文档库 最新最全的文档下载
当前位置:文档库 › 凃逍羽 用光学多道分析器研究氢原子光谱

凃逍羽 用光学多道分析器研究氢原子光谱

凃逍羽  用光学多道分析器研究氢原子光谱
凃逍羽  用光学多道分析器研究氢原子光谱

用光学多道分析器研究氢原子光谱

凃逍羽

武汉大学 物理科学与技术学院 物理学基地1班 学号:2011301020019

摘要:使用光学多道分析器测定氢原子巴尔末系中H αH βH γH δ波长,并利用所测的波长拟合计算出氢

原子的里德伯常量。

关键词:光学多道分析器 氢原子光谱 巴尔末系 里德伯常量

the Study of Hydrogen Atomic Spectrum with

Optical Multichannel Analyzer

Tu Xiaoyu

Wuhan University Physical science and technology academy Basic physicsclass 2011301020019 Abstract: By using the OMA, this article will measure out the wavelength of

H αH βH γH δ in the Balmer

spectrum, and work out the Rydberg constant of hydrogen atom by using the wavelength above.

Keywords: Optical Multichannel Analyzer, Hydrogen atom spectrum, Balmer spectrum, Rydberg constant

0.引言:

下图为氢原子的能级图.根据玻尔理论,氢原子的能级公式为:

(34-1)

式中称为约化质量,m e 为电子质量,M 为原子核质量.氢原子的等于1836.15。

电子从高能级跃迁到低能级时,发射的光子能量h ν为两能级间的能量差

如以波数

表示,则上式为

()()

()()E m E n T n T m hc

σ-=

=-

221

1H R n m ??=- ???

式中R H 称为氢原子的里德伯常数,单位是m -1

,T(n)称为光谱项,它与能级E(n)是对应的.从R H 可得氢原子各能级的能量

-

4

.-1

h=eV s m s c ?

?=

??

从能级图可知,从3≥m 至2n =的跃迁.光子波长位于可见光区.其光谱符合规律

这就是1885年巴耳末发现并总结的经验规律,称为巴耳末系

1. 实验原理:

由于H α线波长为656.28nm ,H δ波长为410.17nm ,波长间隔246nm 超过CCD 一帧159nm 范围,无法在同屏中观察到,故需分两次观察测量。第一次测量H βH γH δ三条线,第二次单独测量H α线。第一次测量使用汞灯的546.07nm (绿光)、435.84nm (蓝光)、404.66nm (紫光)三条谱线作为标准谱线手动定标;第二次用汞灯的546.07nm (绿光)、576.96nm (黄光)、579.07nm (黄光)及三条紫外光的二级光谱线312.567×2=625.13nm 、313.17×2=626.34nm 、334.17×2=668.34nm 来定标。

2. 实验步骤:

1) 将多色仪起始波长调到390nm ,入射狭

缝1S 宽度调为约0.1mm ,调节时注意不要将狭缝调得过窄以致难以将狭缝分开。

2) 以笔形汞灯作为光源,调节L 、S 与多

色仪共轴,并令光源S 成大像于入射狭缝处。此时在多色仪的观察屏上可观察到清晰明亮的水银谱线。

3) 转动4M 使光谱照到CCD

上,在软件界

面上观察谱线图像,若谱线无明显峰值,则应继续调节L、S与多色仪相对位置直至出现明显峰值,调节入射狭缝,使谱线变锐,设置合适的曝光时间、

平均次数、累加次数、最大最小值,截

图获得清晰尖锐的光谱图。

4)选择线性定标,用汞灯的三条标准光谱

线手动定标,使横坐标表示波长(nm)。

第一次定标(线性定标)

5)改用氢灯,转动

4

M,使谱线成像在观察屏P上,调节氢灯的位置,使谱线强

度最强

6)转动

4

M使光谱照到CCD上,将中心波长设定为460nm在软件界面上观察谱线

图像,若谱线无明显峰值,则应继续调

节L、S与多色仪相对位置直至出现明

显峰值,在定标后的图上使用寻峰功能

找到HβHγHδ三条线对应波长记录

7)将多色仪起始波长设定为650nm,选择

二次定标,用汞灯的三条标准谱线和紫

外光的三条二级谱线手动定标,使横坐

标表示波长(nm)。

第二次定标(二次定标)

