文档库 最新最全的文档下载
当前位置:文档库 › 课上练习题_离散时间马尔科夫链 423

课上练习题_离散时间马尔科夫链 423

课上练习题_离散时间马尔科夫链 423
课上练习题_离散时间马尔科夫链 423

1、4.23 Trials are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8; otherwise the next trial is a success with probability 0.5. In the long run, what proportion of trials are successes?

2、4.32 Each of two switches is either on or off during a day. On day n, each switch will independently be on with probability [1+#of on switches during day n-1]/4. For instance, if both switches are on during day n-1, then each will independently be on during day n with probability3/4. What fraction of days are both switches on? What fractions are both off?

3、Let ri denote the long-run proportion of time a given irreducible Markov chain is in state i. Explain why ri is also the proportion of transitions that are into state i as well as being the proportion of transition that are from state i.

4、4.44 Suppose that a population consists of a fixed number, say, m, of genes in any generation. Each gene is one of two possible genetic types. If any generation has exactly i (of its m) genes being type 1, then the next generation will have j type 1 genes

with probability

j

m

j

m

i

m

m

i

j

m-

?

?

?

?

?-

?

?

?

?

?

??

?

?

?

?

. Let Xn denote the number

of type 1 genes in the nth generation, and assume that X0 = i.

(a) Find E[Xn]

(b) What is the probability that eventually all the genes will be type 1?

5、4.47 Let {Xn, n >=0} denote an ergodic Markov chain with limiting probabilities ri. Define the process {Yn, n>=1} by Yn = {Xn-1,Xn}. That is , Yn keeps track of the last two states of the original chain. Is {Yn} a Markov chain? If so, determine its transition probabilities and find )},({lim j i Y P n n =∞>-

6、4.54 M balls are distributed between two urns, and at each time point one of the balls is chosen at random and is then removed from its urn and placed in the other one. Let Xn denote the number of molecules in urn 1 after the nth switch and let u n =E[Xn]. Find u n+1 as a function of u n .

7、4.5.1 Consider a gambler who at each play of the game has probability p of winning one unit and probability q = 1-p of losing one unit. Assuming that successive plays of the game are independent, what is the probability that, starting with i units, the gambler’s fortune will reach N before reaching 0?

8、4.57 A particle moves among n+1 vertices that are situated on

a circle in the following manner. At each step it moves one step either in the clockwise direction with probability p or in the counterclockwise direction with probability q = 1-p. Starting at a specified state, call it state 0, let T be the time of the first return to state 0. Find the probability that all states have been visited by time T.

Markov链预测法

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):贵州民族学院 参赛队员(打印并签名) :1. 龚道杰 2. 张凤 3. 姚肖伟 指导教师或指导教师组负责人(打印并签名): 日期: 2009 年 7 月 25 日 年凝冻日数的Markov链预测法 4# 【摘要】 本文根据所给数据,利用Markov链建立了预测年凝冻日数的模型,分别从整体和局部两个角度进行分析。

