文档库 最新最全的文档下载
当前位置:文档库 › 江苏省铜山县高中数学第二章平面解析几何初步2.1.4平面两点间的距离与点到直线的距离第1课时两点间的

江苏省铜山县高中数学第二章平面解析几何初步2.1.4平面两点间的距离与点到直线的距离第1课时两点间的

江苏省铜山县高中数学第二章平面解析几何初步2.1.4平面两点间的距离与点到直线的距离第1课时两点间的
江苏省铜山县高中数学第二章平面解析几何初步2.1.4平面两点间的距离与点到直线的距离第1课时两点间的

两点间的距离公式

一、阅读必修2教材

97页至101页内容,回答下列问题: 1、平面 上

两点间的距离公

式:

3、图 2-1-18 和图2-1-19中三角形的特点是:

自主学习

学生活动

二次 备课

2、平面上两点

, ,则线段 的中点

的坐标

只有 线段 才有

中占 I 八\、: 两

I 这种

3、已知的顶点坐标为

,求边上的中线所在直线的方程。

数学活动1:

如何求,两点间的距离。如图:注意:

1、横坐标相同的两点间的距离:如

思考:以上两个距离如何去掉绝对值符号?

在直角三角

形中,

以,

例1:已知,两点间的距离是17,

求实数的值。

数学活动2 :

如何求两点所在线段的中点坐标。

由教材99页图2-1-19 所示,

------------- ;

由,

得 ___________________________________________________

同理,推导中点的纵坐标的值。例2:已知的顶点坐标为

,求边上的中线的长及所在直线的方程。两点间的距离: 如

思考:如何利用平面向量推导这两个公式

检1、分别根据下列条件,求线段的长及线段中点的坐标:

(1)

(2)

2、已知的顶点坐标为,

,求边上的中线的长。

3、求证:点与点关于直线

对称。

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。如图所示,若AM平分∠BAC,则 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这 条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半 (2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学必修4知识点总结:第二章 平面向量

高中数学必修4知识点总结 第二章 平面向量 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ; ②结合律:()() a b c a b c ++=++ ;③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1 212 ,x x y y A B=-- . 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 20、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、() 0b b ≠ 共线. 21、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基 b a C B A a b C C -=A -AB =B

高中数学《平面的基本性质》教案

§1.2.1平面的基本性质 一、教学目标: 1、知识与技能 (1)借助生活中的实物,学生对平面产生感性的认识; (2)掌握平面的表示法,认识水平放置的直观图; (3)掌握平面的基本性质及作用; (4)培养学生的空间想象能力。 2、过程与方法 通过师生的共同讨论,学生经历平面的感性认识。 3、情感与价值 使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。 二、教学重点、难点 重点:(1)平面的概念及表示; (2)平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。 难点:平面基本性质的掌握与运用。 三、学法与教学用具 (1)学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标。 (2)教学用具:投影仪、投影片、正(长)方形模型、三角板 四、授课类型:新授课 五、教学过程 (一)创设引入情景 生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象。你们能举出更多例子吗? 平面的含义是什么呢? (二)建立模型 1、平面含义 以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。 2、平面的画法及表示 在平面几何中,怎样画直线?一条直线平移就得到了一个平面。我们通常把一个“水平 放置的平面画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长”。(如图): 平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片) D C B A α β β

(整理)届高三数学总复习平面解析几何练习题目汇总

第8章 第1节 一、选择题 1.(2010·崇文区)“m =-2”是“直线(m +1)x +y -2=0与直线mx +(2m +2)y +1=0相互垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 [答案] A [解析] m =-2时,两直线-x +y -2=0、-2x -2y +1=0相互垂直;两直线相互垂直时,m(m +1)+2m +2=0,∴m =-1或-2,故选A. 2.(文)(2010·安徽文)过点(1,0)且与直线x -2y -2=0平行的直线方程是( ) A .x -2y -1=0 B .x -2y +1=0 C .2x +y -2=0 D .x +2y -1=0 [答案] A [解析] 解法1:所求直线斜率为12,过点(1,0),由点斜式得,y =12(x -1),即x -2y -1=0. 解法2:设所求直线方程为x -2y +b =0, ∵过点(1,0),∴b =-1,故选A. (理)设曲线y =ax2在点(1,a)处的切线与直线2x -y -6=0平行,则a =( ) A .1 B.12 C .-12 D .-1 [答案] A [解析] y′=2ax ,在(1,a)处切线的斜率为k =2a , 因为与直线2x -y -6=0平行,所以2a =2,解得a =1. 3.点(-1,1)关于直线x -y -1=0的对称点是( ) A .(-1,1) B .(1,-1) C .(-2,2) D .(2,-2) [答案] D [解析] 一般解法:设对称点为(x ,y),则

