文档库 最新最全的文档下载
当前位置:文档库 › 2012全国各地中考数学压轴题精选(31-40)解析版

2012全国各地中考数学压轴题精选(31-40)解析版

2012年各地中考数学压轴题精选31~40_解析版

【31. 2012娄底】

24.已知二次函数y=x2﹣(m2﹣2)x﹣2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1<x2,与y轴交于点C,且满足.

(1)求这个二次函数的解析式;

(2)探究:在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形?如果有,求出点P的坐标;如果没有,请说明理由.

考点:二次函数综合题。

分析:(1)欲求抛物线的解析式,关键是求得m的值.根据题中所给关系式,利用一元二次方程根与系数的关系,可以求得m的值,从而问题得到解决.注意:解答中求得两个m的值,需要进行检验,把不符合题意的m值舍去;

(2)利用平行四边形的性质构造全等三角形,根据全等关系求得P 点的纵坐标,进而得到P点的横坐标,从而求得P点坐标.

解答:解:(1)∵二次函数y=x2﹣(m2﹣2)x﹣2m的图象与x轴交于点A(x1,0)和点B(x2,0),x1<x2,

令y=0,即x2﹣(m2﹣2)x﹣2m=0 ①,则有:

x1+x2=m2﹣2,x1x2=﹣2m.

∴===,

化简得到:m2+m﹣2=0,解得m1=﹣2,m2=1.

当m=﹣2时,方程①为:x2﹣2x+4=0,其判别式△=b2﹣4ac=﹣12<0,此时抛物线与x轴没有交点,不符合题意,舍去;

当m=1时,方程①为:x2+x﹣2=0,其判别式△=b2﹣4ac=9>0,此时抛物线与x轴有两个不同的交点,符合题意.

∴m=1,

∴抛物线的解析式为y=x2+x﹣2.

(2)假设在直线y=x+3上是否存在一点P,使四边形PACB为平行四边形.

如图所示,连接PA.PB.AC.BC,过点P作PD⊥x轴于D点.∵抛物线y=x2+x﹣2与x轴交于A.B两点,与y轴交于C点,

∴A(﹣2,0),B(1,0),C(0,2),∴OB=1,OC=2.

∵PACB为平行四边形,∴PA∥BC,PA=BC,

∴∠PAD=∠CBO,∴∠APD=∠OCB.

在Rt△PAD与Rt△CBO中,

∵,

∴Rt△PAD≌Rt△CBO,

∴PD=OC=2,即y P=2,

∴直线解析式为y=x+3,

∴x P=﹣1,

∴P(﹣1,2).

所以在直线y=x+3上存在一点P,使四边形PACB为平行四边形,P 点坐标为(﹣1,2).

点评:本题是代数几何综合题,考查了二次函数的图象与性质、抛物线与x轴的交点、一元二次方程根的解法及根与系数关系、一次函数、平行四边形的性质以及全等三角形的判定与性质等方面的知识,涉及的考点较多,有一定的难度.

【32. 2012福州】

22.(满分14分)如图①,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.

(1) 求抛物线的解析式;

(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线

只有一个公共点D ,求m 的值及点D 的坐标;

(3) 如图②,若点N 在抛物线上,且∠NBO =∠ABO ,则在(2)的

条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).

考点:二次函数综合题.

分析:(1) 利用待定系数法求出二次函数解析式即可;

(2) 根据已知条件可求出OB 的解析式为y =x ,则向下平移m 个单位长度后的解析式为:y =x -m .由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m 的值和D 点坐标;

(3) 综合利用几何变换和相似关系求解.

方法一:翻折变换,将△NOB 沿x 轴翻折;

方法二:旋转变换,将△NOB 绕原点顺时针旋转90°.

特别注意求出P 点坐标之后,该点关于直线y =-x 的对称点也

解答:解:(1) ∵ 抛物线y =ax 2+bx (a ≠0)经过点A (3,0)、B (4,4).

∴ ???9a +3b =016a +4b =4,解得:???a =1b =-3

. ∴ 抛物线的解析式是y =x 2-3x .

(2) 设直线OB 的解析式为y =k 1x ,由点B (4,4),

得:4=4k 1,解得k 1=1.

∴ 直线OB 的解析式为y =x .

∴ 直线OB 向下平移m 个单位长度后的解析式为:y =x -m .

∵ 点D 在抛物线y =x 2-3x 上.

第22题图① 第22题图②

∴ 可设D (x ,x 2-3x ).

又点D 在直线y =x -m 上,

∴ x 2-3x =x -m ,即x 2-4x +m =0.

∵ 抛物线与直线只有一个公共点,

∴ △=16-4m =0,解得:m =4.

此时x 1=x 2=2,y =x 2-3x =-2,

∴ D 点坐标为(2,-2).

(3) ∵ 直线OB 的解析式为y =x ,且A (3,0),

∴ 点A 关于直线OB 的对称点A'的坐标是(0,

设直线A'B 的解析式为y =k 2x +3,过点B (4,4)∴ 4k 2+3=4,解得:k 2=1

4. ∴ 直线A'B 的解析式是y =14x +3. ∵ ∠NBO =∠ABO , ∴ 点N 在直线A'B 上,

∴ 设点N (n ,14

n +3),又点N 在抛物线y =x 2-∴ 14

n +3=n 2-3n , 解得:n 1=-34

,n 2=4(不合题意,会去), ∴ 点N 的坐标为(-34,4516). 方法一:如图1,将△NOB 沿x 轴翻折, 得到△N 1OB 1,则N 1(-34,-4516),B 1(4,-4)∴ O 、D 、B 1都在直线y =-x 上.

∵△P 1OD ∽△NOB ,

∴ △P 1OD ∽△N 1OB 1,

∴ OP 1ON 1=OD OB 1=12

, ∴ 点P 1的坐标为(-38,-4532

). 将△OP 1D 沿直线y =-x 翻折,可得另一个满足

条件的点P 2(4532,38

). 综上所述,点P 的坐标是(-38,-4532)或(4532,38

). 方法二:如图2,将△NOB 绕原点顺时针旋转90°,得到图1

△N 2OB 2,

则N 2(4516,34

),B 2(4,-4), ∴ O 、D 、B 2都在直线y =-x 上.

∵ △P 1OD ∽△NOB ,

∴ △P 1OD ∽△N 2OB 2,

∴ OP 1ON 2=OD OB 2=12

, ∴ 点P 1的坐标为(4532,38

). 将△OP 1D 沿直线y =-x 翻折,可得另一个满足条件的点

P 2(-38,-4532

). 综上所述,点P 的坐标是(-38,-4532)或(4532,38

). 点评:本题是基于二次函数的代数几何综合题,综合考查了待定系数

法求抛物线解析式、一次函数(直线)的平移、一元二次方程根的判别式、翻折变换、旋转变换以及相似三角形等重要知识点.本题将初中阶段重点代数、几何知识熔于一炉,难度很大,对学生能力要求极高,具有良好的区分度,是一道非常好的中考压轴题.

