文档库 最新最全的文档下载
当前位置:文档库 › IRFP250 场效应管

IRFP250 场效应管

IRFP250   场效应管
IRFP250   场效应管

结型场效应管(JFET)的结构和工作原理

结型场效应管(JFET)得结构与工作原理1、JFET得结构与符号 N沟道JFETP沟道JFET 2、工作原理(以N沟道JFET为例) N沟道JFET工作时,必须在栅极与源极之间加一个负电压-—VGS<0,在D-S间加一个正电压——V DS>0、 栅极—沟道间得PN结反偏,栅极电流iG≈0,栅极输入电阻很高(高达107Ω以上). N沟道中得多子(电子)由S向D运动,形成漏极电流iD。i D得大小取决于VDS得大小与沟道电阻。改变VGS可改变沟道电阻,从而改变i D。 主要讨论V GS对i D得控制作用以及VDS对iD得影响。 ①栅源电压VGS对i D得控制作用 当VGS〈0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,ID减小;VGS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,ID≈0。这时所对应得栅源电压V GS称为夹断电压VP。

②漏源电压VDS对i D得影响 在栅源间加电压V GS<0,漏源间加正电压VDS > 0。则因漏端耗尽层所受得反偏电压为V GD=V GS-V DS,比源端耗尽层所受得反偏电压V GS大,(如:VGS=-2V, V DS =3V,V P=-9V,则漏端耗尽层受反偏电压为V GD=—5V,源端耗尽层受反偏电压为-2V),使靠近漏端得耗尽层比源端宽,沟道比源端窄,故V DS对沟道得影响就是不均匀得,使沟道呈楔形。 当V DS增加到使VGD=VGS-VDS=V P时,耗尽层在漏端靠拢,称为预夹断。 当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。由于夹断处电阻很大,使VDS主要降落在该区,产生强电场力把未夹断区得载流子都拉至漏极,形成漏极电流ID.预夹断后I D基本不随VDS增大而变化。

常用场效应管参数大全

常用场效应管参数大全 型号材料管脚用途参数 3DJ6NJ 低频放大20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS 开关600V11A150W0.36 2SJ117 PMOS GDS 音频功放开关400V2A40W 2SJ118 PMOS GDS 高速功放开关140V8A100W50/70nS0.5 2SJ122 PMOS GDS 高速功放开关60V10A50W60/100nS0.15 2SJ136 PMOS GDS 高速功放开关60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关60V16A35W90/180nS0.035 2SJ172 PMOS GDS 激励60V10A40W73/275nS0.18 2SJ175 PMOS GDS 激励60V10A25W73/275nS0.18 2SJ177 PMOS GDS 激励60V20A35W140/580nS0.085 2SJ201 PMOS n 2SJ306 PMOS GDS 激励60V14A40W30/120nS0.12 2SJ312 PMOS GDS 激励60V14A40W30/120nS0.12 2SK30 NJ SDG 低放音频50V0.5mA0.1W0.5dB 2SK30A NJ SDG 低放低噪音频50V0.3-6.5mA0.1W0.5dB 2SK108 NJ SGD 音频激励开关50V1-12mA0.3W70 1DB 2SK118 NJ SGD 音频话筒放大50V0.01A0.1W0.5dB 2SK168 NJ GSD 高频放大30V0.01A0.2W100MHz1.7dB 2SK192 NJ DSG 高频低噪放大18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大20V0.5-8mA0.25W100MHz3dB 2SK214 NMOS GSD 高频高速开关160V0.5A30W 2SK241 NMOS DSG 高频放大20V0.03A0.2W100MHz1.7dB 2SK304 NJ GSD 音频功放30V0.6-12mA0.15W 2SK385 NMOS GDS 高速开关400V10A120W100/140nS0.6 2SK386 NMOS GDS 高速开关450V10A120W100/140nS0.7 2SK413 NMOS GDS 高速功放开关140V8A100W0.5 (2SJ118) 2SK423 NMOS SDG 高速开关100V0.5A0.9W4.5 2SK428 NMOS GDS 高速开关60V10A50W45/65NS0.15 2SK447 NMOS SDG 高速低噪开关250V15A150W0.24可驱电机2SK511 NMOS SDG 高速功放开关250V0.3A8W5.0 2SK534 NMOS GDS 高速开关800V5A100W4.0 2SK539 NMOS GDS 开关900V5A150W2.5 2SK560 NMOS GDS 高速开关500V15A100W0.4 2SK623 NMOS GDS 高速开关250V20A120W0.15 2SK727 NMOS GDS 电源开关900V5A125W110/420nS2.5 2SK734 NMOS GDS 电源开关450V15A150W160/250nS0.52 2SK785 NMOS GDS 电源开关500V20A150W105/240nS0.4 2SK787 NMOS GDS 高速开关900V8A150W95/240nS1.6 2SK790 NMOS GDS 高速功放开关500V15A150W0.4 可驱电机

