文档库 最新最全的文档下载
当前位置:文档库 › 材料力学刘鸿文 平面图形几何性质

材料力学刘鸿文 平面图形几何性质

材料力学习题册答案-附录+平面图形几何性质

附录 截面图形的几何性质 一、是非判断题 ⒈ 图形对某一轴的静矩为零,则该轴必定通过图形的形心。( √ ) ⒉ 图形在任一点只有一对主惯性轴。( × ) ⒊ 有一定面积的图形对任一轴的轴惯性矩必不为零。( √ ) ⒋ 图形对过某一点的主轴的惯性矩为图形对过该点所有轴的惯性矩中的极值。( √ ) 二、填空题 ⒈ 组合图形对某一轴的静矩等于 各组成图形对同一轴静矩 的代数和。 ⒉ 图形对任意一对正交轴的惯性矩之和,恒等于图形对 两轴交点的极惯性矩 。 ⒊ 如果一对正交轴中有一根是图形的对称轴,则这一对轴为图形 主惯性轴 。 ⒋ 过图形的形心且 图形对其惯性积等于零 的一对轴为图形的形心主惯性轴。 三、选择题 ⒈ 图形对于其对称轴的( A ) A 静矩为零,惯性矩不为零; B 静矩和惯性矩均为零 C 静矩不为零,惯性矩为零; D 静矩和惯性矩均不为零 ⒉ 直径为d 的圆形对其形心主轴的惯性半径i =( C )。 A d/2 B d/3 C d/4 D d/8 ⒊ 图示截面图形中阴影部分对形心主轴z 的惯性矩Z I =( C )。 A 123234dD D -π B 6323 4dD D -π C 126434dD D -π D 6643 4dD D -π z

四、计算题 1、求图示平面图形中阴影部分对z 轴的静矩。 232.0)2.06.0(4.0bh h h h b S Z =+??= () 8842422222bh h H B h h b h H h h H B S Z +-=??+??? ??-+?-?= 2、求图示平面图形对z 、y 轴的惯性矩。 4523231023.251040121040251040123010mm I I I II I Z ?=??+?+??+?=+= 由于图形对称,4 51023.2mm I I Z Y ?=== 3、试求图示平面图形的形心主惯性轴的位置,并求形心主惯性矩。 mm y C 7.56100 20201401010020902010=?+???+??= 4723231021.17.46200.1012201003.33201401214020m m I I I II I Z ?=??+?+??+?=+=46331076.112 100201220140mm I Y ?=?+?= z z z

工程材料力学性能答案

工程材料力学性能答案1111111111111111111111111111111111111 1111111111111111111111111111111111111 111111 决定金属屈服强度的因素有哪 些?12 内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。试举出几种能显著强化金属而又不降低其塑性的方法。固溶强化、形变硬化、细晶强化试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?21韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。何谓拉伸断口三要素?影响宏观拉伸断口性态的

因素有哪些?答:宏观断口呈杯锥形,纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化?断裂强度与抗拉强度有何区别?抗拉强度是试样断裂前所承受的最大工程应力,记为σb;拉伸断裂时的真应力称为断裂强度记为σf; 两者之间有经验关系:σf = σb (1+ψ);脆性材料的抗拉强度就是断裂强度;对于塑性材料,于出现颈缩两者并不相等。裂纹扩展受哪些因素支配?答:裂纹形核前均需有塑性变形;位错运动受阻,在一定条件下便会形成裂纹。2222222222222222222222222222222222 2222222222222222222222222222222222 2222 试综合比较单向拉伸、压缩、弯曲及扭转试验的特点和应用范围。答:单向拉伸试验的特点及应用:单向拉伸的应力状态较硬,一般用于塑性变形

midas截面几何性质计算

下面我们来讲一下预制梁的横向力分布系数计算 从上面我能看出常见的预制梁包括板梁、小箱梁、T梁 跨中横向力分布系数: 对于板梁和小箱梁由于横向联系比较薄弱,所以采用铰接板梁法 对于T梁有横隔板比较多,认为是刚接,所以采用刚接板梁法 梁端横向力分布系数: 通常采用杠杆法 下面就讲一下30米简支转连续T梁横向力分布系数计算: 主梁横断面见附件 桥博计算横向力分布系数计算需要输入的数据见附件 包括主梁宽、抗弯、抗扭、左板长、左板惯矩、右板长、右板惯矩、主梁跨度 G/E等 首先计算主梁的抗弯抗扭惯矩(中梁、边梁断面尺寸见附件,梁高200cm) 中梁: ==================================================== = MIDAS SPC TEXT OUTPUT FILE = = (Tue Jun 17 20:45:16 2008) = = - - = ==================================================== ==================================================== UNIT: KN . M ==================================================== ==================================================== * Section-P1 (PLANE) ==================================================== * A : * Asx : * Asy : * Ixx : 抗弯惯矩 * Iyy : 0. * Ixy : * J : 抗扭惯矩---------------------------------------------------- * (+)Cx : * (-)Cx : * (+)Cy :

常用材料力学性能.

