文档库 最新最全的文档下载
当前位置:文档库 › 回火常见的问题

回火常见的问题

回火常见的问题
回火常见的问题

回火常见问题与解决技巧

1.100℃热水回火之优点

低温回火常使用180℃至200℃左右来回火,使用油煮回火。其实若使用100℃的热水来进行回火,会有许多优点,包括:(1)100℃的回火可以减少磨裂的发生;(2)100℃回火可使工件硬度稍增,改善耐磨性;(3)100℃的热水回火可降低急速加热所產生裂痕的机会;(4)进行深冷处理时,降低工件发生深冷裂痕的机率,对残留沃斯田体有缓衝作用,增加材料强韧性;(5)工件表面不会產生油焦,表面硬度稍低,适合磨床研磨加工,亦不会產生油煮过热乾烧之现象。

2..二次硬化之高温回火处理

对於工具钢而言,残留应力与残留沃斯田体均对钢材有著不良的影响,浴消除之就要进行高温回火处理或低温回火。高温回火处理会有二次硬化现象,以SKD11而言,530℃回火所得钢材硬度较200℃低温回火稍低,但耐热性佳,不会產生时效变形,且能改善钢材耐热性,更可防止放电加工之加工变形,益处甚多。

3.在300℃左右进行回火处理,為何会產生脆化现象?

部分钢材在约270℃至300℃左右进行回火处理时,会因残留沃斯田体的分解,而在结晶粒边界上析出碳化物,导致回火脆性。二次硬化工具钢当加热至500℃~600℃之间时才会引起分解,在300℃并不会引起残留沃斯田体的分解,故无300℃脆化的现象產生。

4.回火產生之回火裂痕

以淬火之钢铁材料经回火处理时,因急冷、急热或组织变化之故而產生之裂痕,称之為回火裂痕。常见之高速钢、SKD11模具钢等回火硬化钢在高温回火后急冷也会產生。此类钢材在第一次淬火时產生第一次麻田散体变态,回火时因淬火產生第二次麻田散体变态(残留沃斯田体变态成麻田散体),而產生裂痕。因此要防止回火裂痕,最好是自回火温度作徐徐冷却,同时淬火再回火的作业中,亦应避免提早提出回火再急冷的热处理方式。

5.回火產生之回火脆性

可分為300℃脆性及回火徐冷脆性两种。所谓300℃脆性係指部分钢材在约270℃至300℃左右进行回火处理时,会因残留沃斯田体的分解,而在结晶粒边界上析出碳化物,导致回火脆性。所谓回火徐冷脆性係指自回火温度(500℃~600℃)徐冷时出现之脆性,Ni-Cr钢颇為显著。回火徐冷脆性,可自回火温度急冷加以防止,根据多种实验结果显示,机械构造用合金钢材,自回火温度施行空冷,以10℃/min以上的冷却速率,就不会產生回火徐冷脆性。

6.高週波淬火常见之问题

高週波淬火处理常见的缺陷有淬火裂痕、软点及剥离三项。高週波淬火最忌讳加热不均匀而產生局部区域的过热现象,诸如工件锐角部位、键槽部位、孔之周围等均十分容易引起过热,而导致淬火裂痕的发生,上述情形可藉由填充铜片加以降低淬火裂痕发生的可能性。另外高週波淬火工件在淬火过程不均匀,会引起工件表面硬度低的缺点,称之為软点,此现象係由於高週波淬火温度不均匀、喷水孔阻塞或孔的大小与数目不当所致。第三种会產生的缺失是表面剥离现象,主要原因為截面的硬度变化量大或硬化层太浅,因此常用预热的方式来加深硬化层,可有效防止剥离现象。

7.不銹钢為何不能在500℃至650℃间进行回火处理?

大部分的不銹钢在固溶化处理后,若在475℃至500℃之间长时间持温时,会產生硬度加大、脆性亦大增的现象,此称之為475℃脆化,主要原因有多种说法,包括相分解、晶界上有含铬碳化物的析出及Fe-Cr化合物形成等,使得常温韧性大减,且耐蚀性亦甚差,一般不銹钢的热处理应避免常时间持温在这个温度范围。另外在600℃至700℃之间长时间持温,会產生s相的析出,此s相是Fe-Cr金属间化合物,不但质地硬且脆,还会将钢材内部的铬元素大量耗尽,使不銹钢的耐蚀性与韧性均降低。

8.為何会產生回火变形?

会產生回火变形的主要原因為回火淬火之际產生的残留硬力或组织变化导致,亦即因回火使张应力消除而收缩、压应力的消除而膨胀,包括回火初期析出e碳化物会有若干收缩、雪明碳铁凝聚过程会大量收缩、残留沃斯田铁变态成麻田散铁会膨胀、残留沃斯田铁变态成变韧铁会膨胀等,导致回火后工件的变形。防止的方法包括:(1)实施加压回火处理;(2)利用热浴或空气淬火等减少残留应力;(3)用机械加工方式矫正及(4)预留变形量等方式。