首先,我们直接以年凝冻日数为依据,对其进行K-均值聚类分析,划分 状态。用频率估计概率的方法,估算出一步转移概率矩阵,1/6 5/65/3328/33P ??=?? ??,然后建立Markov 链模型()1/6 5/6()(0)(0)5/3328/33n n P n P P P ??=?=??? ?? 。以2008年作为初始状态,估计出 2009 年凝冻日数所处状态为 (1)(0)P P P =?()0.1520.848=。按K-均值标准可知,即2009年凝冻的天数在 15天以内的可能性为84.8%,在15天以上的可能性为15.2%。 由于上述模型选取的是以年为单位的数据,只能估计出2009年的凝冻日 数所处区间。为提高精度,我们选取2000-2008年的具体凝冻天数和日期,记每一天只存在两种状态,出现雨凇为状态1,否则为状态0。然后由相邻两年间的状态转移变化,得出一步转移概率矩阵i P ,1,2,...,8i =。由这8个一步转移概率矩阵,根据一步转移矩阵P 的n 次方与n 步转移概率矩阵()n P 之差的范数和达到最小的准则,选出优化后的一步转移概率矩阵 0.95000.0500*0.78890.2111P ??=???? ,再次建立Markov 链模型。以2008年为初始状态,预测2009年的概率分布为 []*(2009)(2008)0.91060.0894P P P =?= ,由频率稳定于概率,知2009年凝冻天数的估计值为14天。 关键词: Markov 链 转移概率矩阵 频率估计概率 1. 问题提出 1.1背景知识 凝冻是指冬季出现的温度低于0℃有过冷却降水或固体降水和结冰现象发生的天气现象,即气象台所说的出现雨凇的天气。雨凇的形成与气温,降水量,湿度等因素有关,超冷却的降水碰到温度等于或低于零摄氏度的物体表面使所形成玻璃状的透明或无光泽的表面粗糙并覆盖层,就叫做雨凇。其造成的危害巨大,高压线塔的倒塌,电力瘫痪,交通瘫痪,农作物的冻亡等。因而对出现雨凇天气的预测显得尤为重要。

随机过程与马尔可夫链习题答案

信息论与编码课程习题1——预备知识 概率论与马尔可夫链 1、某同学下周一上午是否上课,取决于当天情绪及天气情况,且当天是否下雨与心情好坏没有关系。若下雨且心情好,则50%的可能会上课;若不下雨且心情好,则有10%的可能性不上课;若不下雨且心情不好则有40%的可能性上课;若下雨且心情不好,则有90%的可能不会上课。假设当天下雨的概率为30%,该同学当天心情好的概率为20%,试计算该同学周一上课的可能性是多大? 分析: 天气情况用随机变量X 表示,“0”表示下雨,“1”表示不下雨;心情好坏用Y 表示,“0”表示心情好用“0”表示,心情不好用“1”表示;是否上课用随机变量Z 表示,“0”表示上课,“1”表示不上课。由题意可知 已知[]5.00,0|0====Y X Z P ,[]5.00,0|1====Y X Z P []1.00,1|1====Y X Z P ,[]9.00,1|0====Y X Z P []4.01,1|0====Y X Z P ,[]6.01,1|1====Y X Z P []9.01,0|1====Y X Z P ,[]1.01,0|0====Y X Z P []3.00==X P ,[]7.01==X P []2.00==Y P ,[]8.01==Y P 即题目实际上给出了八个个条件概率和四个概率 [][][][]0,0|00|000===?==?===X Y Z P X Y P X P Z P [][][]0,1|00|10===?==?=+X Y Z P X Y P X P [][][]1,0|01|01===?==?=+X Y Z P X Y P X P [][][]1,1|01|11===?==?=+X Y Z P X Y P X P 由于X ,Y 相互独立,则有 [][][][]0,0|0000===?=?===X Y Z P Y P X P Z P [][][]0,1|010===?=?=+X Y Z P Y P X P [][][]1,0|001===?=?=+X Y Z P Y P X P [][][]1,1|011===?=?=+X Y Z P Y P X P []5.02.03.00??==Z P 1.08.03.0??+9.02.07.0??+1.08.07.0??+ =? 注意:全概率公式的应用 2、已知随机变量X 和Y 的联合分布律如又表所示, 且()Y X Y X g Z +==2 11,,()Y X Y X g Z /,22==,求: 1)1Z 的分布律与数学期望