8)改用氢灯,转动

4

M,使谱线成像在观察屏P上,调节氢灯的位置,使谱线强

度最强

9)转动

4

M使光谱照到CCD上,在软件界面上观察谱线图像,若谱线无明显峰

值,则应继续调节L、S与多色仪相对

位置直至出现明显峰值,在定标后的图

上使用寻峰功能找到Hα谱线对应波长

记录

3. 实验结果

H

β

H

γ

H

δ

三条线对应图中1,2,3号谱线

图中即为Hα谱线对应波长

以δ为纵坐标211

4m

-为横坐标经过Origin

拟合后 B

A

可见斜率即为里德伯常量

7H R =1.10214710?相对误差为0.435%

参考文献:周殿清主编.2009.基础物理实验 北京.科

原子吸收光谱实验报告

一、基本原理 1.原子吸收光谱的产生 众所周知,任何元素的原子都是由原子核和绕核运动的电子组成,原子核外电子按其能量的高低分层分布而形成不同的能级。因此,一个原子核可以具有多种能级状态。能量最低的能级状态称为基态能级(E 0=0),其余能级称为激发态能级,而能最低的激发态则称为第一激发态。正常情况下,原子处于基态,核外电子在各自能量最低的轨道上运动。如果将一定外界能量如光能提供给该基态原子,当外界光能量E 恰好等于该基态原子中基态和某一较高能级之间的能级差△E 时,该原子将吸收这一特征波长的光,外层电子由基态跃迁到相应的激发态,而产生原子吸收光谱。电子跃迁到较高能级以后处于激发态,但激发态电子是不稳定的,大约经过10-8秒以后,激发态电子将返回基态或其它较低能级,并将电子跃迁时所吸收的能量以光的形式释放出去,这个过程称原子发射光谱。可见原子吸收光谱过程吸收辐射能量,而原子发射光谱过程则释放辐射能量。核外电子从基态跃迁至第一激发态所吸收的谱线称为共振吸收线,简称共振线。电子从第一激发态返回基态时所发射的谱线称为第一共振发射线。由于基态与第一激发态之间的能级差最小,电子跃迁几率最大,故共振吸收线最易产生。对多数元素来讲,它是所有吸收线中最灵敏的,在原子吸收光谱分析中通常以共振线为吸收线。 2.原子吸收光谱分析原理 2.1谱线变宽及其原因 原子吸收光谱分析的波长区域在近紫外区。其分析原理是将光源辐射出的待测元素的特征光谱通过样品的蒸汽中被待测元素的基态原子吸收后,测定发射光谱被减弱的程度,进而求得样品中待测元素的含量,它符合吸收定律: ()0k l I I e νν-= (1.1) 0log 0.434I K l A I ν ν=-=- (1.2) 其中:K v 为一定频率的光吸收系数,K v 不是常数,而是与谱线频率或波长有关,I v 为透射光强度,I 0为发射光强度。

用光学多道分析器进行光谱定性分析实验讲义

用光学多通道分析器进行光谱定性分析 每种物质都有其独特的分子和原子结构、运动状态和相应的能级分布,物质运动状态变化时会形成该物质所特有的分子光谱或原子光谱,称特征光谱线。通过光谱观测获取物质内、外信息,就是光谱分析。 根据光谱形成的机理,光谱分析可分为发射光谱分析、吸收光谱分析、散射光谱分析、荧光光谱分析等几大类;从分析目的来看,可分为光谱定性分析、光谱半定量分析和光谱定量分析。本实验仅进行光谱定性分析。 实验目的 1.学习使用光学多道分析器; 2.学习光谱定性分析的实验方法; 3.利用氢光谱测量里德堡常数。 实验仪器 WGD—6型光学多道分析器,由光栅单色仪,CCD接收单元,扫描系统,电子放大器,A/D采集单元,计算机组成。该设备集光学、精密机械、电子学、计算机技术于一体。光学系统采用C-T型,如图1所示。 入射狭缝、出射狭缝均为直狭缝,宽度范围0-2mm连续可调,光源发出的光束进入入射狭缝S1,S1位于反射式准光镜M2的焦面上,通过S1射入的光束经M2反射成平行光束投向平面光栅G上,衍射后的平行光束经物镜M3成像在S2上。 M2、M3 焦距302.5mm 光栅G 每毫米刻线600条闪耀波长550nm S2 CCD接收单元S3观察窗 M4 转镜转动M4可实现S2和S3之间的转换 实验原理 1.单色仪简介 单色仪是用来从具有复杂光谱组成的光源中,或从连续光谱中分离出“单色光”的仪器。所谓“单色光”是指相对于光源的光谱形成而言,其波长范围极狭窄、以致可以认为只是单一波长的光。 世界各国生产了种种不同类型的单色仪,为了结构设计和使用方便,极大多数单色仪

都采用恒偏向系统,因而仪器的入射狭缝和出射狭缝都可安装在固定不变的位置,只要旋转色散棱镜、光栅或自准直反射镜即可实现波长调节,从出射狭缝射出不同波长的单色装束。 单色仪的基本性能指标 (1)工作波长范围 工作波长范围表明单色仪输出的、能满足工作要求的单色光束所能覆盖的波长范围。 (2)线色散率和光谱分辨率 与仪器配用的色散组件的角色散率与光谱聚焦物镜的焦距决定单色仪的线色散率,通常以线色散率倒数形式给出仪器的色散能力。在棱镜单色仪中,线色散率是随工作波长变化而有明显变化的,所以必须在给出线色散率数值时标明波长数值。 单色仪的光谱分辨率表明该仪器在较严格的工作条件、较窄的狭缝宽度时所能达到的最高分辨率。对于一般性能单色仪,常常不给出具体分辨率数值,而指明仪器可以清晰分辨开的某些元素光谱线(例如钠元素的D光双线);对于高分辨单色仪,则常需给出具体的可分辨波长间隔值。 (3)波长精度和重复性 这两个指针表明单色仪出射光束的真实波长值与仪器指示值之间的偏差,以及多次重复时的重现程度。 单色仪的波长精度和重复性由仪器的波长调节机构或波长扫描机构及波长示数机构的工作精度决定。波长重复性还受到机械传动空间、摩擦力、电子系统噪声等随机因素的影响。 在大多数单色仪中,仪器的波长精度值大致与其分辨率数值相近(但带±号,即容许双向偏差),而波长读数的重复性数值(取若干次重复测定中的最大偏差值)则等于波长精度的绝对值。 (4)杂散光 单色仪的杂散光是指出射光束中所需光谱宽度范围以外其它波长的光辐射量,这种不需要的“杂光”辐射混在所需波带的辐射中输出,不但使出射光束的单色性降低,而且形成光度测定工作中的背景光,降低检测信噪比,甚至“淹没”微弱的有用光辐射信号。 通常,以达到辐射探测器的“杂光”通量与选定的所需波长通量之比作为杂散光强度的度量,实用上以百分数表示。由于散射光强度与波长四次方成反比,所以单色仪的杂散光强度随工作波长范围不同而不同,因此给出杂散光强度时应同时标明波长值。 WGD—6型光学多道分析器规格与主要技术指标: 波长范围300—900nm 焦距 302.5mm 相对孔径 D/F=1/7 分辨率优于0.2nm 波长精度≤±0.4nm 波长重复性 ≤±0.2nm 杂散光 ≤10-3 CCD(电荷耦合器件)接收单元 2048 光谱响应区间 300—900nm 积分时间9档(每档53毫秒) 重量20kg 2.光谱定性分析 光谱定性分析是根据物质的光谱中是否存在某种元素的特征光谱线,以判断该物质中是否含有该元素。