9.回火淬性的种类

(1)270℃~350℃脆化:又称為低温回火淬性,大多发生在碳钢及低合金钢。

(2)400℃~550℃脆化:通常构造用合金钢再此温度范围易產生脆化现象。

(3)475℃脆化:特别指Cr含量超过13%的肥粒铁系不銹钢,在400℃至550℃间施以回火处理时,產生硬度增加而脆化的现象,在475℃左右特别显著。

(4)500℃~570℃脆化:常见於加工工具钢、高速钢等材料,在此温度会析出碳化物,造成二次硬化,但也会导致脆性的提高。

回火的脆性机理与避免方法

回火脆性的机理与避免方法 摘要:金属脆性断裂过程中,承受的工程应力通常不超过材料的屈服强度,甚至低于按宏观强度理论确定的许用应力。由于脆性断裂前既无宏观塑性变形,又无其他预兆,并且一旦开裂后,裂纹扩展迅速,造成整体断裂或很大的裂口,有时还产生很多碎片,容易导致严重事故。脆性断裂通常发生于塑性和韧性差的金属或合金中。 本文将从淬火钢回火过程中产生的回火脆性这方面探讨,就如何防止出现回火脆性,从而进一步提高钢的冲击韧性进行讨论。 关键词:回火脆性冲击韧性 一、基本概念 冲击韧性是指金属抵抗冲击载荷作用而不被破坏的能力,是金属材料力学性能的一个重要指标。 淬火钢回火时的冲击韧性并不总是随回火 温度的升高单调增大,有些钢在一定的温度范围 内回火时,其冲击韧性显著下降,这种脆化现象 叫做钢的回火脆性。 钢在250~400℃温度范围内出现的回火脆 性叫第一类回火脆性,也叫低温回火脆性;在 450~650℃温度范围内出现的回火脆性叫做第二 类回火脆性,也叫高温回火脆性。 二、低温回火脆性 1.低温回火脆性的机理 低温回火脆性几乎在所有的工业用钢中都会出现。 低温回火脆性产生的机理:一般认为,低温回火脆性是由于马氏体分解时沿马氏体条或片的界面析出断续的薄壳状碳化物,降低了晶界的断裂强度,使之成为裂纹扩展的路径,因而导致脆性断裂。如果提高回火温度,由于析出的碳化物聚集和球化,改善了脆化界面状况而使钢的韧性又重新恢复或提高。另外也有认为低温回火脆性是韧性相残余奥氏体的转变所引起的。 钢中含有合金元素一般不能抑制低温回火脆性,但Si、Cr、Mn等元素可使脆化温度推向更高温度。例如,ωS i=1.0%~1.5%的钢,产生脆化的温度为300~320℃;而ωS i=1.0%~1.5%、ωC r=1.5%~2.0%的钢,脆化温度可达350~370℃。 2.低温回火脆性防止措施 到目前为止还没有一种有效地消除低温回火脆性的热处理或合金化方法。但根据上面的一些产生机理,可以采取以下措施来防止或减轻低温回火脆性: (1)降低钢中杂质元素的含量; (2)用Al脱氧或加入Nb、V、Ti等合金元素细化奥氏体晶粒; (3)加入Mo、W等可以减轻第一类回火脆性的合金元素;

回火工艺基础知识大全

1.回火的定义与目的 回火是将淬火后的金属成材或零件加热到某一温度,保温一定时间后,以一定方式冷却的热处理工艺,回火是淬火后紧接着进行的一种操作,通常也是工件进行热处理的最后一道工序,因而把淬火和回火的联合工艺称为最终热处理。 钢件在淬火状态下有以下三个主要特征。 (1)组织特征 根据钢件尺寸、加热温度、时间、转变特征及利用的冷却方式,钢件淬火后的组织主要由马氏体或马氏体+残余奧氏体组成,此外,还可能存在一些未溶碳化物。马氏体和残余奥氏体在室温下都处于亚稳定状态,它们都有向铁衆体加渗碳体的稳定状态转化的趋势。 (2)硬度特征 由碳原子引起的点阵畸变通过硬度表示出来,它随过饱和度(即含碳量)的增加而增加。淬火组织硬度、强度高,塑性、韧性低。 (3)应力特征 包括微观应力和宏现应力,前者与碳原子引起的点阵畸变有关,尤其是与髙碳马氏体达到最大值有关,说明淬火时马氏体处于紧张受力状态之中;后者是由于淬火时横截面上形成的温差而产生的,工件表面或心部所处的应力状态是不同的,有拉应力或压应力,在工件内部保持平衡。如不及时消除淬火钢件的内应力,会引起零件的进一步变形乃至开裂。

综上所述,淬火工件虽有髙硬度与髙强度,但跪性大,组织不稳定,且存在较大的淬火内应力,因此必须经过回火处理才能使用。一般来说,回火工艺是钢件淬火后必不可少的后续工艺,它也是热处理过程的最后一道工序,它賦予工件最后所需要的性能。 回火是将淬火钢加热到Ac1以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。它的主要目的为: (1)合理地调整钢的硬度和强度,提高钢的韧性,使工件满足使用要求; (2)稳定组织,使工件在长期使用过程中不发生组织转变,从而稳定工件的形状与尺寸; (3) 降低或消除工件的淬火内应力,以减少工件的变形,并防止开裂。 2.淬火钢回火时的组织转变 淬火钢件回火时,按回火温度的髙低和组织转变的特征,可将钢的回火过程分为以下5个阶段。 (1)马氏体中碳原子的偏聚 马氏体是C在α-Fe中的过饱和间隙固溶体,C原子分布在体心立方的扁八面体间隙之中,造成了很大的弹性畸变,因此升高了马氏体的能量,使之处于不稳定的状态。在100℃以下回火时,C、N等间隙原子只能短距离扩散迁移,在晶体内部重新分布形成偏聚状态,以降低弹性应变能。对于板条马氏体,因有大量位错,C原子便偏聚于位错线附近,所以淬火钢在室温附近放置时,碳原子向位错线附近偏聚。对于片状马氏体,C原子则偏聚在一定晶面上,形成薄片状偏聚区。这些偏聚区的含碳量高于马氏体的平均含碳量,为碳化物的析出创造了条件。

第一类,二类回火脆性

第一类回火脆性 合金钢淬火后于250℃~400℃范围回火后产生的回火脆性,呈晶间型断裂特征,且不能用重新加热的方法消除,故又称为不可逆回火脆性。主要产生在合金结构钢中。 在200~350℃之间回火时出现的第一类回火脆性又称低温回火脆性。如在出现第一类回火脆性后再加热到更高温度回火,可以将脆性消除,使冲击韧性重新升高。此时若再在200~350℃温度范围内回火将不再会产生这种脆性。由此可见,第一类回火脆性是不可逆的,故又可称之为不可逆回火脆性。 几乎所有的钢均存在第一类回火脆性。如含碳不同的Cr-Mn钢回火后的冲击韧性均在350℃出现一低谷。第一类回火脆性不仅降低室温冲击韧性,而且还使冷脆转变温度50%FATTe[钢料的冲击韧性随测试温度的下降而出现显著下降时所对应的温度,即使钢料由韧性状态转变为脆性状态的温度称为冷脆转变温度,用50%FATT(℃)表示,详见金属力学性能]升高,断裂韧性KIe下降。如Fe-0.28 C-0.6 4Mn-4.82Mo钢经225℃回火后KIe为117.4MN/m,而经300℃回火后由于出现了第一类回火脆性,使KIe降至73.5MN/m。出现第一类回火脆性时大多为沿晶断裂,但也有少数为穿晶解理断裂。 影响笫一类回火脆性的因素主要是化学成分。可以将钢中元素按其作用分为三类。 1)有害杂质元素,其中包括S、P、As、Sn、Sb、Cu、N、H、O等。钢中存在这些元素时均将导致出现第一类回火脆性。不含这些杂质元素的高纯钢没有或能减轻第一类回火脆。 2)促进第一类回火脆性的元素。属于这一类的合金元素有M n、Si、cr、Ni、V 等。这一类合金元素的存在能促进第一类回火脆性的发展。有的元素单独存在时影响不大,如Ni。但当Ni与Si同时存在时则也能促进第一类回火脆性的发展。部分合金元素还能将笫一类回火脆性推向较高的温度,如Cr与Si。 3)减弱第一类回火脆性的元素。属于这一类的合金元素有Mo、W、Ti、A l等。钢中含有这一类合金元素时第一类回火脆性将被减弱。在这几种合金元素中以Mo的效果最显著。 除化学成分外,影响第一类回火脆性的因素还有奥氏体晶粒的大小以及残余奥氏体量的多少。奥氏体晶粒愈细,第一类回火脆性愈弱;残余奥氏体量愈多则愈严重. 回火炉之回火脆性的产生与对策 一、第一类回火脆性(又叫低温回火脆性或不可逆回火脆性) 温度范围:200~350oC 产生原因:1.有害杂质元素S、P、As、Sn、Sb、Cu、H、O导致第一类回火脆性 2.Mn、Si、Cr、Ni、V促进第一类回火脆性,镍-硅共存也起促进作用,铬硅提高回火炉回火脆性温度

