文档库 最新最全的文档下载
当前位置:文档库 › 关于主成分分析的进一步探讨_钱道翠

关于主成分分析的进一步探讨_钱道翠

关于主成分分析的进一步探讨_钱道翠
关于主成分分析的进一步探讨_钱道翠

关于主成分分析的进一步探讨

钱道翠

(嘉兴学院信息工程学院,浙江嘉兴314001)

摘 要:该文在文献[1]、[2]的基础上进一步讨论了主成分分析的统计思想和数学推导,分析了做主成分分析前对数据进行预处理的必要性并对数据的预处理方法进行了研究。

关键词:主成分分析;综合评价;特征向量。 中图分类号:O 212

Abstract :In th is paper ,the statistical theo ry and m athem atical inference of p rinci pal component analysis are discussed on the basis of literature [1]and [2].T he necessity of p re 2p rocessing data befo re p rinci pal component analysis and the m ethod are been emphasized .

Key words :p rinci pal component analysis ;comp rehensive evaluati on ;characteristic vecto r . CLC :O 212

文献标识码:A . 文章编号:1671-3079(2002)03-0066-(03)

0 引 言

在文献[1]、[2]中都曾就主成分分析中的若干问题作过深入的研究,在文献[1]中曾讨论了因相关阵或协方差阵2的特征向量的取法不同,导致了不同的分析结果。在他们的讨论中,对于特征

方程(Κi I -2)x =0的特征根Κi ,单根Κi 只有一个线性无关的特征向量,而重根可能有多个线性无关的特征向量,因为2是半正定矩阵,则对任意的n i 重根Κi 有rank (Κi I -2)=n -n i ,与Κi 对应的任意n i 个线性无关的特征向量都是(Κi I -2)x =0的解向量组的极大无关组,因而(Κi I -2)x =0的解向量组的极大无关组即基础解系不只一个,这就导致求出的主成分将会不同。这是否会影响分析结果?笔者认为:主成分分析在进行综合评价时,目的是对不同量纲的各指标信息进行综合排序,每个样本点对于不同的特征向量获得的主成分的具体得分虽然不同,但对这些样本点按该主成分值的排序作为经济效益的综合比较并没有受到太大的影响。下面就主成分分析的原理及其在实际应用中应注意的问题作一探讨。1 主成分分析的原理1.1 统计思想

设有p 个指标,x 1,x 2,…,x p 的n 个样本数据组成的矩阵X =(x ij )n ×p ,如何找到x 1,x 2,…,x p 的

k (k

,i =1,2,…,k ,来综合反映各样本点的p 个指

标x 1,x 2,…,x p 的所含的全部信息。1.2 数学推导

将上述问题的x 1,x 2,…,x p 看成随机变量,其协方差矩阵2=(Τij )p ×p =(cov (x i ,x j ))非负定,现在寻求a T =(a 1,a 2,…,a p )使得函数变量y =a T x 的方差va r (y )=va r (a T x )=a T 2a 达到最大,且‖a ‖2=1(否则,无实际意义)。这是一个条件极值问题:m ax va r (y )=a T T a =1

?66? 嘉兴学院学报Journal of J iaxing Co llege 第14卷第3期2002年5月V o l .14N o.32002.5 

用拉格朗日乘数法F (a )=a T 2a -Κ(a T

a -1),令5F (a )

5a =22a -2Κa =0

5F (a )5Κ

=a T

a -1=0得2a =Κa a T a =1,可见,

a 是2的长度为1的特征向量。此时m ax va r (y )=a T a =a T Κa =Κa T

a =Κ。另外,当a T x 综合x 1,x 2,…,x p 的能力不强时,需进一步讨论协方差矩阵2的特征向量:当求出非负定矩阵2的特征根Κ1ΕΚ2Ε…ΕΚp Ε0,并计算出使累积贡献率2k

i =1

Κi 2p

i =1

Κi Ε85?的k 值

。这样得到k 个主成分,为使主成分y i =a T

i

x 与y j =a T j

x 互不包含综合信息,即cov (a T i x ,a T j x )=a T i 2a j =Κj a T i a j =0,则要求

a T

i a j =0,即a i 与a j 正则。所以,为了满足主成分分析的要求,求出2的特征向量a 1,a 2,…,a k ,

(k

1)样本资料X =(x ij )n ×p 2δ=S =(s ij )p ×p ,s ij =

1

n

2n l =1

(x il -x θi )(x j l -x θj ), x θj =1n

2n

i =1

x ij ,j =

1,2,…,p ;

2)求S 的特征根Κ1ΕΚ2Ε…ΕΚp Ε0及相应的特征向量a 1,a 2,…,a p ;3)求使累积贡献率大于等于85?的k ,并将a 1,a 2,…,a k 单位化、正则化。从而达到降维的效

果,k 越小,降维的效果越明显。1.4 综合评价指标p c

P R I N 1=a T

1x =

2p

j =1

a 1j x j ,…,P R IN k =a T k

x =2p

j =1

a k j x j

p c =

Κ1

2p

i =1

Κi

P R IN 1+…+

Κk

2p

i =1

Κi

P R IN k

从第k 个主成分P R IN k =a T k x =2p

j =1

a k j x j 可以看出,若重根Κk 的特征向量a T

k 取法不同时,第

k 个主成分的表达式不一样,按不同的表达式计算出的主成分的得分也不一样,但在做经济效益综

合评价时是选同一标准将各个体的各经济指标进行综合排序的。因为,选哪一个特征向量构造主成分还要考虑实际经济指标的具体含义,考虑实际经济指标之间的联系,所以,尽管重根Κk 可以求出不同特征向量a T k ,但同一经济现象不会存在不同的第k 个主成分去合理解释,主成分分析在进行综合评价时,目的是对不同量纲的各指标信息进行的一种综合排序,每个样本点对于不同的特征向量获得的主成分的具体得分虽然不同,但对这些样本点按该主成分值的排序并没有太大的影响。表1 两名同学成绩表