场效应管的选型及应用概览

场效应管的选型及应用概览 场效应管广泛使用在模拟电路与数字电路中,和我们的生活密不可分。场效应管的优势在于:首先驱动电路比较简单。场效应管需要的驱动电流比BJT则小得多,而且通常可以直接由CMOS或者集电极开路TTL驱动电路驱动;其次场效应管的开关速度比较迅速,能够以较高的速度工作,因为没有电荷存储效应;另外场效应管没有二次击穿失效机理,它在温度越高时往往耐力越强,而且发生热击穿的可能性越低,还可以在较宽的温度范围内提供较好的性能。场效应管已经得到了大量应用,在消费电子、工业产品、机电设备、智能手机以及其他便携式数码电子产品中随处可见。 近年来,随着汽车、通信、能源、消费、绿色工业等大量应用场效应管产品的行业在近几年来得到了快速的发展,功率场效应管更是备受关注。据预测,2010-2015年中国功率MOSFET市场的总体复合年度增长率将达到13.7%。虽然市场研究公司 iSuppli 表示由于宏观的投资和经济政策和日本地震带来的晶圆与原材料供应问题,今年的功率场效应管市场会放缓,但消费电子和数据处理的需求依然旺盛,因此长期来看,功率场效应管的增长还是会持续一段相当长的时间。 技术一直在进步,功率场效应管市场逐渐受到了新技术的挑战。例如,业内有不少公司已经开始研发GaN功率器件,并且断言硅功率场效应管的性能可提升的空间已经非常有限。不过,GaN 对功率场效应管市场的挑战还处于非常初期的阶段,场效应管在技术成熟度、供应量等方面仍然占据明显的优势,经过三十多年的发展,场效应管市场也不会轻易被新技术迅速替代。 五年甚至更长的时间内,场效应管仍会占据主导的位置。场效应管也仍将是众多刚入行的工程师都会接触到的器件,本期内容将会从基础开始,探讨场效应管的一些基础知识,包括选型、关键参数的介绍、系统和散热的考虑等为大家做一些介绍。 一.场效应管的基础选型 场效应管有两大类型:N沟道和P沟道。在功率系统中,场效应管可被看成电气开关。当在N沟道场效应管的栅极和源极间加上正电压时,其开关导通。导通时,电流可经开关从漏极流向源极。漏极和源极之间存在一个内阻,称为导通电阻RDS(ON)。必须清楚场效应管的栅极是个高阻抗端,因此,总是要在栅极加上一个电压。如果栅极为悬空,器件将不能按设计意图工作,并可能在不恰当的时刻导通或关闭,导致系统产生潜在的功率损耗。当源极和栅极间的电压为零时,开关关闭,而电流停止通过器件。虽然这时器件已经关闭,但仍然有微小电流存在,这称之为漏电流,即IDSS。 作为电气系统中的基本部件,工程师如何根据参数做出正确选择呢?本文将讨论如何通过四步来选择正确的场效应管。 1)沟道的选择。为设计选择正确器件的第一步是决定采用N沟道还是P沟道场效应管。在典型的功率应用中,当一个场效应管接地,而负载连接到干线电压上时,该场效应管就构成了低压侧开关。在低压侧开关中,应采用N沟道场效应管,这是出于对关闭或导通器件所需电压的考虑。当场效应管连接到总线及负载接地时,就要用高压侧开关。通常会在这个拓扑中采用P沟道场效应管,这也是出于对电压驱动的考虑。

场效应管工作原理

场效应管工作原理 MOS场效应管电源开关电路。 这是该装置的核心,在介绍该部分工作原理之前,先简单解释一下MOS 场效应管的工作原理。 MOS 场效应管也被称为MOS FET,既Metal Oxide Semiconductor Field Effect Transistor(金属氧化物半导体场效应管)的缩写。它一般有耗尽型和增强型两种。本文使用的为增强型MOS场效应管,其内部结构见图5。它可分为NPN型PNP 型。NPN型通常称为N沟道型,PNP型也叫P沟道型。由图可看出,对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。我们知道一般三极管是由输入的电流控制输出的电流。但对于场效应管,其输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

为解释MOS场效应管的工作原理,我们先了解一下仅含有一个P—N结的二极管的工作过程。如图6所示,我们知道在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P 型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。 对于场效应管(见图7),在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在

(实验六)结型场效应管放大电路

实验六 结型场效应管放大电路 一.实验摘要 通过对实验箱上结型场效应管的测试,认识N 沟道JFET 场效应管的电压放大特性和开关特性。给MOS 管放大电路加输入信号为:正弦波,Vpp=200mV-500mV ,f=2Khz 。测量输入电阻时,输入端的参考电阻Rs=680K 。 二.实验主要仪器 三极管,万用表,示波器,信号源及其他电子元件。 三.实验原理 场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量,从原理上讲,也可采 S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