常用钢号热处理淬火回火温度对照表.doc

如对你有帮助,请购买下载打赏,谢谢!常用钢号热处理淬火回火温度对照表(生产经验) 常用钢号热处理淬火回火温度对照表,热处理工作十五年的经验总结,此为实际生产所用,可能与教科书太一样,生产经验,仅做参考。以下HB代表布氏硬度值,HRC代码洛氏硬度C标尺。 1.45# 淬火温度830℃ 水冷硬度要求 HB229-269 回火温度 570 硬度要求 HB197-235, 回火温度 620 2.40Cr 淬火温度850℃ 油冷硬度要求 HB260-300,回火温度 520 硬度要求 HB229-269, 回火温度 580 硬度要求 HB197-235,回火温度 640 3.35SiMn 淬火温度870℃ 油(水)冷硬度要求 HB330-360,回火温度 360 硬度要求 HB260-300,回火温度 500 硬度要求 HB229-269,回火温度 560 硬度要求 HB197-235,回火温度 620 4.35CrMo 淬火温度870℃ 油(水)冷硬度要求 HB330-360,回火温度 360 硬度要求 H B260-300,回火温度 500 硬度要求 HB229-269,回火温度 560 硬度要求 HB197-235,回火温度 620 5.30Cr2Ni2Mo 淬火温度870℃ 油冷硬度要求 HB290-341,回火温度 560 硬度要求 HB2 60-300,回火温度 600 硬度要求 HB229-269,回火温度 640 6.34Cr2Ni2Mo 淬火温度870℃油硬度要求 HB290-341,回火温度 560硬度要求 HB260-300, 回火温度 600硬度要求 HB229-269,回火温度 640 7.34Cr2Ni3Mo 淬火温度870℃ 油冷硬度要求 HB330-360,回火温度 380 硬度要求 H B290-341,回火温度 560 硬度要求 HB260-300,回火温度 600 硬度要求 HB229-269,回火温度 640 8.34CrMo1A 淬火温度870℃油冷硬度要求 HB260-300,回火温度 590 硬度要求 HB22 9-269,回火温度 630 9.35CrMoSi 淬火温度930℃ 油冷硬度要求 HB260-300,回火温度 600 硬度要求 HB2 29-269,回火温度 640 10.38CrMoA1 淬火温度930℃ 油冷硬度要求 HB260-300,回火温度 600 硬度要求 HB 229-269,回火温度 690

金属材料学第二版戴起勋课后题答案

第一章1.为什么说钢中的S、P杂质元素在一般情况下总是有害的? 答:S、P会导致钢的热脆和冷脆,并且容易在晶界偏聚,导致合金钢的第二类高温回火脆性,高温蠕变时的晶界脆断。 S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆; P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。 2.钢中的碳化物按点阵结构分为哪两大类?各有什么特点? 答:简单点阵结构和复杂点阵结构 简单点阵结构的特点:硬度较高、熔点较高、稳定性较好; 复杂点阵结构的特点:硬度较低、熔点较低、稳定性较差。 3.简述合金钢中碳化物形成规律。 答:①当r C/r M>0.59时,形成复杂点阵结构;当r C/r M<0.59时,形成简单点阵结构; ②相似者相溶:完全互溶:原子尺寸、电化学因素均相似;有限溶解:一般K 都能溶解其它元素,形成复合碳化物。 ③N M/N C比值决定了碳化物类型④碳化物稳定性越好,溶解越难,析出难越,聚集长大也越难;⑤强碳化物形成元素优先与碳结合形成碳化物。 4.合金元素对Fe-C相图的S、E点有什么影响?这种影响意味着什么? 答:A形成元素均使S、E点向_____移动,F形成元素使S、E点向_____移动。S点左移意味着_____减小,E点左移意味着出现_______降低。

(左下方;左上方)(共析碳量;莱氏体的C量) 5.试述钢在退火态、淬火态及淬火-回火态下,不同合金元素的分布状况。答:退火态:非碳化物形成元素绝大多数固溶于基体中,而碳化物形成元素视C 和本身量多少而定。优先形成碳化物,余量溶入基体。 淬火态:合金元素的分布与淬火工艺有关。溶入A体的因素淬火后存在于M、B 中或残余A中,未溶者仍在K中。 回火态:低温回火,置换式合金元素基本上不发生重新分布;>400℃,Me开始重新分布。非K形成元素仍在基体中,K形成元素逐步进入析出的K中,其程度取决于回火温度和时间。 6.有哪些合金元素强烈阻止奥氏体晶粒的长大?阻止奥氏体晶粒长大有什么好处? 答:Ti、Nb、V等强碳化物形成元素(好处):能够细化晶粒,从而使钢具有良好的强韧度配合,提高了钢的综合力学性能。 7.哪些合金元素能显著提高钢的淬透性?提高钢的淬透性有何作用? 答:在结构钢中,提高马氏体淬透性作用显著的元素从大到小排列:Mn、Mo、Cr、Si、Ni等。 作用:一方面可以使工件得到均匀而良好的力学性能,满足技术要求;另一方面,在淬火时,可选用比较缓和的冷却介质,以减小工件的变形与开裂倾向。 8.能明显提高回火稳定性的合金元素有哪些?提高钢的回火稳定性有什么作用? 答:提高回火稳定性的合金元素:Cr、Mn 、Ni、Mo、W、V、Si 作用:提高钢的回火稳定性,可以使得合金钢在相同的温度下回火时,比同样