科目

原始分数全体考生成绩无量纲化结果甲乙均值标准差

甲乙

线性代数微积分

西方经济学

毛泽东思想概论V FP

企业管理学

概率论

64768080677863

58678985638759

60688582607957

6898.2594

66.677054.4457.567458.89

75

56.6758.7564.4463.666668.89

65

2 实际应用中注意的问题:数据的预处理2.1 数据的无量纲化处理

数据的无量纲化处理的必要性:在进行综合评价时,所选样本的指标往往具有不可加性,如全员劳动生产率、总产值利税率等等。即使有些指标具有可加性,也不能直接相加,因为结果不切实际,如在对某班级同学

的学习效果进行分析时,各门功课的成绩是一种分数,本身没有单位,而且都是百分制的,因此不必要无量纲化,直接相加,求总分即可。事实上,这种看法是有误解的。由于不同科目试题的难易程度、份量不一定相同,成绩是不同质的,其分

?

76?钱道翠:关于主成分分析的进一步探讨

数“含金量”并不同,因而不能直接相加。

例如:从某班的50名同学的成绩中抽出两名同学的各门课成绩就可说明上述问题(见表1)。两名同学的原始分数都是508分,是否可以说他们的学习就一样好呢?还要看各门课全班同学的平

均分x θ及标准差s ,将其成绩无量纲化y i =60+(x i -x θ)×100 10s 后再作比较,甲、乙的评价分数总和分别为456.56、443.41,这样,各科成绩都以60分为中心的分布,才具有可比性。因此,应该说甲的成绩比乙的好。2.2 对数据作均值化处理

样本数据X =(x ij )n ×p ,原始数据记为x ij ,处理后的数据记为z ij ,z ij =x ij x j ,x θj =1n

2n i =1

x ij ,j =

1,2,…,p ,这样处理后的z i 与z j 的协方差为:

u ij =

1

n

2n l =1

(z li -z

λi )(z lj -z λj )=1n

2n

l =1

(z li -1)(z lj -1)=s ij

x i x j

,r ij =s ij s ii s j j

,r ′ij =

u ij u ii u j j

这里,r ij =r ′ij 。

事实上,r ′ij =

s ij x i x j

s ii x i x i

s j j x j x j

=

s ij s ii s j j

=r ij 。

均值化处理不仅消除了指标量纲与数量级的影响,还能包含原始数据的全部信息,使均值化后

的数据不改变原始变量的相关性,克服了“标准化”数据提出主成分时“忽略变量的差异”这个缺陷。因为标准化后的数据的方差都为1。另外,“标准化”处理原始数据后,使协方差矩阵变为相关系数矩阵,相关系数矩阵只能反映指标间的“线性”相关程度,而原始数据与主成分之间存在的非线性关系不能反映出来,因为y =

a T

x ,y 是x 的线性函数,因此,这里对均值化后的z ij 作“对数中心化”处理,使均值化后的数据z ij 的

主成分是x 的非线性函数。2.3 数据的“对数中心化”

z ij =lnx ij -1p

2p

t =1

lnx it ,再对处理后的数据z ij 进行主成分分析,则第i 个主成分F i =2p

j =1

a ij lnx ij ,

其中a ij 为特征值Κi 对应的特征向量a i 的分量,比如成分数据x i Ε0,2p

i =1

x i =1,当x i 变动时,其他

的x j 就会受到影响,使原始数据内部存在负相关,经过“对数中心化”后得到的新指标z 1,z 2,…,z p 是线性无关的,这样更易于表现出它们内部的真实关系,且F i 是x 的非线性函数。

总之,在实际应用中,以什么矩阵求主成分要由我们最大限度地吸取什么信息所决定:或是各指标的相关信息,或是样本点的聚集信息。当原始数据的相关性很弱时,直接进行主成分分析综合的效果较差,不能反映原始指标的大量信息,甚至得出此问题不适合主成分分析的决定,应对数据进行处理或在主成分分析的基础上进行因子旋转。参考文献:

[1]阎慈琳.关于主成分分析做综合评价的若干问题[J ].数理统计与管理,1998,(2).[2]黄 宁.关于主成分分析应用的思考[J ].数理统计与管理,1999,(5).

[3]张崇甫,陈述云.成分数据主成分分析及其应用[J ].数理统计与管理,1996,(3).[4]胡永宏,贺思辉.综合评价方法[M ].北京:科学出版社,2000.

收稿日期:2001211207 作者简介:钱道翠(1966-),女,湖北随州人,嘉兴学院信息工程学院。

(责任编辑 丁火)

?

