文档库 最新最全的文档下载
当前位置:文档库 › 关于UG-NX坐标系的介绍和运用

关于UG-NX坐标系的介绍和运用

关于UG-NX坐标系的介绍和运用
关于UG-NX坐标系的介绍和运用

关于UG NX坐标系的介绍和运用

【坐标系简介】

建模离不开坐标系,在UG建模环境中共有3个坐标系:绝对坐标系、工作坐标系、基准坐标系。绝对坐标系是系统默认的坐标系,其原点和各坐标轴线的方向永远不变;工作坐标系也是由系统提供的,但用户可以任意地移动、旋转;基准坐标系由用户根据造型的需要可以随时创建、隐藏或删除,也可以移动、旋转。

1.工作坐标系的移动、旋转操作

如下图1所示,单击“实用工具”栏上“显示WCS”图标,可以显示或隐藏工作坐标系,当工作坐标系被移动、旋转后,又希望能恢复原始状态,就单击图标“设置为绝对WCS”即可实现。

图1

可以单击“实用工具”中的“动态”、“原点”、“旋转”、“更改”等图标,实现工作坐标系的移动、旋转、更改X轴或Y轴方向等目的。单击“旋转WCS”,又出现旋转对话框,提示可以绕什么轴旋转;单击“WCS原点”,又出现点对话框,提示可以确定移动的定位点。

实用中,对工作坐标系进行移动、旋转时,不一定要单击这些图标,一般可以直接将鼠标放在工作坐标系上,当出现图3所示的效果时,单击鼠标就出现了图2效果了,与单击“动态”图标效果是一样的。

图2

图3

如下图4所示,通过鼠标直接进行工作坐标系的移动、旋转操作。图中坐标系的绿色箭头表示可以移动坐标系的方向箭头(称为“移动柄”),绿色小球表示可以旋转坐标系的“旋转柄”,桔黄色的立方体为可移动的坐标原点。

鼠标放在立方体上,按住左键并拖动,就可实现向任意位置拖放工作坐标系了。

当鼠标放在“移动柄”上时,如下图中的(2)所示,光标侧出现双箭头,表示可以沿此轴移动坐标系,此时按住鼠标左键并拖动鼠标就可以实现沿指定坐标轴方向动态移动坐标系了,要想准确移动,可在出现的对话框中输入移动距离值。

当鼠标放在“旋转柄”上时,如下图中的(3)所示,光标侧出现一直线及一旋转箭头,表示可以绕垂直于该坐标轴线旋转坐标系,若在对话框中输入角度值,可以实现准确旋转。

图4

图1所示的图标按钮命令也只可以通过菜单操作方式激活,如下图5所示,效果是一样的。

我国四大常用坐标系及高程坐标系学习资料

我国四大常用坐标系及高程坐标系 1.北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2.西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3.WGS-84坐标系 WGS-84坐标系(WorldGeodeticSystem)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),

1.8 圆柱坐标系和球坐标系

1.8 圆柱坐标系与球坐标系 1.8.1 圆柱坐标系 (1)建立圆柱坐标系 空间任一点P 的位置由坐标(ρ,φ,z )确定,如图(a )所示。其中: ① ρ 是P 点到z 轴的距离,即位置矢量r 在xoy 平面上的投影; ② φ 是正x 轴转到半平面o ABC 的方位角(0≤φ ≤2π); ③ z 是位置矢量r 在z 轴上的投影,即P 点到xoy 平面的距离。 这三个坐标确定之后,就确定了三个坐标面: ① 以z 为轴、ρ为半径的圆柱面; ② 正xoz 半平面绕z 轴逆时钟旋转φ角度所得半平面; ③ 距xoy 平面为z 的平行平面。 这三个坐标面交汇于P 点,且在P 点处相互正交。为反映这一特征,在P 点处分别沿三个坐标增加的方向各取一个单位矢量e ρ、e φ和e z ,三单位矢量有以下特点: ① 三个单位矢量相互正交,且满足右手关系 e ρ ? e φ = e z e φ ? e z = e ρ (1.8.1) e z ? e ρ = e φ (b ) y x y e x (平面) ) ρ =常数 (圆柱面y

