谐波。 在发电环节,当对发电机的结构和接线采取一些措施后,可以认为发电机供给的是具有基波频率的正弦波形的电压。 在其它几个环节中,谐波的产生主要是来自下列具有非线性特性的电气设备:(1)具有铁磁饱和特性的铁芯没备,如:变压器、电抗器等;(2)以具有强烈非线性特性的电弧为工作介质的设备,如:气体放电灯、交流弧焊机、炼钢电弧炉等;(3)以电力电子元件为基础的开关电源设备,如:各种电力变流设备(整流器、逆变器、变频器)、相控调速和调压装置,大容量的电力晶闸管可控开关设备等,它们大量的用于化工、电气铁道,冶金,矿山等工矿企业以及各式各样的家用电器中。以上这些非线性电气设备(或称之为非线性负荷)的显著的特点是它们从电网取用非正弦电流,也就是说,即使电源给这些负荷供给的是正弦波形的电压,但由于它们只有其电流不随着电压同步变化的非线性的电压-电流特性,使得流过电网的电流是非正弦波形的,这种电流波形是由基波和与基波频率成整数倍的谐波组成,即产生了谐波,使电网电压严重失真,此外电网还必须向这类负荷产生的谐波提供额外的电能。 接入低压供电系统的非线性设备产生的谐波电流可分为稳定的谐波和变化的谐波两大类。所谓稳定的谐波电流是指由这种谐波的幅度不随时间变化,如视频显示设备和测试仪表等产生的谐波,这类设备对电网来说表现为恒定的负载。由激光打印机、复印机、微波炉等产生的各次谐波的幅值随时间变化,称之为波动的谐波,这类设备对电网来说是一个随时间

变频器谐波抑制方法

变频器谐波抑制方法 对小容量的通用变频器,高次谐波很少成为问题,但当使用的变频器容量大或数量多时,往往就会产生高次谐波电流和高次谐波干扰问题,因此对于高次谐波先采取适当的对策和预防措施是非常重要的。 1. 改善变频器结构 可以从变频器自身硬件结构或者整个变频系统的构建方式和设备选择等方面考虑,从根本上减少变频系统注入电网的谐波、无功等污染。 (1) 变频系统的供电电源与其他设备的供电电源相互独立,或在变频器和其他用电设备的输入侧安装隔离变压器; (2) 在整流环节采用多重化技术,提高脉波数,可以有效地提高特征谐波次数,降低特征谐波幅值。对于大容量晶闸管变频器可以采取这种方法,利用多重化抑制流向电源侧的高次谐波; (3) 采用高频整流电路,改善整流波形,提高功率因数,直流电压可调节; (4) 逆变环节采用高开关频率高的电力电子器件,如MOSFET,IGBT等,可以提高载波频率比,抑制变频器输出端的高频谐波。 (5) 在逆变环节采用多重化技术,提高脉波数,使输出的电流电压波形更加接近正弦波。但重数越多电路越复杂,可靠性会随之降低,三重化电路可以兼顾输出波形质量和设备可靠性,较理想。 2. 采用合适的控制策略 从变频器控制器这一点出发,可采用更合适的控制策略或者在原来的控制策略基础上作点优化和改进,原理上更大限度地减少谐波的产生。以实际应用中常用的正弦脉宽调制法(SPWM)法和特定消谐法(SHE)法为例。 根据SPWM基本理论,当调制波频率为fr,载波频率为fc,载波频率比N=fc/fr,单极性SPWM控制在输出电压中产生N-3次以上的谐波,双极性SPWM控制在输出电压中产生N-2次以上的谐波。比如,N=25,采用单极性SPWM控制,低于22次的谐波全被消除,采用双极性SPWM控制,低于23次的谐波全被消除。 但输出电压频率较高的时候,由于受到元件开关频率的限制,N值不可能大,SPWM 控制的优势就不太明显了,这个时候选择SHE法可以在开关次数相等的情况下输出质量较高的电压、电流,降低了对输入、输出滤波器的要求。

