文档库 最新最全的文档下载
当前位置:文档库 › 第1章part2流体及其物理性质-for学生_941403238

第1章part2流体及其物理性质-for学生_941403238

第1章part2流体及其物理性质-for学生_941403238
第1章part2流体及其物理性质-for学生_941403238

流体的物理性质

流体的物理性质 流体流动与输送过程中,流体的状态与规律都与流体的物理性质有关。因此,首先要了解流体的常见物理和化学性质,包括密度、压力、黏度、挥发性、燃烧爆炸极限、闪点、最小引燃能量、燃烧热等。 一、密度与相对密度 密度是用夹比较相同体积不同物质的质量的一个非常重要的物理量,对化工生产的操作、控制、计算等,特别是对质量与体积的换算,具有十分重要的意义。 流体的密度是指单位体积的流体所具有的质量,用符号ρ表示,在国际单位制中,其单位是ke/m3。 式中m——流体的质量,kg; y——流体的体积,m3。 任何流体的密度都与温度和压力有关,但压力的变化对液体密度的影响很小(压力极高时除外),故称液体是不可压缩的流体。工程上,常忽略压力对液体的影响,认为液体的密度只是温度的函数。例如,纯水在277K时的密度为1000kg/m3,在293K时的密度为998.2kg /m3,在373时的密度为958.4kg/ms。因此,在检索和使用密度时,需要知道液体的温度。对大多数液体而言,温度升高,其密度下降。

液体纯净物的密度通常可以从《物理化学手册》或《化学工程手册》等查取。液体?昆合物的密度通常由实验测定,例如比重瓶法、韦氏天平法及波美度比重计法等。其中,前两者用于精确测量,多用于实验室中,后者用于快速测量,在工业上广泛使用。 在工程计算中,当混合前后的体积变化不大时,液体混合物的密度也可由下式计算,即: 式中ρ—液体混合物的密度,kg/ms; ρ1、ρ2、ρi、ρn——构成混合物的各纯组分的密度,ks/m3; w1、w2、wi、wn——混合物中各组分的质量分数。 气体具有明显的可压缩性及热膨胀性,当温度、压力发生变化时,其密度将发生较大的变化。常见气体的密度也可从《物理化学手册》或《化学工程手册》中查取。在工程计算中,如查压力不太高、温度不太低,均可把气体(或气体混合物)视作理想气体,并由理想气体状态方程计算其密度。 由理想气体状态方程式 式中ρ—气体在温度丁、压力ρ的条件下的密度,kg/m3; V——气体的体积,ITl3; 户——气体的压力,kPa; T一—气体的温度,K; m--气体的质量,kg;