86? 嘉兴学院学报 第14卷第3期

主成分分析(论文)

高校人文社科科研综合实力评价研究 摘要

一、问题重述 高校人文社科科研综合实力评价研究 根据所给数据,并搜集更多相关数据,回答下面的问题 1.研究数据之间的内在关系; 2.设计几种方案对各省市科研实力进行综合评价并进行分类,论证方法的合 理性,给出合适的建议 二、条件假设 (1)假设高校人文社科科研指标在一定程度上会反映高校的人文社科科研综合实力 (2)假设资料所提供数据准确有效

三、符号约定x—同一葡萄酒样品的平均值 _

四、问题分析 3.主成分分析法 建立模型:基于主成分分析法研究高校人文社科科研综合实力 影响高校人文社科科研综合实力的成分有很多,例如投入的人年数,投入科研事业经费,课题总数等等。常用于研究各变量对结果影响因素的方法有多元回归分析、主成分分析、因子分析、回归分类树等。每种算法各有各的特点,本文尝试选取主成分分析法。 主成分分析:PCA 是将多指标重新组合成一组新的无相关的几个综合指标,是根据实际需要从中选取尽可能少的综合指标,以达到尽可能多地反应原指标信息的分析方法。由于这种方法的第一主成分在所有的原始变量中方差最大,因而综合评价函数的方差总不会超过第一主成分的方差,所以该方法有一定的缺陷。 (1)题中共给影响高校人文社科科研综合能力的7种因素,分别是投入人年数、投入高级职称的人年数、投入科研事业费、课题总数等。设各影响因素为 p 2,1,...,x x x ,它们的综合指标——主成分设为:p ,,...,,21

主成分分析原理及详解

第14章主成分分析 1 概述 1.1 基本概念 1.1.1 定义 主成分分析是根据原始变量之间的相互关系,寻找一组由原变量组成、而彼此不相关的综合变量,从而浓缩原始数据信息、简化数据结构、压缩数据规模的一种统计方法。 1.1.2 举例 为什么叫主成分,下面通过一个例子来说明。 假定有N 个儿童的两个指标x1与x2,如身高和体重。x1与x2有显著的相关性。当N较大时,N观测量在平面上形成椭圆形的散点分布图,每一个坐标点即为个体x1与x2的取值,如果把通过该椭圆形的长轴取作新坐标轴的横轴Z1,在此轴的原点取一条垂直于Z1的直线定为新坐标轴的Z2,于是这N个点在新坐标轴上的坐标位置发生了改变;同时这N个点的性质也发生了改变,他们之间的关系不再是相关的。很明显,在新坐标上Z1与N个点分布的长轴一致,反映了N个观测量个体间离差的大部分信息,若Z1反映了原始数据信息的80%,则Z2只反映总信息的20%。这样新指标Z1称为原指标的第 358

一主成分,Z2称为原指标的第二主成分。所以如果要研究N个对象的变异,可以只考虑Z1这一个指标代替原来的两个指标(x1与x2),这种做法符合PCA提出的基本要求,即减少指标的个数,又不损失或少损失原来指标提供的信息。 1.1.3 函数公式 通过数学的方法可以求出Z1和Z2与x1与x2之间的关系。 Z1=l11x1+ l12x2 Z2=l21x1+ l22x2 即新指标Z1和Z2是原指标x1与x2的线性函数。在统计学上称为第一主成分和第二主成分。 若原变量有3个,且彼此相关,则N个对象在3维空间成椭圆球分布,见图14-1。 通过旋转和改变原点(坐标0点),就可以得到第一主成分、第二主成分和第三主成分。如果第二主成分和第三主成分与第一主成高度相关,或者说第二主成分和第三主成分相对于第一主成分来说变异很小,即N个对象在新坐标的三维空间分布成一长杆状时,则只需用一个综合指标便能反映原始数据中3个变量的基本特征。 359

SPSS因子分析和主成分分析论文

基于因子分析的我国经济发展状况实证分析 摘要:选取了2013年我国31个省、直辖市、自治区经济发展的10项指标作为研究对象,运用因子分析的方法,利用spss对数据进行计算,依据因子分析的结果对我国各省的经济发展做出综合评价,得出了这31各省份经济发展状况的综合排名,广东、江苏、山东、浙江、北京排在前5位,是中国各省、直辖市、自治区沿海经济发展较好的地区;甘肃、海南、青海、宁夏、西藏排在后5位,是西部地区经济发展较落后的地区,较为客观反映了中国各省、直辖市、自治区的综合经济实力,为中国各省、直辖市、自治区今后的经济发展提供了理论依据。 关键词:经济发展;因子分析;综合评价;主成分法 一、引言 我国地域辽阔,由于历史、地理位置及经济基础等原因,各地经济发展水平差异很大。改革开放以来,特别是实施西部大开发、振兴东北地区等老工业基地、促进中部地区崛起、鼓励东部地区率先发展的区域发展总体战略以来,各地经济社会发展水平有了很大提高,人民生活也有了很大改善。但区域发展不协调、发展差距拉大的趋势仍未根本改变。本文从我国31 个省市自治区经济的发展视角入手,运用对应分析方法对我国各地区经济发展状况进行统计分析,用以说明我国各地区经济发展不协调的现状。由于衡量各地区经济发展的指标有很多,故选取了比较有代表性的十个指标。 二、相关统计指标与数据的选取 本文运用了因子分析的方法对我国31个省、直辖市、自治区的经济发展状况进行评价。选取了10项经济指标:第一产业增加值(X1);第二产业增加值(X2);第三产业增加值(X3);地方财政预算收入(X4);地方财政预算支出(X5);固定资产投资额(X6);社会消费品零售总额(X7);货物进出口总额(X8);在岗职工平均工资(X9);城乡居民储蓄年末余额(X10)。X2,X3,X4 反映的是经济总量中构成三大产业的不同增加值;X5,X6 反映的是地方财政预算收支;X7 反映的是居民的购买能力;X8反映的是对外贸易;X9,X10反映的是居民的收入与储蓄。本文数据资料来源于《中国统计年鉴》(2013年),具体数据资料见表1。 表1 各地区经济发展状况(2013) 地区X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 北京11.63 293.03 1316.50 3661.11 4173.66 6847.06 8375.10 4289.96 93997.00 23086.41 天津16.85 612.86 846.57 2079.07 2549.21 9130.25 4470.43 1285.02 68864.00 7612.31