变频器高次谐波干扰的五大危害

1)变压器电流谐波将增加铜损,谐波电压将增加铁损,其综合结果就是使得变压器的温度上升。谐波还可能引起变压器绕组及线间电容之间的共振,从而产生噪声污染。 2)变频器当变频器输入电压发生畸变,输入电流峰值增大,就使得变频器整流二极管及电解电容负担加重,容易产生过电压或者过电流,导致变频器的运行不正常。由于变频器属于电力电子装置,很容易感受谐波失真而误动作,从而影响变频器的工作性能和使用寿命。 3)电动机电机绕组存在杂散电容,谐波主要引起电动机的附加发热,导致电动机的额外温升,使得电动机的机械效率下降。谐波的产生还会引起绕组不均匀处过热导致的绝缘层损坏、电机转矩脉冲及噪声的增加。 4)供电线路高频谐波电流使线路阻抗随着频率的增加而提高,对供电线路产生了附加谐波损耗,造成电能的浪费,并且导体对高频谐波电流的集肤效应使线路的等效阻抗增加,导致线路压降增大,输出电缆的截面要相应增大。 5)电力电容器工频状态下,电力系统装设的电容器比系统中的感抗要大得多。但在谐波频率较高时,感抗值成倍增加而容抗值大幅减少,这就可能出现谐振,谐振造成异常电流进入电容器,导致电容器过热,绝缘破坏直至烧毁。 此外,谐波可能导致开关设备、保护电器的误动作,影响计量仪表测量精度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关变频器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/3b11131183.html,。

谐波危害及抑制谐波的方法

谐波危害及抑制谐波的方法 2008-05-05 23:08:43| 分类:默认分类| 标签:|字号大中小订阅 随着工业、农业和人民生活水平的不断提高,除了需要电能成倍增长,对供电质量及供电可靠性的要求也越来越多,电力质量(PowerQuality)受到人们的日益重视。例如,工业生产中的大型生产线、飞机场、大型金融商厦、大型医院等重要场合的计算机系统一旦失电,或因受电力网上瞬态电磁干扰影响,致使计算机系统无法正常运行,将会带来巨大的经济损失。电梯、空调等变频设备、电视机、计算机、复印机、电子式镇流器荧光灯等已成为人民日常生活的一部分,如果这些装置不能正常运行,必定扰乱人们的正常生活。但是,电视机、计算机、复印机、电子式照明设备、变频调速装置、开关电源、电弧炉等用电负载大都是非线性负载,都是谐波源,如将这些谐波电流注入公用电网,必然污染公用电网,使公用电网电源的波形畸变,增加谐波成份。 近几年,传感技术、光纤、微电子技术、计算机技术及信息技术日臻成熟。集成度愈来愈高的微电子技术使计算器的功能更加完美,体积愈来愈小,从而促使各种电器设备的控制向智能型控制器方向发展。随着微电子技术集成度的提高,微电子器件工作电压变得更低,耐压水平也相对更低,更易受外界电磁场干扰而导致控制单元损坏或失灵。例如,20世纪70年代计算机迅速普遍推广,电磁干扰及抑制问题更是十分突出,一些功能正常的计算机常出现误动作,而无法找出原因。1966年日本三基电子工业公司率先开发了“模拟脉冲的高频噪音模拟器”,将它产生的脉冲注入被试计算机的电源部分,结果发现计算机在注入100~200V脉冲时就误动作,难怪计算机在现场无法正常工作,其原因之一是计算机的电源受到了污染。因此,受谐波电流污染的公用电源,轻者干扰设备正常运行,影响人们的正常生活,重者致使工业上的大型生产线、系统运行瘫痪,会造成严重经济损失。 国际电工委员会(IEC)已于1988年开始对谐波限定提出了明确的要求。美国“IEEE电子电气工程师协会”于1992年制定了谐波限定标准IEEE—1000。在IEEEstd.519—1992标准中明确规定了计算机或类似设备的谐波电压畸变因数(THD)应在5%以下,而对于医院、飞机场等关键场所则要求THD应低于3%。 1 电网谐波的产生 1.1电源本身谐波--由于发电机制造工艺的问题,致使电枢表面的磁感应强度分布稍稍偏离正弦波,因此,产生的感应电动势也会稍稍偏离正弦电动势,即所产生的电流稍偏离正弦电流。当然,几个这样的电源并网时,总电源的电流也将偏离正弦波。 1.2由非线性负载所致 1.2.1非线性负载---谐波产生的另一个原因是由于非线性负载。当电流流经线性负载时,负载上电流与施加电压呈线性关系;而电流流经非线性负载时,则负载上电流为非正弦电波,即产生了谐波。 1.2.2 主要非线性负载装置 (1)开关电源的高次谐波:开关电源由五部分组成:一次整流、开关振荡回路、二次整流、负载和控制,这几个部分产生的噪声不完全一样。这几种干扰可以通过电源线等产生辐射干扰,也可以通过电源产生传导干扰。 (2)变压器空载合闸涌流产生谐波:铁心中磁通变化时,会产生8~15倍额定电流的涌流,由于线圈电阻的存在,变压器空载合闸涌流一般经过几个周波即可达到稳定。所产生的励磁涌流所含的谐波成份以3次谐波为主。