????? x -12-y +12-1=0 y -1x +1=-1,解之得????? x =2y =-2, 特殊解法:当直线l :Ax +By +C =0的系数满足|A|=|B|=1时,点A(x0,y0)关于l 的对称 点B(x ,y)的坐标,x =-By0-C A ,y =-Ax0-C B . 4.(2010·惠州市模考)在平面直角坐标系中,矩形OABC ,O(0,0),A(2,0),C(0,1),将矩形折叠,使O 点落在线段BC 上,设折痕所在直线的斜率为k ,则k 的取值范围为( ) A .[0,1] B .[0,2] C .[-1,0] D .[-2,0] [答案] D [解析] 如图,要想使折叠后点O 落在线段BC 上,可取BC 上任一点D 作线段OD 的垂直平分线l ,以l 为折痕可使O 与D 重合,故问题转化为在线段CB 上任取一点D ,求直线OD 的斜率的取值范围问题, ∵kOD≥kOB =12,∴k =-1kOD ≥-2,且k<0, 又当折叠后O 与C 重合时,k =0,∴-2≤k≤0. 5.(文)已知点(3,1)和点(1,3)在直线3x -ay +1=0的两侧,则实数a 的取值范围是( ) A .(-∞,10) B .(10,+∞) C.??? ?-∞,43∪(10,+∞) D.??? ?43,10 [答案] D [解析] 将点的坐标分别代入直线方程左边,所得两值异号,∴(9-a +1)(3-3a +1)<0,∴43

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三 点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????== . 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是? ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. A B C D F P

证明:设直线AE 与直线BF 交于点P ,直线CP 交 AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

高一数学必修四第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。A、B、C、D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、B、 C、D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2

(4)(b ) -( a )b 与 不一定垂直。其中真命题的个数是( )。 A 、1 B 、2 C 、3 D 、4 9.在ΔABC 中,A=60°,b=1, ,则 等 于( )。 A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2+b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶 向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹角 为 。(10分)

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

高中数学必修四第二章平面向量课后习题Word版

【必修4】 第二章平面向量 2.1 练习 1、画有向线段,分别表示一个竖直向上,大小为18N 的力和一个水平向左、大小为28N 的力(1cm 长表示10N ). 2、非零向量的长度怎样表示?非零向量的长度怎样表示?这两个向量的长度相等吗?这两个向量相等吗? 3、指出图中各向量的长度. 4、(1)用有向线段表示两个相等的向量,如果有相同的起点,那么它们的终点是否相同? (2)用有向线段表示两个方向相同但长度不同的向量,如果有相同的起点,那么它们的终点是否相同? 2.2.1 练习 1、如图,已知b a ,,用向量加法的三角形法则作出b a +. 2、如图,已知b a ,,用向量加法的平行四边形法则作出b a +.

3、根据图示填空: (1)________;=+d a (2).________ =+b c 4、根据图示填空: (1)________;=+b a (2)________;=+d c (3)________;=++d b a (4).________ =++e d c 2.2.2 练习 1、如图,已知b a ,,求作.b a - 2、填空: ________;=- ________;=-BC BA ________;=-BA BC ________; =- .________=-

3、作图验证:b a b)(a --=+- 2.2.3 练习 1、任画一向量e ,分别求作向量e b e a 44-==, 2、点C 在线段AB 上,且 2 5 =CB AC ,则.________AB BC AB AC ==, 3、把下列各小题中的向量b 表示为实数与向量a 的积: ;,e b e a 63)1(== ;,e b e a 148)2(-== ;,e b e a 3132)3(=-= .3 2 43)4(e b e a -=-=, 4、判断下列各小题中的向量b a 与是否共线: ;,e b e a 22)1(=-= .22)2(2121e e b e e a +-=-=, 5、化简: ;)32(4)23(5)1(a b b a -+- ;)(2 1 )23(41)2(31)2(b a b a b a ----- .)())(3(a a y x y x --+ 6、已知向量)(三点不共线、、B A O ,求作下列向量: );(21 )1(OB OA OM += );(2 1 )2(OB OA ON -= .23)3(OB OA OG += 2.3 练习 1、已知向量b a 、的坐标,求b a b a -+,的坐标: ;,,,)25()42()1(=-=b a