股票投资选择中的主成分分析毕业论文

目录 中文摘要、关键词 (1) 英文摘要、关键词 (1) 正文 (2) 一、引言 (2) 二、上市公司财务指标的选择 (2) 三、财务指标的主成分处理 (4) 四、构造上市公司综合评价指数 (5) 五、实例分析 (6) 六、结果分析 (9) 参考文献 (13) 附表 (14) 股票投资选择中的主成分分析 摘要:股票市场变化莫测,股票价格涨跌无常。如何从众多的上市公司中选择具有投资价值的股票进行投资,进而获得丰厚的投资回报,是许多投资者梦寐以求的一件事。本文运用多元统计分析中的主成分分析方法,通过对上市公司的多个财务指标变量进行主成分处理,构造了上市公司的综合评价指数模型,从而为投资者选择提供一种投资参考。

关键字:主成分分析,股票投资,股票选择 Abstract: The stock market is unpredictable, the rising and dropping of stock prices are variable. How to choose stock with a high investment value from numerous listed companies and then obtaining rich investment repayment are important matters for many investors. This paper utilizes the principal components analysis method of multi-dimensional statistical analysis. By using principal component method to process a number of listed companies financial indicators, it construct a comprehensive evaluation index model of listed companies, thus provide some valuable references for investors. Key worlds: principal components analysis,Stock Investment,Stock options 一、引言 随着我国市场经济的进一步发展,证券投资已成为企业与个人投资的热点,而证券投资是收益与风险并存的一大投资方向。在众多上市公司中,如何选择行业股票,是股票投资者的热门话题,而在同一行业上市公司中,也是良莠不齐,投资者应该用综合的眼光分析上市公司的财务状况和发展潜力,才能选择收益大而风险小的上市公司进行投资。 然而多数投资者并不具备对上市公司进行综合定量分析的能力和方法,而只能从每股收益、每股净资产及净资产收益率三项指标进行简单对比。有些系统分析者采用模糊评判的方法对上市公司的多项指标进行综合分析,但模糊综合评判法的最大缺陷是指标权重的确定问题,指标权重的确定尚未有公认的标准,而简单可行的各种主观确定指标权重的方法难免给问题的分析带来一定的偏差,使决策结果的可信度降低。 对于这类经济决策问题,单纯地运用统计分析又难于达到决策的目的,为此,我们将统计分析与多指标决策结合起来,首先运用多元统计分析中的主成分分析

主成分分析法的原理应用及计算步骤..

一、概述 在处理信息时,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠,例如,高校科研状况评价中的立项课题数与项目经费、经费支出等之间会存在较高的相关性;学生综合评价研究中的专业基础课成绩与专业课成绩、获奖学金次数等之间也会存在较高的相关性。而变量之间信息的高度重叠和高度相关会给统计方法的应用带来许多障碍。 为了解决这些问题,最简单和最直接的解决方案是削减变量的个数,但这必然又会导致信息丢失和信息不完整等问题的产生。为此,人们希望探索一种更为有效的解决方法,它既能大大减少参与数据建模的变量个数,同时也不会造成信息的大量丢失。主成分分析正式这样一种能够有效降低变量维数,并已得到广泛应用的分析方法。 主成分分析以最少的信息丢失为前提,将众多的原有变量综合成较少几个综合指标,通常综合指标(主成分)有以下几个特点: ↓主成分个数远远少于原有变量的个数 原有变量综合成少数几个因子之后,因子将可以替代原有变量参与数据建模,这将大大减少分析过程中的计算工作量。 ↓主成分能够反映原有变量的绝大部分信息 因子并不是原有变量的简单取舍,而是原有变量重组后的结果,因此不会造成原有变量信息的大量丢失,并能够代表原有变量的绝大部分信息。 ↓主成分之间应该互不相关 通过主成分分析得出的新的综合指标(主成分)之间互不相关,因子参与数据建模能够有效地解决变量信息重叠、多重共线性等给分析应用带来的诸多问题。 ↓主成分具有命名解释性 总之,主成分分析法是研究如何以最少的信息丢失将众多原有变量浓缩成少数几个因子,如何使因子具有一定的命名解释性的多元统计分析方法。 二、基本原理 主成分分析是数学上对数据降维的一种方法。其基本思想是设法将原来众多的具有一定相关性的指标X1,X2,…,XP (比如p 个指标),重新组合成一组较少个数的互不相关的综合指标Fm 来代替原来指标。那么综合指标应该如何去提取,使其既能最大程度的反映原变量Xp 所代表的信息,又能保证新指标之间保持相互无关(信息不重叠)。 设F1表示原变量的第一个线性组合所形成的主成分指标,即 11112121...p p F a X a X a X =+++,由数学知识可知,每一个主成分所提取的信息量可 用其方差来度量,其方差Var(F1)越大,表示F1包含的信息越多。常常希望第一主成分F1所含的信息量最大,因此在所有的线性组合中选取的F1应该是X1,X2,…,XP 的所有线性组合中方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来p 个指标的信息,再考虑选取第二个主成分指标F2,为有效地反映原信息,F1已有的信息就不需要再出现在F2中,即F2与F1要保持独立、不相关,用数学语言表达就是其协方差Cov(F1, F2)=0,所以F2是与F1不

主成分分析原理

主成分分析原理 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ?? ? ? ? ? ? ??=np n n p p x x x x x x x x x X 2 1 22221 11211 ()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1, 21=???? ?? ? ??= 主成分分析就是将 p 个观测变量综合成为p 个新的变量(综合变量),即 ?? ???? ?+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