谐波标准及变频器谐波干扰的解决方法

谐波标准及变频器谐波干扰的解决方法 谐波标准及变频器谐波干扰的解决方法 一、前言 采用变频器驱动的电动机系统因其节能效果明显、调节方便、维护简单、网络化等优点而被越来越多的应用。但是,由于变频器特殊的工作方式带来的干扰越来越不容忽视。变频器干扰主要有:一是变频器中普遍使用了晶闸管或者整流二极管等非线性整流器件,其产生的谐波对电网将产生传导干扰,引起电网电压畸变(电压畸变率用THDv表示,变频器产生谐波引起的THDv在10~40%左右),影响电网的供电质量;二是变频器的输出部分一般采用的是IGBT等开关器件,在输出能量的同时将在输出线上产生较强的电磁辐射干扰,影响周边电器的正常工作。 二、谐波和电磁辐射对电网及其它系统的危害 1.谐波使电网中的电器元件产生了附加的谐波损耗,降低了输变电及用电设备的效率。 2.谐波可以通过电网传导到其它的用电器,影响了许多电气设备的正常运行,比如谐波会使变压器产生机械振动,使其局部过热,绝缘老化,寿命缩短,以至于损坏;还有传导来的谐波会干扰电器设备内部软件或硬件的正常运转。 3.谐波会引起电网中局部的串联或并联谐振,从而使谐波放大。 4.谐波或电磁辐射干扰会导致继电器保护装置的误动作,使电气仪表计量不准确,甚至无法正常工作。 5.电磁辐射干扰使经过变频器输出导线附近的控制信号、检测信号等弱电信号受到干扰,严重时使系统无法得到正确的检测信号,或使控制系统紊乱。 一般来讲,变频器对电网容量大的系统影响不十分明显,这也就是谐波不被大多数用户重视的原因。但对系统容量小的系统,谐波产生的干扰就不能忽视。 三、有关谐波的国际及国家标准 现行的有关标准主要有:国际标准IEC61000-2-2,IEC61000-2-4,欧洲标准EN61000-3-2, EN61000-3-12,国际电工学会的建议标准IEEE519-1992,中国国家标准GB/T14549-93《电能质量共用电网谐波》。下面分别做简要介绍: 1.国际标准 IEC61000-2-2标准适用于公用电网,IEC61000-2-4标准适用于厂级电网,这两个标准规定了不给电网造成损害所允许的谐波程度,它们规定了最大允许的电压畸变率THDv.