用实验二中所述方法,但由于场效应管的R i 比较大,如直接测输入电压U S 和U i ,则限于测量仪器的输入电阻有限,必然会带来较大的误差。因此为了减小误差,常利用被测放大器的隔离作用,通过测量输出电压U O 来计算输入电阻。测量电路如图所示。 输入电阻测量电路 在放大器的输入端串入电阻R ,把开关K 掷向位置1(即使R =0),测量放大器的输出电压U 01=A V U S ;保持U S 不变,再把K 掷向2(即接入R ),测量放大器的输出电压U 02。由于两次测量中A V 和U S 保持不变,故 V S i i i V 02A U R R R U A U += = 由此可以求出 R U U U R 02 O102 i -=

场效应管介绍

场效应管原理 场效应管是只有一种载流子参与导电的半导体器件,是一种用输入电压控制输出电流的半导体器件。有N沟道器件和P沟道器件。有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。IGFET也称金属-氧化物-半导体三极管MOSFET (Metal Oxide Semiconductor FET)。1.1 1.1.1 MOS场效应管 MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。场效应管有三个电极: D(Drain) 称为漏极,相当双极型三极管的集电极; G(Gate) 称为栅极,相当于双极型三极管的基极; S(Source) 称为源极,相当于双极型三极管的发射极。 增强型MOS(EMOS)场效应管 一、工作原理 1.沟道形成原理 当VGS=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压不会在D、S间形成电流。 当栅极加有电压时,若0<VGS<VGS(th)时,通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。 进一步增加VGS,当VGS>VGS(th)时(VGS(th) 称为开启电压),由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。如果此时加有漏源电压,就可以形成漏极电流ID。在栅极下方形成的导电沟 1 线性电子电路教案 道中的电子,因与P型半导体的载流子空穴极性相反,故称为反型层(inversion layer)。随着VGS的继续增加,ID将不断增加。在VGS=0V时ID=0,只有当VGS>VGS(th)后才会出现漏极电流,这种MOS管称为增强型MOS管。 转移特性曲线的斜率gm的大小反映了栅源电压对漏极电流的控制作用。gm 的量纲为mA/V,所以gm也称为跨导。 跨导的定义式如下:constDS==VGSDVIgmΔΔ (单位mS) 2.VDS对沟道导电能力的控制 当VGS>VGS(th),且固定为某一值时,来分析漏源电压VDS对漏极电流ID的影响。VDS的不同变化对沟道的影响如图3-2所示。根据此图可以有如下关系 VDS=VDG+VGS= —VGD+VGS VGD=VGS—VDS 当VDS为0或较小时,相当VGD>VGS(th),沟道呈斜线分布。在紧靠漏极处,沟道达到开启的程度以上,漏源之间有电流通过。 当VDS增加到使VGD=VGS(th)时,相当于VDS增加使漏极处沟道缩减到刚刚开启的情况,称为预夹断,此时的漏极电流ID基本饱和。当VDS增加到VGDVGS(th)、

常用场效应管型号参数管脚识别及检测表

. 常用场效应管型号参数管脚识别及检测表 场效应管管脚识别 场效应管的检测和使用 场效应管的检测和使用一、用指针式万用表对场效应管进 行判别 (1)用测电阻法判别结型场效应管的电极 根据场效应管的PN结正、反向电阻值不一样的现象,可以 判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

1 / 19 . (2)用测电阻法判别场效应管的好坏 测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效 应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏 极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测 得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极 之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。 (3)用感应信号输人法估测场效应管的放大能力 具体方法:用万用表电阻的R×100档,红表笔接源极S, 黑表笔接漏极D,给场效应管加上1.5V的电源电压,此时 表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针

结型场效应管_百度文库.

1、结型场效应管的管脚识别 场效应管的栅极相当于晶体管的基极,源极和漏极分别对应于晶体管的发射极和集电极。将万用表置于R×1k档,用两表笔分别测量每两个管脚间的正、反向电阻。当某两个管脚间的正、反向电阻相等,均为数KΩ时,则这两个管脚为漏极D和源极S(可互换),余下的一个管脚即为栅极G。对于有4个管脚的结型场效应管,另外一极是屏蔽极(使用中接地)。 2、判定栅极(红表笔接表内电池的负极,黑表笔接表内电池的正极) 用万用表黑表笔碰触管子的栅极,红表笔分别碰触另外两个电极。若两次测出的阻值都很小,说明均是正向电阻,该管属于N沟道场效应管。 制造工艺决定了场效应管的源极和漏极是对称的,可以互换使用,并不影响电路的正常工作,所以不必加以区分。若要区分,则可根据在源—漏之间有一个PN结,通过测量PN结正、反向电阻存在差异,识别S极与D极。将万用表拨到R×100档,用交换表笔法测两次电阻,相当于给场效应管加上1.5V的电源电压,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻。此时黑表笔的是S极,红表笔接D 极。 注意不能用此法判定绝缘栅型场效应管的栅极。因为这种管子的输入电阻极高,栅源间的极间电容又很小,测量时只要有少量的电荷,就可在极间电容上形成很高的电压,容易将管子损坏。 3、估测场效应管的放大能力 将万用表拨到R×100档,相当于给场效应管加上1.5V的