用MATLAB仿真markov链程序

用MATLAB仿真markov链程序 说明:我们知道markov链由一个状态跳到下个状态的和为1,而MATLAB中,rand 函数可以等概率产生区间[0,1]之间的数。例如从状态1跳到状态1,2,3的概率分别为0.3、0.4、0.4。所以我们可以使用rand(1)<=0.3、0.30.7来表示概率0.3、0.4、0.4。 例子:假设有三个状态1、2、3,概率转移矩阵如下 P= 01/21/2 1/201/2 1/21/20 假设初始状态为1,仿真程序如下 clear all clc A=1; x=1:101; for i=1:1:100 a=rand(1); if a<=0.5&&A(i)==1 A=[A,2]; end if a>0.5&&A(i)==1 A=[A,3]; end if a<=0.5&&A(i)==2 A=[A,2]; end if a>0.5&&A(i)==2 A=[A,3]; end if a<=0.5&&A(i)==3 A=[A,1]; end if a>0.5&&A(i)==3 A=[A,2]; end end A 其中一次的结果如下 A = Columns 1 through 13 1 2 3 1 3 1 3 1 3 2 3

1 2 Columns 14 through 26 1 3 1 3 2 3 1 2 1 3 1 3 2 Columns 27 through 39 3 1 2 1 3 1 3 1 2 1 2 3 2 Columns 40 through 52 3 1 3 2 1 3 1 2 1 2 1 2 1 Columns 53 through 65 2 3 2 1 2 1 3 1 2 3 1 2 1 Columns 66 through 78 2 1 3 2 3 1 2 1 3 1 2 1 3 Columns 79 through 91 2 3 1 3 1 3 1 3 1 2 3 2 1 Columns 92 through 101 3 2 1 2 1 2 3 2 3 2

Matlab学习系列34. 马尔可夫预测

33. 马尔可夫预测 马尔可夫预测,是一种预测事件发生的概率的方法。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。 马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须具有足够的统计数据,才能保证预测的精度与准确性。换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。 (一)经典马尔可夫模型 一、几个概念 状态:指某一事件在某个时刻(或时期)出现的某种结果; 状态转移:事件的发展,从一种状态转变为另一种状态; 马尔可夫过程:在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移是无后效性的,则这样的状态转移过程就称为马尔可夫过程。 状态转移概率:在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态i E 转为状态j E 的状态转移概率 ()(|)i j j i ij P E E P E E p →== 状态转移概率矩阵:假定某一个事件的发展过程有n 个可能的状

态,即1,,n E E ,则矩阵 1111n n nn p p P p p ????=?????? 其中,ij p 为从状态i E 转为状态j E 的状态转移概率,称为状态转移概率矩阵。 状态转移矩阵满足: (i) 01, ,1,,ij p i j n ≤≤= (ii) 1 1n ij j p ==∑ 二、状态转移矩阵的计算 即求出从每个状态转移到其它任何一个状态的状态转移概率ij p ,一般采用频率近似概率的思想进行计算。 例1某地区农业收成变化的三个状态,即E1“丰收”、E2“平收”和E3“欠收”。下表给出了该地区1960~1999年期间农业收成的状态变化情况(部分)。 计算该地区农业收成变化的状态转移概率矩阵。 datas=xlsread('Agriculture.xlsx');

马尔科夫转换模型例子

The R User Conference 2009 July 8-10, Agrocampus-Ouest, Rennes, France
Estimating Markovian Switching Regression Models in An application to model energy price in Spain
S. Fontdecaba, M. P. Mu?oz , J. A. Sànchez*
Department of Statistics and Operations Research Universitat Politècnica de Catalunya - UPC
* josep.a.sanchez@https://www.wendangku.net/doc/3a12224201.html,

Markovian Switching Models. An application to model energy price in Spain
1 Introduction & Objectives 2 Methodology 3 Data 4 Results 5 Conclusions
Outline
1. Introduction & Objectives 2. Methodology 3. Application to energy price 4. Results 5. Conclusions
2

Markovian Switching Models. An application to model energy price in Spain
1 Introduction & Objectives 2 Methodology 3 Data 4 Results 5 Conclusions
1. Introduction
The model we consider is of the MARKOVIAN SWITCHING (MS) type, originally defined by Hamilton (1989).
?MSVAR library - Krolszing (1998) (not available free acces: OX) ?MSVARlib - Bellone (2005) (Less user friendly) ?MSRegression - Perlin (2007) (Libraries in Matlab)
3