关于35CrMo钢的回火脆性的讨论

关于35CrMo钢的回火脆性的讨论 无论碳钢还是合金钢都存在回火脆性。 第一类回火脆性,又称不可逆回火脆性,一旦出现就不易消除。碳钢在200—300度,合金钢在250—400度回火后缓冷,极易出现。普遍认为,第一类回火脆性的出现,是因为马氏体分解析出碳化物造成的。 第二类回火脆性,又称可逆回火脆性,只存在于合金钢中。合金钢在500—650度回火后缓冷,极易出现。关于第二类回火脆性的本质,目前还不是十分清楚。第二类回火脆性可以采取回火后快冷的办法避免。 Cr、Mn、P、As、Sb等元素时,会使高温回火脆性倾向增大。如果钢中除Cr以外,还含有Ni或相当的Mn时,则高温回火脆性更为显著。而W。Mo等元素能减弱高温回火脆性的倾向。例如钢中含Mo=0.5%可以有效抑制高温回火脆性;但是我今天在一本小日本的资料上《预防热处理废品的措施》中对回火脆性是这么描述的"钢的回火行为是,回火温度升高,硬度降低,而由延伸率。断面收缩率与冲击值所表示的韧性则随之升高。但是在300度左右回火时,冲击韧性出现反常降低的现象。不管结构钢的钢种和碳量如何,在该温度回火时都要出现这种脆性。为赋予结构钢韧性而进行的淬火回火处理,由于存在这种反常的脆化现象,最好避免在250-550℃范围内回火。此外,在600℃附近回火时,慢冷会引起显著脆化,因此回火后必须快冷。不过,有的形状和大小的工件从该温度快冷有开裂的危险。因此也应注意避免采用过快的冷却速度。钢中磷会促进回火脆性,而加钼合金化却可减轻回火脆性,这是大家熟知的事实。 由此在结合我们加工中回火后缓冷零件加工容易,而快冷零件加工中有粘刀。不断屑等现象存在,看来的确有回火脆性现象,我们也调整了热处理工艺,在此我要谢谢大家的帮助。但让我现在也闹不明白的是:为什么两种工艺下的冲击韧性会相差无几? ※脆性的存在是肯定的 Cr、Si、Mn具有增大回火脆性的倾向。Mo、W具有降低回火脆性的倾向。 1、35CrMo由于Mo元素的加入使其所说的对于回火后缓冷的第二类回火脆性减少到很少,几乎表现不敏感。 2、但其韧性对回火温度的敏感性较强,主要表现为 1)低温回火时,在马氏体内部析出弥散的ε碳化物,起到均匀强化的作用,使韧性略有提高 2)中温回火时,晶界处的残奥敬爱事分解为Fe3c并促使杂质元素在晶界的偏聚,使晶间结合力降低,韧性下降。 3)高温回火时,马氏体进一步分解为以回火索氏体为主的组织,使35CrMo钢的韧性明显改善。

常用钢产生回火脆性的温度范围[1]

常用钢产生回火脆性的温度范围 钢号第一类回火脆性第二类回火脆性30Mn2 250~350 500~550 20MnV 300~360 25Mn2V 250~350 510~610 35SiMn 500~650 20Mn2B 250~350 45Mn2B 450~550 15MnVB 250~350 20MnVB 200~260 520左右 40MnVB 200~350 500~600 40Cr 300~370 450~650 45Cr 38CrSi 250~350 450~550 35CrMo 250~400 无明显脆性 20CrMnMo 250~350 30CrMnTi 400~450 30CrMnSi 250~380 460~650 20CrNi3A 250~350 450~550 12Cr2Ni4A 250~350 37CrNi3 300~400 480~550 40CrNiMo 300~400 一般无脆性38CrMoAlA 300~450 无脆性 4Cr9Si2 450~600 65Mn 60Si2Mn 有回火脆性50CrVA 200~300 4CrW2Si 250~350 5CrW2Si 300~400 6CrW2Si 300~450 4SiCrV >600 3Cr2W8V 550~650 9SiCr 210~250 CrWMn 250~300 9Mn2V 190~230 T8~T12 200~300 GCr15 200~240 1Cr13 520~560 2Cr13 4 50~560 600~750 3Cr13 350~550 600~750 1Cr17Ni2 400~580

《工程材料》第二阶段练习

《工程材料》第二阶段练习 一、名词解释 滑移、加工硬化、再结晶、球化退火、淬硬性、淬透性、回火脆性、回火稳定性、调质处理、固溶处理 二、填空题 1.在过冷奥氏体等温转变产物中,珠光体与屈氏体的主要相同点是 不 同点是 。 2.用光学显微镜观察,上贝氏体的组织特征呈 状,而下贝氏体则呈 状。 3.马氏体的显微组织形态主要有 、 两种。其中 韧性较好。 4.钢的淬透性越高,则其C 曲线的位置越 ,说明临界冷却速度越 。 5.亚共析钢的正常淬火温度范围是 ,过共析钢的正常淬火温度范围 是 。 6.除 、 外,几乎所有的合金元素都使Ms 、Mf 点下降,因此淬火后相同碳质量 分数的合金钢与碳钢相比,残余奥氏体 ,使钢的硬度 。 三、是非题 1.滑移变形不会引起金属晶体结构的变化。 2.因为B.B.C 晶格与F.C.C 晶格具有相同数量的滑移系,所以两种晶体的塑性变形能 力完全相同。 3.孪生变形所需要的切应力要比滑移变形时所需的小得多。 4.再结晶过程是有晶格类型变化的结晶过程 5.马氏体是碳在的α-Fe 中的过饱和固溶体。当奥氏体向马氏体转变时,体积要收缩。 6.当原始组织为片状珠光体的钢加热奥氏体化时,细片状珠光体的奥氏体化速度要比 粗片状珠光体的奥氏体化速度快。 7.当共析成分的奥氏体在冷却发生珠光体转变时,温度越低,其转变产物组织越粗。 8.高合金钢既具有良好的淬透性,也具有良好的淬硬性。 9.经淬火后再高温回火的钢,能得到回火索氏体组织,具有良好的综合机械性能。 10.表面淬火既能改变钢的表面组织,也能改善心部得组织和性能。 四、选择题 1.奥氏体向珠光体的转变是 a .扩散型转变 b .非扩散型转变 c .半扩散型转变 2.某钢的淬透性为J 15 40 ,其含义是: a .15钢的硬度为40HRC b .该钢离试样末端15mm 处的硬度为40HRC c .该钢离试样末端40mm 处的硬度为15HRC