常用材料性质参数 材料的性质与制造工艺、化学成份、内部缺陷、使用温度、受载历史、服役时间、试件尺寸等因素有关。本附录给出的材料性能参数只是典型范围值。用于实际工程分析或工程设计时,请咨询材料制造商或供应商。 除非特别说明,本附录给出的弹性模量、屈服强度均指拉伸时的值。 表 1 材料的弹性模量、泊松比、密度和热膨胀系数 材料名称弹性模量E GPa 泊松比V 密度 kg/m3 热膨胀系数a 1G6/C 铝合金-79 黄铜 青铜 铸铁 混凝土(压 普通增强轻质17-31 2300 2400 1100-1800

7-14 铜及其合金玻璃 镁合金镍合金( 蒙乃尔铜镍 塑料 尼龙聚乙烯 2.1-3.4 0.7-1.4 0.4 0.4 880-1100 960-1400 70-140 140-290 岩石(压 花岗岩、大理石、石英石石灰石、沙石40-100 20-70 0.2-0.3 0.2-0.3 2600-2900 2000-2900 5-9 橡胶130-200 沙、土壤、砂砾钢

高强钢不锈钢结构钢190-210 0.27-0.30 7850 10-18 14 17 12 钛合金钨木材(弯曲 杉木橡木松木11-13 11-12 11-14 480-560 640-720 560-640 1 表 2 材料的力学性能 材料名称/牌号屈服强度s CT MPa 抗拉强度b CT

MPa 伸长率 5 % 备注 铝合金LY12 35-500 274 100-550 412 1-45 19 硬铝 黄铜青铜 铸铁( 拉伸HT150 HT250 120-290 69-480 150 250 0-1 铸铁( 压缩混凝土(压缩铜及其合金 玻璃

任务七平面图形的几何性质

任务七 平面图形的几何性质 一、填空题 1. 图示B H ?的矩形中挖掉一个b h ?的矩形,则此平面图形的 z W =( 23 66z BH bh W H = - )。 2. 对图示矩形,若已知x I 、y I 、b 、h ,则 11x y I I +=( 1122()/12y z y z I I I I bh b h +=+=+ )。 3. 任意平面图形至少有( 1 )对形心主惯性轴,等边三角形有( 无穷多 )对形心主惯性轴。 4.在边长为2a 的正方形的中心部挖去一个边长为a 的 正方形,则该图形对y 轴的惯性矩为( 45 4 a )。 5.图形对所有平行轴的惯性矩中,图形对形心轴的惯性矩为( 最小 )。 6.对直径为d 的圆形截面,它的惯性半径为( i=d/4 )。 二、选择题 1.在下列关于平面图形的结论中,( D )是错误的。 A.图形的对称轴必定通过形心; B.图形两个对称轴的交点必为形心; C.图形对对称轴的静矩为零; D.使静矩为零的轴为对称轴。 2.在平面图形的几何性质中,( D )的值可正、可负、也可为零。 A.静矩和惯性矩 B.极惯性矩和惯性矩 C.惯性矩和惯性积 D.静矩和惯性积。 3.设矩形对其一对称轴z 的惯性矩为I ,则当其长宽比保持不变。而面积增加1倍时,该矩形对z 的惯性矩将变为( D )。 A. 2I B. 4I C. 8I D. 16I 4.若截面图形有对称轴,则该图形对其对称轴的( A )。 A.静矩为零,惯性矩不为零 B.静矩不为零,惯性矩为零 C.静矩和惯性矩均为零 D.静矩和惯性矩均不为零 5.若截面有一个对称轴,则下列说法中( D )是错误的。 A. 截面对对称轴的静矩为零; B. 对称轴两侧的两部分截面,对对称轴的惯性矩相等; C. 截面对包含对称轴的正交坐标系的惯性积一定为零; D. 截面对包含对称轴的正交坐标系的惯性积不一定为零。 6.任意图形,若对某一对正交坐标轴的惯性积为零,则这一对坐标轴一定是该图形的( B )。 B b h H C z a 2 a y z

材料力学大作业-组合截面几何性质计算

Harbin Institute of Technology 材料力学电算大作业 课程名称:材料力学 设计题目:组合截面几何性质计算 作者院系: 作者班级: 作者姓名: 作者学号: 指导教师: 完成时间:

一、软件主要功能 X4,X5,X6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置X与面积的乘积 Y4,Y5,Y6分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面的形心位置Y与面积的乘积 Xc,Yc是总截面的形心坐标 Ix1,Ix2,Ix3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x轴平行的轴的惯性矩 Iy1,Iy2,Iy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与y轴平行的轴的惯性矩 Ixy1,Ixy2,Ixy3分别是n1个圆形截面,n2个圆环形截面,n3个矩形截面对通过形心且与x,y轴平行的两轴的惯性积 a是通过形心的主轴与x轴的夹角 Imax,Imin分别是截面对形心主轴的主惯性矩 软件截图: 二、程序源代码 Dim n1 As Double Dim d1(10) As Double Dim X1(10) As Double Dim Y1(10) As Double Dim n2 As Double Dim d2(10) As Double

Dim d3(10) As Double Dim X2(10) As Double Dim Y2(10) As Double Dim n3 As Double Dim h(10) As Double Dim d(10) As Double Dim X3(10) As Double Dim Y3(10) As Double Dim S1 As Double, S2 As Double, S3 As Double Dim X4 As Double, Y4 As Double, X5 As Double, Y5 As Double, X6 As Double, Y6 As Double Dim Xc As Double, Yc As Double Dim Ix1 As Double, Iy1 As Double, Ix2 As Double, Iy2 As Double, Ix3 As Double, Iy3 As Double, Imax As Double, Imin As Double Dim Ixy1 As Double, Ixy2 As Double, Ixy3 As Double Dim a As Double Private Sub Text1_Change() n1 = Val(Text1.Text) For i = 1 To n1 d1(i) = Val(InputBox("输入第" & (i) & "个圆的直径")) X1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y1(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n1 S1 = S1 + 3.14159 * d1(i) * d1(i) / 4 X4 = X4 + X1(i) * 3.14159 * d1(i) * d1(i) / 4 Y4 = Y4 + Y1(i) * 3.14159 * d1(i) * d1(i) / 4 Next i End Sub Private Sub Text2_Change() n2 = Val(Text2.Text) For i = 1 To n2 d2(i) = Val(InputBox("输入第" & (i) & "个圆环的外径")) d3(i) = Val(InputBox("输入第" & (i) & "个圆环的内径")) X2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的x坐标值")) Y2(i) = Val(InputBox("输入第" & (i) & "个圆的圆心的y坐标值")) Next i For i = 1 To n2 S2 = S2 + 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 X5 = X5 + X2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Y5 = Y5 + Y2(i) * 3.14159 * (d2(i) * d2(i) - d3(i) * d3(i)) / 4 Next i End Sub Private Sub Text3_Change()

材料力学性能考试答案

《工程材料力学性能》课后答案 机械工业出版社 2008第2版 第一章 单向静拉伸力学性能 1、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 2、 决定金属屈服强度的因素有哪些?【P12】 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。 外在因素:温度、应变速率和应力状态。 3、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险?【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 4、 剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同?【P23】 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 5、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 6、 论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论的局限性。 【P32】 答: 212?? ? ??=a E s c πγσ,只适用于脆性固体,也就是只适用于那些裂纹尖端塑性变形可以忽略的情况。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1)应力状态软性系数—— 材料或工件所承受的最大切应力τmax 和最大正应力σmax 比值,即: () 32131max max 5.02σσσσσστα+--== 【新书P39 旧书P46】 (2)缺口效应—— 绝大多数机件的横截面都不是均匀而无变化的光滑体,往往存在截面的急剧变化,如键槽、油孔、轴肩、螺纹、退刀槽及焊缝等,这种截面变化的部分可视为“缺口”,由于缺口的存在,在载荷作用下缺口截面上的应力状态将发生变化,产生所谓的缺口效应。【P44 P53】 (3)缺口敏感度——缺口试样的抗拉强度σbn 的与等截面尺寸光滑试样的抗拉强度σb 的比值,称为缺口敏感度,即: 【P47 P55 】 (4)布氏硬度——用钢球或硬质合金球作为压头,采用单位面积所承受的试验力计算而得的硬度。【P49 P58】 (5)洛氏硬度——采用金刚石圆锥体或小淬火钢球作压头,以测量压痕深度所表示的硬度【P51 P60】。 (6)维氏硬度——以两相对面夹角为136。的金刚石四棱锥作压头,采用单位面积所承