马尔科夫链matlab代码

马尔科夫链 %This is programmed for calculating the Markov-chain state transfer probability(First order) matrice! %This program is based on 4 thresholds,that is, the transfer probability matrice is 4x4. %Follow the notes to conduct the processing. %Coded by EOS %Nanchang China clear clc %A=csvread('widetype.csv');% % or manually define via "A=[ ]". A=[] %A is the information matrix which must be adjusted to wide-type,i(section)-j(time)%% out=zeros(4,4);%Initialize the transfering probability(First order) matrice [r1,r2,r3]=deal(1.009, 1.285, 1.7256);%%!!!Define the state threshold value manually. flag=0;trans=zeros(4,4); s0=zeros(1,4);epro=zeros(10,4); for i=1:10 if A(i,1)< r1 s0(1,1)=s0(1,1)+1; elseif A(i,1)>= r1 && A(i,1)=r2 && A(i,1)

马尔科夫转移矩阵模型

马尔柯夫转移矩阵法 马尔柯夫转移矩阵法-马尔柯夫过程和风险估计 由于风险过程常常伴随一定的随机过程,而在随机过程理论中的一种重要模型就是马尔柯夫过程模型。 马尔柯夫转移矩阵法-马尔柯夫预测法 马尔柯夫预测以俄国数学家A.A.Markov名字命名,是利用状态之间转移概率矩阵预测事件发生的状态及其发展变化趋势,也是一种随时间序列分析法。它基于马尔柯夫链,根据事件的目前状况预测其将来各个时刻(或时期)的变动状况。 1.马尔柯夫链。状态是指某一事件在某个时刻(或时期)出现的某种结果。事件的发展,从一种状态转变为另一种状态,称为状态转移。在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移过程是无后效性的,则这样的状态转移过程就称为马尔柯夫过程。马尔柯夫链是参数t只取离散值的马尔柯夫过程。 2.状态转移概率矩阵。在事件发展变化的过程中,从某一种状态出发,下以时刻转移到其他状态的可能性,称为状态转移概率,只用统计特性描述随机过程的状态转移概率。 若事物有n中状态,则从一种状态开始相应就有n个状态转移概率,即。 将事物n个状态的转移概率一次排列,可以得到一个n行n列的矩阵: 3.马尔柯夫预测模型。一次转移概率的预测方程为: 式中:K——第K个时刻; S(K)——第K个时刻的状态预测; S(0)——对象的初始状态; P——一步转移概率矩阵。 应用马尔柯夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性

马尔柯夫转移矩阵法-4.1马尔柯夫过程 在一个随机过程中,对于每一t0时刻,系统的下一时刻状态概率仅与t0时刻的状态有关,而与系统是怎样和何时进入这种状态以及t0时刻以前的状态无关(即所谓无后效性),这种随机过程称为马尔柯夫随机过程。 对随机过程X(t)取确定的n+1个时刻t0<t1<t2<…<tn,对应实数x0,x1,x2,…,xn,如果条件分布函数满足: 则随机过程X(t)即为马尔柯夫过程的数学描述。 依过程参数集和状态集的离散与连续性,马尔柯夫过程可分为马尔柯夫链-时间和状态均离散的过程、连续马尔柯夫链-时间连续和状态离散、连续马尔柯夫过程-时间连续和状态连续。 马尔柯夫转移矩阵法-4.2马尔柯夫过程与风险估计 从定义中可知,确定某一时刻的风险状态后,该风险转移的下一个状态所服从的概率规律,可以用马尔柯夫过程的数学描述估计出来。马尔柯夫风险过程的重要假定是在一定时间和客观条件下,风险状态的转移概率固定不变。转移概率是在给定时刻风险状态相关之下的下一时刻条件概率;转移概率构成的矩阵称为转移矩阵,矩阵中各元素具有非负性,而且行的和值为1。 例如某雷达每次开机状态记录如表4所示。由于雷达下一次开机状态只与现在的开机状态有关,而与以前的状态无关,所以它就形成了一个典型的马尔柯夫链。 取P11—开机连续正常状态的概率,P12—由正常状态转不正常的概率,P21—由不正常状态转正常的概率,P22—开机连续不正常状态的概率。由表4可知,在23次开机状态统计中,11次开机正常,3次连续正常,7次由正常转不正常;12次开机不正常,4次连续不正常,8次由不正常转正常;由于最后一次统计状态是开机正常状态,没有后继状态,所以P11=3/(11-1)=0.3,P12=7/(11-1)=0.7,P21=8/12=0.67,P22=4/12=0.33因为最后一次统计是正常状态,所以不正常状态的总数不减一。 表4某雷达每次开机状态记录表 类别开机次序 1234567891011121314151617181920212223