回火脆性 的证明与原因以及防治措施

第二类回火脆性的证明、原因及防治措施 摘要:把第二类回火脆性的定义、特征及其评定方法作为一个依据,设计了一个实验方案。通过四个步骤:淬火、回火(快冷、缓冷)、磨光及冲击试验、结果分析来证明某钢材具有第二类回火脆性。分析第二类回火脆性的原因及影响因素,并针对各原因和影响因素分析第二类回火脆性的防治措施。 关键词:第二类回火脆性、缓冷、冲击韧性、原因、影响因素、防治措施 一.绪论 淬火钢在回火过程中(回火后缓冷)出现脆性增大,韧性降低的现象,这即为回火脆性。在较低温度(250℃~400℃)出现的回火脆性称为第一类回火脆性;在较高温度(450℃~650℃)出现的回火脆性称为第二类回火脆性,也称为高温回火脆性。 第一类、第二类回火脆性的叫法来自于苏联教科书,西方国家分别称其为回火马氏体脆性(TME )、回火脆性(TE )。第一类回火脆性是产生以后无法消除的,而第二类回火脆性却是可逆的。产生回火脆性的试样只要重新在高于600℃温度短时间加热并快冷,即可消除。我们本次探究的即为第二类回火脆性。其主要在合金结构钢(含Cr 、Ni 、Mn 、Si 的调质钢)中出现。 有实验表明,钢材在出现第二类回火脆性并不伴随着抗拉强度和塑形的改变,对于许多物理性能(如矫顽磁力、密度、电阻等)也不发生影响,X 射线晶体分析,也没有发现点阵中有差异。但有如下四个明显的特征: 1).冲击吸收功—回火温度曲线上出现马鞍形,或冲击韧度降低; 2).韧脆转变温度升高; 3).断口通常是沿原奥氏体晶界的沿晶断口; 4).晶粒边界上有杂质元素和某些合金元素的偏聚。 前两点可以说是产生第二类回火脆性的性能判据,后两点是第二类回火脆性的断口形态和成分判据。 为了判定某种钢材是否具有第二类回火脆性,除了要知道其定义和特征外,还要知道第二类回火脆性的评定方法。钢的第二类回火脆性倾向大小的表示方法有很多种,最初都采用回火时快冷与缓冷后的室温冲击试验的冲击韧度的比值表示,或者以韧性状态(回火快冷)与脆化状态(在出现回火脆性的温度比较长时间保温)的室温冲击韧度的比值表示,即 ) ()(脆性状态或回火缓冷韧性状态或回火快冷k k a a =? 当△值大于1时,表明钢有第二类回火脆性倾向。△值称为钢的第二类回火脆性敏感系数。这个系数越大,说明钢的回火脆性倾向越大。 本次设计的实验就采用这种评定方法。 二.实验方案 根据以上所述的第二类回火脆性的特征及评定方法,可设置以下的实验方案以证明某种钢材具有第二类回火脆性。 1.淬火 首先取该钢材制成的的带缺口的冲击试样10个,要求为长方体,且端面为正方形。根

脆性转变温度及回火脆性

脆性转变温度及回火脆性 一般钢材随着温度的降低,冲击韧性(冲击功)降低,当降至某一温度时,冲击韧性(冲击功)急剧下降,钢材由韧性断裂变为脆性断裂,这种转变称为冷脆转变,转变的温度就称为冷脆温度,也即是脆性转变温度。 影响脆性转变温度的因素很多,有材料本身的因素,如晶体结构及强度等级、合金元素及夹杂物、晶粒大小等,有外部因素,如形变速度、应力状态、试样尺寸等。 (一)第一类回火脆性 1.第一类回火脆性的主要特征及影响因素 在200~350℃之间回火时出现的第一类回火脆性又称低温回火脆性。如在出现第一类回火脆性后再加热到更高温度回火,可以将脆性消除,使冲击韧性重新升高。此时若再在200~350℃温度范围内回火将不再会产生这种脆性。由此可见,第一类回火脆性是不可逆的,故又可称之为不可逆回火脆性。 几乎所有的钢均存在第一类回火脆性。如含碳不同的Cr-Mn钢回火后的冲击韧性均在350℃出现一低谷。第一类回火脆性不仅降低室温冲击韧性,而且还使冷脆转变温度50%FATTe(钢料的冲击韧性)随测试温度的下降而出现显著下降时所对应的温度,即使钢料由韧性状态转变为脆性状态的温度称为冷脆转变温度,用50%FATT(℃)表示,详见金属力学性能]升高,断裂韧性Kle下降。如Fe-0.28 C-0.6 4Mn-4.82Mo钢经225℃回火后Kle为117.4MN/m,而经300℃回火后由于出现了第一类回火脆性,使KIe降至73.5MN/m。出现第一类回火脆性时大多为沿晶断裂,但也有少数为穿晶解理断裂。 影响笫一类回火脆性的因素主要是化学成分。可以将钢中元素按其作用分为三类。 1)有害杂质元素,其中包括S、P、As、Sn、Sb、Cu、N、H、O等。钢中存在这些元素时均将导致出现第一类回火脆性。不含这些杂质元素的高纯钢没有或能减轻第一类回火脆。 2)促进第一类回火脆性的元素。属于这一类的合金元素有Mn、Si、Cr、Ni、V 等。这一类合金元素的存在能促进第一类回火脆性的发展。有的元素单独存在时影响不大,如Ni。但当Ni与Si同时存在时则也能促进第一类回火脆性的发展。部分合金元素还能将笫一类回火脆性推向较高的温度,如Cr与Si。 3)减弱第一类回火脆性的元素。属于这一类的合金元素有Mo、W、Ti、A l 等。钢中含有这一类合金元素时第一类回火脆性将被减弱。在这几种合金元素中以Mo的效果最显著。

钢材常见的交货状态

常见的钢材交货状态有热轧、控轧、正火、回火、退火、淬火、调质等 淬火:加热到相变点温度以上后,急剧冷却的工艺。提高材料的硬度,但降低韧性。 正火:加热到相变温度以上后,正常冷却(空气中)。 退火:加热到相变点温度以上后,缓慢冷却。消除淬火影响,消除应力,均匀成分。 回火:淬火后,再加热到某一温度(低于淬火温度),保温,然后冷却。均匀成分,稍降低硬度,大幅度提高韧性。 一般来说:先要退火、正火;消除原热处理影响。然后淬火,然后回火。 具体而言: 控轧即控制轧制。 也就是在调整钢的化学成分的基础上,通过控制加热温度,轧制温度,变形制度等工艺参数,控制奥氏体组织的变化规律和相变产物的组织形态,达到细化组织,提高强度和韧性的目的。 控轧式正火就是控制轧制,控制轧制温度,压下量,冷却速度,以及终轧温度等措施,使钢板的性能达到良好的强韧性配比 正火,又称常化,是将工件加热至Ac3或Accm以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。 正火的主要应用范围有:①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。④用于铸钢件,可以细化铸态组织,改善切削加工性能。⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向。⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。 退火annealing 将工件加热到预定温度,保温一定的时间后缓慢冷却的金属热处理工艺。退火的目的在于:①改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。②软化工件以便进行切削加工。③细化晶粒,改善组织以提高工件的机械性能。④为最终热处理(淬火、回火)作好组织准备。常用的退火工艺有:①完全退火。用以细化中、低