【33. 2012南昌】

27.如图,已知二次函数L 1:y=x 2﹣4x+3与x 轴交于A .B 两点(点A 在点B 左边),与y 轴交于点C .

(1)写出二次函数L 1的开口方向、对称轴和顶点坐标;

(2)研究二次函数L 2:y=kx 2﹣4kx+3k (k ≠0).

①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质; ②若直线y=8k 与抛物线L 2交于E 、F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由.

考点:二次函数综合题。

专题:综合题。

分析:(1)抛物线y=ax2+bx+c中:a的值决定了抛物线的开口方向,a>0时,抛物线的开口向上;a<0时,抛物线的开口向下.

抛物线的对称轴方程:x=﹣;顶点坐标:(﹣,).

(2)①新函数是由原函数的各项系数同时乘以k所得,因此从二次函数的图象与解析式的系数的关系入手进行分析.

②联系直线和抛物线L2的解析式,先求出点E、F的坐标,进而可表示出EF的长,若该长度为定值,则线段EF的长不会发生变化.解答:解:(1)抛物线y=x2﹣4x+3中,a=1、b=﹣4、c=3;

∴﹣=﹣=2,==﹣1;

∴二次函数L1的开口向上,对称轴是直线x=2,顶点坐标(2,﹣1).(2)①二次函数L2与L1有关图象的两条相同的性质:

对称轴为x=2或定点的横坐标为2,

都经过A(1,0),B(3,0)两点;

②线段EF的长度不会发生变化.

∵直线y=8k与抛物线L2交于E、F两点,

∴kx2﹣4kx+3k=8k,

∵k≠0,∴x2﹣4x+3=8,

解得:x1=﹣1,x2=5,∴EF=x2﹣x1=6,

∴线段EF的长度不会发生变化.

点评:该题主要考查的是函数的基础知识,有:二次函数的性质、函数图象交点坐标的解法等,难度不大,但需要熟练掌握.

【34. 2012?恩施州】

24.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.

(1)抛物线及直线AC的函数关系式;

(2)设点M(3,m),求使MN+MD的值最小时m的值;

(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;

(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.

二次函数综合题。

点:

分(1)利用待定系数法求二次函数解析式、一次函数解析式;

析:(2)根据两点之间线段最短作N点关于直线x=3的对称点N′,当M(3,m)在直线DN′上时,MN+MD的值最小;

(3)需要分类讨论:①当点E在线段AC上时,点F在点E

上方,则F(x,x+3)和②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1),然后利用二次函数图象上点的坐标特征可以求得点E的坐标;

(4)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x 轴于点G,如图1.设Q(x,x+1),则P(x,﹣x2+2x+3).根据两点间的距离公式可以求得线段PQ=﹣x2+x+2;最后由图示以及三角形的面积公式知S△APC=﹣(x﹣)2+,所以由二次函数的最值的求法可知△APC的面积的最大值;

方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图2.设Q(x,x+1),则P(x,﹣x2+2x+3).根据图示以及三角形的面积公式知S△APC=S△APH+S

直角梯形PHGC

﹣S△AGC=﹣(x﹣)2+,所以由二次函数的最值的求法可知△APC的面积的最大值;

解答:解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0)及C(2,3)得,

解得,

故抛物线为y=﹣x2+2x+3

又设直线为y=kx+n过点A(﹣1,0)及C(2,3)得

解得

故直线AC为y=x+1;

(2)作N点关于直线x=3的对称点N′,则N′(6,3),由(1)得D(1,4),

故直线DN′的函数关系式为y=﹣x+,

当M(3,m)在直线DN′上时,MN+MD的值最小,

则m=﹣×=;

(3)由(1)、(2)得D(1,4),B(1,2)

∵点E在直线AC上,

设E(x,x+1),

①当点E在线段AC上时,点F在点E上方,

则F(x,x+3),

∵F在抛物线上,

∴x+3=﹣x2+2x+3,

解得,x=0或x=1(舍去)

∴E(0,1);

②当点E在线段AC(或CA)延长线上时,点F在点E下方,则F(x,x﹣1)

由F在抛物线上

∴x﹣1=﹣x2+2x+3

解得x=或x=

∴E(,)或(,)

综上,满足条件的点E为E(0,1)、(,)或(,

);

(4)方法一:过点P作PQ⊥x轴交AC于点Q;过点C作CG⊥x 轴于点G,如图1

设Q(x,x+1),则P(x,﹣x2+2x+3)

∴PQ=(﹣x2+2x+3)﹣(x﹣1)

=﹣x2+x+2

又∵S△APC=S△APQ+S△CPQ=PQ?AG

=(﹣x2+x+2)×3

=﹣(x﹣)2+

∴面积的最大值为.

方法二:过点P作PQ⊥x轴交AC于点Q,交x轴于点H;过点C作CG⊥x轴于点G,如图2,

设Q(x,x+1),则P(x,﹣x2+2x+3)

又∵S△APC=S△APH+S直角梯形PHGC﹣S△AGC=(x+1)(﹣x2+2x+3)+(﹣x2+2x+3+3)(2﹣x)﹣×3×3

=﹣x2+x+3

=﹣(x﹣)2+

∴△APC的面积的最大值为.

点评:本题考查了二次函数综合题.解答(3)题时,要对点E所在的位置进行分类讨论,以防漏解.

【35. 2012?兰州】

28.如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y 轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、

(0,4),抛物线y=x2+bx+c经过点B,且顶点在直线x=上.

(1)求抛物线对应的函数关系式;

(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;

(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD 的周长最小,求出P点的坐标;

(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.

二次函数综合题。

点:

析:(1)根据抛物线y=经过点B(0,4),以及顶点在直线x =上,得出b,c即可;

(2)根据菱形的性质得出C、D两点的坐标分别是(5,4)、(2,

0),利用图象上点的性质得出x=5或2时,y的值即可.

(3)首先设直线CD对应的函数关系式为y=kx+b,求出解析

式,当x=时,求出y即可;

(4)利用MN∥BD,得出△OMN∽△OBD,进而得出,得

到ON=,进而表示出△PMN的面积,利用二次函数最值求出即可.

答:解:(1)∵抛物线y=经过点B(0,4)

∴c=4,

∵顶点在直线x=上,

∴;

∴所求函数关系式为;

(2)在Rt△ABO中,OA=3,OB=4,

∴AB=,

∵四边形ABCD是菱形,

∴BC=CD=DA=AB=5,

∴C、D两点的坐标分别是(5,4)、(2,0),

当x=5时,y=,

当x=2时,y=,

∴点C和点D都在所求抛物线上;

(3)设CD与对称轴交于点P,则P为所求的点,设直线CD对应的函数关系式为y=kx+b,

则,

解得:,

∴,

当x=时,y=,

∴P(),

(4)∵MN∥BD,

∴△OMN∽△OBD,

∴即得ON=,

设对称轴交x于点F,

则(PF+OM)?OF=(+t)×,∵,

()×=,

S=(-),

=-(0<t<4),

S存在最大值.