主成分分析论文

利用主成分分析对江苏省沿江地区物流产业发展的综合评价 【摘要】现代物流的发展程度已经逐渐成为衡量一个区域或国家现代化程度和综合竞争力的重要标志之一。物流产业的实质体现为技术密集和劳动密集相结合,是具有第三产业特征的跨地区、跨行业、跨部门特点的产业形式。物流产业对经济增长,特别是区域经济增长和区域产业协作的推动,都有着不可替代的重大意义,在区域经济、产业布局研究过程中,都不能忽视物流产业在其中的基础保障作用。本文在构建江苏省沿江地区物流产业发展综合指标体系的基础上,运用多元统计分析中的主成分分析方法,对江苏省沿江地区20个地市的物流发展现状进行了综合评价,为江苏省各地市物流产业主管部门制定相应政策提供一定的理论依据,旨在提高江苏省沿江地区整体物流发展水平。 【关键词】主成分分析物流产业综合评价 一.研究背景 经济的快速增长对物流业产生了巨大的需求,促使物流业以及与物流相关的交通运输、仓储配送和邮电通信业等都有较快的发展。同时,作为经济增长的“加速器”物流业的快速发展将会改变国民经济增长方式,降低国民经济的运行成本,促进了经济的可持续发展。物流对于经济增长的影响以及物流业与经济增长之间的关系已经成为物流领域的一个研究重点。本文拟从主成分分析的角度出发,以江苏省数据为例来探讨哪些因素是物流发展的主要因素,对江苏省物流产业发展现状进行综合评价,从而为江苏省乃至全国的物流产业的发展提供一定的启示。 二.主成分分析方法介绍 主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。假定有n个地理样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的数据矩阵: 如何从这么多变量的数据中抓住主要的变量指标呢?要解决这一问题,自然要在p维空间中加以考察,这是比较麻烦的。为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。那么,这些综合指标(即新变量)应如何选取呢?显然,其最简单的形式就是取原来变量指标的线性组合,适当调整组合系数,使新的变量指标之间相互独立且代表性最好。 如果记原来的变量指标为x1,x2,…,xp,它们的综合指标——新变量指标为x1,x2,…,zm(m≤p)。则 在(2)式中,系数lij由下列原则来决定: (1)zi与zj(i≠j;i,j=1,2,…,m)相互无关;

主成分分析法的步骤和原理 (1)

(一)主成分分析法的基本思想 主成分分析(Principal Component Analysis )是利用降维的思想,将多个变量转化为少数几个综合变量(即主成分),其中每个主成分都是原始变量的线性组合,各主成分之间互不相关,从而这些主成分能够反映始变量的绝大部分信息,且所含的信息互不重叠。[2] 采用这种方法可以克服单一的财务指标不能真实反映公司的财务情况的缺点,引进多方面的财务指标,但又将复杂因素归结为几个主成分,使得复杂问题得以简化,同时得到更为科学、准确的财务信息。 (二)主成分分析法代数模型 假设用p 个变量来描述研究对象,分别用X 1,X 2…X p 来表示,这p 个变量构成的p 维随机向量为X=(X 1,X 2…X p )t 。设随机向量X 的均值为μ,协方差矩阵为Σ。对X 进行线性变化,考虑原始变量的线性组合: Z 1=μ11X 1+μ12X 2+…μ1p X p Z 2=μ21X 1+μ22X 2+…μ2p X p …… …… …… Z p =μp1X 1+μp2X 2+…μpp X p 主成分是不相关的线性组合Z 1,Z 2……Z p ,并且Z 1是X 1,X 2…X p 的线性组合中方差最大者,Z 2是与Z 1不相关的线性组合中方差最大者,…,Z p 是与Z 1,Z 2 ……Z p-1都不相关的线性组合中方差最大者。 (三)主成分分析法基本步骤 第一步:设估计样本数为n ,选取的财务指标数为p ,则由估计样本的原始数据可得矩阵X=(x ij )m ×p ,其中x ij 表示第i 家上市公司的第j 项财务指标数据。 第二步:为了消除各项财务指标之间在量纲化和数量级上的差别,对指标数据进行标准化,得到标准化矩阵(系统自动生成)。 第三步:根据标准化数据矩阵建立协方差矩阵R ,是反映标准化后的数据之间相关关系密切程度的统计指标,值越大,说明有必要对数据进行主成分分析。其中,R ij (i ,j=1,2,…,p )为原始变量X i 与X j 的相关系数。R 为实对称矩阵 (即R ij =R ji ),只需计算其上三角元素或下三角元素即可,其计算公式为: 2211)()() ()(j kj n k i kj j kj n k i kj ij X X X X X X X X R -=--=-=∑∑ 第四步:根据协方差矩阵R 求出特征值、主成分贡献率和累计方差贡献率,确定主成分个数。解特征方程0=-R E λ,求出特征值λi (i=1,2,…,p )。 因为R 是正定矩阵,所以其特征值λi 都为正数,将其按大小顺序排列,即λ1≥λ2≥…≥λi ≥0。特征值是各主成分的方差,它的大小反映了各个主成分的影响力。主成分Z i 的贡献率W i =∑=p j j j 1λλ,累计贡献率为

spss主成分分析报告

实用标准文档 实验目的:原始数据中每一所高校具有20个相关性很高的变量,利用主成分分析法用较少的变量去解释原来资料中的大部分变异,将手中的众多变量转化成彼此相互独立或不相关的个数较少的变量,即所谓主成分,并用以解释资料的综合性指标,其实质的目的是降维 原始数据截屏: 操作方法: 1.描述性统计 SPS浙调用因子分析过程进行分析时,SPS泊自动对原始数据进行标准化处理, 所以在得到计算结果后指的变量都是指经过标准化处理后的变量,但SPSS¥会直接给出标准化后的数据,然后后期的计算需得到标准化数据,则需调用“描述” 过程进行计算,为了看到标准化数据,所以采用描述性统计下的描述操作获得标准化后的变量数据标准化数据: 文案大全