电源电压。这时表针指示出的是D-S极间电阻值。然后用手指捏栅极G,将人体的感应电压作为输入信号加到栅极上。由于管子的放大作用,UDS 和ID都将发生变化,也相当于D-S极间电阻发生变化,可观察到表针有较大幅度的摆动。如果手捏栅极时表针摆动很小,说明管子的放大能力较弱;若表针不动,说明管子已经损坏。 由于人体感应的50Hz交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同,因此用手捏栅极时表针可能向右摆动,也可能向左摆动。少数的管子RDS减小,使表针向右摆动,多数管子的RDS增大,表针向左摆动。无论表针的摆动方向如何,只要能有明显地摆动,就说明管子具有放大能力。 本方法也适用于测MOS管。为了保护MOS场效应管,必须用手握住金属杆,用金属杆去碰栅极,以防止人体感应电荷直接加到栅极上,将管子损坏。MOS管每次测量完毕,G-S结电容上会充有少量电荷,建立起电压UGS,再接着测时表针可能不动,此时将G-S极间短路一下即可。

常用场效应管参数大全 (2)

型号材料管脚用途参数 IRFP9140 PMOS GDS 开关 100V19A150W100/70nS0.2 IRFP9150 PMOS GDS 开关 100V25A150W160/70nS0.2 IRFP9240 PMOS GDS 开关 200V12A150W68/57nS0.5 IRFPF40 NMOS GDS 开关 900V4.7A150W2.5 IRFPG42 NMOS GDS 开关 1000V3.9A150W4.2 IRFPZ44 NMOS GDS 开关 1000V3.9A150W4.2 ******* IRFU020 NMOS GDS 开关 50V15A42W83/39nS0.1 IXGH20N60ANMOS GDS 600V20A150W IXGFH26N50NMOS GDS 500V26A300W0.3 IXGH30N60ANMOS GDS 600V30A200W IXGH60N60ANMOS GDS 600V60A250W IXTP2P50 PMOS GDS 开关 500V2A75W5.5 代J117 J177 PMOS SDG 开关 M75N06 NMOS GDS 音频开关 60V75A120W MTH8N100 NMOS GDS 开关 1000V8A180W175/180nS1.8 MTH10N80 NMOS GDS 开关 800V10A150W MTM30N50 NMOS 开关 (铁)500V30A250W MTM55N10 NMOS GDS 开关 (铁)100V55A250W350/400nS0.04 MTP27N10 NMOS GDS 开关 100V27A125W0.05 MTP2955 PMOS GDS 开关 60V12A75W75/50nS0.3 MTP3055 NMOS GDS 开关 60V12A75W75/50nS0.3

什么是结型场效应管

什么是结型场效应管 场效应管是通过改变外加电压产生的电场强度来控制其导电能力的半导体器件。 它不仅具有双极型三极管的体积小,重量轻,耗电少,寿命长等优点,而且还具有输入电阻高,热稳定性好,抗辐射能力强,噪声低,制造工艺简单,便于集成等特点.因而,在大规模及超大规模集成电路中得到了广泛的应用.根据结构和工作原理不同,场效应管可分为两大类: 结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 在两个高掺杂的P区中间,夹着一层低掺杂的N区(N区一般做得很薄),形成了两个PN结。在N区的两端各做一个欧姆接触电极,在两个P区上也做上欧姆电极,并把这两个P 区连起来,就构成了一个场效应管。从N型区引出的两个电极分别为源极S和漏极D,从两个P区引出的电极叫栅极G,很薄的N区称为导电沟道。 结型场效应管分类:N沟道和P沟道两种。如下图所示为N沟道管的结构和符号。 如右图所示为N沟道结型场效应管的结构示意图。 N沟道结型场效应管正常工作时,在漏-源之间加正向电压,形成漏极电流。 <0,耗尽层承受反向电压,既保证栅-源之间内阻很高,又实现对沟道电流的控制。 ★=0时,对导电沟道的控制作用,如下图所示。

◆=0时,=0,耗尽层很窄,导电沟道很宽。 ◆│增大时,耗尽层加宽,沟道变窄,沟道电阻增大。 ◆│增大到某一数值时,耗尽层闭合,沟道消失,沟道电阻趋于无穷大,称此时的值为夹断电压。 ★为~0中某一固定值时,对漏极电流的影响 ▲=0,由所确定的一定宽的导电沟道,但由于d-s间电压为零,多子不会产生定向移动,=0。 ▲>0,有电流从漏极流向源极,从而使沟道各点与栅极间的电压不再相等,沿沟道从源极到漏极逐渐增大,造成靠近漏极一边的耗尽层比靠近源极一边的宽。如下图(a)所示。 ▲从零逐渐增大时,=- 逐渐减小,靠近漏极一边的导电沟道随之变窄。电流随线性增大。