浅谈谐波的含义及为什么必须治理

浅谈谐波的含义及为什么必须治理 安科瑞王长幸 江苏安科瑞电器制造有限公司江苏江阴214405 1引言 随着科技发展,电子产品大量应用,电网中谐波大量产生,作为设计人员需要了解谐波的成因及危害,以便更好地防御及治理,提高电能质量。 近年来,电气产品行业出于节能和生产的需要,积极运用新技术,大量地运用了可控变流装置、变频调速装置等非线性负荷设备。其所产生的谐波问题直接影响到了公用电网的电能质量,已引起人们的广泛重视。 2谐波产生的原因及影响 2.1谐波的成因 电网中的谐波主要指频率为工频(基波频率)整数倍成分的谐波及工频非整数成分的间谐波,它们都是造成电网电能质量污染的重要原因。根据大量现场测试的分析结果证实,电力变压器也是电力系统中谐波的一个重要谐波源。电力变压器的激磁电流、铁心饱和及三相电路和磁路的不对称,致使在变压器三角绕组的线电压和线电流中也仍然存在三次谐波分量,尤其在负荷低谷时,随着电网电压的升高,变压器铁心饱和程度加剧,产生的谐波含量也随之增大。随着电网大量电容装置的投运,通过对现场谐波实测发现,谐波并不是只有零序分量可被变压器三角绕组所环路,而是波及全网,并给电容装置及电网的正常运行带来影响和威胁。 在民用建筑中,UPS电源、电子调速装备、节能型灯具及家用电器中的计算机、微波炉等电力电子设备和电器设备应用的大量增加,以及医院等特殊场合的放射X光机、CT机等大型医疗设备等,使各类非线性负荷注入电网的谐波日益增多,造成电网电能质量的污染的影响也越来越大。在这些设备集中使用的地区,如医院、大型商场、居民小区、写字楼、酒店公寓等,谐波污染已相当严重。谐波污染的影响使电能质量明显下降,因此,对电能质量谐波污染的抑制和治理已刻不容缓。 2.2谐波源的分析 2.2.1电力电子设备 电力电子设备主要包括整流器、变频器、开关电源、静态换流器、晶闸管系统及其它SCR控制系统等。由于工业与民用电力设备常用到这类电力电子设备和电路,如整流和变频电路,其负载性质一般分为感性和容性两种,感性负载的单相整流电路为含奇次谐波的电流型谐波源。而容性负载的单相整流电路,由于电容电压会通过整流管向电源反馈,属于电压型谐波源,其谐波含量与电容值的大小有关,电容值越大,谐波含量越大。变频电路谐波源由于采用的是相位控制,其谐波成分不仅含有整数倍数的谐波,还含有非整数倍数的间谐波。 2.2.2可饱和设备 可饱和设备主要包括变压器、电动机、发电机等。可饱和设备是非线性设备,与电力电子设备和电弧设备相比,可饱和设备上的谐波在未饱和的情况下,其谐波的幅值往往可以忽略。 2.2.3电弧炉设备及气体电光源设备 ①电弧炉在熔炼金属过程中的非线性影响将产生大量的谐波 ②气体电光源包括荧光灯、霓虹灯、卤化灯。根据这类气体放电光源的伏安特性。其非线

基于matlab谐波抑制的仿真研究(毕设)

电力系统谐波抑制的仿真研究 目 录 1 绪论…………………………………………………………………………… 1.1 课题背景及目的………………………………………………………… 1.2国内外研究现状和进展………………………………………………… 1.2.1国外研究现状 …………………………………………………… 1.2.1国内研究现状 …………………………………………………… 1.3 本文的主要内容…………………………………………………………… 2 有源电力滤波器及其谐波源研究……………………………………………… 2.1 谐波的基本概念………………………………………………………… 2.1.1 谐波的定义……………………………………………………… 2.1.2谐波的数学表达………………………………………………… 2.1.3电力系统谐波标准………………………………………………… 2.2 谐波的产生……………………………………………………………… 2.3 谐波的危害和影响……………………………………………………… 2.4 谐波的基本防治方法…………………………………………………… 2.5无源电力滤波器简述…………………………………………………… 2.6 有源电力滤波器介绍…………………………………………………… 2.6.1 有源滤波器的基本原理.……………………………………… 2.6.2 有源电力滤波器的分类.……………………………… 2.7并联型有源电力滤波器的补偿特性…………………………………… 2.7.1谐波源………………………………………………………… 2.7.2有源电力滤波器补偿特性的基本要 求…………………………… 2.7.3影响有源电力滤波器补偿特性的因素…………………………… 2.7.4并联型有源电力滤波器补偿特性……………………………… 2.8 谐波源的数学模型的研究……………………………………………… 2.8.1 单相桥式整流电路非线性负荷………………………………… 2.8.2 三相桥式整流电路非线性负荷.………………………………… 3 基于瞬时无功功率的谐波检测方法…………………………………………… 3.1谐波检测的几种方法比较…………………………………………… 3.2三相电路瞬时无功功率理论…………………………………………… 3.2.1瞬时有功功率和瞬时无功功 率……………………………………… 3.2.2瞬时有功电流和瞬时无功电流……………………………………… 3.3 基于瞬时无功功率理论的p q -谐波检测算法.…………………… 3.4基于瞬时无功功率理论的p q i i -谐波检测法.…………………… 4并联有源电力滤波器的控制策略…………………………………………… 4.1并联型有源电力滤波器系统构成及其工作原理………………………… 4.2并联有源电力滤波器的控制研究.……………………………… 4.2.1并联有源电力滤波器直流侧电压控制…………………… 4.2.2有源电力滤波器电流跟踪控制技术…………………………… 4.2.2.1 P WM 控制原理………………………………………… 4.2.2.2滞环比较控制方