氢原子光谱_实验报告

氢原子光谱 摘 要:本实验用光栅光谱仪对氢原子光谱进行测量,测得了氢原子光谱巴尔末线系的波长,求出了里德伯常数。最后对本实验进行了讨论。 关键词:氢原子光谱,里德伯常数,巴尔末线系,光栅光谱仪 1. 引言 光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学和量子力学的发展起过重要作用。1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。 2. 氢原子光谱 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 (1) 式中λH 为氢原子谱线在真空中的波长。 λ0=364.57nm是一经验常数。 n取3,4,5等整数。 若用波数表示,则上式变为 (2) 式中RH 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 (3) 式中M为原子核质量,m为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,ε0为真空 42 2 0-=n n H λλ??? ??-==22 1211~n R v H H H λ)/1()4(23202 42M m ch z me R z += πεπ

原子吸收实验报告

原子吸收光谱法 原子吸收光谱法是基于含待测组分的原子蒸汽对自己光源辐射出来的待测元素的特征谱线(或光波)的吸收作用来进行定量分析的。由于原子吸收分光光度计中所用空心阴极灯的专属性很强,所以,原子吸收分光光度法的选择性高,干扰较少且易克服。而且在一定的实验条件下,原子蒸汽中的基态原子数比激发态原子数多的多,故测定的是大部分的基态原子,这就使得该法测定的灵敏度较高。由此可见,原子吸收分光光度法是特效性、准确性和灵敏度都很好的一种金属元素定量分析法。 一.实验目的 1.熟悉原子吸收光度计的基本构造及使用方法。 2.掌握原子吸收光谱仪中的石墨炉原子化法和火焰原子化法。 二.实验原理 原子光谱是由于其价电子在不同能级间发生跃迁而产生的。当原子受到外界能量的激发时,根据能量的不同,其价电子会跃迁到不同的能级上。电子从基态跃迁到能量最低的第一激发态时要吸收一定的能量,同时由于其不稳定,会在很短的时间内跃迁回基态,并以光波的形式辐射现同样的能量。根据△E=hυ可知,各种元素的原子结构及其外层电子排布的不同,则核外电子从基态受激发而跃迁到其第一激发态所需要的能量也不同,同样,再跃迁回基态时所发射的光波频率即元素的共振线也就不同,所以,这种共振线就是所谓的元素的特征谱线。加之从基态跃迁到第一激发态的直接跃迁最易发生,因此,对于大多数的元素来说,共振线就是元素的灵敏线。在原子吸收分析中,就是利用处于基态的待测原子蒸汽对从光源辐射的共振线的吸收来进行的。 三火焰原子化器与石墨炉原子化器 原子化系统的作用是将待测试液中的元素转变成原子蒸汽。具体方法有火焰原子化法和无火焰原子化法两种,前者较为常用。

光学多道和氢氘同位素光谱

光学多道和氢氘同位素光谱 【摘要】: 本实验主要利用光学多道分析仪研究氢氘光谱并得到氢氘光谱的能级图。使用已知波长的氦光谱进行定标测量了氢光谱,并在此基础上测量氢氘同位素光谱,修正获得了氢氘光谱的波长值;利用这些测得值计算出了氢氘的里德伯常量分别为H R =109811.87cm -1,= 109840.39cm -1。利用氢氘光谱的波长差计算得出 了电子与质子质量之比为 =1906.84。 关键词: 光学多道分析仪、氢氘光谱,CCD ,光电倍增管 一、实验引言: 光谱是不同强度的电磁辐射按照波长的有序排列。光谱学是研究各种物质的光谱特征,并根据这些特征研究物质结构、物质成分和物质与电磁辐射的相互作用,以及光谱产生和测量方法的科学。 光谱学在物理学各分支学科中都占有重要地位,而且在很多方面有着广泛的应用。在光谱学史上,氢光谱的实验和理论研究都占有特别重要的地位。1885年,巴耳末(J.J.Balmer )发现了可见光区氢光谱线波长的规律。1892年,尤雷(H.C.Urey )等发现氢(H)的同位素氘(D)的光谱,氢氘原子对应的谱线波长存在“同位素位移”。 本实验利用光学多道分析仪,从巴尔末公式出发研究氢氘光谱,了解其谱线特点, 并学习光学多道仪的使用方法及基本的光谱学技术。 二、实验原理: (一、)在原子体系中,原子的能量状态是量子化的。用1E 和2E 表示不同能级的能量, ε表示跃迁发出光子的能量,h 表示波尔兹曼常量,ν表示光子的频率,对于原子从 低能级到高能级的跃迁我们有:

21h E E εν==-,其中21 E E h ν-= (1) 由于原子能级的分立,频率ν也为分立值,在分光仪上表现为一条条分立的“线性光谱”,这些频率由巴耳末公式确定: H 原子: 22121 11H H R n n λ?? =- ??? (2) 其中1n 和2n 为轨道量子数,H R 为氢原子的里德伯常数。当1n =2,2n =3,4,5……时,公式(2)对应氢原子巴耳末系。 同理,D 原子:22121 11D D R n n λ?? =- ??? (3) 其中1n =2,2n =3,4,5……时对应氘原子巴耳末系,D R 为氘原子的里德伯常数。 氢原子和氘原子巴耳末系对应的波长差为: 1 2211112H D H D R R n λλλ-???? ?=-=-- ? ?? ???,n =3,4,5……, (4) 其中p H p e m R R m m ∞ =+,22p D p e m R R m m ∞ =+,R ∞=109737.31cm -1 (5) 由公式(5)可得:1 122p e H p e D m m R m m R ??+= ? ?+? ? (6) 因此: 111 2e H D p e D m R R m m R -=+ (7) 有: 1 2211222e e D D p e p e m m R m m n m m λλ-?? ???= -= ???++? ??? (8) 由于p m >>e m ,所以: 2e D p m m λ λ?≈ (9) 测出对应谱线波长及波长差便可通过公式(9)计算出出电子和质子的质量比。 (二、)仪器