课上练习题_连续时间马尔科夫链 619

6.2 Suppose that a one-celled organism can be in one of two states-either A or B. An individual in state A will change to state B at an exponential rate α; an individual in state B divides into two new individuals of type A at an exponential rate β. Define an appropriate continuous-time Markov chain for a population of such organisms and determine the appropriate parameters for this model. 6.3 Consider two machines that are maintained by a single repairman. Machine i functions for an exponential time with rate μbefore breaking down, i = 1,2. The repair times (for either i machine) are exponential with rate μ. Can we analyze this as a birth and death process? If so, what are the parameters? If not, how can we analyze it?

马尔科夫转移矩阵法

马尔科夫转移矩阵法 1.工具名称 马尔科夫转移矩阵法是运用转移概率矩阵对市场占有率进行市场趋势分析的方法。比如:研究一个商店的累计销售额,如果现在时刻的累计销售额已知,则未来某一时刻的累计销售额与现在时刻以前的任一时刻的累计:销售额都无关。 2.工具使用场合/范围 单个生产厂家的产品在同类商品总额中所占的比率,称为该厂产品的市场占有率。在激烈的竞争中,市场占有率随产品的质量、消费者的偏好以及企业的促销作用等因素而发生变化。企业在对产品种类与经营方向做出决策时,需要预测各种商品之间不断转移的市场占有率。 市场占有率的预测可采用马尔科夫转移矩阵法 3.工具运用说明: 在马尔科夫分析中,引入状态转移这个概念。所谓状态是指客观事物可能出现或存在的状态;状态转移是指客观事物由一种状态转穆到另一种状态的概率。 马尔科夫分析法的一般步骤为: ①调查目前的市场占有率情况; ②调查消费者购买产品时的变动情况; ③建立数学模型; ④预测未来市场的占有率。 二、马尔科夫分析模型 实际分析中,往往需要知道经过一段时间后,市场趋势分析对象可能处于的状态,这就要求建立一个能反映变化规律的数学模型。马尔科夫市场趋势分析模型是利用概率建立一种随机型的时序模型,并用于进行市场趋势分析的方法。 马尔科夫分析法的基本模型为: X(k+1)=X(k)×P 式中:X(k)表示趋势分析与预测对象在t=k时刻的状态向量,P表示一步转移概率矩阵,X(k+1)表示趋势分析与预测对象在t=k+1时刻的状态向量。 必须指出的是,上述模型只适用于具有马尔科夫性的时间序列,并且各时刻的状态转移概率保持稳定。若时间序列的状态转移概率随不同的时刻在变化,不宜用此方法。由于实际的客观事物很难长期保持同一状态的转移概率,故此法一

课上练习题_离散时间马尔科夫链 423

1、4.23 Trials are performed in sequence. If the last two trials were successes, then the next trial is a success with probability 0.8; otherwise the next trial is a success with probability 0.5. In the long run, what proportion of trials are successes? 2、4.32 Each of two switches is either on or off during a day. On day n, each switch will independently be on with probability [1+#of on switches during day n-1]/4. For instance, if both switches are on during day n-1, then each will independently be on during day n with probability3/4. What fraction of days are both switches on? What fractions are both off?