材料科学基础名词解释中英

《材料科学基础》名词解释 A Orowan mechanism (奥罗万机制) 位错绕过第二相粒子,形成包围第二相粒子的位错环的机制。Austenite(奥氏体) 碳在γ-Fe中形成的间隙固溶体称为奥氏体。 B 布拉菲点阵 除考虑晶胞外形外,还考虑阵点位置所构成的点阵。 Half-coherent interface(半共格相界) 两相邻晶体在相界面处的晶面间距相差较大,则在相界面上不可能做到完全一一对应,于是在界面上将产生一些位错,以降低界面弹性应变能。这时两相原子部分保持匹配,这样的界面称为半共格界面。 Sheet texture(板织构) 轧板时形成的组织的择优取向。 Peritectic reaction(包晶反应) 固相和液相生成另一成分的固溶体的反应 Peritectic segregation(包晶偏析) 新生成的固相的芯部保留残余的原有固相,新相本身成分也不均匀。Peritectic phase diagram(包晶相图) 具有包晶反应的相图

Peritectoid reaction(包析反应) 由两个固相反应得到一个固相的过程为包析反应。 Cellular structure(胞状结构) 成分过冷区很小时,固相突出部分局限在很小区域内,不生成侧向枝晶。Intrinstic diffusion coefficient(本征扩散系数) 依赖热缺陷进行的扩散的扩散系数。 Transformed ledeburite(变态莱氏体) 渗碳体和奥氏体组成的莱氏体冷却至727℃时奥氏体发生共析反应转变为珠光体,此时称变态莱氏体。 Deformation twins(变形孪晶) 晶体通过孪生方式发生塑性变形时产生的孪晶(BCC,HCP) Chill zone(表层细晶区) 和低温铸模模壁接触,强烈过冷形成的细小的方向杂乱的等轴晶粒细晶区。 Burger’s vector(柏氏矢量) 表征位错引起的晶格点阵畸变大小和方向的物理量。 Asymmetric tilt boundary(不对称倾斜晶界) 晶界两侧晶粒不对称的小角度晶界,界面含两套垂直的刃型位错。 Non-equilibrium eutectic(不平衡共晶) 冷却速度快,原子扩散不充分的共晶。 Imperfect dislocation(不全位错) 柏氏矢量不等于点阵矢量整数倍的位错。

常用钢号热处理淬火回火温度对照表

常用钢号热处理淬火回火温度对照表(生产经验) 常用钢号热处理淬火回火温度对照表,热处理工作十五年的经验总结,此为实际生产所用,可能与教科书太一样,生产经验,仅做参考。以下HB代表布氏硬度值,HRC代码洛氏硬度C标尺。 1.45# 淬火温度830℃ 水冷硬度要求 HB229-269 回火温度 570 硬度要求 HB197-235, 回火温度 620 2.40Cr 淬火温度850℃ 油冷硬度要求 HB260-300,回火温度 520 硬度要求 HB229-269, 回火温度 580 硬度要求 HB197-235,回火温度 640 3.35SiMn 淬火温度870℃ 油(水)冷硬度要求 HB330-360,回火温度 360 硬度要求 HB260-300,回火温度 500 硬度要求 HB229-269,回火温度 560 硬度要求 HB197-235,回火温度 620 4.35CrMo 淬火温度870℃ 油(水)冷硬度要求 HB330-360,回火温度 360 硬度要求 H B260-300,回火温度 500 硬度要求 HB229-269,回火温度 560 硬度要求 HB197-235,回火温度 620 5.30Cr2Ni2Mo 淬火温度870℃ 油冷硬度要求 HB290-341,回火温度 560 硬度要求 HB2 60-300,回火温度 600 硬度要求 HB229-269,回火温度 640 6.34Cr2Ni2Mo 淬火温度870℃油硬度要求 HB290-341,回火温度 560硬度要求 HB260-300, 回火温度 600硬度要求 HB229-269,回火温度 640 7.34Cr2Ni3Mo 淬火温度870℃ 油冷硬度要求 HB330-360,回火温度 380 硬度要求 H B290-341,回火温度 560 硬度要求 HB260-300,回火温度 600 硬度要求 HB229-269,回火温度 640 8.34CrMo1A 淬火温度870℃油冷硬度要求 HB260-300,回火温度 590 硬度要求 HB22 9-269,回火温度 630 9.35CrMoSi 淬火温度930℃ 油冷硬度要求 HB260-300,回火温度 600 硬度要求 HB2 29-269,回火温度 640 10.38CrMoA1 淬火温度930℃ 油冷硬度要求 HB260-300,回火温度 600 硬度要求 HB 229-269,回火温度 690 11.40CrMnMo860℃油硬度要求 HB330-360,回火温度 480硬度要求 HB290-341,回火温度 520硬度 要求 HB260-300,回火温度 580硬度要求 HB229-269,回火温度 640