变频器的谐波及常用解决方法

变频器的谐波及常用解决方法 摘要: 随着变频器等电力电子装置的广泛使用,系统的电磁干扰(EMI)日益严重,相应的抗干扰设计技术(即电磁兼容EMC)已经变得越来越重要。本文从谐波的概念入手,结合变频器内部相关知识,分析谐波的产生及其危害,并在此基础上结合本人多年工作实践提出抑制谐波的几种常用方法。 关键词:变频器;谐波;抑制;干扰 由于变频器逆变电路的开关特性,对于其供电电源形成了一个典型的非线性负载,变频器输出侧电压、电流、非正弦或非完全正弦波含有丰富的谐波。由于变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其它邻近电气设备。 1 谐波的含义 谐波产生的根本原因是由于非线性负载所致,当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。谐波频率是基波频率的整数倍。 2 变频器谐波产生机理 变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥式不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。 输入侧产生谐波机理:在整流回路中,输出电压,电流都将产生因其非线性引起的谐波。以三相桥式整流回路为例,交流电网电压为正弦波,交流输入电流的波形为矩形波,对于此方波,按傅立叶级数可分解为基波和各次谐波,通常含有6x+1(x=l,2,3….)次谐波。其中的高次谐波将干扰输入供电系统,单个基波和几个高次谐波组合在一起称作畸波。 输出侧产生谐波机理:在逆变输出回路中,输出电压和电流均有谐波。对于PWM控制的变频器,只要是电压型变频器,不管是何种PWM控制,其输出电压波形为矩形波。其中谐波频率的高低是与变频器调制频率有关,调制频率低(如1~2KHz),人耳听得见高次谐波频率产生的电磁噪声(尖叫声)。若调制频率高(如IGBT变频器可达20KHz),人耳听不见,但高频信号是客观存在。从电压方波及电流正弦锯齿波,用傅立叶级数不难分析出各次谐波的含量。所以,输出回路电流信号也可分解为只含正弦波的基波和其它各次谐波,而高次谐波电流对负载直接干扰。另外高次谐波电流还通过电缆向空间辐射,干扰邻近电气设备。 3 谐波干扰的危害 一般来讲,变频器对容量相对较大的电力系统影响不是很明显,而对容量较小的系统,谐波产生的干扰是不可忽视的,谐波的出现是对电网的一种污染,它使用电设备所处的环境恶化,给周边的通讯带来危害。 4 谐波研究的意义 正因为谐波有如此大的危害,所以我们要研究它。各种谐波源产生谐波给电力系统造成巨大的污染,影响到整个电力系统的运行环境、包括系统中的广大用户,而且其污染影响的范围很广,距离很远。 研究谐波的意义,还在于其对电力电子技术自身发展的影响。谐波是电力电子技术发展的产物,而它的出现已经成为阻碍电子技术发展的重大障碍,它迫使电子领域的人员必须对谐波问题进行更加有效的研究。