3、Let ri denote the long-run proportion of time a given irreducible Markov chain is in state i. Explain why ri is also the proportion of transitions that are into state i as well as being the proportion of transition that are from state i. 4、4.44 Suppose that a population consists of a fixed number, say, m, of genes in any generation. Each gene is one of two possible genetic types. If any generation has exactly i (of its m) genes being type 1, then the next generation will have j type 1 genes with probability j m j m i m m i j m- ? ? ? ? ?- ? ? ? ? ? ?? ? ? ? ? . Let Xn denote the number of type 1 genes in the nth generation, and assume that X0 = i. (a) Find E[Xn] (b) What is the probability that eventually all the genes will be type 1?

马尔可夫链预测方法

马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

隐马尔科夫模型(HMM)详解

马尔科夫过程 马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。 考虑一个系统,在每个时刻都可能处于N个状态中的一个,N个状态集合是{S1,S2,S3,...S N}。我们现在用q1,q2,q3,…q n来表示系统在t=1,2,3,…n时刻下的状态。在t=1时,系统所在的状态q取决于一个初始概率分布PI,PI(S N)表示t=1时系统状态为S N的概率。 马尔科夫模型有两个假设: 1. 系统在时刻t的状态只与时刻t-1处的状态相关;(也称为无后效性) 2. 状态转移概率与时间无关;(也称为齐次性或时齐性) 第一条具体可以用如下公式表示: P(q t=S j|q t-1=S i,q t-2=S k,…)= P(q t=S j|q t-1=S i) 其中,t为大于1的任意数值,S k为任意状态 第二个假设则可以用如下公式表示: P(q t=S j|q t-1=S i)= P(q k=S j|q k-1=S i) 其中,k为任意时刻。 下图是一个马尔科夫过程的样例图: 可以把状态转移概率用矩阵A表示,矩阵的行列长度均为状态数目,a ij表示P(S i|S i-1)。

隐马尔科夫过程 与马尔科夫相比,隐马尔科夫模型则是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下图所示: 此图是从别处找来的,可能符号与我之前描述马尔科夫时不同,相信大家也能理解。 该图分为上下两行,上面那行就是一个马尔科夫转移过程,下面这一行则是输出,即我们可以观察到的值,现在,我们将上面那行的马尔科夫转移过程中的状态称为隐藏状态,下面的观察到的值称为观察状态,观察状态的集合表示为 O={O1,O2,O3,…O M}。 相应的,隐马尔科夫也比马尔科夫多了一个假设,即输出仅与当前状态有关,可以用如下公式表示: P(O1,O2,…,O t|S1,S2,…,S t)=P(O1|S1)*P(O2|S2)*...*P(O t|S t) 其中,O1,O2,…,O t为从时刻1到时刻t的观测状态序列,S1,S2,…,S t则为隐藏状态序列。 另外,该假设又称为输出独立性假设。 举个例子 举个常见的例子来引出下文,同时方便大家理解!比如我在不同天气状态下去做一些事情的概率不同,天气状态集合为{下雨,阴天,晴天},事情集合为{宅着,自习,游玩}。假如我们已经有了转移概率和输出概率,即P(天气A|天气B)和P(事情a|天气A)的概率都已知道,那么则有几个问题要问(注意,假设一天我那几件事情中的一件), 1. 假如一周内的天气变化是下雨->晴天->阴天->下雨->阴天->晴天->阴天,那么我这一周自习->宅着->游玩->自习->游玩->宅着->自习的概率是多大? 2. 假如我这一周做事序列是自习->宅着->游玩->自习->游玩->宅着->自习,