由S=-(t-)2+,

∴当S=时,S取最大值是,

此时,点M的坐标为(0,).

点评: 此题主要考查了二次函数的综合应用,以及菱形性质和待定系

数法求解析式,求图形面积最值,利用二次函数的最值求出是

解题关键.

【36. 2012南通】

28.(本小题满分14分)

如图,经过点A (0,-4)的抛物线y = 1 2

x 2+bx +c 与x 轴相交于点B (-0,0)和

C ,O 为坐标原点.

(1)求抛物线的解析式;

(2)将抛物线y = 1 2

x 2+bx +c 向上平移 7 2

个单位长度、再向左平移m (m >0)个单位长度,得到新抛物线.若新

抛物线的顶点P 在△ABC 内,求m 的取值范围;

(3)设点M 在y 轴上,∠OMB +∠OAB =∠ACB ,求AM 的长.

【考点】二次函数综合题.

【专题】分类讨论.

【分析】(1)该抛物线的解析式中只有两个待定系数,只需将A 、

B 两点坐标代入即可得解.

(2)首先根据平移条件表示出移动后的函数解析式,进而用m

表示出该函数的顶点坐标,将其代入直线AB 、AC 的解析

式中,即可确定P 在△ABC 内时m 的取值范围.

(3)先在OA 上取点N ,使得∠ONB=∠ACB ,那么只需令∠

NBA=∠OMB 即可,显然在y 轴的正负半轴上都有一个符

合条件的M 点;以y 轴正半轴上的点M 为例,先证△ABN 、△AMB 相似,然后通过相关比例线段求出AM 的长.

【解答】解:(1)将A (0,-4)、B (-2,0)代入抛物线y= 1 2

x 2+bx+c 中,得:

0+c=-4 1 2 ×4-2b+c=0 ,

解得: b=-1 c=-4

∴抛物线的解析式:y= 1 2

x 2-x-4. (2)由题意,新抛物线的解析式可表示

为:

y= 1 2

(x+m )2-(x+m )-4+7 2 , 即:y= 1 2

x 2+(m-1)x+1 2 m2-m-1 2 ; 它的顶点坐标P :(1-m ,-1);

由(1)的抛物线解析式可得:C (4,0);

那么直线AB :y=-2x-4;直线AC :y=x-4;

当点P 在直线AB 上时,-2(1-m )-4=-1,解得:m=5 2 ; 当点P 在直线AC 上时,(1-m )-4=-1,解得:m=-2;

∴当点P 在△ABC 内时,-2<m <5 2 ;

又∵m >0,

∴符合条件的m 的取值范围:0<m <5 2 .

(3)由A (0,-4)、B (4,0)得:OA=OC=4,且△OAC 是等腰直角三角形;

如图,在OA 上取ON=OB=2,则∠ONB=∠ACB=45°; ∴∠ONB=∠NBA+OAB=∠ACB=∠OMB+∠OAB ,即∠ONB=∠OMB ;

如图,在△ABN 、△AM 1B 中,

∠BAN=∠M 1AB ,∠ABN=∠AM 1B ,

∴△ABN ∽△AM 1B ,得:AB 2=AN ?AM 1;

易得:AB 2=(-2)2+42=20,AN=OA-ON=4-2=2;

∴AM 1=20÷2=10,OM1=AM1-OA=10-4=6;

而∠BM 1A=∠BM 2A=∠ABN ,

∴OM 1=OM 2=6,AM 2=OM 2-OA=6-4=2.

综上,AM 的长为6或2.

【点评】考查了二次函数综合题,该函数综合题的难度较大,(3)

题注意分类讨论,通过构建相似三角形是打开思路的关键所在.

【36. 2012常德】

25、如图11,已知二次函数))(2(48

1b ax x y ++=的图像过点A(-4,3),B(4,4).

(1)求二次函数的解析式:

(2)求证:△ACB 是直角三角形;

(3)若点P 在第二象限,且是抛物线上的一动点,

过点P 作PH 垂直x 轴于点H ,是否存在以P 、H 、

D 、为顶点的三角形与△ABC 相似?若存在,求出

点P 的坐标;若不存在,请说明理由。

知识点考察:①二次函数解析式的确定,

②勾股定理及其逆定理的应用,

③相似三角形的性质,

④坐标系中点的坐标的特征,

⑤抛物线与X 轴的交点,⑥一元二次方程的解法, ⑦垂直的定义。

⑧二元一次方程组的解法。

能力考察:①观察能力,②逻辑思维与推理能力,③书写表达能力,

④综合运用知识的能力,⑤分类讨论的能力。⑥动点的探求能力

⑦准确的计算能力。

分析:①求二次函数的解析式,也就是要求))(2(48

1b ax x y ++=中a 、b 的值,

只要把A(-4,3),B(4,4)代人即可。

②求证△ACB 是直角三角形,只要求出AC ,BC ,AB 的长度,然后用

勾股定理及其逆定理去考察。

③是否存在以P 、H 、D 、为顶点的三角形与△ABC 相似?先要选择一点P

然后自P 点作垂线构成Rt △PHD ,把两个三角形相似作条件,运用三角形

相似的性质去构建关于P 点横坐标的方程。 解:(1)将A(-4,3),B(4,4)代人))(2(48

1b ax x y ++=

中,整理得:

???=+=32472-4b a b a 解得???==20-13b a

∴二次函数的解析式为:)20-13)(2(48

1x x y += , 整理得: (2)由 整理 040-6132=+x x ∴X 1=-2 ,X 2=1320 ∴C (-2,0) D ),(013

20 从而有:AC 2=4+9 BC 2=36+16 AC 2+ BC 2=13+52=65

AB 2=64+1=65

∴ AC 2+ BC 2=AB 2 故△ACB 是直角三角形

(3)设)6

5

-814813(2x x x p +, (X<0)

PH=6

5-8148132x x + HD=x -1320 AC=13 BC=132

①当△PHD ∽△ACB 时有:BC

HD AC PH = 即:13

2-13201365-8148132x x x =+ 整理 039125-4524132=+x x ∴13

50-1=x 13202=x (舍去)此时,13351=y ∴ ),13

351350(-1p ②当△DHP ∽△ACB 时有:BC

PH AC DH = 即:13

265-81481313-13202x x x += 整理 078305-81748132=+x x ∴ 13

122-1=x 13202=x (舍去)此时,132841=y ∴ ),13

28413122(-2p 综上所述,满足条件的点有两个即),13

351350(-1p ),1328413122(-2p 点评:这是一个二次函数开放性的综合题,解决问题的思路容易建立,切入点也好找,

065-8148

132=+x x 65-8148132x x y +=

但运算难度较大。出题的老师看准了我们的学生在学习中存在的问题,那就是

每一个学生在计算时无论简单与复杂总是离不开计算器,所以遇到分数运算时

没有信心进行运算,最后还是放弃了。因此在这里要提醒每一位学生在平时计

算的练习中多用心算和笔算,才能提高自己的运算能力。

【37. 2012荆门】

24. 如图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连接AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,

3).