材料的力学性能

材料的力学性能 mechanical properties of materials 主要是指材料的宏观性能,如弹性性能、塑性性能、硬度、抗冲击性能等。它们是设计各种工程结构时选用材料的主要依据。各种工程材料的力学性能是按照有关标准规定的方法和程序,用相应的试验设备和仪器测出的。表征材料力学性能的各种参量同材料的化学组成、晶体点阵、晶粒大小、外力特性(静力、动力、冲击力等)、温度、加工方式等一系列内、外因素有关。材料的各种力学性能分述如下: 弹性性能材料在外力作用下发生变形,如果外力不超过某个限度,在外力卸除后恢复原状。材料的这种性能称为弹性。外力卸除后即可消失的变形,称为弹性变形。表示材料在静载荷、常温下弹性性能的一些主要参量可以通过拉伸试验进行测定。 拉伸试样常制成圆截面(图1之a)或矩形截面(图1之b)棒体,l为标距,d为圆形试样的直径,h和t分别为矩形截面试样的宽度和厚度,图中截面形状用阴影表示,面积记为A。长度和横向尺寸的比例关系也有如下规定:对于圆形截面试样,规定l=10d或l=5d;对于矩形截 面试样,按照面积换算规定或者。试样两端的粗大部分用以和材料试验 机的夹头相连接。试验结果通常绘制成拉伸图或应力-应变图。图2为低碳钢的拉伸图,横坐标表示试样的伸长量Δl(或应变ε=Δl/l),纵坐标表示载荷P(或应力σ=P/A)。图中的曲线从原点到点p为直线,pe段为曲线,载荷不大于点e所对应的值时,卸载后试样可恢复原状。反映材料弹性性质的参量有比例极限、弹性极限、弹性模量、剪切弹性模量和泊松比等。 比例极限应力和应变成正比例关系的最大应力称为比例极限,即图中点p所对应的应力,以σp表示。在应力低于σp的情况下,应力和应变保持正比例关系的规律叫胡克定律。载荷超过点p对应的值后,拉伸曲线开始偏离直线。 弹性极限试样卸载后能恢复原状的最大应力称为弹性极限,即图中点e所对应的应力,以σe表示。若在应力超出σe后卸载,试样中将出现残余变形。比例极限和弹性极限的测试值敏感地受测试精度的影响,并不易测准,所以在有关标准中规定,对于拉伸曲线的直线部分产生规定偏离量(用切线斜率的偏差表示)的应力作为"规定比例极限"。对于弹性

材料力学截面的几何性质答案

~ 15-1(I-8) 试求图示三角形截面对通过顶点A并平行于底边BC的轴的惯性矩。 解:已知三角形截面对以BC边为轴的惯性矩是,利用平行轴定理,可求得截面对形心轴的惯性矩 所以 再次应用平行轴定理,得 返回 ) 15-2(I-9) 试求图示的半圆形截面对于轴的惯性矩,其中轴与半圆形的底边平行,相距1 m。

解:知半圆形截面对其底边的惯性矩是,用 平行轴定理得截面对形心轴的惯性矩 再用平行轴定理,得截面对轴的惯性矩 / 返回 15-3(I-10) 试求图示组合截面对于形心轴的惯性矩。 解:由于三圆直径相等,并两两相切。它们的圆心构成一个边长为的等边三角形。该等边三角形的形心就是组合截面的形心,因此下面两个圆的圆心,到形心轴的距离是 上面一个圆的圆心到轴的距离是。 利用平行轴定理,得组合截面对轴的惯性矩如下: {

返回 15-4(I-11) 试求图示各组合截面对其对称轴的惯性矩。 解:(a)22a号工字钢对其对称轴的惯性矩是。 利用平行轴定理得组合截面对轴的惯性矩 (b)等边角钢的截面积是,其形心距外边缘的距离是 mm,求得组合截面对轴的惯性矩如下: : 返回 15-5(I-12) 试求习题I-3a图所示截面对其水平形心轴的惯性矩。关于形心位置,可利用该题的结果。 解:形心轴位置及几何尺寸如图 所示。惯性矩计算如下:

返回 15-6(I-14) 在直径的圆截面中,开了一个的矩形孔,如图所 示,试求截面对其水平形心轴和竖直形心轴的惯性矩 和。 解:先求形心主轴的位置 ! 即 返回 15-7(I-16) 图示由两个20a号槽钢组成的组合截面,若欲使截面对两对称轴的惯性矩和相等,则两槽钢的间距应为多少 ( 解:20a号槽钢截面对其自身的形心轴、的惯性矩是,;横截面积为;槽钢背到其形心轴的距离是。