② 除e z 是常矢外,e ρ和e φ 的方向都有可能随 P 点的不同而变化,它们是坐标函数: y x y x e e e e e e φφφφφρcos sin sin cos +-=+= e ρ、e φ、e z 对坐标ρ、φ、z 求偏导 ???? ? ??????=??=??=??=??-=??=??=??=??=??0000000z z z z z z e , e , e e ,e e ,e e ,e e , e φ ρ φρφρ φρφφρ φρρ 矢量F (ρ、φ、z )在圆柱坐标系下的表示式 z z A A A e e e A ++=φφρρ (1.8.2) (2)线元矢量、面元和体积元 当点的位置发生微小变化导致了微分位移,用线元矢量d l 表示 z z e e e l d d d d ++=φρφρρ (1.8.3) 三个坐标微分增量d ρ、d φ、d z 所形成的体积元d V z V d d d d φρρ= (1.8.4) 两坐标变量的微小变化将形成三个典型面元,它们的正方向分别沿坐标ρ、φ、z 的 正方向 (a ) (b ) ρ φ d s ρ

我国地理数据常用的坐标系

我国地理数据常用的坐标系 我国三大常用坐标系区别(北京54、西安80和WGS-84) Gis应用2009-09-27 10:06 阅读13 评论0 字号:大大中中小小我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率 1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率 1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。

高中数学1.4柱坐标系与球坐标系简介教案新人教版选修4-4

四柱坐标系与球坐标系简介 课题:球坐标系与柱坐标系 教学目的: 知识目标:了解在柱坐标系、球坐标系中刻画空间中点的位置的方法 能力目标:了解柱坐标、球坐标与直角坐 标之间的变换公式。 德育目标:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会与空间直角坐标系中刻画空间点的位置的方法的区别和联系 教学难点:利用它们进行简单的数学应用 授课类型:新授课 教学模式:启发、诱导发现教学? 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境:我们用三个数据来确定卫星的位置,即卫星到地球中心的距离、经度、纬度。 问题:如何在空间里确定点的位置?有哪些方法? 学生回顾 在空间直角坐标系中刻画点的位置的方法 极坐标的意义以及极坐标与直角坐标的互化原理 二、讲解新课: 1、球坐标系 设P 是空间任意一点,在 oxy 平面的射影为 Q,连接OR 记| OP |= r ,OP 与0Z 轴正 向所夹的角为 ,P 在oxy 平面的射影为 Q, Ox 轴按逆时针方向旋转到 0Q 时所转过的最小 正角为 ,点P 的位置可以用有序数组 (r,,)表示,我们把建立上述对应关系的坐标系叫 球坐标系(或空间极坐标系) 有序数组(r,,)叫做点P 的球坐标,其中 空间点P 的直角坐标(x, y, z )与球坐标(r, 2 x 2 y 2 2 z r x rsi n cos y r si n sin z r cos 2、柱坐标系 有序数组(p , 9 ,Z )叫点P 的柱坐标,其中p 》0, 0 <9 <2n , z € R 空间点P 的直角坐标(x, y, z )与柱坐标(p , 9 ,Z )之间的变换关系为: x cos y sin r > 0, 0< < , o w v 2 。 ,)之间的变换关系为: 设P 是空间任意一点,在oxy 平面的射影为 平面oxy 上的极坐标,点P 的位置可用有序数组 系叫做柱坐标系 Q 用(P , 9 )( P> 0,0 <0 <2n )表示点在 (p , 9 ,Z )表示把建立上述对应 关系的坐标

我国三大常用坐标系区别

我国三大常用坐标系区别 (北京54、西安80和WGS-84) 北京, 西安, 坐标系 我国三大常用坐标系区别(北京54、西安80和WGS-84) Gis应用2009-09-27 10:06 阅读13 评论0 字号:大大中中小小我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