(1)求抛物线的解析式及顶点B的坐标;

(2)求证:CB是△ABE外接圆的切线;

(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,直接写出点P的坐标;若不存在,请说明理由;

(4)设△AOE沿x轴正方向平移t个单位长度(0<t≤3)时,△AOE 与△ABE重叠部分的面积为s,求s与t之间的函数关系式,并指出t的取值范围.

解:由题意,设抛物线解析式为y=a(x﹣3)(x+1).

将E(0,3)代入上式,解得:a=﹣1.

∴y=﹣x2+2x+3.

则点B(1,4).

(2)证明:如图1,过点B作BM⊥y于点M,则M(0,4).

在Rt△AOE中,OA=OE=3,

∴∠1=∠2=45°,AE==3.

在Rt△EMB中,EM=OM﹣OE=1=BM,

∴∠MEB=∠MBE=45°,BE==.

∴∠BEA=180°﹣∠1﹣∠MEB=90°.

∴AB是△ABE外接圆的直径.

在Rt△ABE中,tan∠BAE===tan∠CBE,

∴∠BAE=∠CBE.

在Rt△ABE中,∠BAE+∠3=90°,∴∠CBE+∠3=90°.

∴∠CBA=90°,即CB⊥AB.

∴CB是△ABE外接圆的切线.

(3)解:Rt△ABE中,∠AEB=90°,tan∠BAE=,sin∠BAE=,cos∠BAE=;

若以D、E、P为顶点的三角形与△ABE相似,则△DEP必为直角三角形;

①DE为斜边时,P1在x轴上,此时P1与O重合;

由D(﹣1,0)、E(0,3),得OD=1、OE=3,即tan∠DEO==tan

∠BAE,即∠DEO=∠BAE

满足△DEO∽△BAE的条件,因此O点是符合条件的P1点,坐标为(0,0).

②DE为短直角边时,P2在x轴上;

若以D、E、P为顶点的三角形与△ABE相似,则∠DEP2=∠AEB=90°,sin∠DP2E=sin∠BAE=;

而DE==,则DP 2=DE÷sin∠DP2E=÷=10,OP2=DP2

﹣OD=9

即:P2(9,0);

③DE为长直角边时,点P3在y轴上;

若以D、E、P为顶点的三角形与△ABE相似,则∠EDP3=∠AEB=90°,

cos∠DEP3=cos∠BAE=;

则EP 3=DE÷cos∠DEP3=÷=,OP3=EP3﹣OE=;

综上,得:P1(0,0),P2(9,0),P3(0,﹣).

(4)解:设直线AB的解析式为y=kx+b.

将A(3,0),B(1,4)代入,得解得

∴y=﹣2x+6.

过点E作射线EF∥x轴交AB于点F,当y=3时,得x=,∴F(,

3).

情况一:如图2,当0<t≤时,设△AOE平移到△DNM的位置,MD交AB于点H,MN交AE于点G.

则ON=AD=t,过点H作LK⊥x轴于点K,交EF于点L.

由△AHD∽△FHM,得,即.

解得HK=2t.

∴S阴=S△MND﹣S△GNA﹣S△HAD=×3×3﹣(3﹣t)2﹣t?2t=﹣t2+3t.情况二:如图3,当<t≤3时,设△AOE平移到△PQR的位置,PQ 交AB于点I,交AE于点V.

由△IQA∽△IPF,得.即,

解得IQ=2(3﹣t).

∴S阴=S△IQA﹣S△VQA=×(3﹣t)×2(3﹣t)﹣(3﹣t)2=(3﹣t)2=t2﹣3t+.

综上所述:s=.

【39. 2012?黔东南州】

24.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点.

(1)求抛物线的解析式.

(2)点M是线段BC上的点(不与B,C重合),过M作MN∥y 轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN 的长.

(3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由.

解析:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则:

a(0+1)(0﹣3)=3,a=﹣1;

∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.

(2)设直线BC的解析式为:y=kx+b,则有:

河北省中考数学压轴题汇总

2010/26.(本小题满分12分) 某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售 价格y (元/件)与月销量x (件)的函数关系式为y =100 1 - x +150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w 内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a 元/件(a 为常数,10≤a ≤40),当月销量为x (件)时,每月还需缴纳 100 1x 2 元的附加费,设月利润为w 外(元)(利润 = 销售额-成本-附加费). (1)当x = 1000时,y = 元/件,w 内 = 元; (2)分别求出w 内,w 外与x 间的函数关系式(不必写x 的取值范围); (3)当x 为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内 销售月利润的最大值相同,求a 的值; (4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还 是在国外销售才能使所获月利润较大? 参考公式:抛物线的顶点坐标是2 4(,)24b ac b a a --. 2011/26.(本小题满分12分) 如图15,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒1个单位长的速度运动t (t >0) 秒,抛物线y =x 2 +bx +c 经过点O 和点P .已知矩形ABCD 的三个顶点为A (1,0)、B (1,-5)、D (4,0). ⑴求c 、b (用含t 的代数式表示); ⑵当4<t <5时,设抛物线分别与线段AB 、CD 交于点M 、N . ①在点P 的运动过程中,你认为∠AMP 的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值; ②求△MPN 的面积S 与t 的函数关系式,并求t 为何值时,S= 21 8 ; ③在矩形ABCD 的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接.. 写出t 的取值范围. 2012/26.(12分)如图1和2,在△ABC 中,AB=13,BC=14,cos ∠ABC=. 探究:如图1,AH ⊥BC 于点H ,则AH= ,AC= ,△ABC 的面积S △ABC = ; 拓展:如图2,点D 在AC 上(可与点A ,C 重合),分别过点A 、C 作直线BD 的垂线,垂足为E ,F ,设BD=x ,AE=m ,CF=n (当点D 与点A 重合时,我们认为S △ABD =0)

挑战中考数学压轴题(2012版精选)