材料力学性能-第2版课后习题答案

第一章单向静拉伸力学性能 1、 解释下列名词。 2. 滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落 后于应力的现象。 3?循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4?包申格效应: 金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规 定残余伸长应力降低的 现象。 11. 韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆 性断裂,这种现象称 为韧脆转变 2、 说明下列力学性能指标的意义。 答:E 弹性模量G 切变模量 r 规定残余伸长应力 0.2屈服强度 gt 金属材料拉伸时最大应力下的总伸长率 n 应 变硬化指数 【P15】 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但 是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏 感。【P4】 4、 现有4 5、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可 降低成本,提高生产效率。 5、 试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 【P21】 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程 中不断地消耗能量;而脆性断裂是突然发生的断裂, 断裂前基本上不发生塑性变形, 没有明显征兆,因而危害性很大。 6、 何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形 态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。 7、 板材宏观脆性断口的主要特征是什么?如何寻找断裂源? 断口平齐而光亮,常呈放射状或结晶状,板状矩形拉伸试样断口中的人字纹花样的放射方向也 与裂纹扩展方向平行,其尖端指向裂纹源。 第二章 金属在其他静载荷下的力学性能 一、解释下列名词: (1 )应力状态软性系数—— 材料或工件所承受的最大切应力T max 和最大正应力(T max 比值,即: (3)缺口敏感度一一缺口试样的抗拉强度 T bn 的与等截面尺寸光滑试样的抗拉强度 T b 的比值,称为缺口敏感度,即:【P47 P55】 max 1 3 max 2 1 0.5 2 3 【新书P39旧书P46】

材料力学性能课后习题答案

材料力学性能课后答案(整理版) 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等决定金属屈服强度的因素有哪些? 答:内在因素:金属本性及晶格类型、晶粒大小和亚结构、溶质元素、第二相。外在因素:温度、应变速率和应力状态。 2、试述韧性断裂与脆性断裂的区别。为什么脆性断裂最危险? 答:韧性断裂是金属材料断裂前产生明显的宏观塑性变形的断裂,这种断裂有一个缓慢的撕裂过程,在裂纹扩展过程中不断地消耗能量;而脆性断裂是突然发生的断裂,断裂前基本上不发生塑性变形,没有明显征兆,因而危害性很大。 3、剪切断裂与解理断裂都是穿晶断裂,为什么断裂性质完全不同? 答:剪切断裂是在切应力作用下沿滑移面分离而造成的滑移面分离,一般是韧性断裂,而解理断裂是在正应力作用以极快的速率沿一定晶体学平面产生的穿晶断裂,解理断裂通常是脆性断裂。 4、何谓拉伸断口三要素?影响宏观拉伸断口性态的因素有哪些? 答:宏观断口呈杯锥形,由纤维区、放射区和剪切唇三个区域组成,即所谓的断口特征三要素。上述断口三区域的形态、大小和相对位置,因试样形状、尺寸和金属材料的性能以及试验温度、加载速率和受力状态不同而变化。5、论述格雷菲斯裂纹理论分析问题的思路,推导格雷菲斯方程,并指出该理论 的局限性。

midas截面几何性质计算2

看大家对横向力分布系数计算疑惑颇多,特在这里做一期横向力分布系数计算教程(本教程讲的比较粗浅,适用于新手)。 总的来说,横向力分布系数计算归结为两大类(对于新手能够遇到的): 1、预制梁(板梁、T梁、箱梁) 这一类也可分为简支梁和简支转连续 2、现浇梁(主要是箱梁) 首先我们来讲一下现浇箱梁(上次lee_2007兄弟问了,所以先讲这个吧) 在计算之前,请大家先看一下截面 这是一个单箱三室跨径27+34+27米的连续梁,梁高1.55米,桥宽12.95米!! 支点采用计算方法为为偏压法(刚性横梁法) mi=P/n±P×e×ai/(∑ai x ai) 跨中采用计算方法为修正偏压法(大家注意两者的公式,只不过多了一个β) mi=P/n±P×e×ai×β/(∑ai x ai) β---抗扭修正系数β=1/(1+L^2×G×∑It/(12×E×∑ai^2 Ii) 其中:∑It---全截面抗扭惯距 Ii ---主梁抗弯惯距Ii=K Ii` K为抗弯刚度修正系数,见后 L---计算跨径 G---剪切模量G=0.4E 旧规范为0.43E P---外荷载之合力 e---P对桥轴线的偏心距 ai--主梁I至桥轴线的距离 在计算β值的时候,用到了上次课程https://www.wendangku.net/doc/3f11793551.html,/thread-54712-1-1.html 我们讲到的计算截面几何性质中的抗弯惯矩和抗扭惯矩,可以采用midas计算抗弯和抗扭,也可以采用桥博计算抗弯, 或者采用简化截面计算界面的抗扭,下面就介绍一下这种大箱梁是如何简化截面的: 简化后箱梁高度按边肋中线处截面高度(1.55m)计算,悬臂比拟为等厚度板。 ①矩形部分(不计中肋): 计算公式:It1=4×b^2×h1^2/(2×h/t+b/t1+b/t2) 其中:t,t1,t2为各板厚度