不同类型地图使用的投影与坐标系

不同类型地图使用的投影与坐标系 (2016-08-12 15:29:29) 不同类型地图使用的投影与坐标系 1.概念辨析 地图投影跟大地坐标系是完全两个东西,尽管具有相关性。地球椭球体则是另一个东西。实际上地图编绘涉及三个基本的东西:椭球体、地图投影、大地坐标系。三者密切关联。(百科知识) 要绘制地图,首先考虑用什么椭球体,这是投影和坐标系的基础——我国三代坐标系使用三种椭球体。 三者之间的关系:先有个椭球体,然后是投影到承影面,然后是添加经纬网。椭球体是基础,投影是转换函数,是数学关系,大地坐标系是参照系。因此,同一椭球体可以用不同的投影;而同一投影,也可以用不同的大地坐标系。 但是一般三者是协调一致的,如我国的三代坐标系,有对应的椭球体、投影类型、基准面(坐标系)。 从地图反映地球表面来看,整个过程涉及五个环节:地球~椭球体~投影~坐标系~地图。而地球是球面的,是一个曲面,而地图是平面的,二者的结构性矛盾,导致我们不得不采用一系列转换,这个转换中不可避免地产生扭曲、变形和误差。具体关系:总结:地球(地球表面,存在高低起伏)→椭球体(光滑球面,相关参数)→投影(投影方式:几何投影与解析投影)→坐标系(地理坐标系与平面直角坐标系)→地图。 2. 我国三代坐标系 我们经常给影像投影时用到的北京54、西安80和2000坐标系是投影直角坐标系,如下表所示为国内坐标系采用的主要参数。从中可以看到我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的大地基准面。 表:北京54、西安80和2000坐标系参数列表 坐标名称投影类型椭球体基准面 北京54Gauss Kruger (Transverse Mercator) Krasovsky D_Beijing_1954 西安80Gauss Kruger (Transverse Mercator) IAG75D_Xian_1980 CGCS2000Gauss Kruger CGCS2000D_China_2000

《球坐标系与柱坐标系》教学案1

1.9《球坐标系与柱坐标系》教学案 教学目的: 知识目标:了解在柱坐标系、球坐标系中刻画空间中点的位置的方法 能力目标:了解柱坐标、球坐标与直角坐标之间的变换公式. 教学重点: 体会与空间直角坐标系中刻画空间点的位置的方法的区别和联系 教学难点: 利用它们进行简单的数学应用 授课类型: 新授课 教学模式: 启发、诱导发现教学. 教 具: 多媒体、实物投影仪 教学过程: 一、复习引入: 情境:我们用三个数据来确定卫星的位置,即卫星到地球中心的距离、经度、纬度. 问题:如何在空间里确定点的位置?有哪些方法? 学生回顾 在空间直角坐标系中刻画点的位置的方法 极坐标的意义以及极坐标与直角坐标的互化原理 二、讲解新课: 1、球坐标系 设P 是空间任意一点,在oxy 平面的射影为Q ,连接OP ,记| OP |=r ,OP 与OZ 轴正向所夹的角为θ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为?,点P 的位置可以用有序数组),,(?θr 表示,我们把建立上述对应关系的坐标系叫球坐标系(或空间极坐标系). 有序数组),,(?θr 叫做点P 的球坐标,其中r ≥0,0≤θ≤π,0≤?<2π. 空间点P 的直角坐标),,(z y x 与球坐标),,(?θr 之间的变换关系为:

??? ????====++θ? θ?θcos sin sin cos sin r z r y r x r z y x 2 222 2、柱坐标系 设P 是空间任意一点,在oxy 平面的射影为Q ,用(ρ,θ)表示点在平面oxy 上的极坐标,点P 的位置可用有序数组(ρ,θ,Z )表示把建立上述对应关系的坐标系叫做柱坐标系. 有序数组(ρ,θ,Z )叫点P 的柱坐标,其中ρ≥0, 0≤θ<2π, z ∈R . 空间点P 的直角坐标(x , y , z )与柱坐标(ρ,θ,Z )之间的变换关系为: 3、数学应用 例1建立适当的球坐标系,表示棱长为1的正方体的顶点. 变式训练 建立适当的柱坐标系, 表示棱长为1的正方体的顶点. 例2.将点M 的球坐标)65,3, 8(ππ化为直角坐标. 变式训练 1.将点M 的直角坐标)2,1,1(--化为球坐标. 2.将点M 的柱坐标)8,3,4(π 化为直角坐标. 3.在直角坐标系中点),,(a a a a (>0)的球坐标是什么? 例3.球坐标满足方程r =3的点所构成的图形是什么?并将此方程化为直角坐标方程. 变式训练 标满足方程ρ=2的点所构成的图形是什么? ?????===z z y x θ ρθρsin cos

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位, 它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大 地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我 国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m短轴6356863,扁率1/298.3 ; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。 为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐 标系,又简称西安大地原点。基准面采用青岛大港验潮站1952- 1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m短轴6356755,扁率1/298.25722101 3、W G-84坐标系 WG—84坐标系(WorldGeodeticSystem )是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,丫轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS^播星历是以WGS-84坐标系为根据的。 WGS8坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 4、2000国家大地坐标系 英文缩写为CGCS200O 2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心。2000国家大地坐标系采用的地球椭球参数如下:长半轴a=6378137m 扁率f=1/298.257222101, 地心引力常数GM=3.986004418< 1014m3s2 自转角速度3 =7.292115 < 10-5rads-1 我国常用高程系 “ 1956年黄海高程系”,是在1956年确定的。它是根据青岛验潮站1950年到1956年的黄海验潮资料,求出该站验潮井里横按铜丝的高度为 3.61米,所以就确定这个钢丝以下3.61米处为黄海平均海水面。从这个平均海水面起,于1956年推算出青岛水准原点的高程为72.289米。 国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“ 1985国家高程基准”,新的比旧的低0.029m 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系

高中数学第一讲坐标系四柱坐标系与球坐标系简介1柱坐标系学案含解析新人教A版选修4_4

1.柱坐标系 柱坐标系 (1)定义:建立空间直角坐标系Oxyz ,设P 是空间任意一点,它在Oxy 平面上的射影为 Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy 上的极坐标,这时点P 的位置可用有 之间的)z ,θ,ρ(表示.这样,我们建立了空间的点与有序数组R)∈z ()z ,θ,ρ(序数组一种对应关系.把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点 R. ∈z ,2π<θ≥0,0≤ρ,其中)z ,θ,ρ(P 的柱坐标,记作P (2)空间点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )之间的变换公式为 ???? ? x =ρcos θ,y =ρsin θ,z =z. 由公式求出ρ,再由tan θ=y x 求θ. 由公式???? ? x =ρcos θ,y =ρsin θ, z =z , 得ρ2=x 2+y 2 , 即ρ2 =12 +(3)2 =4,∴ρ=2. tan θ=y x =3, 又x >0,y >0,点在第一象限.∴θ=π 3 , ∴点A 的柱坐标为? ?? ??2,π3,5. 已知点的直角坐标,确定它的柱坐标关键是确定ρ和θ,尤其是θ,要注意求出tan θ后,还要根据点所在象限确定θ的值(θ的范围是 已知点P 的柱坐标为? ?? ??4,π3,8, 求 它的直角坐标. 直接利用公式求解.