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告 班级:环科10-1 姓名:王强学号:27 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器 ~ mL及5 ~ 50 uL

2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长: nm 灯电流:3 mA 狭缝宽度: nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、 mL、 mL、 mL浓度为100 ng/mL的镉标准溶液,再各添加 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测定用。 取水样500 mL于烧杯中,加入5 mL浓硝酸溶液,加热浓缩后转移至50 mL 容量瓶,以Milli-Q去离子水稀释至刻度,摇匀,此待测水样供原子吸收测定用。3.吸光度的测定 设置好测定条件参数,待仪器稳定后,升温空烧石墨管,用微量分液器由稀到浓向石墨管中依次注入40 uL标准溶液及待测水样,测得各份溶液的吸光度。 五、数据记录:

原子吸收光谱实验报告

原子吸收光谱定量分析实验报告班级:环科10-1 姓名:王强学号:2010012127 一、实验目的: 1.了解石墨炉原子吸收分光光度计的使用方法。 2.了解石墨炉原子吸收分光光度计进样方法及技术关键。 3.学会以石墨炉原子吸收分光光度法进行元素定量分析的方法。 二、实验原理: 在原子吸收分光光度分析中,火焰原子吸收和石墨炉原子吸收是目前使用最多、应用范围最广的两种方法。相对而言,前者虽然具有振作简单、重现性好等优点而得到广泛应用,但该法由于雾化效率低、火焰的稀释作用降低了基态原子浓度、基态原子在火焰的原子化区停留时间短等因素限制了测定灵敏度的提高以及样品使用量大等方面的原因,对于来源困难、鹭或数量很少的试样及固态样品的直接分析,受到很大的限制。石墨炉原子化法由于很好地克服了上述不足,近年来得到迅速的发展。 石墨炉原子吸收方法是利用电能使石墨炉中的石墨管温度上升至2000 ~ 3000 ℃的高温,从而使待测试样完全蒸发、充分的原子化,并且基态原子在原子化区停留时间长,所以灵敏度要比火焰原子吸收方法高几个数量级。样品用量也少,仅 5 ~ 100 uL。还能直接分析固体样品。该方法的缺点是干扰较多、精密度不如火焰法好、仪器较昂贵、操作较复杂等。 本实验采用标准曲线法,待测水样品用微量分液器注入,经过干

燥、灰化、原子化等过程对样品中的痕量镉进行分析。 三、仪器和试剂: 1.仪器 由北京瑞利分析仪器公司生产的WFX-120型原子吸收分光光度计。 镉元素空心阴极灯 容量瓶 50 mL(5只)微量分液器0.5 ~ 2.5 mL及5 ~ 50 uL 2.试剂 100 ng/mL镉标准溶液(1%硝酸介质) 2 mol/L硝酸溶液 四、实验步骤: 1.测定条件 分析线波长:228.8 nm 灯电流:3 mA 狭缝宽度:0.2 nm 干燥温度、时间:100℃、15 s 灰化温度、时间:400℃、10 s 原子化温度、时间:2200℃、3 s 净化温度、时间:2200℃、2 s 保护气流量:100 mL/min 2.溶液的配制 取4只50 mL容量瓶,分别加入0 mL、0.125 mL、0.250 mL、0.500 mL浓度为100 ng/mL的镉标准溶液,再各添加2.5 mL硝酸溶液(2 mol/L),然后以Milli-Q去离子水稀释至刻度,摇匀,供原子吸收测

多道光谱仪测光谱并光谱分析实验报告

近代物理实验实验报告 实验课题:使用光学多道测量光谱与光谱分析 班级:物理学061 姓名:任军培 学号:06180130 指导老师:方允樟 2008年11月21日

一、摘要: 本实验通过使用光学多道测量光谱了解和学会使用光学多道分析仪,并学会了通过光学多道分析仪分析氢、氮、氦、氖等光谱。测量了氢光谱的巴尔末系中Hα、Hβ,Hγ,Hδ四种谱线的波长和里德伯常数。 二、关键词:光学多道分析器里德伯常数光谱 三、引言:常用的光谱涉及的波段从X射线,紫外线,可见光,红外线,微波到射频波段。所以光谱技术是研究物质微观结构的重要手段,它被广泛地应用于医学,生物,化学,地质考古,冶金等许多场所。光谱实验的数据为了解原子、分子和晶体等精细结构提供了重要依据。而光学多通道分析器是用平面光栅衍射的方法获得多级衍射光的仪器,用它可对给定波长范围的单色光进行光谱分析,与单缝,双缝衍射相比,平面光栅衍射具有衍射本领大,衍射光线亮,分辨率高等特点。因而在特征谱线分析中有着广泛的应用。本实验通过测量各种气体灯光的原子在可见光波段的发射光谱使大家了解光谱与微观结构(能级)间的联系和学习光谱测量的基本方法。 四、正文: 1、实验原理 衍射包括单缝衍射,双缝衍射和光栅衍射。它们都可用来测量光波的波长,但由于单缝衍射,双缝衍射在各级衍射的分辨率与亮度存在矛盾,而光栅正好解决了两者间的矛盾,所以实验中大多采用平面光栅来做实验。光栅一般分两类,一类是透射式(见图1),另一类是反射式(见图2)。透射式光栅是在一块平面透明的玻璃板上刻上平行,等间距又等宽的直痕,刻痕部分不透光,两刻痕间能透光,相当于狭缝。相邻刻痕间的距离d称为光栅常数。反射式光栅是在镀有金属层的表面上刻划斜的平行等间距刻痕,斜面能反射光。本实验用反射式平面光栅。 图1平面透射光栅图2平面反射光栅 利用现代电子技术和计算机技术接收和处理某一波长范围内光谱信息的光学多通道分析与检测系统的基本框图如图3所示。 图3光学多通道分析与检测系统的基本框图