电力系统谐波分析及抑制技术研究

电力系统谐波分析及抑制技术研究 发表时间:2018-04-11T09:51:58.123Z 来源:《电力设备》2017年第32期作者:杜占科杨正张彬[导读] 摘要:谐波的存在会增加电网的供电损耗。并影响电网的安全运行。 (国网新疆电力公司阿克苏供电公司新疆阿克苏市 843000)摘要:谐波的存在会增加电网的供电损耗。并影响电网的安全运行。因此,如何抑制电网谐波引起了广泛的讨论。本文论述了当前电力系统谐波的产生的主要原因,并分析了电力谐波的危害,提出了几种电力谐波的抑制技术,为电力系统谐波问题提供帮助。 关键词:电力系统;谐波;危害;滤波器;抑制在电力系统用电,输电,发电等过程中,谐波已成为不可避免的问题,其已危及电力产生和输送以及用电方的安全运行。鉴此,分析谐波并最大限度地抑制谐波成为电力系统工作的重要课题。下面,就电力系统谐波及其危害进行详细分析,并提出有效的抑制谐波措施。 1.电力系统的谐波 (1)用电技术方面。在现代电力系统中,随着人们节能意识的加强以及电力电子技术的发展,众多通过电力电子开关、以非正弦电流方式高效用电的新型非线性负载得到了广泛的应用。这些以非正弦电流方式用电的新型非线性负载已经成为当今电力负载中最主要的谐波源。1992年,日本电气学会对其国内产生谐波的行业按比例进行了一个统计,除楼宇中的部分照明电源、冶金行业的电弧炉外,其他行业的谐波源大多来自电力电子装置,根据日本电气学会的统计,其比例高达90%。从表中还可以看出,来自楼宇的谐波源所占比例高达40.6%,其谐波主要由办公及家用电器等产生。可见,谐波畸变不再是工业设备所特有的现象,如今谐波现象已经蔓延到电力升降机、不间断电源、电视机、个人计算机等商业和居民用电设施中的电子设备。 (2)发电技术方面。由于当今社会对常规化石能源的需求日益增加,能源耗尽的危机日益严重,人们开始追求对清洁、无污染的新能源的开发利用。在电力生产中,许多利用清洁无污染的可再生能源发电的发电方式,如风能发电、太阳能发电、燃料电池发电等发电方式得到了越来越广泛的应用。这些新型电源大多以非正弦、非工频的方式供电,而传统公用电网是以三相电压、电流的对称正弦要求为发电与用电的品质指标。传统公用电网为了接纳非正弦、非工频的新型电源,一般通过电力电子电能转换装置将非正弦、非工频的电源转换为正弦、工频的交流电源,从而实现不同频率的电源或电网的同步运行。比如在输送风电的过程中,一般采用变频装置将风电接入电网,在此过程中,变频装置将会向电网注入一定数量的谐波,使得电网谐波来源更加复杂。 (3)输电技术方面。为了提高电压质量和系统的稳定性以及解决大容量远距离输电等问题,柔性交流输电技术和高压直流输电技术得到极大的发展和应用。柔性交流输电技术和高压直流输电技术以电力电子技术为支撑,通过电力电子装置实现对电网运行方式的灵活控制、调节,以实现对电能的安全、高效、经济输送。这些电力电子装置主要包括:用于提供无功功率补偿以改进电网电压控制和系统稳定性的静态无功补偿器(SVC);用于提高输电线路输电容量和改善线路运行情况的可控串联补偿装置(TCSC);用于电网潮流控制的统一潮流控制器(UPFC)以及用于高压直流输电技术的高压直流换流器等。上述电力电子装置大多数具有一个共同特性,就是产生谐波。因此,在使用这些装置对输电技术进行改造时,对其产生的谐波不得不进行一个详细的评估。 2.谐波的危害 谐波注入电力系统将会严重恶化电网的电气运行环境,危害电力系统的安全、稳定运行,同时,还会对电网电气设备以及用户用电设备的安全造成危害。 首先,对整个电网来说,谐波的产生与输送,将在输电网中增大网损,降低电能传输的效率;谐波电流在线路中引起畸变压降,降低了电网的电压质量;新型非线性负载的间断性用电方式降低了电源电压的工作效能;谐波电流恶化交流电能传输中的电气环境,易引发系统崩溃。 其次,对电网中的电气设备而言,因为电网中的电气设备是按工频、正弦电流工作方式设计的,谐波电流流过将会影响其最佳工作状态。例如:谐波电流会对电机、变压器等电磁设备的绕组及铁芯引起额外发热,使损耗增加,降低电磁设备的使用寿命;谐波电流会影响功率处理器、互感器的测量精度,引起电力测量的误差;谐波电流有可能造成继电保护装置、自动控制装置的工作紊乱;谐波电流的存在还可能会降低断路器、熔断器等设备的开断能力。 此外,随着工业控制技术的发展,工业生产中许多精密仪器、复杂的控制系统等对电能质量的要求也越来越高。谐波电流对其造成的影响,有可能会使工业生产造成巨大的经济损失。 3.电力系统的谐波抑制技术 如前文所述,电力系统谐波造成低劣的供电电能质量,严重危害电力系统的安全稳定运行和电网电气设备、用户用电设备的安全。在现有的技术水平下,为避免谐波的危害,保障电网及用户的利益,对电力系统的谐波抑制,已经成为电气工程学科的一个热门研究领域。目前对电力系统谐波抑制的方法主要可以分为预防性电力谐波抑制技术和补救性电力谐波抑制技术两种方法。 3.1预防性电力谐波抑制技术 预防性电力谐波抑制技术是指在设计构建系统或设备的过程中,通过选取合理的线路结构及元件参数,避免产生谐波或减少谐波。常见的预防性电力谐波抑制技术有如下几种:(1)利用设备的电气特性。该方法主要是对电气设备采用有效的接线方法或结构形式来减少或消除接入电力系统的设备所产生的谐波。比如对于变压器来说,其绕组采用三角形的接线方式能隔断3倍频谐波电流的流通。 (2)配电网重构。对多个谐波源同时接入电网的情况,可通过对配电网重构的方法,实现降低公共连接点总的谐波限值。这种方法是通过对配电网中的负荷进行再分配,限制负荷中非线性负荷的比例,控制非线性负荷产生的谐波电流在一定的范围内,使公用母线上的谐波电流限值不超过电力部门制定的标准。该方法只是达到降低谐波限值的目的,并没有达到谐波隔离的效果,谐波电流仍会注入电网中,有可能对电网及其他用户造成损害。显然,这并不是一种合理的谐波抑制的方法。(3)多脉波整流技术和高功率因数PWM整流技术。多脉波整流技术是将两个或更多个相同结构的整流电路按一定的规律组合,将整流电路进行移相多重联结,利用各整流负载的谐波电流相位差,使其相互叠加后可削弱或抵消电源输入端的部分谐波电流。例如12脉波整流技术可以有效削弱5次和7次谐波,24脉波整流技术可以有效消除11次和13次谐波。随着技术的发展,多脉波整流技术的脉波数可以达到一个很高的值,但同时也使系统结构更为复杂,需要对其可靠性、经济性等因素进行全面衡量。