回火的脆性机理与避免方法

回火脆性的机理与避免方法 二、低温回火脆性 1. 低温回火脆性的机理 低温回火脆性几乎在所有的工业用钢中都会出现。 低温回火脆性产生的机理: 一般认为,低温回火脆性是由于马氏体分解时沿马氏体条或 片的界面析出断续的薄壳状碳化物, 降低了晶界的断裂强度,使之成为裂纹扩展的路径,因 而导致脆性断裂。如果提高回火温度,由于析出的碳化物聚集和球化, 改善了脆化界面状况 而使钢的韧性又重新恢复或提高。另外也有认为低温回火脆性是韧性相残余奥氏体的转变所 引起的。 钢中含有合金元素一般不能抑制低温回火脆性,但 Si 、Cr 、Mn 等元素可使脆化温度推 向更高温度。例如,3 S =1.0%~1.5%的钢,产生脆化的温度为 300~320C;而3 S i=1.0%~1.5%、 3 C r =1.5%~2.0%的钢,脆化温度可达 350~370C 。 2. 低温回火脆性防止措施 到目前为止还没有一种有效地消除低温回火脆性的热处理或合金化方法。 一些产生机理,可以采取以下措施来防止或减轻低温回火脆性: (1) 降低钢中杂质元素的含量; (2) 用Al 脱氧或加入Nb V 、Ti 等合金元素细化奥氏体晶粒; (3) 加入Mo W 等可以减轻第一类回火脆性的合金元素; 摘要:金属脆性断裂过程中,承受的工程应力通常不超过材料的屈服强度,甚至低于 按宏观强 度理论确定的许用应力。 由于脆性断裂前既无宏观塑性变形, 又无其他预兆,并且 一旦开裂后,裂纹扩展迅速,造成整体断裂或很大的裂口,有时还产生很多碎片, 容易导致 严重事故。脆性断裂通常发生于塑性和韧性差的金属或合金中。 本文将从淬火钢回火过程中产生的回火脆性这方面探讨, 而进一步提高钢的冲击韧性进行讨论。 关键词:回火脆性 冲击韧性 —、基本概念 冲击韧性是指金属抵抗冲击载荷作用而不被破坏的能力, 要指标。 舞…T- 1' ? ' ■■ ■ ■ ■' ----- 9。? r n ■ -占.■,工3心 二“壬二 -, : J ■■■■■■■■ J L J - !\ J J J b J 臥卩:聾迂三 就如何防止出现回火脆性, 从 是金属材料力学性能的一个重 淬火钢回火时的冲击韧性并不总是随回火 温度的升高单调增大,有些钢在一定的温度范围 内回火时,其冲击韧性显著下降,这种脆化现象 叫做钢 的回火脆性。 钢在250~400 C 温度范围内出现的回火脆 性 叫第一类回火脆性,也叫低温回火脆性;在 450~650 C 温度范围内出现的回火脆性叫做第二 F 类回火脆性,也 叫高温回火脆性。 加簸淬%黒步曲 但根据上面的 :警淤却; r 血1

常用钢材热处理工艺参数

热处理工艺规程B/Z61.012-95 (工艺参数)

2012年10月15日

目录 1.主题内容与适用范围 (1) 2.常用钢淬火、回火温度 (1) 2.1要求综合性能的钢种 (1) 2.2要求淬硬的钢种 (4) 2.3要求渗碳的钢种 (6) 2.4几点说明 (6) 3.常用钢正火、回火及退火温度 (7) 3.1要求综合性能的钢种 (7) 3.2其它钢种 (8) 3.3几点说明 (8) 4.常用钢去应力温度 (10) 5.各种热处理工序加热、冷却范围 (12) 5.1淬火……………………………………………………………………………………………1 2 5.2 正火及退火 (14) 5.3回火、时效及去应力 (15) 5.4工艺规范的几点说明 (16) 6.化学热处理工艺规范 (17) 6.1氮化 (17) 6.2渗碳 (20) 7.锻模热处理工艺规范 (22) 7.1锻模及胎模 (22) 7.2切边模 (24) 7.3锻模热处理注意事项 (25) 8.有色金属热处理工艺规范 (26) 8.1铝合金的热处理 (26) 8.2铜及铜合金 (26) 9.几种钢锻后防白点工艺规范 (27) 9.1第Ⅰ组钢 (27) 9.2第Ⅱ组钢 (28)

热处理工艺规程(工艺参数) 1.主题内容与适用范围 本标准为“热处理工艺规程”(工艺参数),它主要以企业标准《金属材料技术条件》B/HJ-93年版所涉及的金属材料和技术要求为依据(不包括高温合金),并收集了我公司生产常用的工具、模具及工艺装备用的金属材料。 本标准适用于汽轮机、燃气轮机产品零件的热处理生产。 2.常用钢淬火、回火温度 2.1 要求综合性能的钢种: 表1

钢热处理工艺及合理选择

钢热处理工艺性及合理选择 钢热处理工艺性及合理选择三维网技术论坛% {$ k! Q" F. Z9 c. Q( ]三维|cad|机械|汽车|技术|catia|pro/e|ug|inventor|solidedge|solidworks|caxa1 @! \" Z1 G- n钢的热处理工艺性主要包括淬透性、淬硬性、回火脆性、过热敏感性、耐回火性、氧化脱碳趋向及超高强度钢表面状态敏感性等,这些工艺性均与材料的化学成分和组织有关,是选材和制定生产工艺的重要依据。 1.淬透性钢的淬透性是指在一定条件下钢件淬火后能够获得淬硬层的能力。钢的淬透性一般可用淬火临界直径、截面硬度分布曲线和瑞淬硬度分布曲线等表示。( O. [9 Y* \& e4 @; v 淬火临界直径是指淬火试件中心形成一定量马氏体,即心部达到一定临界硬度的最大直径,临界硬度与碳含量关系见图1。 `( m6 f; M. D! a1 r, U0 O 一般机械制造行业大多以心部获得50%马氏体(体积分数)为淬火临界直径标准,对于重要机械及军工行业则以心部获得90%马氏体(体积分数)作为临界直径标准,以保证零件整个截面都获得较高力学性能。对于同一个钢种,由于选用淬火临界直径标准不同,其临界直径尺寸也不同,以50%马氏体(体积分数)为标准的临界直径大于以90%马氏体(体积分数)为标难的临界直径。 钢的淬透性使钢产生了尺寸效应(亦称质量效应),由于零件截面尺寸大小不同而造成淬硬层深度不同,同时也影响淬火件表面硬

度,因此设计师必须充分注意材料的淬透性,合理选择材料,设计大截面或形状复杂的重要零件时应选用淬透性好的合金钢,可以保证沿整个截面都具有高强度和高韧性的良好配合,同时减少热处理变形和开裂。设计师还要根据零件的服役条件合理确定淬透性要求,对于重要零件(如连杆、高强度螺栓、拉杆等),要求淬火后保证心部获得90%以上马氏体(体积分数);对于一般单向受拉、受压的零件,则要求淬火后心部获得50%马氏体(体积分数)即可;因考虑刚度而尺寸较大的曲轴,淬火后只要求离表面1/4R处保证获得50%以上马氏体(体积分数);弹簧零件一般要求淬透;对于滚动轴承、小轴承要全部淬透,但受冲击载荷大的大轴承则不宜淬透。此外,设计师还应注意,各种材料手册中的数据都有尺寸限制,不能根据小尺寸试样的性能指标来进行大尺寸零件的强度计算。 工艺师应根据钢的淬透性合理安排加工工序。当零件尺寸较大、又受到淬透性限制时,为了保证淬硬层深度,可采用先粗加工后热处理,热处理后再精加工。截面差别较大的零件,如大直径台阶轴,从淬透性考虑,可先粗车成形,然后调质,增加淬硬层深度。 钢的碎透性是制定热处理工艺的重要依据。淬透性好的钢淬火时,可以选用较缓和的淬火介质和较慢冷却的淬火工艺,以减少零件的变形和开裂趋向。 }& R' w: d) Q4 Y1 G 2.淬硬性淬硬性是指钢在理想淬火条件下,以超过临界冷却速度冷却,使形成的马氏体能够达到最高硬度。钢的淬硬性主要取决于钢的含碳量,碳含量越高,淬火后硬度也越高,其他合金元素的影