南京大学-氢原子光谱实验报告

氢原子光谱 一.实验目的 1.熟悉光栅光谱仪的性能和用法 2.用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数 二.实验原理 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa 左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 2 024 H n n λλ=- (1) 式中H λ为氢原子谱线在真空中的波长。0364.57nm λ=是一经验常数。n 取3,4,5等整数。 若用波数表示,则上式变为 221 112H H R n νλ?? = =- ??? (2) 式中H R 称为氢的里德伯常数。 根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 () () 242 2 3 0241/Z me Z R ch m M ππε= + (3) 式中M 为原子核质量,m 为电子质量,e 为电子电荷,c 为光速,h 为普朗克常数,0ε为真空介电常数,Z 为原子序数。 当M →∞时,由上式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数)

() 242 2 3 024me Z R ch ππε∞= (4) 所以 () 1/Z R R m M ∞ = + (5) 对于氢,有 () 1/H H R R m M ∞ =+ (6) 这里H M 是氢原子核的质量。 由此可知,通过实验测得氢的巴尔末线系的前几条谱线j 的波长,借助(6)式可求得氢的里德伯常数。 里德伯常数R ∞是重要的基本物理常数之一,对它的精密测量在科学上有重要意义,目前它的推荐值为()=10973731.56854983/R m ∞ 表1为氢的巴尔末线系的前四条波长表 表1 氢的巴尔末线系波长 值得注意的是,计算H R 和R ∞时,应该用氢谱线在真空中的波长,而实验是在空气中进行的,所以应将空气中的波长转换成真空中的波长。即1λλλ?真空空气=+,氢巴尔末线系前6条谱线的修正值如表2所示。 表2 真空—空气波长修正值

火焰原子吸收实验报告

实验火焰原子吸收法测定水样中铜的含量 —标准曲线法 一、实验目的 (1)学习原子吸收分光光度法的基本原理; (2)了解原子吸收分光光度计的基本结构及其使用方法 (3)学习原子吸收光谱法操作条件的选择 (4)掌握应用标准曲线法测水中铜的含量。 二、实验原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定量分析的方法。 铜离子溶液雾化成气溶胶后进入火焰,在火焰温度下气溶胶中的铜离子变成铜原子蒸气,由光源铜空心阴极灯辐射出波长为324.7nm的铜特征谱线,被铜原子蒸气吸收。 在恒定的实验条件下,吸光度与溶液中铜离子浓度符合比尔定律A=Kc 利用吸光度与浓度的关系,用不同浓度的铜离子标准溶液分别测定其吸光度,绘制标准曲线。 在同样条件下测定水样的吸光度,从标准曲线上即可求得说中铜的浓度,进而计算出水中铜的含量。 三、实验仪器和试剂 (1)原子吸收分光光度计M6 AA System (2)铜元素空心阴极灯 (3)空气压缩机 (4)乙炔钢瓶 (5)50ml容量瓶6支 (6)吸量管 (7)铜标准试液(0.9944mg/ml) (8)去离子水 (9)水样

(10)烧杯 四、实验步骤 (1)溶液的配制 准确移取0.25ml,0.50ml,1.00ml,2.,50ml,3.00ml铜标准溶液于50ml 容量瓶中,用去离子水稀释至刻度,使其浓度分别为0.25、0.50、 1.00、 2.50、 3.00μg/ml。 (2)样品的配制 准备水样1和水样2于烧杯中。 (3)标准曲线绘制 测定条件: 燃气流量1:1 燃烧器高度7.0nm 波长324.8nm 根据实验条件,将原子吸收分光光度计按仪器的操作步骤进行调节。切换到标准曲线窗口,在开始测定之前,用二次蒸馏水调零,待仪器电路和气路系统达到稳定,记录仪上基线平直时,按照标准溶液浓度由稀到浓的顺序逐个测量Cu2+标准溶液的吸光度,并绘制Cu的标准曲线。 (4)水样中铜含量的测定 根据实验条件,测量水样的吸光度,并从标准曲线上查得水样中Cu的含量。 五、实验数据处理

凃逍羽 用光学多道分析器研究氢原子光谱

用光学多道分析器研究氢原子光谱 凃逍羽 武汉大学 物理科学与技术学院 物理学基地1班 学号:2011301020019 摘要:使用光学多道分析器测定氢原子巴尔末系中H αH βH γH δ波长,并利用所测的波长拟合计算出氢 原子的里德伯常量。 关键词:光学多道分析器 氢原子光谱 巴尔末系 里德伯常量 the Study of Hydrogen Atomic Spectrum with Optical Multichannel Analyzer Tu Xiaoyu Wuhan University Physical science and technology academy Basic physicsclass 2011301020019 Abstract: By using the OMA, this article will measure out the wavelength of H αH βH γH δ in the Balmer spectrum, and work out the Rydberg constant of hydrogen atom by using the wavelength above. Keywords: Optical Multichannel Analyzer, Hydrogen atom spectrum, Balmer spectrum, Rydberg constant 0.引言: 下图为氢原子的能级图.根据玻尔理论,氢原子的能级公式为: (34-1) 式中称为约化质量,m e 为电子质量,M 为原子核质量.氢原子的等于1836.15。 电子从高能级跃迁到低能级时,发射的光子能量h ν为两能级间的能量差 如以波数 表示,则上式为 ()() ()()E m E n T n T m hc σ-= =- 221 1H R n m ??=- ??? 式中R H 称为氢原子的里德伯常数,单位是m -1 ,T(n)称为光谱项,它与能级E(n)是对应的.从R H 可得氢原子各能级的能量 式 中 - 4 .-1 h=eV s m s c ? ?= ?? 从能级图可知,从3≥m 至2n =的跃迁.光子波长位于可见光区.其光谱符合规律