蒙特卡罗马尔科夫链模拟方法MCMC

Monte Carlo Simulation Methods (蒙特卡罗模拟方法) 主要内容: 1.各种随机数的生成方法. 2.MCMC方法. 1

2 从Buffon 投针问题谈起 Buffon 投针问题:平面上画很多平行线,间距为a .向此平面投掷长 为l (l < a) 的针, 求此针与任一平行线相交的概率p 。 22[0,/2] [0,] sin ,{:sin }. l l a X A X 随机投针可以理解成针的中心 点与最近的平行线的距离X 是均匀 地分布在区间 上的r.v.,针 与平行线的夹角是均匀地分布 在区间 上的r.v.,且X 与相互独立, 于是针与平行线相交的充要条件为 即相交

3Buffon 投针问题 2sin 0022(sin ) 2l l l p P X dxd a a 于是有: 2l ap 若我们独立重复地作n 次投针试验,记 ()n A 为A 发生的次数。()n f A 为A 在n 次中出现的频率。假如我们取 ()n f A 作为()p P A 的估计,即?()n p f A 。 然后取2?() n l af A 作为的估计。根据大数定律,当n 时,..?().a s n p f A p 从而有2?()P n l af A 。这样可以用随机试验的方法求得的估计。历史上 有如下的试验结果。

4 3.14159292 180834080.831925Lazzarini 3.1595148910300.751884Fox 3.15665121832040.601855Smith 3.15956253250000.801850Wolf π的估计值相交次数投针次数针长时间(年)试验者

实验4_马尔科夫预测

实验4:马尔柯夫预测 实验目的 1、了解状态及状态转移的概念,理解马尔科夫链定义和性质,能根据具体实例和研究目的划分状态; 2、掌握用Excel 软件计算一步转移概率矩阵的全过程; 3、掌握利用Excel 软件进行马尔科夫链、市场占有率、马尔科夫稳态的相关预测。 实验原理 马尔柯夫预测的基本原理 马尔可夫预测法是马尔科夫过程和马尔科夫链在经济预测领域的一种应用,这种方法通过对事物状态划分、研究各状态的初始概率和状态之间转移概率来预测事物未来状态变化趋势,以预测事物的未来。 马尔可夫链 若时间和状态参数都是离散的马尔科夫过程,且具有无后效性,这一随机过程为马尔可夫链。无后效性可具体表述为如果把随机变量序列{}(),Y t t T ∈的时间参数s t 作为“现在”,那么s t t >表示“将来”,s t t <表示“过去”,那么,系统在当前的情况()s Y t 已知的条件下,()Y t “将来”下一时刻所处的的情况与“过去”的情况无关,随机过程的这一特性称为无后效性。 状态及状态转移

1、状态是指客观事物可能出现或存在的状况。在实际根据研究的不同事物、不同的预测目的,有不同的预测状态划分。 (1)预测对象本身有明显的界限,依状态界限划分。如机器运行情况可以分为“有故障”和“无故障”两种状态,天气有晴、阴、雨三种状态。(2)研究者根据预测事物的实际情况好预测目的自主划分。如:公司产量按获利多少人为的分为畅销、一般销售、滞销状态。这种划分的数量界限依产品不同而不同。 2、状态转移是指所研究的系统的状态随时间的推移而转移,及系统由某一时期所处的状态转移到另一时期所处的状态。发生这种转移的可能性用概率描述,称为状态转移概率 状态转移概率矩阵及计算原理 1、概念:状态转移概率指假如预测对象可能有E 1,E 2,…,E n 共n 种状态,其每次只能处于一种状态i E ,则每一状态都具有n 个转向(包括转向自身),即:1i E E →1 、2i E E →、 、i n E E →,将这种 转移的可能性用概率描述,就是状态转移概率。最基本的是一步转移概率(|)j i P E E ,它表示某一时间状态i E 经过一步转移到下一时刻状态 j E 的概率,可以简记为ij P 。 2、状态转移概率矩阵P 系统全部一次转移概率的集合所组成的矩阵称为一步转移概率矩阵,简称状态转移概率矩阵