由变换公式???? ? x =ρcos θ,y =ρsin θ, z =z 得 x =4cos π 3 =2,y =4sin π3 =23,z =8. ∴点P 的直角坐标为(2,23,8). 已知柱坐标,求直角坐标,利用变换公式 ???? ? x =ρcos θ,y =ρsin θ,z =z 即可. 3.点N 的柱坐标为? ?? ??2,π2,3,求它的直角坐标. 解:由变换公式???? ? x =ρcos θ,y =ρsin θ, z =z , 得 x =ρcos θ=2cos π 2 =0,y =ρsin θ=2sin π2 =2, 故点N 的直角坐标为(0,2,3). 4.已知点A 的柱坐标为(1,π,2),B 的柱坐标为? ?? ??2,π2,1,求A ,B 两点间距离. 解:由x =ρcos θ,得x =cos π=-1. 由y =ρsin θ,得y =sin π=0. ∴A 点的直角坐标为(-1,0,2). 同理,B 点的直角坐标为(0,2,1). ∴|AB |= -1- +- + - = 6. 故A ,B 两点间的距离为 6. 课时跟踪检测(五) 一、选择题 1.设点M 的直角坐标为(1,-3,2),则它的柱坐标是( ) A.? ????2,π3,2 B.? ????2,2π3,2 C.? ????2,4π3,2 D.? ?? ??2,5π3,2

我国三大常用坐标系区别.

我国三大常用坐标系区别 我国三大常用坐标系区别(北京54、西安80和WGS-84)我国三大常用坐标系区别(北京54、西安80和WGS-84)。 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史:新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。

柱坐标系与球坐标系

柱坐标系与球坐标系 1、柱坐标系 设P 是空间任意一点,在oxy 平面的射影为Q , 用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面oxy 上的极坐标, 点P 的位置可用有序数组(ρ,θ,z)表示. 把建立上述对应关系的坐标系叫做柱坐标系. 有序数组(ρ,θ,Z)叫点P 的柱坐标,记作(ρ,θ,Z). 其中ρ≥0, 0≤θ< 2π, -∞<Z <+∞ 2,柱坐标系又称半极坐标系,它是由平面极坐标系 及空间直角坐标系中的一部分建立起来的. 空间点P 的直角坐标(x, y, z)与柱坐标 (ρ,θ,Z) 之间的变换公式为: 3 应用:例1:设点的直角坐标为(1,1,1),求它:在柱坐标系中的坐标. 解得ρ= ,θ= 点在柱坐标系中的坐标为 ( , ,1). 注:求θ时要注意角的终边与点的射影所在位置一致。 练习: 1、设点的直角坐标为(1,1,1),求它在柱坐标系中的坐标. 注:求θ时要注意角的终边与点的射影所在位置一致。 3,柱坐标系: r 为常数 圆柱面 半平面 平 面 x y z o P(ρ,θ,Z) Q θ 4π?? ???===z z y x θρθρsin cos ?? ???===z 1sin 1cos 1θρθρ224π?),,(z y x M ),(θr P ?θr z x y z o 点在柱坐标系中的坐标为(2,,1)4π求它的直角坐标。的柱坐标为、设点),7,6,2(2πM (3,1,7) 为常数θ为常数z

球坐标系 1,球坐标系: 设P 是空间任意一点,在oxy 平面的射影为Q , 连接OP ,记| OP |=r ,OP 与OZ 轴正向所夹的角为φ. 设P 在oxy 平面上的射影为Q , Ox 轴按逆时 针方向旋转到OQ 时所转过的最小正角为θ. 这样点 P 的位置就可以用有序数组(r,φ,θ)表示. 空间的点与有序数组(r,φ,θ)之间建立了一种对应关系. 我们把建立上述对应关系的坐标系叫做球坐标系 (或空间极坐标系) . 有序数组(r,φ,θ)叫做点P 的球坐标, 2 , 空间点P 的直角坐标(x, y, z)与球坐标(r,φ,θ)之间的变换关系为; 3 应用:例:设点的球坐标为(2, , ) 求它的直角坐标.? 点在直角坐标系中的坐标为( -1 ,1 ,- ). 4 小结: 数轴 平面直角坐标系 坐标系 平面极坐标系 空间直角坐标系 柱坐标系 球坐标系 坐标系是联系形与数的桥梁,利用坐标系可以实现几何问题与代数问题的相互转化, 从而产生了坐标法. y o P Q X Z 其中 πθπ?20,0,0<≤≤≤≥r x y z o P(r,φ,θ) Q θ r φ 称为高低角 -的方位角,被测点称为 球坐标中的角应用,在测量实践中,文学中有着广泛的球坐标系在地理学、天 ?θ?θ090),,(r P ?? ???===?θ?θ?cos sin sin cos sin r z r y r x 43π43π22222r z y x =++) ,,(为直角坐标。 、将下列点的球坐标化例65381ππM