激光拉曼光谱实验报告

激光拉曼光谱实验报告 摘要:本实验研究了用半导体激光器泵浦的3Nd + :4YVO 晶体并倍频后得到的532nm 激 光作为激发光源照射液体样品的4CCL 分子而得到的拉曼光谱,谱线很好地吻合了理论分析的4CCL 分子4种振动模式,且频率的实验值与标准值比误差低于2%。又利用偏振片及半波片获得与入射光偏振方向垂直及平行的出射光,确定了各振动的退偏度,分别为、、、,和标准值0和比较偏大。 关键词:拉曼散射、分子振动、退偏 一, 引言 1928年,印度物理学家拉曼()和克利希南()实验发现,当光穿过液体苯时被分子散射的光发生频率变化,这种现象称为拉曼散射。几乎与此同时,苏联物理学家兰斯别而格()和曼杰尔斯达姆()也在晶体石英样品中发现了类似现象。在散射光谱中,频率与入射光频率0υ相同的成分称为瑞利散射,频率对称分布在0υ两侧的谱线或谱带01υυ±即为拉曼光谱,其中频率较小的成分01υυ-又称为斯托克斯线,频率较大的成分01υυ+又称为反斯托克斯线。这种新的散射谱线与散射体中分子的震动和转动,或晶格的振动等有关。 拉曼效应是单色光与分子或晶体物质作用时产生的一种非弹性散射现象。拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征。 20世纪60年代激光的问世促进了拉曼光谱学的发展。由于激光极高的单色亮度,它很快被用到拉曼光谱中作为激发光源。而且基于新激光技术在拉曼光谱学中的使用,发展了共振拉曼、受激拉曼散射和番斯托克斯拉曼散射等新的实验技术和手段。 拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源于分子的振动和转动。它提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。拉曼光谱的分析方向有定性分析、结构分析和定量分析。

实验31 原子发射光谱观测分析(实验报告)

实验31(A )原子发射光谱观测分析 【实验目的】 1. 学会使用光学多通道分析器的方法 2. 通过对钠原子光谱的研究了解碱金属原子光谱的一般规律 3. 加深对碱金属原子中外层电子与原子核相互作用以及自旋与轨道运动相互作用的了解 【实验仪器】 光学多通道分析器、光学平台、汞灯、钠灯、计算机 【原理概述】 钠属碱金属原子类,碱金属原子和氢原子一样,都只有一个价电子。但在碱金属原子中除了一个价电子外,还有内封闭壳层的电子,这些内封壳层电子与原子核构成原子实。价电子是在原子核和内部电子共同组成的力场中运动。原子实作用于价电子的电场与点电荷的电场有显著的不同。特别是当价电子轨道贯穿原子实时(称贯穿轨道),这种差别就更为突出。因此,碱金属原子光谱线公式为: ()()2 22*12*2 11~l l n R n R n n R μμν--'-'=???? ??-=' 其中ν ~为光谱线的波数;R 为里德堡常数。 n '与n 分别为始态和终态的主量子数 *2n 与*1n 分别为始态和终态的有效量子数 l '与l 分别为该量子数决定之能级的轨道量子数 l ''μ与l μ分别为始态和终态的量子缺(也称量子改正数,量子亏损) 根据就的波尔理论,在电子轨道愈接近原子中心的地方,μ的数值愈大。当轨道是贯穿轨道实,μ得数值还要大些。因为这时作用在电子上的原子核的有效电荷Z eff 有很大程度的改变。在非常靠近原子核的地方,全部核电荷作用在电子上。而距离很远的,原子核被周围电子屏蔽,以致有效核电荷1→eff Z 。因此s 项的μ值最大,而对p 项来说就小一些,对于d 来说还更小,由此类推。因而量子缺μ的大小直接反映原子实作用于价电子的电场与点电荷近似偏离的大小 对于钠原子光谱分如下四个线系 主线系:s np 3~→=ν 锐线系:p ns 3~→=ν 漫线系:p nd 3~→=ν 基线系:d nf 3~→=ν

WGD-6型_光学多道分析器_说明书

.规格与主要技术指标 波长范围焦距相对孔径分辨率波长精度波长重复性杂散光 300 -900nm D/F =1/7 优于0.2nm <± 0.2nm < 0.1 nm < 10- 3 302.5mm CCD电荷耦合器件)接收单元 光谱响应区间300 - 900nm 积分时间1 - 88 档 重量20kg 2048.基本原理