目录 第一部分函数图象中点的存在性问题 1.1 因动点产生的相似三角形问题 例1 2012年苏州市中考第29题 例2 2012年黄冈市中考第25题 例3 2011年上海市闸北区中考模拟第25题 例4 2011年上海市杨浦区中考模拟第24题 例5 2010年义乌市中考第24题 例6 2010年上海市宝山区中考模拟第24题 例7 2009年临沂市中考第26题 例8 2009年上海市闸北区中考模拟第25题 1.2 因动点产生的等腰三角形问题 例1 2012年扬州市中考第27题 例2 2012年临沂市中考第26题 例3 2011年湖州市中考第24题 例4 2011年盐城市中考第28题 例5 2010年上海市闸北区中考模拟第25题 例6 2010年南通市中考第27题 例7 2009年重庆市中考第26题 1.3 因动点产生的直角三角形问题 例1 2012年广州市中考第24题 例2 2012年杭州市中考第22题 例3 2011年沈阳市中考第25题 例4 2011年浙江省中考第23题 例5 2010年北京市中考第24题 例6 2009年嘉兴市中考第24题 例7 2008年河南省中考第23题 1.4 因动点产生的平行四边形问题 例1 2012年福州市中考第21题 例2 2012年烟台市中考第26题 例3 2011年上海市中考第24题 例4 2011年江西省中考第24题 例5 2010年河南省中考第23题 例6 2010年山西省中考第26题 例7 2009年福州市中考第21题 例8 2009年江西省中考第24题 1.5 因动点产生的梯形问题 例1 2012年上海市松江中考模拟第24题 例2 2012年衢州市中考第24题 例3 2011年北京市海淀区中考模拟第24题

2016年中考数学压轴题精选及详解

2020年中考数学压轴题精选解析 中考压轴题分类专题三——抛物线中的等腰三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为等腰三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为底时(即PA PB =):点P 在AB 的垂直平分线上。 利用中点公式求出AB 的中点M ; 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出AB 的垂直平分线的斜率k ; 利用中点M 与斜率k 求出AB 的垂直平分线的解析式; 将AB 的垂直平分线的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为腰时,分两类讨论: ①以A ∠为顶角时(即AP AB =):点P 在以A 为圆心以AB 为半径的圆上。 ②以B ∠为顶角时(即BP BA =):点P 在以B 为圆心以 AB 为半径的圆上。 利用圆的一般方程列出A e (或B e )的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 中考压轴题分类专题四——抛物线中的直角三角形 基本题型:已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或 抛物线的对称轴上),若ABP ?为直角三角形,求点P 坐标。 分两大类进行讨论: (1)AB 为斜边时(即PA PB ⊥):点P 在以AB 为直径的圆周上。 利用中点公式求出AB 的中点M ; 利用圆的一般方程列出M e 的方程,与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 (2)AB 为直角边时,分两类讨论: ①以A ∠为直角时(即AP AB ⊥): ②以B ∠为直角时(即BP BA ⊥): 利用两点的斜率公式求出AB k ,因为两直线垂直斜率乘积为1-,进而求出PA (或PB )的斜率 k ;进而求出PA (或PB )的解析式; 将PA (或PB )的解析式与抛物线(或坐标轴,或抛物线的对称轴)的解析式联立即可求出点P 坐标。 所需知识点: 一、 两点之间距离公式: 已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:()()2 21221y y x x PQ -+-= 。 二、 圆的方程: 点()y ,x P 在⊙M 上,⊙M 中的圆心M 为()b ,a ,半径为R 。 则()()R b y a x PM =-+-= 22,得到方程☆:()()22 2 R b y a x =-+-。 ∴P 在☆的图象上,即☆为⊙M 的方程。 三、 中点公式: 四、 已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为??? ??++22 2121y y ,x x 。 五、 任意两点的斜率公式: 已知两点()()2211y ,x Q ,y ,x P ,则直线PQ 的斜率: 2 12 1x x y y k PQ --= 。 中考压轴题分类专题五——抛物线中的四边形 基本题型:一、已知AB ,抛物线()02≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上, 或抛物线的对称轴上),若四边形ABPQ 为平行四边形,求点P 坐标。 分两大类进行讨论: (1)AB 为边时 (2)AB 为对角线时 二、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为距形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边互相垂直 (2)对角线相等 三、已知AB ,抛物线()02 ≠++=a c bx ax y ,点P 在抛物线上(或坐标轴上,或抛物线的对 称轴上),若四边形ABPQ 为菱形,求点P 坐标。 在四边形ABPQ 为平行四边形的基础上,运用以下两种方法进行讨论: (1)邻边相等 (2)对角线互相垂直

2014中考数学压轴题及答案40例

2014中考数学压轴题精选精析(21-30例) 21.(2011?湖南邵阳)如图(十一)所示,在平面直角坐标系Oxy 中,已知点A (-94 ,0),点C (0,3),点B 是x 轴上一点(位于点A 的右侧),以AB 为直径的圆恰好经过.... 点C . (1)求∠ACB 的度数; (2)已知抛物线y =ax 2+bx +3经过A 、B 两点,求抛物线的解析式; (3)线段BC 上是否存在点D ,使△BOD 为等腰三角形.若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由. 【解题思路】:(1) ∵以AB 为直径的圆恰好经过....点C ∴∠ACB =0 90 (2) ∵△AOC ∽△ABC ∴OB AO OC ?=2 ∵A (-94,0),点C (0,3),∴4 9=AO 3=OC ∴OB 4 932= ∴ 4=OB ∴B(4,0) 把 A 、B 、C 三点坐标代入得 3127312++-=x x y (3) 1)OD=OB , D 在OB 的中垂线上,过D 作DH ⊥OB,垂足是H 则H 是OB 中点。DH=OC 21 OB OH 2 1= ∴D )23,2( 2) BD=BO 过D 作DG ⊥OB,垂足是G ∴OG:OB=CD:CB DG:OC=1:5 ∴ OG:4=1:5 DG:3=1:5 ∴OG= 54 DG=53 ∴D(54,53)

【点评】:本题考察了相似、勾股定理、抛物线的解析式求解等知识,运用平行于三角形一边的直线截其他两边所得的三角形与原三角形相似构建比例式,求解点到坐标轴的距离,进而得出相应的坐标。难度中等 24、(2011?湖北荆州)如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上),抛物线y= 14x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形CDEF的面积为1. (1)求B点坐标; (2)求证:ME是⊙P的切线; (3)设直线AC与抛物线对称轴交于N,Q点是此轴称轴上不与N点重合的一动点, ①求△ACQ周长的最小值; ②若FQ=t,S△ACQ=S,直接写出S与t之间的函数关系式. 考点:二次函数综合题. 分析:(1)如图甲,连接PE、PB,设PC=n,由正方形CDEF的面积为1,可得CD=CF=1,根据圆和正方形的对称性知:OP=PC=n,由PB=PE,根据勾股定理即可求得n的值,继而求得B的坐标; (2)由(1)知A(0,2),C(2,0),即可求得抛物线的解析式,然后求得FM的长,则可得△PEF∽△EMF,则可证得∠PEM=90°,即ME是⊙P的切线; (3)①如图乙,延长AB交抛物线于A′,连CA′交对称轴x=3于Q,连AQ,则有AQ=A′Q,△ACQ周长的最小值为AC+A′C的长,利用勾股定理即可求得△ACQ周长的最小值; ②分别当Q点在F点上方时,当Q点在线段FN上时,当Q点在N点下方时去分析即可求