变频器谐波干扰的解决方法

变频器谐波干扰的解决方法 变频器以其节能显著,保护完善,控制性能好,使用维护方便等特点,迅速发展起来,已成为电动机调速的主潮流,怎样结合生产工艺要求正确使用变频器并使其充分发挥效益,已成为我们关注的焦点。 近年来,随着我厂变频器投用量增多,变频设备干扰引起故障也在增多,电气设备出现的谐波干扰问题主要表现有以下几方面:(1)谐波干扰导致电力系统无功功率增大,造成功率因数明显降低;(2)现场电机受到变频谐波干扰引起电机噪声与振动增大,温度升高;(3)谐波干扰造成系统电缆故障率增多,绝缘老化,引起电缆对地故障;(4)谐波干扰引起断路器工作不稳定,引起开关误动作;(5)谐波干扰对通讯电路的干扰,引起联锁电路误动作等。 一、变频器的基本原理和电路组成 变频器有主回路和辅助控制电路组成,其中主回路有整流模块、平波电容、滤波电容、逆变电路、限流电阻和接触器等元器件组成;辅助控制电路由驱动电路、保护信号检测电路、控制电路脉冲发生及信号处理电路等组成,如下为变频器逆变电路图。这种电

路特点是,电源采用三相电流全波整流,中间直流环节的储能单元采用大容量电容作为储能元件,负载的无功功率将由它来缓冲。由于大电容的作用,主电路的直流电压比较平稳。然后经过6个功率管IGBT进行信号调制,产生电动机端的电压为方波或波电流。故称为电压型变频器。现在普遍应用的都是电压型变频器。 二、变频器应用中的谐波干扰问题及危害 谈到变频器的谐波干扰问题,首先要了解干扰的来源,变频器本身就是一种谐波干扰源,变频器谐波是由交流电整流电路和直流电转换为交流过程中产生的。当电子元件IGBT工作于开关模式作高速切换时,产生大量耦合性电磁电流。 因此变频器对电气系统内其它电子、电气设备来说是一个电磁干扰源。在现实工作中,变频器产生的谐波电流从输出端经过电缆传导到电动机定子绕组上,造成电机铜损、铁损大幅增加。致使电机无功损耗增大,温度升高,严重影响电机的运转特性;另一方面变频器输入回路产生的3次谐波经过电源电缆影响到电力系统,它可在变压器内形成环流,造成变压器内部温度升高,影响变压器的使用效率;谐波干扰还会引起断路器保护电路检测产生误差,导致断路器