场效应管在开关电路中的应用

场效应管在开关电路中的应用 场效应管在mpn中,它的长相和我们前面讲的三极管极像,所以有不少修mpn的朋友好长时间还分不清楚,统一的把这些长相相同的三极管、场效应管、双二极管、还有各种稳压IC统统称作“三个脚的管管”,呵呵,如果这样麻木不分的话,你的维修技术恐怕很难快速提高的哦! 好了,说到这里场效应管的长相恐怕我就不用贴图了,在电路图中它常用 表示,关于它的构造原理由于比较抽象,我们是通俗化讲它的使用,所以不去多讲,由于根据使用的场合要求不同做出来的种类繁多,特性也都不尽相同;我们在mpn 中常用的一般是作为电源供电的电控之开关使用,所以需要通过电流比较大,所以是使用的比较特殊的一种制造方法做出来了增强型的场效应管(MOS型),它的电路图符号: 仔细看看你会发现,这两个图似乎有差别,对了,这实际上是两种不同的增强型场效应管,第一个那个叫N沟道增强型场效应管,第二个那个叫P沟道增强型场效应管,它们的的作用是刚好相反的。前面说过,场效应管是用电控制的开关,那么我们就先讲一下怎么使用它来当开关的,从图中我们可以看到它也像三极管一样有三个脚,这三个脚分别叫做栅极(G)、源极(S)和漏极(D),mpn中的贴片元件示意图是这

个样子: 1脚就是栅极,这个栅极就是控制极,在栅极加上电压和不加上电压来控制2脚和3脚的相通与不相通,N沟道的,在栅极加上电压2脚和3脚就通电了,去掉电压就关断了,而P沟道的刚好相反,在栅极加上电压就关断(高电位),去掉电压(低电位)就相通了! 我们常见的2606主控电路图中的电源开机电路中经常遇到的就是P沟道MOS管: 这个图中的SI2305就是P沟道MOS管,由于有很多朋友对于检查这一部分的故障很茫然,所以在这里很有必要讲一下它的工作原理,来加深一下你的印象! 图中电池的正电通过开关S1接到场效应管Q1的2脚源极,由于Q1是一个P沟道管,它的1脚栅极通过R20电阻提供一个正电位电压,所以不能通电,电压不能继续通过,3v稳压IC输入脚得不到电压所以就不能工作不开机!这时,如果我们按下SW1开机按键时,正电通过按键、R11、R23、D4加到三极管Q2的基极,三极管Q2的基极得到一个正电位,三极管导通(前面讲到三极管的时候已经讲过),由于三极管的发射极直接接地,三极管Q2导通就相当于Q1的栅极直接接地,加在它上面的通过R20电阻的

场效应管及其电路

第4章场效应管及其电路本章要点 ●MOS管的原理、特性和主要参数 ●结型场效应管原理、特性及主要参数 ●场效应管放大电路的组成与原理 本章难点 ●MOS管的原理和转移特性及主要参数 ●场效应管的微变等效电路法 场效应管(FET)是一种电压控制器件,它是利用输入电压产生电场效应来控制输出电流的。它具有输入电阻高、噪声低、热稳定性好、耗电省等优点,目前已被广泛应用于各种电子电路中。 场效应管按其结构不同分为结型(JFET)和绝缘栅型(IGFET)两种,其中绝缘栅型场效应管由于其制造工艺简单,便于大规模集成,因此应用更为广泛。 4.1 绝缘栅场效应管(MOSFET) 绝缘栅型场效应管简称MOS管,由于其内部由金属—氧化物—半导体三种材料制成,可分为增强型和耗尽型两大类,每一类中又有N沟道和P沟道之分。下面主要讨论N沟道增强型MOS管的工作原理,其余三种仅做简要介绍。 4.1.1 N沟道增强型场效应管(NMOS管) 1.结构 N沟道增强型MOS管的结构如图4-1(a)所示。它是在一块掺杂浓度较低的P型硅片(称为衬底)上,通过扩散工艺形成两个高掺杂的N+区,通过金属铝引出两个电极分别作为源极S和漏极D,再在半导体表面覆盖一层二氧化硅绝缘层,在源漏极之间的绝缘层上制作一铝电极,作为栅极G,另外从衬底引出衬底引线B(工作时通常与源极S接在一起)。在两个N+区之间的半导体区,是载流子从源极S流向漏极D的通道,把它称为导电沟道。由于栅极与导电沟道之间被二氧化硅所绝缘,故将此类场效应管称为绝缘栅型。 图4-1(b)是N沟道增强型MOS管的符号,其中箭头方向是由P(衬底)指向N(沟道), 由此可判断沟道类型。符号中的三条断续线表示 GS 0 = U不存在导电沟道,它是判断增强型MOS管的特殊标志。