2012全国各地中考数学压轴题精选(21-30)解析版

2012年各地中考数学压轴题精选21~30_解析版 【21.2012上海】 24.如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1, 0),与y轴交于点C,点D在线段OC上,OD=t,点E在第二象限,∠ADE=90°,tan∠DAE=, EF⊥OD,垂足为F. (1)求这个二次函数的解析式; (2)求线段EF、OF的长(用含t的代数式表示); (3)当∠ECA=∠OAC时,求t的值. 考点:相似三角形的判定与性质;待定系数法求二次函数解析式;全等三角形的判定与性质;勾股定理。 解答:解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(﹣1,0), ∴,解得, ∴这个二次函数的解析式为:y=﹣2x2+6x+8; (2)∵∠EFD=∠EDA=90° ∴∠DEF+∠EDF=90°,∠EDF+∠ODA=90°,∴∠DEF=∠ODA ∴△EDF∽△DAO ∴. ∵, ∴=, ∴,∴EF=t. 同理, ∴DF=2,∴OF=t﹣2. (3)∵抛物线的解析式为:y=﹣2x2+6x+8, ∴C(0,8),OC=8. 如图,连接EC、AC,过A作EC的垂线交CE于G点.

∵∠ECA=∠OAC,∴∠OAC=∠GCA(等角的余角相等); 在△CAG与△OCA中,, ∴△CAG≌△OCA,∴CG=4,AG=OC=8. 如图,过E点作EM⊥x轴于点M,则在Rt△AEM中, ∴EM=OF=t﹣2,AM=OA+AM=OA+EF=4+t, 由勾股定理得: ∵AE2=AM2+EM2=; 在Rt△AEG中,由勾股定理得: ∴EG=== ∵在Rt△ECF中,EF=t,CF=OC﹣OF=10﹣t,CE=CG+EG=+4 由勾股定理得:EF2+CF2=CE2, 即, 解得t1=10(不合题意,舍去),t2=6, ∴t=6.

中考数学压轴题解题方法大全及技巧

专业资料整理分享 中考数学压轴题解题技巧 湖北竹溪城关中学明道银 解中考数学压轴题秘诀(一) 数学综合题关键是第24题和25题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题:是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的研究,求点的坐标或研究图形的某些性质。初中已知函数有:①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线;②反比例函数,它所对应的图像是双曲线; ③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。此类题基本在第24题,满分12分,基本分2-3小题来呈现。 (二)几何型综合题:是先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。求未知函数解析式的关键是

列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。而最后的探索问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。几何型综合题基本在第25题做为压轴题出现,满分14分,一般分三小题呈现。 在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。 解中考数学压轴题秘诀(二) 具有选拔功能的中考压轴题是为考察考生综合运用知识的能力而设计的题目,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活。解数学压轴题,一要树立必胜的信心,二要具备扎实的基础知识和熟练的基本技能,三要掌握常用的解题策略。现介绍几种常用的解题策略,供初三同学参考。 1、以坐标系为桥梁,运用数形结合思想:

中考数学相似难题压轴题精选.

1、如图,在正三角形ABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF △的面积与ABC △的面积之比等于( ) A .1∶3 B .2∶3 C ∶2 D ∶3 2、如图,在Rt ABC △中,90ACB ∠=° ,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( ) A .32 B .76 C .25 6 D .2 3.提出问题:如图,有一块分布均匀的等腰三角形蛋糕(BC AB =,且AC BC ≠),在蛋糕的边缘均匀分布着巧克力,小明和小华决定只切一刀将这块蛋糕平分(要求分得的蛋糕和巧克力质量都一样). 背景介绍:这条分割直线即平分了三角形的面积,又平分了三角形的周长,我们称这条线为三角形的“等分积周线”. 尝试解决: (1)小明很快就想到了一条分割直线,而且用尺规作图作出.请你帮小明在图1中画出这条“等分积周线”,从而平分蛋糕. (2) 小华觉得小明的方法很好,所以自己模仿着在图1中过点C 画了一条直线CD 交AB 于点D .你觉得小华会成功吗?如能成功,说出确定的方法;如不能成功,请说明理由. (3)通过上面的实践,你一定有了更深刻的认识.请你解决下面的问题:若AB =BC =5 cm , AC =6 cm ,请你找出△ABC 的所有“等分积周线”,并简要的说明确定的方法. A B A B B 图 1 C B 图 2 C

4.如图,点P 是菱形ABCD 的对角线BD 上一点,连结CP 并延长,交AD 于E ,交BA 的延长线点F .问: (1) 图中△APD 与哪个三角形全等?并说明理由. (2) 求证:△APE ∽△FPA . (3) 猜想:线段PC 、PE 、PF 之间存在什么关系?并说明理由. 5、如图1,在Rt ABC △中,90BAC ∠=°,AD BC ⊥于点D ,点O 是AC 边上一点,连接BO 交AD 于F , OE OB ⊥交BC 边于点E . (1)求证:ABF COE △∽△; (2)当O 为AC 边中点,2 AC AB =时,如图2,求OF OE 的值; (3)当O 为AC 边中点,AC n AB =时,请直接写出OF OE 的值. B B A A C E D D E C O F 图1 图2 F

2009级(即2012年)各地中考数学压轴题及答案

2012中考数学压轴题及答案 1.(2011年四川省宜宾市) 已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式; (2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积; (3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为??? ? ? ?--a b ac a b 44,22 ) 2. (11浙江衢州)已知直角梯形纸片OABC 在平面直角坐标系中的位置如图所 示,四个顶点的坐标分别为O(0,0),A(10,0),B(8,32),C(0,32),点T 在线段OA 上(不与线段端点重合),将纸片折叠,使点A 落在射线AB 上(记为点A ′),折痕经过点T ,折痕TP 与射线AB 交于点P ,设点T 的横坐标为t ,折叠后纸片重叠部分(图中的阴影部分)的面积为S ; (1)求∠OAB 的度数,并求当点A ′在线段AB 上时,S 关于t 的函数关系式; (2)当纸片重叠部分的图形是四边形时,求t 的取值范围; (3)S 存在最大值吗?若存在,求出这个最大值,并求此时t 的值;若不存在,请说明理由.

3. (11浙江温州)如图,在Rt ABC △中,90A ∠= ,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作QR BA ∥交AC 于 R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长; (2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使P Q R △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由. 4.(11山东省日照市)在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少?

2020中考数学压轴题100题精选(附答案解析)

2020中考数学压轴题100题精选 (附答案解析) 【001 】如图,已知抛物线2(1)y a x =-+(a ≠0)经过点 (2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结 BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.