S3 1512-1光学原理團 Ml:反射饥M2:准光■铳、M3:物孤测牟持镜、G:平面衍射光涮、 51:入射探鮭“ 52:CCD接收检置、S3:观察窗〔或出射験缝、 WGD-6型光学多道分析器,由光栅单色仪,CCD接收单元,扫描系统,电子放大器,A/D采集单元,计算机组成。该设备集光学、精密机械、电子学、计算机技术于一体。光学系统采用C— T型,如图2-1 入射狭缝、出射狭缝均为直狭缝,宽度范围0- 2mn连续可调,光源发出的光 束进入入射狭缝S1、S1位于反射式准光镜M2的焦面上,通过S1射入的光束经M2 反射成平行光束投向平面光栅G上,衍射后的平行光束经物镜M3成像在S2上。 M2 M3 焦距302.5mm 光栅G 每毫米刻线600条闪耀波长550nm 二块滤光片工作区间白片320 —500nm 黄片500 —900nm 三?安装 3.1开箱 打开仪器的包装后,请对照装箱单对仪器的齐套性进行认真清点验收,如发 现与装箱单不符或者仪器表面有明显的受损现象请立即与售方联系解决。仪器的齐套性见装箱单

3.2安装场地 该仪器是实验用仪器。为了提高仪器的工作质量和延长仪器的使用寿命,在选择仪器安装场地时应注意以下几点: 1.环境温度20± 5C 2.净化湿度<65% 3.无强振动源、无强电磁场干扰。 4.室内保持清洁、无腐蚀性气体。 5.仪器应放置在坚固的平台上。 6.仪器放置处不可长时间受阳光照射。 7.室内应具备稳压电源装置对仪器供电,装有地线,保证仪器接地良好。 3.3安装方法 圏斗2联线示盍图 WGD-型光学多道分析器,系精密仪器。因此仪器安装的场合应满足安装环境的要求。工作台必须平稳。系统联线示意图如图3-2: 3.3.1准备

SLL光学多道

光学多道与氢、氘同位素光谱 实验日期:2013/12/27指导老师:王海燕 【摘要】本实验利用光学多道分析仪,通过已知波长的氦、氖光谱进行定标测量了氢光谱,并测量氢氘同位素光谱,得到氢氘光谱的波长值;利用这些测得值计算出了氢氘的里德伯常量分别为11R ,10967144.4210970060.R 73H D m m --==,得到了氢氘光谱的各光谱项;除此之外,还通过计算得出 了电子与质子质量之比为45.3210e p m m -=?,与理论值45.4510-?相比误差为2.35%。 关键词:光学多道分析、CCD 光电探测器、光电倍增管、氢氘光谱 一、 引言 光谱学在原子分子物理、天文物理、等离子体物理、激光物理和材料物理等物理学科中占有极为重要的地位。在整个光谱学史中,氢光谱的实验和理论研究都占有特别重要的地位。在1885年,瑞士物理学家巴耳末就发现了巴耳末公式,即可见光区氢光谱谱线波长的规律。1892年美国物理学家尤雷等发现氢的同位素氘的光谱。氢原子和氘原子的核外都只有一个电子,故光谱极为相似,但由于原子核质量的不同波长也有所差别,这种差别就称为“同位素位移”。 本实验利用光学多道分析仪研究氢的同位素光谱,了解氢氘原子谱线的特点,学习光学多道分析仪的使用方法及基本的光谱学技术。 二、 原理 在量子化的原子体系中,原子的能量状态为一系列分立的值,每一个能量状态称原子的一个能级。能量最低的状态称为原子的基态,高于基态的其余各能级称为原子的激发态。处于高能级的原子,总是会自发跃迁到低能级,并发射出光子。设光子能量为ε,频率为υ,高能级为2E ,低能级为1E ,则: 21 21,E E h E E h ευυ-==-= (1) 由于原子能级的分立,所以当原子由高能级向低能级跃迁时,会发出一些特定频率的光,这些光在分光仪上表现为一条条分立的“线性光谱”。这些频率由巴耳末公式确定。对H 原子有: 22121 11H H R n n λ?? =- ??? (2) 式中H R 是H 原子的里德伯常量。当122,3,4,5n n ==时,光谱大部分位于可见光区,对应线系 为巴耳末系,即: 22111,3,4,52H H R n n λ??=-= ??? (3) 与H 类似,D 的巴耳末系的公式为:

《氢原子光谱》报告

氢原子光谱研究 姓名:___________ 学号:___________ 院系:___________

氢原子光谱研究 引言 原子吸收光谱分析,是利用物质的基态原子 可以吸收特定波长单色辐射的光量子,其吸收量 的大小是与物质原子浓度成比例的关系为基础 的。氢原子的结构最简单,它发出的光谱有明显 的规律,很早就为人们所注意。光谱的规律首先 由氢原子光谱得到突破,从而为原子结构的研究 提供了重要依据。因而,氢原子光谱的研究在原 子物理学的发展中一直起着重要的作用。 实验原理 一百余年来,人们研究氢原子的光谱结构,不论在实验方面,还是在理论方面都取得了丰硕的成果。实验上精确测量各谱线的波长、发现和测量各个氢谱系、探测谱线的精确结构,数据越来越精确,理论上则相当完满地解释了这些谱线的成因,从而发展了电子与电磁场相互作用的理论。 1885年巴尔末根据实验结果,经验性的确定了可见光区域氢光谱的谱线分布规律,写作: (1) 式中为连续的整数3,4,5……。一般常称这些氢谱线为巴尔末系。之后又陆续发现氢的其他线系。为了更清楚的表明谱线分布的规律,将(1)式改写为:

(2) 式中称为氢的里德伯常数。 在这些完全从实验得到的经验公式的基础上,玻尔建立了原子模型的理论,并从而解释了气体放电时的发光的过程。根据玻尔的理论,每条谱线是对应于原子中的电子从一个能级跃迁到另一个能级释放能量的结果。根据这个理论,对巴尔末线系有: (3) 式中e为电子电荷,h为普朗克常数,c为光速,m为电子质量,M为氢原子核的质量。这样,不仅给予巴尔末的经验公式以物理解释,而且把里德伯常数和许多基本物理常数联系了起来。即: (4) 其中代表将核的质量视为(即假定核固定不动)时的里伯德常数: (5) 比较(2)(3)两式可认为(2)式是玻尔理论推论所得到的关系。因此(2)和实验结果符合到什么程度,就可检验波尔理论正确到什么程度。实验表明(2)式与实验数据符合的程度相当高,而成为玻尔理论的有力证据。 继巴尔末规律之后,又发现氢光谱有更为复杂的结构,巴尔末规律只能作为一个近似的规律。同时原子结构的理论也有了很大的发展。因此,就其对理论的作用来讲,验证公式(2)在目前的科学研究中已不必要。但