高频开关变换器中EMI产生的机理及其抑制方法

高频开关变换器中EMI产生的机理及其抑制方法 1 前言 开关电源具有体积小、重量轻、效率高等特点,广泛用于通信、自动控制、家用电器、计算机等电子设备中。但是,其缺点是开关电源在高频条件下工作,产生非常强的电磁干扰(Electromagnet ic Inte rf erence,EMI),经传导和辐射会污染周围电磁环境,对电子设备造成影响。本文从开关电源的电路结构、器件进行分析,探讨了电磁干扰产生的机理及其抑制方法。 2 开关电源电磁干扰(EMI)产生的机理 开关电源的电磁干扰,按耦合途径来分,可分为传导干扰和辐射干扰。按噪声干扰源可分为两大类:一类是外部噪声,例如通过电网传输过来的共模和差模干扰、外部电磁辐射对开关电源控制电路的干扰等;另一类是开关电源自身产生的电磁干扰,如开关管、整流管的电流尖峰产生的谐波及电磁辐射干扰。 其中外部噪声产生的影响可以通过电源滤波器进行衰减,本文不做讨论,仅讨论开关电源自身产生的电磁噪声。 常规交流输入的开关电源主要结构可以分为四大部分,其框图如图1所示。 其中输入与整流滤波部分、高频逆变部分、输出整流与滤波部分是产生电磁干扰的主要来源。以下将通过对各部分电压、电流波形的分析,阐明电磁噪声产生的原因。 2.1 工频整流器引起的电磁噪声 一般开关电源为容式滤波,在输入与整流滤波部分电磁噪声主要是由整流过程中造成的电流尖峰、电压波动所引起的。正弦波电源经过电源滤波器进行差模、共模信号衰减后,由整流桥整流、电解电容滤波,得到的电压作为高频逆变部分的输入电压。由于滤波电容的存在,使整流器不象纯整流那样一组开通半个周期,而是只在正弦电压高于电容电压时才导通,造成电流波形非常陡峭,同时电压波形变得平缓。电流、电压的波形如图2所示。 根据Fourier级数,图中的电流、电压波形可分解为直流分量和一系列频率为基波频率整数倍的正弦交流分量之和。通过电磁场理论以及试验结果表明,谐波(特别是高次谐波)会产生传导干扰和辐射干扰。通过开关电源的输入输出线传播出去而形成的干扰称之为传导干扰,在空间产生电场、磁场向外辐射产生的干扰称之为辐射干扰。 2.2 变压器与开关管引起的电磁噪声 逆变部分是开关稳压电源的核心,用以实现变压、变频以及完成输出电压的调整,主要有开关管和高频变压器组成。电磁噪声主要是由于变压器的漏感、分布电容以及开关管的开通、关断造成。开关电源中的高频变压器用作隔离和变压,变压器在理论分析时,通常认为是理想变压器,但是在实际应用中变压器存在漏感,而且在高频的情况下,还要考虑变压器层间的分布电容。高频变压器的等效电路模型如图3所示。

变频器谐波的治理与设备级滤波器的要求

变频器谐波的治理与设备级滤波器的要求 1.1变频器对电网影响 过去,电动机直接连接到电网上,给电网带来的主要问题是无功功率,无功补偿设备已经成为工厂中不可缺少的设备。 随着工业自动化程度提高、节能降耗政策的深入实施,电动机已经很少直接连接到电网上直接使用,通常由变频调速驱动器来驱动,简称变频器。变频器能够灵活的控制电动机的功率和转速,满足功能的要求,并且节能效果显著。 然而,变频器给电网带来了谐波电流的问题,任何供电公司都不允许用户向电网注入过大的谐波电流,用户有责任消除变频器产生的谐波电流。随着变频器的广泛使用,谐波治理设备的重要性将等同于过去的无功补偿设备。 本节介绍变频器产生的谐波电流的相关基本概念。 1什么是电力谐波? 电力谐波是频率为50Hz整倍数的正弦波电压或电流。 发电厂或者发电机发出的电压是频率为50Hz的正弦波波型,称为基波,50Hz称为基波频率。频率为50Hz整倍数的正弦波称为谐波。谐波用基波的倍数表示,例如频率为150Hz 的正弦波称为3次谐波,频率为250Hz的正弦波称为5次谐波,频率为350Hz的正弦波称为7次谐波,以此类推。 谐波频率的正弦波电压或电流称为谐波电压或谐波电流。 当基波和谐波叠加时,形成形状怪异的波形,这称为波形畸变。例如,图1-1是基波与5次、7次谐波叠加的结果,这是工业场合常见的电流波形。 在实际工程中,大多数谐波为奇次谐波,也就是3、5、7、11、13 ??????。 图1-1 含有5次和7次谐波的畸变波形 总结: 正常的交流电压或者电流是正弦波,当电压波形或电流波形发生畸变时,就说明其中包含了谐波成分,畸变的程度越大,包含的谐波成分越多。

相关文档
相关文档 最新文档