马尔可夫状态转移组别动态因子模型的估计与应用

马尔可夫状态转移组别动态因子模型的估计与应用 林建浩 中山大学岭南学院 (详细摘要) 结合马尔可夫状态转移(Hamilton,1989)、动态因子(Stock and Watson,1989,1991,1993)以及组别因子(Goyal et al., 2008;Hallin and Liska,2011)三种建模思想,本文提出一种马尔可夫组别动态因子(MS-GS-DF)模型。该模型以动态共同因子刻画经济变量的协动性,同时区分了不同类型经济体共同因子的组别覆盖性,并通过马尔可夫状态转移刻画经济变量在不同状态下的非对称转换。不同于Goyal et al.(2008)与Hallin and Liska(2011)假定组别因子之间相互独立,本文模型设定两种途径以刻画组别因子之间的相关关系:一是在组别因子的V AR形式中允许一种类似于Granger因果关系的存在;二是通过假定组别因子的均值和(或)方差由相同的状态变量驱动而存在相关。该模型具有较高的灵活性,可以刻画原有模型不能刻画的许多经济现象,在宏观经济分析以及证券市场研究中有重要的应用价值。例如,可用于研究经济变量在跨地区、分组别的非线性协动关系;也可用于分析一致指数、滞后指数以及领先指数等三大宏观景气指标的协同运动。 MS-GS-DF模型可以写成包含马尔可夫区制转移参数的状态空间模型形式。此时,参数的非线性性质使得标准的Kalman滤波不再适用;Lam算法通过将部分状态向量的初始成分视为待估参数,可以精确地得到极大似然估计,但这一方法需要很高的计算成本与较大的数据量。针对这些局限性,本文尝试结合Kim算法的基本框架进行不可观测成分与模型参数的估计,具体过程为:首先,假定参数已知,利用Kalman滤波获得不可观测成分(包括分组因子与特定误差项)的滤波推断;其次,利用Hamilton滤波获得马尔可夫状态转移概率的滤波推断;再次,根据Kim(1994,1999)的近似方法,对各种可能状态的条件信息近似化简为M种状态的非条件信息,同时得到近似似然函数;最后,通过非线性数值优化方法获得参数的近似极大似然估计。 最后,基于上述MS-GS-DF模型,本文研究了通货膨胀的国际协动性现象。在对1995M1至2011M2通货膨胀数据的实证研究中,以美国、欧元区、日本以及加拿大等发达经济体构造第一组别通胀因子,以金砖四国作为新兴经济体构造第二组别通胀因子,得到以下发现:第一,金砖四国通货膨胀共同因子的均值和方差都大于发达经济体;第二,平滑概率显示全球经济在样本期大部分时间处于通胀状态,只是在2001年网络泡沫破灭以及2008年金融危机等个别月份出现通缩状态;第三,通过计算国别通货膨胀序列与通胀共同因子的相关系数以及方差贡献比例,发现发达经济体通货膨胀具有较高的国际协动性,而金砖四国则明显以国别特殊性为主。上述发现为不同类型经济合作组织的货币政策国际协作提供了依据。

马尔科夫链分析、绘制与诊断

Package‘coda’ October16,2015 Version0.18-1 Date2015-10-16 Title Output Analysis and Diagnostics for MCMC Depends R(>=2.14.0) Imports lattice Description Provides functions for summarizing and plotting the output from Markov Chain Monte Carlo(MCMC)simulations,as well as diagnostic tests of convergence to the equilibrium distribution of the Markov chain. License GPL(>=2) NeedsCompilation no Author Martyn Plummer[aut,cre,trl], Nicky Best[aut], Kate Cowles[aut], Karen Vines[aut], Deepayan Sarkar[aut], Douglas Bates[aut], Russell Almond[aut], Arni Magnusson[aut] Maintainer Martyn Plummer Repository CRAN Date/Publication2015-10-1620:00:43 R topics documented: as.ts.mcmc (3) autocorr (3) autocorr.diag (4) autocorr.plot (5) batchSE (5) bugs2jags (6) coda.options (7) 1

相关文档