F|Em畦拇主引M±貌被丁救师中悝十 学待比出漏仔=与姑既K 7-巾式= 科研卷■暑 [生均同京 1^6979937S1? 4T121* 75377-1 979Q0-1 (JB6D9』asciDj-1 391 Bl母W84.B39EI3 2-G9799-91 M2 -1 5U?3D-75372970W-W02-1 060 Dd.1 230313083? 7BCHB 3-69799-SOTM -1 11367-69TT21317196933-7?D5戒主1辖■2S879-&D3B A-.69/991_2?042 -.38931-F5372-2.15TO1-US-1H1.S09B??1/12319>.58750 1.167T9 S-J6?/99-1.1208a -冷/m-.67&J2 -./Z330-1_2倾斗-1-23330.41? 07-1.16156.弓询」-.35303 -翘为9-J20H -邳15-.7201;-72J30-段皿-1.040072J屹尚tai574??9地183 7-^799-如了N TW427537? -72330」024?3-.118D9的迁-6970604683 H?979?醐鸵d J32D1C97+5 ^.723302CG0S? 1.662BB T.6T46Q 1 08^8153271成9 9.韵7 99 -.?6813 -T.06?D4.76372 723X 1 07262.69*24.30648-1.6MS41卫蜘24M2 10.65759-.76^87 .05220-.72012 "72330-14803"744.195B9■ .SW53■ 1.31233 11-6S799-.50022 -1.C204C-.72330-.?550-契H-.11005-1*319 1.05^2-539S3 12-02523 59C20-苍g "131761489473d B6?C46-1 19013-19537 r is68?4140664 2232Q-69772258?&-917J6359-777F1 1 84预? ?494? 14就41,1 睫354 W50T761?9fii* 1 392M3&q罪?73&*g4-5446T 因子分析操作过程: 选取变量: X1:科研经费得分 X2:国家人文社科重点研究基地得分 X3:院士总数得分 X4:生均图书得分 X5:研究中心数得分 X6:国家重点实验室得分 X7:生均教学科研仪器设备得分 X8 :生均教育事业经费得分 X9:精品课程得分 X10:优秀博士生论文总分 X11:人才得分 X12:二级学科建设得分 X13 :生均固定资产得分 X14:科研论文得分 X15:博导及相关合计得分 X16:教师中博士学位比重得分 X17: 一级学科得分 X18 :高级职称比重得分 X19:帅资总分 X20:SCI 数量

主成分分析及二次回归分析的

基于主成分分析及二次回归分析的城市生活垃圾热值建模 1. 引言 随着人们经济水平的提高、环保意识的增强、环保法规日益严格和国家垃圾处理产业化政策的实施,垃圾填埋处理的弊端将引起重视、运营费用将大大增加,而垃圾焚烧处理的优势将逐渐呈现出来并最终获得人们的认可。以城市生活垃圾为燃料而建立垃圾电站进行电力生产,很好的实现了生活垃圾的无害化、资源化利用。 而我国的城市生活垃圾成分复杂,用作为燃料时稳定性较差,因此分析垃圾的成分、计算垃圾的热值模型是垃圾焚烧发电的工艺设计和运营管理中必不可少的基础性工作。 因为我国不同地区人们生活习惯及生活条件差异较大,导致城市生活垃圾成分也存在很大的地域性差异,因此,本文以深圳市为例,对深圳市宝安区的生活垃圾采样数据进行分析,并建立其计算模型。 2. 回归分析及主成分分析理论 2.1. 回归分析 回归分析是一种应用极为广泛的数量分析方法。它用于分析事物之间的统计关系,通过回归方程的形式描述和反应这种关系。 2.2. 一般回归模型 如果变量与随机p 变量y 之间存在着相关关系,通常就意味着当x , x ....x 1 2 p x , x ....x取定值后y 便有相应的概率分布与之对应,其概率模型为: = ( , ... ) +e (2-1)1 2 p y f x x x其中p为称自变量,y 称为因变量,为自变量的确定性关系,ε表示x , x ....x 1 2 ( , .... ) 1 2 p f x x x随机误差。 2.3. 线性回归模型 回归模型分为线性回归模型和非线性回归模型,线性回归又有一元线性回归和多元线性回归之分。当变量之间的关系是线性关系的模型都称为线性回归模 型,否则就称之为非线性回归模型。当概率模型(2-1)中的回归函数为线性函数时,有: = b + b + b +e (2-2)p p y x ... x 0 1 1其中βi 是p+1 个未知参数,β0 称为回归常数,β1...βp 称为回归系数。 2.4. 主成分分析 上述的线性回归模型的应用前提是作为自变量的各指标之间相互独立,即不

主成分分析原理

第七章主成分分析 (一)教学目的 通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。 (二)基本要求 了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。 (三)教学要点 1、主成分分析基本思想,数学模型,几何解释 2、主成分分析的计算步骤及应用 (四)教学时数 3课时 (五)教学内容 1、主成分分析的原理及模型 2、主成分的导出及主成分分析步骤 在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。 第一节主成分分析的原理及模型 一、主成分分析的基本思想与数学模型 (一)主成分分析的基本思想 主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21=F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。 (二)主成分分析的数学模型 对于一个样本资料,观测p 个变量p x x x ,,21,n 个样品的数据资料阵为: ??????? ??=np n n p p x x x x x x x x x X 21 222 21112 11()p x x x ,,21= 其中:p j x x x x nj j j j ,2,1,21=?????? ? ??= 主成分分析就是将p 个观测变量综合成为p 个新的变量(综合变量),即 ???????+++=+++=+++=p pp p p p p p p p x a x a x a F x a x a x a F x a x a x a F 22112222121212121111 简写为: p jp j j j x x x F ααα+++= 2211 p j ,,2,1 = 要求模型满足以下条件:

主成分分析与因子分析的联系与区别

https://www.wendangku.net/doc/3912008777.html,/ysuncn/archive/2007/12/08/1924502.aspx 一、问题的提出 在科学研究或日常生活中,常常需要判断某一事物在同类事物中的好坏、优劣程度及其发展规律等问题。而影响事物的特征及其发展规律的因素(指标)是多方面的,因此,在对该事物进行研究时,为了能更全面、准确地反映出它的特征及其发展规律,就不应仅从单个指标或单方面去评价它,而应考虑到与其有关的多方面的因素,即研究中需要引入更多的与该事物有关系的变量,来对其进行综合分析和评价。多变量大样本资料无疑能给研究人员或决策者提供很多有价值的信息,但在分析处理多变量问题时,由于众变量之间往往存在一定的相关性,使得观测数据所反映的信息存在重叠现象。因此为了尽量避免信息重叠和减轻工作量,人们就往往希望能找出少数几个互不相关的综合变量来尽可能地反映原来数据所含有的绝大部分信息。而主成分分析和因子分析正是为解决此类问题而产生的多元统计分析方法。 近年来,这两种方法在社会经济问题研究中的应用越来越多,其应用范围也愈加广泛。因子分析是主成分分析的推广和发展,二者之间就势必有着许多共同之处,而SPSS软件不能直接进行主成分分析,致使一些应用者在使用SPSS进行这两种方法的分析时,常常会出现一些混淆性的错误,这难免会使人们对分析结果产生质疑。因此,有必要在运用SPSS分析时,将这两种方法加以严格区分,并针对实际问题选择正确的方法。 二、主成分分析与因子分析的联系与区别 两种方法的出发点都是变量的相关系数矩阵,在损失较少信息的前提下,把多个变量(这些变量之间要求存在较强的相关性,以保证能从原始变量中提取主成分)综合成少数几个综合变量来研究总体各方面信息的多元统计方法,且这少数几个综合变量所代表的信息不能重叠,即变量间不相关。 主要区别: 1. 主成分分析是通过变量变换把注意力集中在具有较大变差的那些主成分上,而舍弃那些变差小的主成分;因子分析是因子模型把注意力集中在少数不可观测的潜在变量(即公共因子)上,而舍弃特殊因子。 2. 主成分分析是将主成分表示为原观测变量的线性组合, (1) 主成分的个数i=原变量的个数p,其中j=1,2,…,p,是相关矩阵的特征值所对应的特征向量矩阵中的元素,是原始变量的标准化数据,均值为0,方差为1。其实质是p维空间的坐标变换,不改变原始数据的结构。 而因子分析则是对原观测变量分解成公共因子和特殊因子两部分。因子模型如式(2),

主成分分析法概念及例题.doc

主成分分析法 主成分分析(principal components analysis,PCA)又称:主分量分析,主成分回归分析法 [编辑] 什么是主成分分析法 主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 [编辑] 主成分分析的基本思想

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。主成分分析正是适应这一要求产生的,是解决这类题的理想工具。 同样,在科普效果评估的过程中也存在着这样的问题。科普效果是很难具体量化的。在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。如上所述,主成分分析法正是解决这一问题的理想工具。因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。这样,综合指标不仅保留了原始变量的主要信息,且彼此间不相关,又比原始变量具有某些更优越的性质,就使我们在研究复杂的科普效果评估问题时,容易抓住主要矛盾。上述想法可进一步概述为:设某科普效果评估要素涉及个指标,这指标构成的维随机向量为。对作正交变换,令,其中为正交阵,的各分量是不相关的,使得的各分量在某个评估要素中的作用容易解释,这就使得我们有可能从主分量中选择主要成分,削除对这一要素影响微弱的部分,通过对主分量的重点分析,达到对原始变量进行分析的目的。的各分量是原始变量线性组合,不同的分量表示原始变量之间不同的影响关系。由于这些基本关系很可能与特定的作用过程相联系,主成分分析使我们能从错综复杂的科普评估要素的众多指标中,找出一些主要成分,以便有效地利用大量统计数据,进行科普效果评估分析,使我们在研究科普效果评估问题中,可能得到深层次的一些启发,把科普效果评估研究引向深入。 例如,在对科普产品开发和利用这一要素的评估中,涉及科普创作人数百万人、科普作品发行量百万人、科普产业化(科普示范基地数百万人)等多项指标。经过主成分分析计算,最后确定个或个主成分作为综合评价科普产品利用和开发的综合指标,变量数减少,并达到一定的可信度,就容易进行科普效果的评估。 [编辑] 主成分分析法的基本原理 主成分分析法是一种降维的统计方法,它借助于一个正交变换,将其分量相关的原随机向量转化成其分量不相关的新随机向量,这在代数上表现为将原随机向量的协方差阵变换成对角形阵,在几何上表现为将原坐标系变换成新的正交坐标系,使之指向样本点散布最开的p 个正交方向,然后对多维变量系统进行降维处理,使之能以一个较高的精度转换成低维变量系统,再通过构造适当的价值函数,进一步把低维系统转化成一维系统。 [编辑] 主成分分析的主要作用