【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A 出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B 时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S 与 t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C 成 为直角梯形?若能,求t (4)当DE经过点C 时,请直接 图16 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式;

2018年中考初中数学压轴题及详解

2018年中考初中数学压轴题(有答案) 一.解答题(共30小题) 1.(2014?攀枝花)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D 两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB. (1)求B、C两点的坐标; (2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标; (3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q 为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由. 2.(2014?苏州)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm/s,矩形ABCD 的移动速度为4cm/s,设移动时间为t(s) (1)如图①,连接OA、AC,则∠OAC的度数为_________°; (2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长); (3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t 的取值范围(解答时可以利用备用图画出相关示意图). 3.(2014?泰州)如图,平面直角坐标系xOy中,一次函数y=﹣x+b(b为常数,b>0)的图象与x轴、y轴分别 相交于点A、B,半径为4的⊙O与x轴正半轴相交于点C,与y轴相交于点D、E,点D在点E上方.

2012中考数学压轴题及答案40例(3)

2012中考数学压轴题及答案40例(3) 9.已知,在Rt △OAB 中,∠OAB =900,∠BOA =300,AB =2。若以O 为坐标原点,OA 所在直线为x 轴,建立如图所示的平面直角坐标系,点B 在第一象限内。将Rt △OAB 沿OB 折叠后,点A 落在第一象限内的点C 处。 (1)求点C 的坐标; (2)若抛物线bx ax y +=2(a ≠0)经过C 、A 两点,求此抛物线的解析式; (3)若抛物线的对称轴与OB 交于点D ,点P 为线段DB 上一点,过P 作y 轴的平行线,交抛物线于点M 。问:是否存在这样的点P ,使得四边形CDPM 为等腰梯形?若存在,请求出此时点P 的坐标;若不存在,请说明理由。 注:抛物线c bx ax y ++=2 (a ≠0)的顶点坐标为??? ? ? ?--a b a c ,a b 4422 ,对称轴公式为a b x 2-= 解: (1)过点C 作CH ⊥x 轴,垂足为H ∵在Rt △OAB 中,∠OAB =900,∠BOA =300,AB ∴OB =4,OA =32 由折叠知,∠COB =300,OC =OA =32 ∴∠COH =600,OH =3,CH =3 ∴C 点坐标为(3,3) (2)∵抛物线bx ax y +=2(a ≠0)经过C (3,3)、A (32,0)两点

∴() () ?????+=+=b a b a 323203332 2 解得:???=-=321b a ∴此抛物线的解析式为:x x y 322+-= (3) 存在。因为x x y 322+-=的顶点坐标为(3,3)即为点C MP ⊥x 轴,设垂足为N ,PN =t ,因为∠BOA =300,所以ON =3t ∴P (3t ,t ) 作PQ ⊥CD ,垂足为Q ,ME ⊥CD ,垂足为E 把t x ?=3代入x x y 322+-=得:t t y 632+-= ∴ M (3t ,t t 632+-),E (3,t t 632+-) 同理:Q (3,t ),D (3,1) 要使四边形CDPM 为等腰梯形,只需CE =QD 即() 16332-=+--t t t ,解得:3 4 1=t ,12=t (舍) ∴ P 点坐标为( 33 4 ,34) ∴ 存在满足条件的点P ,使得四边形CDPM 为等腰梯形,此时P 点的坐为( 33 4 ,34) 10.如图,抛物线223y x x =--与x 轴交A 、B 两点(A

中考数学压轴题解析二十

中考数学压轴题解析二十 103.(2017黑龙江省龙东地区,第25题,8分)在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示. (1)甲、乙两地相距千米. (2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式. (3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等? 【答案】(1)480;(2)y2=40x﹣120;(3)1.2或4.8或7.5小时. 【分析】(1)根据图1,根据客车、货车离服务区的初始距离可得甲乙两地距离; (2)根据图象中的数据可以求得3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式; (3)分三种情况讨论,当邮政车去甲地的途中会有某个时间邮政车与客车和货车的距离相等;当邮政车从甲地返回乙地时,货车与客车相遇时,邮政车与客车和货车的距离相等;货车与客车相遇后,邮政车与客车和货车的距离相等. . 106.(2017山东省莱芜市,第22题,10分)某网店销售甲、乙两种防雾霾口罩,已知甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元. (1)改网店甲、乙两种口罩每袋的售价各多少元? (2)根据消费者需求,网店决定用不超过10000元购进价、乙两种口罩共500袋,且甲 种口罩的数量大于乙种口罩的4 5,已知甲种口罩每袋的进价为22.4元,乙种口罩每袋的 进价为18元,请你帮助网店计算有几种进货方案?若使网店获利最大,应该购进甲、乙两种口罩各多少袋,最大获利多少元? 【答案】(1)该网店甲种口罩每袋的售价为25元,乙种口罩每袋的售价为20元;(2)该网店购进甲种口罩227袋,购进乙种口罩273袋时,获利最大,最大利润为1136.2元.【分析】(1)分别根据甲种口罩每袋的售价比乙种口罩多5元,小丽从该网店网购2袋甲种口罩和3袋乙种口罩共花费110元,得出等式组成方程求出即可; (2)根据网店决定用不超过10000元购进价、乙两种口罩共500袋,甲种口罩的数量大

广州中考数学压轴题汇总

广州中考压轴题汇总 选择题 (2014·广州)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG≌△DCE;②BG⊥DE;③=;④(a﹣b)2?S△EFO=b2?S△DGO.其中结论正确的个数是() A.4个B.3个C.2个D.1个 (2015·广州)已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A.10 B.14 C.10或14 D.8或10 (2016·广州)定义运算:a?b=a(1﹣b).若a,b是方程x2﹣x+m=0(m<0)的两根,则b?b﹣a?a的值为() A.0 B.1 C.2 D.与m有关 (2017·广州)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可

能是() A.B.C.D. (2017·广州)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是() A.504m2B.m2 C.m2 D.1009m2 填空题 (2014·广州)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,

则x1(x2+x1)+x22的最小值为. (2015·广州)如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为. (2016·广州)如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB 绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论: ①四边形AEGF是菱形 ②△AED≌△GED ③∠DFG=112.5° ④BC+FG=1.5 其中正确的结论是.

2012年中考数学压轴题精选

2010年中考数学压轴题 【001 】如图,已知抛物线2 (1) y a x =-+a≠0)经过点(2) A-,0,抛物线的顶点为D, 过O作射线OM AD ∥.过顶点D平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连结BC. (1)求该抛物线的解析式; (2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为() t s.问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t()s,连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长. 【002】如图16,在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点

P、Q运动的时间是t秒(t>0). (1)当t = 2时,AP = ,点Q到AC的距离是; (2)在点P从C向A运动的过程中,求△APQ的面积S与 t的函数关系式;(不必写出t的取值范围) (3)在点E从B向C运动的过程中,四边形QBED能否成 为直角梯形?若能,求t的值.若不能,请说明理由; (4)当DE经过点C 时,请直接 ..写出t的值. 【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值。