高三数学《平面解析几何》

高三数学《平面解析几何》 单元练习七 (考试时间120分 分值160分) 一、填空题(本大题共14小题,每小题5分,共70分.请把正确答案填在题中横线上) 1.抛物线y 2=ax (a ≠0)的焦点到其准线的距离是______. 2.过点A (4,a )与B (5,b )的直线与直线y =x +m 平行,则AB =________. 3.已知双曲线x 24-y 2 12=1的离心率为e ,抛物线x =2py 2的焦点为(e,0),则 p 的值为________. 4.若直线ax +2by -2=0(a >0,b >0)始终平分圆x 2+y 2-4x -2y -8=0的周长,则1a +2 b 的最小值为______. 5.若双曲线x 2a 2-y 2 =1的一个焦点为(2,0),则它的离心率为________. 6.已知曲线上的每一点到点A (0,2)的距离减去它到x 轴的距离的差都是2,则曲线的方程为________. 7.(2010·淮安质检)抛物线y =-4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是________. 8.已知点A 、B 是双曲线 x 2- y 2 2 =1上的两点,O 为坐OA 标原点,且满足OA · OB =0,则点O 到直线AB 的距离等于________.

9.(2009·全国Ⅱ改编)双曲线x 26-y 2 3=1的渐近线与圆(x -3)2+y 2=r 2(r >0) 相切,则r =________. 10.(2009·四川高考改编)已知双曲线x 22-y 2 b 2=1(b >0)的左、右焦点分别为 F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则12PF PF ?=________. 11.(2009·天津高考改编)设抛物线y 2=2x 的焦点为F ,过点M (3,0)的直线与抛物线相交于A 、B 两点,与抛物线的准线相交于点C ,BF =2,则△BCF 与△ACF 的面积之比S △BCF S △ACF =________. 12.(2010·南京模拟)已知点(x 0,y 0)在直线ax +by =0(a ,b 为常数)上,则 (x 0-a )2+(y 0-b )2的最小值为________. 13.直线l 的方程为y =x +3,在l 上任取一点P ,若过点P 且以双曲线12x 2 -4y 2 =3的焦点为椭圆的焦点作椭圆,那么具有最短长轴的椭圆方程为 ___________________________________________________________. 14.过抛物线y 2=2px (p >0)的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若 AF FB =,,AF FB BA BC =?=48,则抛物线的方程为______________.

高中数学常用平面几何名定理

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 定理2 Ceva定理 定理3 Menelaus定理 定理4 蝴蝶定理定理 内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 定理5 张角定理 在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 定理6 Simon line西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 定理7 Eular line: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 定理8 到三角形三定点值和最小的点——费马点 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC 的费尔马点。 定理9 三角形内到三边距离之积最大的点是三角形的重心 定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面 0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。 1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 2、九点圆: 任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

高中数学必修4第二章 平面向量公式及定义

平面向量公式 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λ b. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ. 3、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b.若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a?b=x?x'+y?y'. 向量的数量积的运算律 a?b=b?a(交换律);

高中数学 平面

§2.1.1平面(1) 一、设问导读(预习教材P 40~ P 43,找出疑惑之处) 问题1:观察长方体,你能发现构成空间几何体的基本要素有哪些?这些点、线、面有怎样的位置关系?本节我们将讨论这个问题. 2.平面的概念: 问题2:生活中哪些物体给人以平面形象?你觉得平面可以拉伸吗?平面有厚薄之分吗? 问题3:什么是平面呢? 如何画平面?平面如何表示呢? 问题4:点动成线、线动成面.联系集合的观点,点与直线、点与平面的位置关系怎么表示?直线与平面? A a A a A α A α 用符号语言表示: 3.平面的基本性质: 问题5:直线l 与平面α有一个公共点P ,直线l 是否在平面α内?有两个公共点呢? 问题6:公理1的文字语言如何叙述,符号语言如何符号语言如何表示?表示? 问题7:公理1有何作用? 问题8:两点确定一条直线,两点能确定一个平面吗?任意三点能确定一个平面吗? 问题9:公理2的文字语言如何叙述,符号语言如何表示? 问题10:你从公理2出发还能得出哪些推论?它们的作用是什么? 问题11:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于点B ?为什么? 问题12:公理3的文字语言如何叙述,符号语言如何表示? 问题13:公理3有何作用? 二、自学检测 例1:如图,用符号表示下列图形中点、直线、平面之间的位置关系. 例2:如图在正方体ABCD A B C D ''''-中,判断下列命题是否正确,并说明理由: ⑴直线AC 在平面ABCD 内; ⑵设上下底面中心为,O O ',则平面AA C C ''与平面BB 'D D ' 的交线为OO '; ⑶点,,A O C '可以确定一个平面; ⑷平面AB C ''与平面AC D '重合; ⑸由,,A C B ''确定的平面是ADC B ''; 练 一练 :用符号表示下列语句,并画出相应的图形: ⑴点A 在平面α内,但点B 在平面α外; ⑵直线a 经过平面α外的一点M ; ⑶直线a 既在平面α内,又在平面β内. 4.课堂练习:43页 1,2,3,4. 5.课外作业:51页 习题2.1 A 组 1,2 三、巩固训练: 1. 下面说法正确的是( ). ①平面ABCD 的面积为210cm ②100个平面重合比50个平面重合厚③空间图形中虚线都是辅助线④平面不一定用平行四边形表示. A.① B.② C.③ D.④ 2. 下列说法正确的是( ). ①空间任意三点可以确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形 ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一条直线的两条直线平行; ⑦一条直线与两条平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 3.直线12,l l 相交于点P ,并且分别与平面γ相交于点,A B 两点,用符号表示为____________________. 4..平面α?平面l β=,点A α∈,B α∈,C β∈,且AB l R ?=,过A 、B 、C 三点确定平面γ,则βγ?= ( ) A . 直线AC B .直线BC C .直线CR D .以上都不对. 5. 两个平面不重合,在一个面内取4点,另一个面内取3点,这些点最多能够确定平面_______个 ※ 学习小结 1. 平面的特征、画法、表示; 2. 平面的基本性质(三个公理); 3. 用符号表示点、线、面的关系. ※ 知识拓展 平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题. 四、拓展延伸 1.①两个平面α,β可将空间分成几部分? ② 已知a αβ?=,b βγ?=,c αγ?=,则平面α,β,γ可将空间分成几部分? O ' O B ' C ' D 'A ' D C B A