我国三大常用坐标系区别

我国三大常用坐标系区别(北京54、西安80和WGS -84) 我国三大常用坐标系区别(北京54、西安80和WGS-84)我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954 年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率 1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP 赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

柱坐标系与球坐标系简介教案

四 柱坐标系与球坐标系简介 课题:球坐标系与柱坐标系 教学目的: 知识目标:了解在柱坐标系、球坐标系中刻画空间中点的位置的方法 能力目标:了解柱坐标、球坐标与直角坐标之间的变换公式。 德育目标:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会与空间直角坐标系中刻画空间点的位置的方法的区别和联系 教学难点:利用它们进行简单的数学应用 授课类型:新授课 教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境:我们用三个数据来确定卫星的位置,即卫星到地球中心的距离、经度、纬度。 问题:如何在空间里确定点的位置?有哪些方法? 学生回顾 在空间直角坐标系中刻画点的位置的方法 极坐标的意义以及极坐标与直角坐标的互化原理 二、讲解新课: 1、球坐标系 设P 是空间任意一点,在oxy 平面的射影为Q ,连接OP ,记| OP |=r ,OP 与OZ 轴正向所夹的角为θ,P 在oxy 平面的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为?,点P 的位置可以用有序数组),,(?θr 表示,我们把建立上述对应关系的坐标系叫球坐标系(或空间极坐标系) 有序数组),,(?θr 叫做点P 的球坐标,其中r ≥0,0≤θ≤π,0≤?<2π。 空间点P 的直角坐标),,(z y x 与球坐标),,(?θr 之间的变换关系为: ???????====++θ ?θ?θcos sin sin cos sin 2 222r z r y r x r z y x 2、柱坐标系 设P 是空间任意一点,在oxy 平面的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点在 平面oxy 上的极坐标,点P 的位置可用有序数组(ρ,θ,Z)表示把建立上述对应关系的坐标系叫做柱坐标系 有序数组(ρ,θ,Z)叫点P 的柱坐标,其中ρ≥0, 0≤θ<2π, z ∈R 空间点P 的直角坐标(x, y, z)与柱坐标(ρ,θ,Z)之间的变换关系为: ?? ???===z z y x θ ρθρsin cos

四大常用坐标系及高程坐标系

四大常用坐标系及高程 坐标系 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

我国四大常用坐标系及高程坐标系 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.

常用坐标系

一、常用坐标系 1、北京坐标系 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、2000国家大地坐标系的定义 国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。采用广义相对论意义下的尺度。 2000国家大地坐标系,长半轴6378137m,扁率f=1/298.257222101,地心引力常数GM =3.986004418×1014m3s-2,自转角速度ω=7.292l15×10-5rads-1。 4、1984世界大地坐标系(WGS84坐标系WorldGeodeticSystem) wgs-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。wgs-84坐标系的定义是:原点是地球的质心,空间直角坐标系的z轴指向bih(1984.0)定义的地极(ctp)方向,即国际协议原点cio,它由iau和iugg共同推荐。x轴指向bih定义的零度子午面和ctp 赤道的交点,y轴和z,x轴构成右手坐标系。wgs-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数: 长半轴a=6378137m;扁率f=1:298.257223563。 GPS广播星历是以WGS-84坐标系为根据的。