平面图形的几何性质

附录A 平面图形的几何性质 附录A 平面图形的几何性质 §A-1 引言 不同受力形式下杆件的应力和变形,不仅取决于外力的大小以及杆件的尺寸,而且与杆件截面的几何性质有关。当研究杆件的应力、变形,以及研究失效问题时,都要涉及到与截面形状和尺寸有关的几何量。这些几何量包括:形心、静矩、惯性矩、惯性半径、极惯性短、惯性积、主轴等,统称为“平面图形的几何性质”。 研究上述这些几何性质时,完全不考虑研究对象的物理和力学因素,作为纯几何问题加以处理。

§A-2 静矩、形心及相互关系 任意平面几何图形如图A-1所示。在其上取面积微元dA, 该微元在Oxy坐标系中的坐标为x、y。定义下列积分: (A-1) 分别称为图形对于x轴和y轴的截面一次矩或静矩,其单 位为。 如果将dA视为垂直于图形平面的力,则ydA和zdA分别 为dA对于z轴和y轴的力矩; 和 则分别为dA对 z轴和y轴之矩。图A-1图形的静矩与形心图形几何形状的中心称为形心,若将面积视为垂直于图形平面的力,则形心即为合力的作用点。 设 、 为形心坐标,则根据合力之矩定理 (A-2) 或 (A-3) 这就是图形形心坐标与静矩之间的关系。 根据上述定义可以看出: 1.静矩与坐标轴有关,同一平面图形对于不同的坐标轴有不同的静矩。对某些坐标轴静矩为正;对另外某些坐标轴为负;对于通过形心的坐标轴,图形对其静矩等于零。 2.如果已经计算出静矩,就可以确定形心的位置;反之,如果已知形心位置,则可计算图形的静矩。 实际计算中,对于简单的、规则的图形,其形心位置可以直接判断。例如矩形、正方形、圆形、正三角形等的形心位置是显而易见的。对于组合图形,则先将其分解为若干个简单图形(可以直接确定形心位置的图形);然后由式(A-2)分别计算它们对于给定坐标轴的静矩,并求其代数和;再利用式(A-3),即可得组合图形的形心坐标。即 : (A-4)

《材料力学》i截面的几何性质习题解

附录I 截面的几何性质 习题解 [习题I-1] 试求图示各截面的阴影线面积对x 轴的静积。 (a ) 解:)(24000)1020()2040(3 mm y A S c x =+??=?= (b ) 解:)(422502 65 )6520(3mm y A S c x =??=?= (c ) 解:)(280000)10150()20100(3 mm y A S c x =-??=?= (d ) 解:)(520000)20150()40100(3 mm y A S c x =-??=?= [习题I-2] 试积分方法求图示半圆形截面对x 轴的静矩,并确定其形心的坐标。 解:用两条半径线和两个同心圆截出一微分面积如图所示。 dx xd dA ?=)(θ;微分面积的纵坐标:θsin x y =;微分面积对x 轴的静矩为: θθθθθdxd x x dx xd y dx xd y dA dS x ?=??=??=?=sin sin )(2 半圆对x 轴的静矩为:

3 2)]0cos (cos [3]cos []3[sin 3300300 2 r r x d dx x S r r x =--?=-?=?=?? πθθθπ π 因为c x y A S ?=,所以c y r r ??=232132π π 34r y c = [习题I-3] 试确定图示各图形的形心位置。 (a ) 解: 习题I-3(a): 求门形截面的形心位置 矩形 L i B i Ai Y ci AiYci Yc 离顶边 上 400 2 8000 160 1280000 左 150 2 3000 7 5 225000 右 150 2 0 3000 7 5 225000 14000 1730000 Ai=Li*Bi Yc=∑AiYci/∑Ai (b) 解: 习题I-3(b): 求L 形截面的形心位置 矩形 L i B i Ai Y ci AiYc i Y c X ci AiX ci X c 下 1 60 10 160 5 8000 8 128 000