淬火钢回火时力学性能的变化

淬火钢回火时力学性能的变化 ●低碳钢回火后力学性能 当低于200℃回火时,强度与硬度下降不多,塑性与韧性也基本不变。这是由于此温度下仅有碳原子的偏聚而无析出。固溶强化得以保持的缘故。 当高于300℃回火,硬度大大下降,塑性有所上升。这是由于固溶强化消失,碳化物聚集长大,α相回复、再结晶所致。所得综合性能并不优于低碳马氏体低温回火后性能。 ●高碳钢一般采用不完全淬火,使奥氏体中碳含量在0.5%左右。淬火后低温回火以获高的硬度,并生成大量弥散分布的碳化物以提高耐磨性,细化奥氏体晶粒。 当高于300℃回火时,硬度、强度下降明显,塑性有所上升,冲击韧性下降至最低。这是由于薄片状θ碳化物析出于马氏体条间并充分长大,从而降低了冲击韧性,而α基体因回复和再结晶共同作用,提高了塑性,降低了强度。 当低于200℃回火,硬度会略有上升,这是由于析出弥散分布的ε(η)碳化物,引起的时效硬化。 ●中碳钢回火后的力学性能 当低于200℃回火,析出少量的碳化物,硬化效果不大,可维持硬度不降。当高于300℃回火,随回火温度升高,塑性升高,断裂韧性K IC剧增。强度虽然下降,但仍比低碳钢高的多。 ●回火脆性 某些钢在回火时,随着回火温度的升高,冲击韧性反而降低。由于回火引起的脆性称为回火脆性。

当300℃回火时,硬度下降缓慢,一方面碳的进一步析出会降低硬度;另一方面,由于高碳钢中存在的较多的残余奥氏体向马氏体转变,又会引起硬化。这就造成硬度下降平缓,甚至有可能上升。回火后仍处于脆性状态。 在200~350℃出现的,称为第一类回火脆性;在450~650℃出现的,称为第二类回火脆性。 1. 第一类回火脆性,属不可逆回火脆性。 当出现了第一类回火脆性后,再加热到较高温度回火,可将脆性消除;如再在此温度范围回火,就不会出现这种脆性。故称之为不可逆回火脆性。在不少钢中,都存在第一类回火脆性。当钢中存在Mo、W、Ti、Al,则第I类回火脆性可被减弱或抑制。 目前,关于引起第一类回火脆性的原因说法很多,尚无定论。看来,很可能是多种原因的综合结果,而对于不同的钢料来说,也很可能是不同的原因引起的。 最初,根据第一类回火脆性出现的温度范围正好与碳钢回火时的第二个转变,即残余奥氏体转变的温度范围相对应而认为第一类回火脆性是残余奥氏体的转变引起的,因转变的结果将使塑性相奥氏体消失。这一观点能够很好地解释促Cr、Si等元素将第一类回火脆性推向高温以及残余奥氏体量增多能够进第一类回火脆性等现象。但对于有些钢来说,第一类回火脆性与残余奥氏体转变并不完全对应。故残余奥氏体转变理论不能解释各种钢的第一类回火脆性。 之后,残余奥氏体转变理论又一度为碳化物薄壳理论所取代。经电镜证实,在出现第一类回火脆性时,沿晶界有碳化物薄壳形成,据此认为第一类回火脆性是由碳化物薄壳引起的。沿晶界形成脆性相能引起脆性沿晶断裂这已是公认的了。问题是所观察到的碳化物薄壳究竟是怎样形成的。

简述淬火钢回火时力学性能与回火温度之间的关系.

简述淬火钢回火时力学性能与回火温度之间的关系 ⑴ 硬度与回火温度之间的关系 中、低碳钢在250℃一下回火时,机械性能无明显变化。这是因为只有碳的偏聚,而无其他组织变化。高碳钢则不同,由于ε相共格析出,引起弥散强化,硬度略有升高。 250-400℃回火时,一方面由于马氏体分解、正方度减小以及碳化物转变和聚集长大,硬度趋于降低;另一方面,由于残余奥氏体转变为下贝氏体,硬度则有所升高。二者综合影响,使得中、低碳钢硬度下降,而高碳钢硬度升高。 回火温度在400℃以上升高时,产生α相的回复与再结晶及碳化物聚集并球化,均使硬度下降。 ⑵强度和塑性与回火温度的关系 高、中、低碳钢回火时,弹性极限随回火温度上升而增加,大约在350℃左右出现峰值。这与回火过程中碳的偏聚、ε碳化物的析出、α相中碳过饱和度下降以及渗碳体析出α相回复等组织结构变化相联系。 钢的塑性一般随回火温度的升高而加大。 ⑶冲击韧性与回火温度之间的关系 随着回火温度的升高,碳钢冲击值(αk)变化的总趋势是增加的。但是,高碳钢经扭转冲击试验,可测出250℃左右回火后冲击值下降的脆化现象。 ⑷断裂韧性与回火温度之间的关系 在400℃以下,随回火温度增高,断裂韧性和冲击韧性均降低。400℃以上回火时,断裂韧性增大。 解释碳钢回火脆性的定义、原因及消除或改善方法 在250-400℃和450-650℃区域存在着冲击韧显著下降的现象,这种脆化现象称为回火脆性。 ⑴其中在250-400℃范围内回火时出现的脆性称为第一类回火脆性,存在于一切钢种之中。此后若重新加热至第一类回火脆化温区,也不再出现脆性。故又称不可逆回火脆性。因其出现与低温回火温度范围,故又称低温回火脆性。发生第一类回火脆性的钢件,断口呈晶间断裂;无第一次回火脆性的钢件,呈穿晶断裂。 消除或改善的方法: ①以极快的速度加热和冷却以及高温形变热处理。

相关文档
相关文档 最新文档