数学中考数学压轴题(讲义及答案)附解析

一、中考数学压轴题 1.如图,在长方形ABCD 中,AB =4cm ,BE =5cm ,点E 是AD 边上的一点,AE 、DE 分别长acm .bcm ,满足(a -3)2+|2a +b -9|=0.动点P 从B 点出发,以2cm/s 的速度沿B→C→D 运动,最终到达点D ,设运动时间为t s . (1)a =______cm ,b =______cm ; (2)t 为何值时,EP 把四边形BCDE 的周长平分? (3)另有一点Q 从点E 出发,按照E→D→C 的路径运动,且速度为1cm/s ,若P 、Q 两点同时出发,当其中一点到达终点时,另一点随之停止运动.求t 为何值时,△BPQ 的面积等于6cm 2. 2.在平面直角坐标系中,抛物线2 4y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且 :3:4??=ABC BCE S S . (1)求点A ,点B 的坐标; (2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式; ②求抛物线的解析式. 3.如图1,抛物线2 (0)y ax bx c a =++≠的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0). (1)求抛物线的解析式; (2)如图2,点E 是BD 上方抛物线上的一点,连接AE 交DB 于点F ,若AF=2EF ,求出点E 的坐标. (3)如图3,点M 的坐标为( 3 2 ,0),点P 是对称轴左侧抛物线上的一点,连接MP ,将MP 沿MD 折叠,若点P 恰好落在抛物线的对称轴CE 上,请求出点P 的横坐标.

中考数学压轴题典型题型解析

中考数学压轴题精选精析 37.(09年黑龙江牡丹江)28.(本小题满分8分) 如图, 在平面直角坐标系中,若、的长是关于的一元二 次方程的两个根,且 (1)求的值. (2)若为轴上的点,且求经过、两点的直线的解析式,并判断与是否相似? (3)若点在平面直角坐标系内,则在直线上是否存在点使以、、、为顶点的四边形为菱形?若存在,请直接写出点的坐标;若不存在,请说明理 由. (09年黑龙江牡丹江28题解析)解:(1)解得 ·············································································· 1分 在中,由勾股定理有 ········································································ 1分 (2)∵点在轴上, ········································································ 1分 ABCD 6AD =,OA OB x 2 7120x x -+=OA OB >.sin ABC ∠E x 16 3 AOE S = △,D E AOE △DAO △M AB F ,A C F M F 2 7120x x -+=1243x x ==,OA OB >43OA OB ∴==,Rt AOB △225AB OA OB =+=4 sin 5 OA ABC AB ∴∠= =E x 163 AOE S = △11623AO OE ∴?=8 3 OE ∴= 880033E E ????∴- ? ????? ,或,x y A D B O C 28题图

2014挑战中考数学压轴题_1.3因动点产生的直角三角形问题

1.3 因动点产生的直角三角形问题 例1 2013年山西省中考第26题 如图1,抛物线213 442 y x x = --与x 轴交于A 、B 两点(点B 在点A 的右侧) ,与y 轴交于点C ,连结BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个 动点,设点P 的坐标为(m , 0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)求点A 、B 、C 的坐标; (2)当点P 在线段OB 上运动时,直线l 分别交BD 、BC 于点M 、N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由; (3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形,若存在,请直接写出点Q 的坐标;若不存在,请说明理由. 图1 动感体验 请打开几何画板文件名“13山西26”,拖动点P 在线段OB 上运动,可以体验到,当P 运动到OB 的中点时,四边形CQMD 和四边形CQBM 都是平行四边形.拖动点P 在线段EB 上运动,可以体验到,∠DBQ 和∠BDQ 可以成为直角. 请打开超级画板文件名“13山西26”,拖动点P 在线段OB 上运动,可以体验到,当P 运动到OB 的中点时,四边形CQMD 和四边形CQBM 都是平行四边形.拖动点P 在线段EB 上运动,可以体验到,∠DBQ 和∠BDQ 可以成为直角. 思路点拨 1.第(2)题先用含m 的式子表示线段MQ 的长,再根据MQ =DC 列方程. 2.第(2)题要判断四边形CQBM 的形状,最直接的方法就是根据求得的m 的值画一个准确的示意图,先得到结论. 3.第(3)题△BDQ 为直角三角形要分两种情况求解,一般过直角顶点作坐标轴的垂线可以构造相似三角形. 满分解答

2012中考数学压轴题 函数梯形问题(二)

2012中考数学压轴题函数梯形问题(二) 例3 如图1,在平面直角坐标系xOy 中,抛物线的解析式是y =2114 x ,点C 的坐标为(–4,0),平行四边形OABC 的顶点A ,B 在抛物线上,AB 与y 轴交于点M ,已知点Q (x ,y )在抛物线上,点P (t ,0)在x 轴上. (1) 写出点M 的坐标; (2) 当四边形CMQP 是以MQ ,PC 为腰的梯形时. ① 求t 关于x 的函数解析式和自变量x 的取值范围; ② 当梯形CMQP 的两底的长度之比为1∶2时,求t 的值. 图1 动感体验 请打开几何画板文件名“10杭州24”,拖动点Q 在抛物线上运动,从t 随x 变化的图像可以看到,t 是x 的二次函数,抛物线的开口向下.还可以感受到,PQ ∶CM =1∶2只有一种情况,此时Q 在y 轴上;CM ∶PQ =1∶2有两种情况. 思路点拨 1.第(1)题求点M 的坐标以后,Rt △OCM 的两条直角边的比为1∶2,这是本题的基本背景图. 2.第(2)题中,不变的关系是由平行得到的等角的正切值相等,根据数形结合,列关于t 与x 的比例式,从而得到t 关于x 的函数关系. 3.探求自变量x 的取值范围,要考虑梯形不存在的情况,排除平行四边形的情况. 4.梯形的两底的长度之比为1∶2,要分两种情况讨论.把两底的长度比转化为QH 与MO 的长度比.

满分解答 (1)因为AB =OC = 4,A 、B 关于y 轴对称,所以点A 的横坐标为2.将x =2代入y =2114x +,得y =2.所以点M 的坐标为(0,2). (2) ① 如图2,过点Q 作QH ⊥ x 轴,设垂足为H ,则HQ =y 2114 x =+,HP =x – t . 因为CM //PQ ,所以∠QPH =∠MCO .因此tan ∠QPH =tan ∠MCO ,即 12HQ OM HP OC ==.所以2111()42x x t +=-.整理,得2122 t x x =-+-. 如图3,当P 与C 重合时,4t =-,解方程21422 x x -=-+-,得15x =±. 如图4,当Q 与B 或A 重合时,四边形为平行四边形,此时,x =± 2. 因此自变量x 的取值范围是15x ≠±,且x ≠± 2的所有实数. 图2 图3 图4 ②因为sin ∠QPH =sin ∠MCO ,所以HQ OM PQ CM =,即PQ HQ CM OM =. 当 12PQ HQ CM OM ==时,112HQ OM ==.解方程21114 x +=,得0x =(如图5).此时2t =-. 当2PQ HQ CM OM ==时,24HQ OM ==.解方程21144 x +=,得23x =± 如图6,当23x =823t =-+6,当23x =-时,823t =--

相关文档
相关文档 最新文档