常用大功率场效应管

2009-11-16 14:24 IRF系列POWER MOSFET 功率场效应管型号参数查询及代换 带有"-"号的参数为P沟道场效应管,带有/的参数的为P沟道,N沟道双管封装在一起的场效应管,没注明的均为N沟道场效应管. 型号Drain-to-Source V oltage漏极到源极电压Static Drain-Source On-State Resistance静态漏源 通态电阻Continuous Drain Current漏极连续电流(TC=25℃) PD Total Power Dissipation 总功率耗散(TC=25℃)Package 封装Toshiba Replacement 替换东芝型号V ender 供应商 型号耐压(V)内阻(mΩ)电流(A)功率(W)封装厂商 IRF48 60 - 50 190 TO-220AB - IR IRF024 60 - 17 60 TO-204AA - IR IRF034 60 - 30 90 TO-204AE - IR IRF035 60 - 25 90 TO-204AE - IR IRF044 60 - 30 150 TO-204AE - IR IRF045 60 - 30 150 TO-204AE - IR IRF054 60 - 30 180 TO-204AA - IR IRF120 100 - 8.0 40 TO-3 - IR IRF121 60 - 8.0 40 TO-3 - IR IRF122 100 - 7.0 40 TO-3 - IR IRF123 60 - 7.0 40 TO-3 - IR IRF130 100 - 14 75 TO-3 - IR IRF131 60 - 14 75 TO-3 - IR IRF132 100 - 12 75 TO-3 - IR IRF133 60 - 12 75 TO-3 - IR IRF140 100 - 27 125 TO-204AE - IR IRF141 60 - 27 125 TO-204AE - IR IRF142 100 - 24 125 TO-204AE - IR IRF143 60 - 24 125 TO-204AE - IR IRF150 100 - 40 150 TO-204AE - IR IRF151 60 - 40 150 TO-204AE - IR IRF152 100 - 33 150 TO-204AE - IR IRF153 60 - 33 150 TO-204AE - IR IRF220 200 - 5.0 40 TO-3 - IR IRF221 150 - 5.0 40 TO-3 - IR IRF222 200 - 4.0 4.0 TO-3 - IR IRF223 150 - 4.0 40 TO-3 - IR IRF224 250 - 3.8 40 TO-204AA - IR IRF225 250 - 3.3 40 TO-204AA - IR IRF230 200 - 9.0 75 TO-3 - IR IRF231 150 - 9.0 75 TO-3 - IR IRF232 200 - 8.0 75 TO-3 - IR

结型场效应管

结型场效应管 如图XX_01(a)所示,在一块N型半导体材料的两边各扩散一个高杂质浓度的 P型区(用P+表示),就形成两个不对称的P+N结。把两个P+区并联在一起,引 出一个电极,称为栅极(g),在N型半导体的两端各引出一个电极,分别称为 源极(s)和漏极(d)。它们分别与三极管的基极(b)、发射极(e)和集电 极(c)相对应。夹在两个P+N结中间的N区是电流的通道,称为导电沟道(简 称沟道)。这种结构的管子称为N沟道结型场效应管,它在电路中用图XX_01(b) 所示的符号表示,栅极上的箭头表示栅、源极间P+N结正向偏置时,栅极电流的 方向(由P区指向N区)。 实际的JFET结构和制造工艺比上述复杂。N沟道JFET的剖面图如图XX_01(c)所示。图中衬底和中间顶部都是P+型半导体,它们连接在一起(图中未画出)作为栅极g。分别与源极s和漏极d相连的N+区,是通过光刻和扩散等工艺来完成的隐埋层,其作用是为源极s、漏极d提供低阻通路。三个电极s、g、d分别由不同的铝接触层引出。

如果在一块P 型半导体的两边各扩散一个高杂质浓度的N +区,就可以制成一个P 沟道的结型场效应管。图XX_02给出了这种管子的结构示意图和它在电路中的代表符号。 由结型场效应管代表符号中栅极上的箭头方向,可以确认沟道的类型。 N 沟道和P 沟道结型场效应管的工作原理完全相同,现以N 沟道结型场效应管为例,分析其工作原理。 N 沟道结型场效应管工作时,也需要外加如图XX_01所示的偏置电压,即在栅极与源极间加一负电压(v GS <0),使栅、源极间的P +N 结反偏,栅极电流i G ≈0,场效应管呈现很高的输入电阻(高达108 左右)。在漏极与源极间加一正电压(v DS >0),使N 沟道中的多数载流子电子在电场作用下由源极向漏极作漂移运动,形成漏极电流i D 。i D 的大小主要受栅源电压v GS 控制,同时也受漏源电压v DS 的影响。因此,讨论场效应管的工作原理就是讨论栅源电压v GS 对漏极电流i D (或沟道电阻)的控制作用,以及漏源电压v DS 对漏极电流i D 的影响 1.v GS 对i D 的控制作用 图XX_02所示电路说明了v GS 对沟道电阻的控制作用。为便于讨论,先假设漏源极间所加电压v DS =0。 当栅源电压v GS =0时,沟道较宽,其电阻较小。当v GS <0,且其大小增加时,在这个反偏电压的作用下,两个P +N 结耗尽层将加宽。由于N 区掺杂浓度小于P +区,因此,随着 的增加,耗尽层将主要向N 沟道中扩展,使沟道变窄,沟道电阻增大,如图XX_02(b)所示。 当 进一步增大到一定值 时,两侧的耗尽层将在中间合拢,沟道全部被夹断,如图XX_02(c)所示。由于耗尽层中没有载流子, 因此这时漏源极间的电阻将趋于无穷大,即使加上一定的v DS ,漏极电流i D 也将为零。这时的栅源电压称为夹断电压,用V P 表示。 2.v DS 对i D 的影响 图XX_01