常用坐标系与高程系简介

常用坐标系与高程系简介 2009-09-27 10:06:45| 分类:GIS技术| 标签:|字号大中小订阅 坐标系的概念 1.坐标系的定义: 如果空间上任意一点P的位置,可以用一组基于某一时间系统时刻t的空间结构的数学描述来确定,则这个空间结构可以称为坐标系,数学描述称为P点在该坐标系中的坐标。牛顿运动学原理要求坐标系是惯性的,惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性,基于这个特性,惯性坐标系的定义需与时间无关,通常这样的坐标系需要三个属性来描述(这应该是三维空间的本性吧),首先一个是原点(O),就是坐标系的中心点,第二个是过原点的任意直线(这里称为Z轴),第三个是过原点且与Z轴不重合的任意直线(这里称为X轴),如果X轴与Z轴垂直,会带来较优美的数学描述,我们称这样的坐标系是笛卡尔坐标系。P点的位置可以用P到原点的距离r,OP与Z轴的夹角,OP与X 轴的夹角来描述(当然也可以有其它等价描述),可以证明这个描述确定的P点是唯一的。 2.GPS领域常用坐标系模型: 在GPS测量中,最常用的坐标系模型是协议地球坐标系,该坐标系随同地球一起旋转,讨论随地球一起自转的目标位置,用这类坐标系方便;另外一类是协议天球坐标系,这个坐标系随同太阳系一同旋转,与地球自转无关,讨论卫星轨道运动时,用这类坐标系方便。 天球坐标系的定义是这样的,原点是地球质心(O),Z轴指向地球自转轴(天极,向北为正),X轴指向春分点,根据春分点的定义可以证明X轴与Z轴互相垂直,且X轴在赤道面上,同时为数学描述方便,引入与XOZ成右手旋转关系的Y轴。因为地球自转轴受其它天体影响(日、月)在空间产生进动,使得春分点变化(章动和岁差),导致用“瞬时天极”定义的坐标系不断旋转,而旋转的坐标系表现出非惯性的特性,不能直接应用牛顿定律。我们可以用某一历元时刻的天极和春分点(协议天极和协议春分点)定义一个三轴指向不变的天球 坐标系,称为固定极天球坐标系。 地球坐标系的定义是这样的,原点为地球质心(O),Z轴为地球自转轴,X轴指向地球上赤道的某一固定“刚性”点,所谓“刚性”是指其自转速度与地球一致,同时也为数学描述方便,引入与XOZ成右手旋转关系的Y轴。地球不是一个严格刚性的球体,Z轴在地球上随时间而变,称为极移,同天球坐标系一样,需要指定一个固定极为Z轴,这样的地球坐标系称为固定极地球坐标系。可以证明当观察地球上的物体时,该坐标系是惯性的。如果一个坐标系OXYZ,O不是地球质心,Z轴与地球自转轴平行,则这个坐标系具有与地球相同的自转角速度,我们也把此类坐标系称为地球坐标系。 3.协议坐标系统: 那么,什么是“协议”坐标系呢?通常,理论上坐标系由定义的坐标原点和坐标轴指向来确定。坐标系一经定义,任意几何点都具有唯一一组在该坐标系内的坐标值,反之,一组该坐标系内的坐标值就唯一定义了一个几何点。实际应用中,在已知若干参考点的坐标值后,通过观测又可反过来定义该坐标系。可以将前一种方式称为坐标系的理论定义。而由一系列已知点所定义的坐标系称为协议坐标系,这些已知参考点构成所谓的坐标框架。在点位坐标值不存在误差的情况下,这两种方式对坐标系的定义是一致的。事实上点位的坐标值通常是通过一定的测量手段得到,它们总是有误差的,由它们定义的协议坐标系与原来的理论定义的坐标系会有所不同,凡依据这些点测定的其它点位坐标值均属于这一协议坐标系而不属于理论定义的坐标系。由坐标框架定义的固定极天球坐标系和固定极地球坐标系,称为协议天 球坐标系和协议地球坐标系。

我国三大坐标系

我国三大常用坐标系区别(北京54、西安80和WGS-84) 我国三大常用坐标系区别(北京54、西安80和WGS-84) 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG 75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、WGS-84坐标系 WGS-84坐标系(World Geodetic System)是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP)方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS广播星历是以WGS-84坐标系为根据的。 WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 附: 我国常用高程系

相关文档
相关文档 最新文档