主成分分析和因子分析-回归分析和相关分析的区别

主成分分析和因子分析的区别 通过主成分分析所得来的新变量是原始变量的线性组合,每个主成分都是由原有P个变量线组合得到,在诸多主成分z中,Z1在总方差中占的比重最大,说明它综合原有变量的能力最强,其余主成分在总方差中占的比重依次递减,说明越往后的主成分综合原信息的能力越弱。以后的分析可以用前面几个方差最大的主成分来进行,一般情况下,要求前几个z 所包含的信息不少于原始信息的85%,这样既减少了变量的数目,又能够用较少的主成分反映原有变量的绝大部分信息。如利用主成分来消除多元回归方程的多重共线性,利用主成分来筛选多元线性回归方程中的变量等。 通过因子分析得来的新变量是对每一个原始变量进行内部剖析。打比喻来说,原始变量就如成千上万的糕点,每一种糕点的原料都有面粉、油、糖及相应的不同原料,这其中,面粉、油、糖是所有糕点的共同材料,这正好象是因子分析中的新变量即因子变量。正确选择因子变量后,如果想考虑成千上万糕点的物价变动,只需重点考虑面粉、油、糖等公共因子的物价变动即可。所以因子分析不是对原始变量的重新组合,而是对原始变量进行分解,分解为公共因子与特殊因子两部分。即因子分析就是要利用少数几个公共因子去解释较多个要观测变量中存在的复杂关系,它把原始变量分解为两部分因素,一部分是由所有变量共同具有的少数几个公共因子构成的,另一部分是每个原始变量独自具有的因素,即特殊因子。 1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成各个变量的线性组合。在主成分分析中,最终确定的新变量是原始变量的线性组合,如原始变量为x1,x2,. . . ,x3 ,经过坐标变换,将原有的p个相关变量xi 作线性变换,每个主成分都是由原有p 个变量线性组合得到。在诸多主成分Zi 中,Z1 在方差中占的比重最大,说明它综合原有变量的能力最强,越往后主成分在方差中的比重也小,综合原信息的能力越弱。 2、主成分分析的重点在于解释各变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不到的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。 和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这种区分不是绝对的。

(整理)(真正的好东西)偏最小二乘回归=多元线性回归分析+典型相关分析+主成分分析.

偏最小二乘回归是一种新型的多元统计数据分析方法,它与1983年由伍德和阿巴诺等人首次提出。近十年来,它在理论、方法和应用方面都得到了迅速的发展。密西根大学的弗耐尔教授称偏最小二乘回归为第二代回归分析方法。 偏最小二乘回归方法在统计应用中的重要性主要的有以下几个方面:(1)偏最小二乘回归是一种多因变量对多自变量的回归建模方法。 (2)偏最小二乘回归可以较好地解决许多以往用普通多元回归无法解决的问题。在普通多元线形回归的应用中,我们常受到许多限制。最典型的问题就是自变量之间的多重相关性。如果采用普通的最小二乘方法,这种变量多重相关性就会严重危害参数估计,扩大模型误差,并破坏模型的稳定性。变量多重相关问题十分复杂,长期以来在理论和方法上都未给出满意的答案,这一直困扰着从事实际系统分析的工作人员。在偏最小二乘回归中开辟了一种有效的技术途径,它利用对系统中的数据信息进行分解和筛选的方式,提取对因变量的解释性最强的综合变量,辨识系统中的信息与噪声,从而更好地克服变量多重相关性在系统建模中的不良作用。 (3)偏最小二乘回归之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 由于偏最小二乘回归在建模的同时实现了数据结构的简化,因此,可以在二维平面图上对多维数据的特性进行观察,这使得偏最小二乘回归分析的图形功能十分强大。在一次偏最小二乘回归分析计算后,不但可以得到多因变量对多自变量的回归模型,而且可以在平面图上直接观察两组变量之间的相关关系,以及观察样本点间的相似性结构。这种高维数据多个层面的可视见性,可以使数据系统的分析内容更加丰富,同时又可以对所建立的回归模型给予许多更详细深入的实际解释。 一、偏最小二乘回归的建模策略\原理\方法

一、主成分分析基本原理

一、主成分分析基本原理 概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。从数学角度来看,这是一种降维处理技术。 思路:一个研究对象,往往是多要素的复杂系统。变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。 原理:假定有n个样本,每个样本共有p个变量,构成一个n×p阶的数据矩阵, 记原变量指标为x 1,x 2 ,…,x p ,设它们降维处理后的综合指标,即新变量 为 z 1,z 2 ,z 3 ,…,z m (m≤p),则 系数l ij 的确定原则: ①z i 与z j (i≠j;i,j=1,2,…,m)相互无关; ②z 1是x 1 ,x 2 ,…,x P 的一切线性组合中方差最大者,z 2 是与z 1 不相关的x 1 ,x 2 ,…, x P 的所有线性组合中方差最大者; z m 是与z 1 ,z 2 ,……,z m-1 都不相关的x 1 , x 2, (x) P ,的所有线性组合中方差最大者。 新变量指标z 1 ,z 2 ,…,z m 分别称为原变量指标x 1 ,x 2 ,…,x P 的第1,第2,…, 第m主成分。 从以上的分析可以看出,主成分分析的实质就是确定原来变量x j (j=1, 2 ,…, p)在诸主成分z i (i=1,2,…,m)上的荷载 l ij ( i=1,2,…,m; j=1,2 ,…,p)。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? = np n n p p x x x x x x x x x X Λ M M M Λ Λ 2 1 2 22 21 1 12 11 ? ? ? ? ? ? ? + + + = + + + = + + + = p mp m m m p p p p x l x l x l z x l x l x l z x l x l x l z Λ Λ Λ 2 2 1 1 2 2 22 1 21 2 1 2 12 1 11 1 .. ..........

相关文档
相关文档 最新文档