常用场效应管参数大全(1)

型号材料管脚用途参数 3DJ6NJ 低频放大 20V0.35MA0.1W 4405/R9524 2E3C NMOS GDS 开关 600V11A150W0.36 2SJ117 PMOS GDS 音频功放开关 400V2A40W 2SJ118 PMOS GDS 高速功放开关 140V8A100W50/70nS0.5 2SJ122 PMOS GDS 高速功放开关 60V10A50W60/100nS0.15 2SJ136 PMOS GDS 高速功放开关 60V12A40W 70/165nS0.3 2SJ143 PMOS GDS 功放开关 60V16A35W90/180nS0.035 2SJ172 PMOS GDS 激励 60V10A40W73/275nS0.18 2SJ175 PMOS GDS 激励 60V10A25W73/275nS0.18 2SJ177 PMOS GDS 激励 60V20A35W140/580nS0.085 2SJ201 PMOS n 2SJ306 PMOS GDS 激励 60V14A40W30/120nS0.12 2SJ312 PMOS GDS 激励 60V14A40W30/120nS0.12 2SK30 NJ SDG 低放音频 50V0.5mA0.1W0.5dB 2SK30A NJ SDG 低放低噪音频 50V0.3-6.5mA0.1W0.5dB 2SK108 NJ SGD 音频激励开关 50V1-12mA0.3W70 1DB 2SK118 NJ SGD 音频话筒放大 50V0.01A0.1W0.5dB 2SK168 NJ GSD 高频放大 30V0.01A0.2W100MHz1.7dB 2SK192 NJ DSG 高频低噪放大 18V12-24mA0.2W100MHz1.8dB 2SK193 NJ GSD 高频低噪放大 20V0.5-8mA0.25W100MHz3dB

结型场效应管(JFET)的结构和工作原理

结型场效应管(JFET)的结构和工作原理 1. JFET的结构和符号 N沟道JFET P沟道JFET 2. 工作原理(以N沟道JFET为例) N沟道JFET工作时,必须在栅极和源极之间加一个负电压——V GS< 0,在D-S间加一个正电压——V DS>0. 栅极—沟道间的PN结反偏,栅极电流i G≈0,栅极输入电阻很高(高达107Ω以上)。 N沟道中的多子(电子)由S向D运动,形成漏极电流i D。i D的大小取决于V DS的大小和沟道电阻。改变V GS可改变沟道电阻,从而改变i D。

主要讨论V GS对i D的控制作用以及V DS对i D的影响。 ①栅源电压V GS对i D的控制作用 当V GS<0时,PN结反偏,耗尽层变宽,沟道变窄,沟道电阻变大,I D减小;V GS更负时,沟道更窄,I D更小;直至沟道被耗尽层全部覆盖,沟道被夹断,I D≈0。这时所对应的栅源电压V GS称为夹断电压V P。 ②漏源电压V DS对i D的影响 在栅源间加电压V GS< 0 ,漏源间加正电压V DS > 0。则因漏端耗尽层所受的反偏电压为V GD=V GS-V DS,比源端耗尽层所受的反偏电压V GS大,(如:V GS=-2V, V DS =3V, V P=-9V,则漏端耗尽层受反偏电压为V GD=-5V,源端耗尽层受反偏电压为-2V),使靠近漏端的耗尽层比源端宽,沟道比源端窄,故V DS对沟道的影响是不均匀的,使沟道呈楔形。 当V DS增加到使V GD=V GS-V DS =V P时,耗尽层在漏端靠拢,称为预夹断。 当V DS继续增加时,预夹断点下移,夹断区向源极方向延伸。由于夹断处电阻很大,使V DS主要降落在该区,产生强电场力把未夹断区的载流子都拉至漏极,形成漏极电流I D。预夹断后I D基本不随V DS增大而变化。

场效应管的分类

场效应管的分类 场效应管(FET)是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。 场效应管的种类很多,按结构可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET).结型场效应管又分为N沟道和P沟道两种。绝缘栅场效应管主要指金属--氧化物--半导体场效应管(MOS管)。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电 流的,输入电阻(105~1015)之间; 绝缘栅型是利用感应电荷的多少来控制导电沟道的宽窄从而控制电流的大小,其输入阻抗很高(栅极与其它电极互相绝缘)。它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。 场效应管的型号命名方法现行场效应管有两种命名方法。 第一种命名方法与双极型三极管相同,第三位字母J代表结型场效应管,O代表绝缘栅场效应管。第二位字母代表材料,D是P型硅,反型层是N沟道;C是N型硅P沟道。例如,3DJ6D 是结型N沟道场效应三极管,3DO6C 是绝缘栅型N沟道场