材料力学性能

第一章 一.静载拉伸实验 拉伸试样一般为光滑圆柱试样或板状试样。 若采用光滑圆柱试样,试样工作长度(标长)l0 =5d0 或l0 =10d0,d0 为原始直径。 二.工程应力:载荷除以试件的原始截面积。σ=F/A0 工程应变:伸长量除以原始标距长度。ε=ΔL/L0 低碳钢的变形过程:弹性变形、不均匀屈服塑性变形(屈服)、均匀塑性变形(明显塑性变形)、不均匀集中塑性变形、断裂。 三.低碳钢拉伸力学性能 1.弹性阶段(Ob) (1)直线段(Oa): 线弹性阶段,E=σ/ε(弹性模量,比例常数) σp—比例极限 (2)非直线段(ab): 非线弹性阶段 σe—弹性极限 2. 屈服阶段(bc) 屈服现象:当应力超过b点后,应力不再增加,但应变继续增加,此现象称为屈服。 σs—屈服强度(下屈服点),屈服强度为重要的强度指标。 3.强化阶段(ce) 材料抵抗变形的能力又继续增加,即随试件继续变形,外力也必须增大,此现象称为材料强化。 σb—抗拉强度,材料断裂前能承受的最大应力 4.局部变形阶段(颈缩)(ef) 试件局部范围横向尺寸急剧缩小,称为颈缩。 四.主要力学性能指标 弹性极限(σe):弹性极限即指金属材料抵抗这一限度的外力的能力 屈服强度(σs):抵抗微量塑性变形的应力 五.铸铁拉伸力学性能 特点: (1)较低应力下被拉断 (2)无屈服,无颈缩 (3)延伸率低 (4)σb—强度极限 (5)抗压不抗拉 讨论1:σs 、σr0.2、σb都是机械设计和选材的重要论据。实际使用时怎么办? 塑性材料:σs 、σr0.2 脆性材料:σb 屈强比:σs /σb 讨论2:屈强比σs /σb有何意义? 屈强比s / b值越大,材料强度的有效利用率越高,但零件的安全可靠性降低。 六.弹性变形及其实质 定义:当外力去除后,能恢复到原来形状和尺寸的变形。 特点:单调、可逆、变形量很小(<0.5~1.0%)

截面几何性质计算

截面几何性质计算 计算过上部的人都知道,在计算横向力分布系数和冲击系数的时候都需要计算截面的抗弯惯距和抗扭惯距,下面就介绍几种方法来计算抗弯惯距和抗扭惯距(本教程拿30米简支转连续箱梁截面做样例): 一、在AUTOCAD中有一个命令massprop可以计算截面的面积、周长、质心、惯性矩 操作简介: 1、首先在CAD中画出如下图的图形; 2、用region命令将图形转化成内外两个区域; 3、用subtract命令求内外区域的差集; 4、用move命令将图形移动至(0,0,0),用scale命令将图形单位调整为米; 5、用massprop命令计算截面性质(可惜这个命令不能计算抗扭惯距) Command: mas MASSPROP Select objects: 1 found Select objects: ---------------- REGIONS ---------------- Area(面积): 1.2739 Perimeter(周长): 13.7034 Bounding box(边缘): X: -1.7000 -- 1.7000 Y: 0.0000 -- 1.6000 Centroid(质心): X: 0.0000 Y: 1.0458 Moments of inertia: X: 1.7883 Y: 0.7922 Product of inertia: XY: 0.0000 Radii of gyration: X: 1.1848 Y: 0.7886 Principal moments and X-Y directions about centroid: I: 0.3950 along [1.0000 0.0000]这就是惯距 J: 0.7922 along [0.0000 1.0000] 2008-6-6 23:10