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(21121 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1 =+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直 线一般不重合.

高一数学必修4第二章平面向量测试题含答案

必修4第二章平面向量教学质量检测 : 班级: 学号: 得分: 一.选择题(5分×12=60分): 1.以下说法错误的是( ) A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等 C.平行向量方向相同 D.平行向量一定是共线向量 2.下列四式不能化简为AD 的是( ) A .;)++(BC CD A B B .);+)+(+(CM B C M B AD C .;-+BM A D M B D .;+-CD OA OC 3.已知a =(3,4),b =(5,12),a 与b 则夹角的余弦为( ) A . 65 63 B . 65 C .513 D .13 4. 已知a 、b 均为单位向量,它们的夹角为60°,那么|a + 3b | =( ) A .7 B .10 C .13 D .4 5.已知ABCDEF 是正六边形,且?→ ?AB =→ a ,?→ ?AE =→b ,则?→ ?BC =( ) (A ) )(2 1 → → -b a (B ) )(2 1→ → -a b (C ) →a +→b 2 1 (D ) )(2 1→ →+b a 6.设→a ,→b 为不共线向量,?→?AB =→a +2→b ,?→?BC =-4→a -→b ,?→ ?CD = -5→a -3→ b ,则下列关系式中正确的是 ( ) (A )?→?AD =?→?BC (B )?→?AD =2?→?BC (C )?→?AD =-?→?BC (D )?→?AD =-2?→ ?BC 7.设→ 1e 与→ 2e 是不共线的非零向量,且k → 1e +→ 2e 与→ 1e +k → 2e 共线,则k 的值是( ) (A ) 1 (B ) -1 (C ) 1± (D ) 任意不为零的实数 8.在四边形ABCD 中,?→?AB =?→?DC ,且?→?AC ·?→ ?BD =0,则四边形ABCD 是( ) (A ) 矩形 (B ) 菱形 (C ) 直角梯形 (D ) 等腰梯形 9.已知M (-2,7)、N (10,-2),点P 是线段MN 上的点,且?→ ?PN =-2?→ ?PM ,则P 点的坐标为( ) (A ) (-14,16)(B ) (22,-11)(C ) (6,1) (D ) (2,4)

高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1、为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D.连结DA. 在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C. 由BP =CQ,可知△DBP ≌△AQC.有DP =AC ,∠BDP =∠QAC. 于是,DA ∥BP ,∠BAP =∠BDP.则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP.所以AB =AC. 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE.求证:∠EBA =∠ADE. 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE. 由AB CD,易知△PBA ≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE.由∠BAF =∠BCE,可知 ∠BAF =∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE.所以,∠EBA =∠ADE. 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2、欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂 线,M 、N 、Q 为垂足.求证:PM +PN =PQ. 证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G,连PG. 由BD 平行∠ABC,可知点F 到AB 、BC 两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG ∥EC. 由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ. 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷. 3 、为了线段比的转化 由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. ∥=A D B P Q C 图1 P E D G A B F C 图2A N E B Q K G C D M F P 图3

相关文档
相关文档 最新文档