效应三极管。 第二种命名方法是CS××#,CS代表场效应管,××以数字代表型号的序号,#用字母代表同一型号中的不同规格。例如CS14A、CS45G等。 场效应管所有厂家的中英文对照表在场效应管对照表中,收编了美国、日本及欧洲等近百家半导体厂家生产的结型场效应晶体管(JFET)、金属氧化物半导体场次晶体管(MOSFET)、肖特基势垒控制栅场效应晶体管(SB)、金属半导体场效应晶体管(MES)、高电子迁移率晶体管(HEMT)、静电感应晶体管(SIT)、绝缘栅双极晶体管(IGBT)等属于场效应晶体管系列的单管、对管及组件等,型号达数万种之多。每种型号的场效应晶体管都示出其主要生产厂家、材料与极性、外型与管脚排列、用途与主要特性参数。同时还在备注栏列出世界各国可供代换的场效应晶体管型号,其中含国产场效应晶体管型号。 1."型号"栏 表中所列各种场效应晶体管型号按英文字母和阿拉伯数 字顺序排列。同一类型的场效应晶体型号编为一组,处于同一格子内,不用细线分开。 2."厂家"栏 为了节省篇幅,仅列入主要厂家,且厂家名称采用缩写的形式表示。)

结型场效应管

结型场效应管 场效应管 场效应管(Fjeld Effect Transistor简 称FET )是利用电 场效应来控制半导 体中电流的一种半 导体器件,故因此 而得名。场效应管 是一种电压控制器 件,只依靠一种载 流子参与导电,故 又称为单极型晶体 管。与双极型晶体三极管相比,它具有输入阻抗高、噪声低、热稳定性好、抗辐射能力强、功耗小、制造工艺简单和便于集成化等优点。 场效应管有两大类,结型场效应管JFET和绝缘栅型场效应管IGFET,后者性能更为优越,发展迅速,应用广泛。图Z0121 为场效应管的类型及图形、符号。 一、结构与分类 图Z0122为N沟道结型场效应管结构示意图和它的图形、符号。它是在同一块N型硅片的两侧分别制作掺杂浓度较高的P型区(用P+表示),形成两个对称的PN结,将两个P区的引出线连在一起作为一个电极,称为栅极(g),在N型硅片两端各引出一个电极,分别称为源极(s)和漏极(d)。在形成PN结过程中,由于P+区是重掺杂区,所以N一区侧的空间电荷层宽度远大二、工作原理 N沟道和P沟道结型场效应管的工作原理完全相同,只是偏置电压的极性和载流子的类型不同而已。下面以N沟道结型场效应管为例来分析其工作原理。电路如图Z0123所示。由于栅源间加反向电压,所以两侧PN结均处于反向偏置,栅源电流几乎为零。 漏源之间加正向电压使N型半导体中的多数载流子-电子由源极出发,经过沟道到达漏极形成漏极电流I D。 1.栅源电压U GS对导电沟道的影响(设U DS=0) 在图Z0123所示电路中,U GS<0,两个PN结处于反向偏置,耗尽层有一定宽度,I D=0。若|U GS| 增大,耗尽层变宽,沟道被压缩,截面积减小,沟道电阻增大;若|U GS| 减小,耗尽层变窄,沟道变宽,电阻减小。这表明U GS控制着漏源之间的导电沟道。当U GS负值增加到某一数值V P时,两边耗尽层合拢,整个沟道被耗尽层完全夹断。(V P称为夹断电压)此时,漏源之间的电阻趋于无穷大。管子处于截止状态,I D=0。 2.漏源电压U GS对漏极电流ID的影响(设U GS=0) 当U GS=0时,显然I D=0;当U DS>0且尚小对,P+N结因加反向电压,使耗尽层具有一定宽度,但宽度上下不均匀,这是由于漏源之间的导电沟道具有一定电阻,因而漏源电压U DS沿沟道递降,造成漏端电位高于源端电位,使近漏端PN结上的反向偏压大于近源端,因而近漏端耗尽层宽度大于近源端。显然,在U DS较小时,沟道呈现一定电阻,I D随U DS成线性规律变化(如图Z0124曲线OA段);若U GS再继续增大,耗尽层也随之增宽,导电沟道相应变窄,尤其是近漏端更加明显。由于沟道电阻的增大,I D增长变慢了(如图曲线AB段),当U DS增大到等于|V P|时,沟道在近漏端首先发生耗尽层相碰的现象。这种状态称为预夹断。这时管子并不截止,因为漏源两极间的场强已足够大,完全可以把向漏极漂移的全部电子吸引过去形成漏极饱和电流I DSS (这种情况如曲线B点):当U DS>|V P|再增加时,耗尽层从近漏端开始沿沟道加长它的接触部分,形成夹断区。由于耗尽层的电阻比沟道电阻大得多,所以比|V P|大的那部分电压基本上降在夹断区上,使夹断区形成很强的电场,它完全可以把沟道中向漏极漂移的电子拉向漏极,形成漏极电流。因为未被夹断的沟道上的电压基本保持不变,于是向漏极方向漂移的电子也基本保持不

相关文档
相关文档 最新文档