材料力学性能

填空 1-1、金属弹性变形是一种“可逆性变形”,它是金属晶格中原子自平衡位置产生“可逆位移”的反映。 1-2、弹性模量即等于弹性应力,即弹性模量是产生“100%”弹性变形所需的应力。 1-3、弹性比功表示金属材料吸收“弹性变形功”的能力。 1-4、金属材料常见的塑性变形方式主要为“滑移”和“孪生”。 1-5、滑移面和滑移方向的组合称为“滑移系”。 1-6、影响屈服强度的外在因素有“温度”、“应变速率”和“应力状态”。 1-7、应变硬化是“位错增殖”、“运动受阻”所致。 1-8、缩颈是“应变硬化”与“截面减小”共同作用的结果。 1-9、金属材料断裂前所产生的塑性变形由“均匀塑性变形”和“集中塑性变形”两部分构成。 1-10、金属材料常用的塑性指标为“断后伸长率”和“断面收缩率”。 1-11、韧度是度量材料韧性的力学指标,又分为“静力韧度”、“冲击韧度”、“断裂韧度”。1-12、机件的三种主要失效形式分别为“磨损”、“腐蚀”和“断裂”。 1-13、断口特征三要素为“纤维区”、“放射区”、“剪切唇”。 1-14、微孔聚集断裂过程包括“微孔成核”、“长大”、“聚合”,直至断裂。 1-15、决定材料强度的最基本因素是“原子间结合力” 2-1、金属材料在静载荷下失效的主要形式为“塑性变形”和“断裂”。 2-2、扭转试验测定的主要性能指标有“切变模量”、“扭转屈服点ηs”、“抗扭强度ηb”。2-3、缺口试样拉伸试验分为“轴向拉伸”、“偏斜拉伸”。 2-5、压入法硬度试验分为“布氏硬度”、“洛氏硬度”和“维氏硬度”。 2-7、洛氏硬度的表示方法为“硬度值”、符号“HR”、和“标尺字母”。 3-1、冲击载荷与静载荷的主要区别是“加载速率不同”。 3-2、金属材料的韧性指标是“韧脆转变温度tk 4-1、裂纹扩展的基本形式为“张开型”、“滑开型”和“撕开型”。 4-2、机件最危险的一种失效形式为“断裂”,尤其是“脆性断裂”极易造成安全事故和经济损失。 4-3、裂纹失稳扩展脆断的断裂K判据:KI≥KIC 4-4、断裂G判据:GI≥GIC 。 4-7、断裂J判据:JI≥JIC 5-1、变动应力可分为“规则周期变动应力”和“无规则随机变动应力”两种。 5-2、规则周期变动应力也称循环应力,循环应力的波形有“正弦波”、“矩形波”和“三角形波”。 5-4、典型疲劳断口具有三个形貌不同的区域,分别为“疲劳源”、“疲劳区”和“瞬断区”。5-6、疲劳断裂应力判据:对称应力循环下:ζ≥ζ-1 。非对称应力循环下:ζ≥ζr 5-7、疲劳过程是由“裂纹萌生”、“亚稳扩展”及最后“失稳扩展”所组成的。 5-8、宏观疲劳裂纹是由微观裂纹的“形成”、“长大”及“连接”而成的。 5-10、疲劳微观裂纹都是由不均匀的“局部滑移”和“显微开裂”引起的。 5-11、疲劳断裂一般是从机件表面“应力集中处”或“材料缺陷处”开始的,或是从二者结合处发生的。”。 6-1、产生应力腐蚀的三个条件为“应力”、“化学介质”和“金属材料”。 6-2、应力腐蚀断裂最基本的机理是“滑移溶解理论”和“氢脆理论”。 6-5、防止氢脆的三个方面为“环境因素”、“力学因素”及“材质因素”。 7-4、脆性材料冲蚀磨损是“裂纹形成”与“快速扩展”的过程。

材料力学第六版答案第07章

习 题 7-1 用积分法求图示各悬臂梁自由端的挠度和转角,梁的抗弯刚度EI 为常量。 7-1 (a ) 0M()M x = '' 0EJ M y ∴= '0EJ M y x C =+ 201 EJ M 2 y x Cx D = ++ 边界条件: 0x =时 0y = ;' 0y = 代入上面方程可求得:C=D=0 201M 2EJ y x ∴= '01=M EJ y x θ= 01=M EJ B l θ 201=M 2EJ B y l (b )22 2()1M()222q l x qx x ql qlx -==-+- 2'' 21EJ 22qx y ql qlx ∴=-+- 3'22 11EJ 226qx y ql x qlx C =-+-+ 4 22311EJ 4624 qx y ql x qlx Cx D =-+-++ 边界条件:0x = 时 0y = ;' 0y = 代入上面方程可求得:C=D=0 4 223111()EJ 4624qx y ql x qlx ∴=-+- '2231111 =(-)EJ 226y ql x qlx qx θ=+- 3-1=6EJ B ql θ 4 -1=8EJ B y ql (c )

()()() ()()0303 ''04 '05 0()1()()286EJ 6EJ 24EJ 120l x q x q l q l x M x q x l x l x l q y l x l q y l x C l q y l x Cx D l -= -?? =--=-- ? ??∴=-=--+=-++ 边界条件:0x = 时 0y = ;' 0y = 代入上面方程可求得:4024q l C l -= 5 0120q l D l = () 45 5 0002 32230120EJ 24EJ 120EJ (10105)120EJ q q l q l y l x x l l l q x l l lx x l ∴=---+-=-+- 3024EJ B q l θ=- 4 030EJ B q l y =- (d) '''223()EJ 1EJ 211 EJ 26 M x Pa Px y Pa Px y Pax Px C y Pax Px Cx D =-=-=-+=-++ 边界条件:0x = 时 0y = ;' 0y = 代入上面方程可求得:C=D=0 2 3'23 2 3 2 1 112611253262B C C B y Pax Px EJ y Pax Px EJ Pa Pa Pa y y a a EJ EJ EJ Pa EJ θθθ??∴= - ??? ?? ==- ???=+=+== g g

相关文档