仪器分析实验报告原子吸收铜

华南师范大学实验报告 课程名称:仪器分析实验实验项目:原子吸收光谱法测定水 中的铜含量 原子吸收光谱法测定水中的铜含量 一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术; 2. 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原子吸收光谱法是一种广泛应用的测定元素的方法。它是一种基于待测元素基态原子在蒸气状态对其原子共振辐射吸收进行定 量分析的方法。为了能够测定吸收值,试样需要转变成一种在适合的介质中存在的自由原子。化学火焰是产生基态气态原子的方便方法。 待测试样溶解后以气溶胶的形式引入火焰中。产生的基态原子吸收适当光源发出的辐射后被测定。原子吸收光谱中一般采用的空心阴极灯这种锐线光源。这种方法快速、选择性好、灵敏度高且有着较好的精密度。 然而,在原子光谱中,不同类型的干扰将严重影响方法的准确性。干扰一般分为四种:物理干扰、化学干扰、电离干扰和光谱干扰。物

理和化学干扰改变火焰中原子的数量,而光谱干扰则影响原子吸收信号的准确测定。干扰可以通过选择适当的实验条件和对试样的预处理来减少或消除。所以,应从火焰温度和组成两方面作慎重选择。 由于试样中基本成分往往不能准确知道,或是十分复杂,不能使用标准曲线法,但可采用另一种定量方法——标准加入法,其测定过程和原理如下。 取笑体积的试液两份,分别置于相同溶剂的两只容量瓶中。其中一只加入一定量待测元素的标准溶液,分别用水稀释至刻度,摇匀,分别测定其吸光度,则: Ax=kfx Ao=k(fo十fx) 式中,fx,为待测液的浓度;f。为加入标准溶液后溶液浓度的增量;测量的吸光度,将以上两式整理得:Ao分别为两次在实际测定中,采取作图法(图6—6)的结果更为准确。一般吸取四份等体积试液置于四只等容积的容量瓶中,从第二只容量瓶开始,分别按比例递增加人待测元素的标准溶液,然后用溶剂瓶稀释至刻度,摇匀,分别测定溶液fx,cx十fo,fx十2co,cx十3fo的吸光度为Ax,A1,Az,A:,然后以吸光度A对待侧元素标准溶液的加入量作图,得图6—6所示的直线,其纵轴上截距Ax为只含试样fx 的吸光度,延长直线与横坐标轴相交于cX,即为所需要测定的试样中该元素的浓度。

光学光谱各种仪器分析的基本原理及谱图表示方法

各种仪器分析的基本原理及谱图表示方法——牛人总结,留着备用来源:刘艳的日志 紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

基础物理研究性实验报告-氢原子光谱

北航物理实验研究性报告 氢原子光谱和里德伯常数的测量及对钠黄双线能否被分辨的探讨

摘要 本文基于氢原子光谱和里德伯常数的测量的实验,简要介绍了实验的原理、步骤、仪器,并对实验数据进行处理。最后主要对实验过程中未能观察到钠黄双线被分辨这一现象进行了探讨,并提出了光栅刻痕数量不够和爱里斑的干扰这两种可能的原因去尝试解释实验现象,最后根据实验现象结合理论分析得出了合理的结论。 关键词:光栅,钠黄双线,爱里斑

实验重点 (1)巩固、提高从事光学实验和使用光学仪器的能力(分光仪的调整和使用); (2)掌握光栅的基本知识和方法; (3)了解氢原子光谱的特点并使用光栅衍射测量巴尔末系的波长和里德伯常数; (4)巩固与扩展实验数据处理的方法——测量结果的加权平均,不确定度和误差的计算,实验结果的讨论等; 实验原理 一、光栅及其衍射 波绕过光栅而传播的现象称为衍射。具有周期性的空间结构的衍射屏称为“栅”。当波源与接收器距离衍射屏都是无限远时所产生的衍射称为夫琅禾费衍射。 光栅是使用最广泛的一种衍射屏。在玻璃上刻画一组等宽度、等间隔的平行狭缝就形成了一个投射光栅;在铝膜上刻画出一组端面为锯齿形的刻槽可以形成一个反射光栅;而晶格原子的周期排列则形成了天然的三维光栅。 本实验采用的是通过明胶复制的方法做成的投射光栅。它可以看成是平面衍射屏上开有宽度为a 的平行狭缝,缝间的不透光的部分的宽度为b ,d=a+b 称为光栅常数。光栅夫琅禾费衍射的具体理论主要有以下几个结论: 1、光栅衍射可以看成是单缝衍射和多缝干涉的综合。当平面单色光正入射到光栅上市,其衍射光振幅的角分布单缝衍射因子乘积,即沿方向的衍射光强 22 0sin sin ()( )( )sin N I I α βθα β = 式中,sin /u a πθλ=,sin /d βπθλ=,N 是光栅的总缝数。 当时,也等于0,,形成干涉极大;当时,但不等于0时,,形成干涉极小。它说明:在相邻的两个主极大之间有N-1个极小、N-2个次级大;N 数越多,主极大的角宽度越小。 2、正入射时,衍射的主极大位置由光栅方程决定,单缝衍射因子不改变主极大的位置,只

相关文档
相关文档 最新文档