储层岩石力学概述

储层岩石力学概述 发表时间:2019-09-11T14:30:47.063Z 来源:《基层建设》2019年第11期作者:王祥程 [导读] 摘要:岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。 成都理工大学能源学院 610059 摘要:岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。深入了解研究岩石力学的性质和相关参数对于工程上的开发具有十分重要的作用。 关键词:岩石力学;石油工程;研究方法 1. 岩石力学的概述 岩石包括组成岩石的固体骨架、孔隙、裂缝以及其中的流体,因此岩石力学往往会应用到弹性力学、塑性力学、流体力学、渗流力学等力学学科的诸多理论方法。岩石的性质几乎牵涉到所有力学分支,岩石力学的研究是各种力学理论的综合运用。不同岩石力学问题的研究,可能包括瞬时变形运动,也可能包含与地质演化时间相关的长期变形运动。 岩石力学是力学的一部分。岩石材料赋存于地下,其力学性质难于直接测试和观察,而若将其取至地面进行测试则岩石的力学性质往往发生了较大的变化,加之岩石中的流体存在于裂隙或孔隙之中,与岩石骨架相互作用,使岩石的受力情况更加复杂。 2.岩石力学的研究方法 岩石力学是一门边缘交叉学科,它与工程实践密切联系而得到发展。岩石具有特殊的固体介质力学特性,这个特殊的力学性质与它所处的环境有关,如天然岩石所处应力状态一般称为岩石的初始应力状态。在岩石受到工程活动扰动后,岩体的应力出现了变化,这时岩石所处的应力状态称为次生应力状态。此时将岩石力学和工程地质相结合进行研究是十分重要和必要的。对于节理岩体,特别需要了解岩体结构面的分布、网络特性、岩体结构类型,才能进行岩体的数值模拟和分析。 一般而言,岩石力学的研究方法可分为如下四大类: (1)地质研究方法:对岩体进行地质方面的研究始终是岩石力学研究的基础,在整个岩石工程过程中,地质性质的研究应当列在第一位。①岩石岩相、盐层特征的研究,如软弱岩体的成分、可溶盐类、含水蚀变矿物、不抗风化岩体成分以及原生结构。②岩体结构的地质特性研究,如断续结构面的几何特征、岩体力学特征、软弱面的充填物及地质特性。③赋存地质环境的研究,如地应力的成因、地下水分布与化学特征以及地质构造对环境的影响。 (2)物理力学研究方法:①岩体结构的探测,应用地球物理化学方法和技术来探查各种结构面的力学特征和化学特征。②地质环境的物理性质分析与测量,如地应力的形成机制及分布、地质环境中热力与水力存在的性状、水化学的分布特征,应用大规模地质构造层析技术、地质雷达探测技术确定岩体构造。③岩体物理力学性质的测定,如岩块力学特性的室内试验、原位岩体的力学性质测试、钻孔测试、工程变形监测、位移反分析等。主要运用的手段是基于震动的动态测试,如超声波测试、地震波测试、电磁波测试、计算机层析方法(CT)测试。这些测试利用岩体的波动特性,来研究岩体的力学特性。 (3)数学力学分析方法:岩石力学的研究,除了以上地质方法、物理力学方法的研究外,还要进行数学力学方法研究,从而构成岩石力学的理论基础,包括:①岩石本构关系的研究-对岩石进行宏观到细观甚至微观的力学特性研究。②数值分析方法。由于计算机计算性能的发展,岩石力学的数值分析方法得到了大力发展。在数值分析方法方面,由岩体连续力学发展到非连续力学,出现了离散元法(DEN)和不连续变形分析法(DDA)、流形法(BEM)、无单元法(EFM)和快速拉格朗日法(FLAC)。③多元统计和随机分析。这两种方法可以深人地研究因岩体介质的随机分布特性而造成传统方法难以解决的问题。④物理和数值模拟仿真分析。 (4)整体综合分析法:就整个工程进行多种分析的方法,并以系统工程为基础的综合分析。 3.石油工程岩石力学研究对象及特点 石油工程岩石力学所研究的,所涉及的地层深度大多在8000m范围内,研究对象主要是沉积岩层,岩石处于较高的围压、温度和孔院压力作用下其性质已完全不同于浅部地层,它可能经过脆-塑性转变成塑性,也可能由于高孔院压力的作用呈现脆性破坏。 (1)石油工程岩石力学所涉及的围压可达200MPa。非均匀的原地应力场形成了地层之间的围压,若垂向应力源于地层自重,那么应力梯度平均为0.023MPa/m,多数地区最大水平应力往往大于垂向应力,且两个水平地应力梯度的比值通常达到1.4~1.5以上。在山前构造带地区,不但地应力梯度高,最大和最小水平地应力的比值也很大。因此在研究地应力分布规律(包括数值大小及主方向)时,主要依靠水力压裂、岩石剩磁分析、地震和构造资料反演、测井资料解释等间接方法。 (2)石油工程岩石力学所涉及的温度可达250℃。一般的地温梯度是3℃/100m,高的可超过4℃/100m,具体的地温梯度往往需要实际测定。当温度超过150℃后,温度对岩石性质的影响将变得十分明显。 (3)石油工程岩石力学中所涉及到的孔隙和裂隙中的高压流体的孔隙压力可高达200MPa.一般情况下,常规的静水孔隙压力梯度为 0.00981MPa/m,但是异常高压可超过0.02MPa/m。 4.结束语 岩石力学是一门十分重要的,它涉及到了工程领域的各个行业。因此,正确理解学习岩石力学的理论知识以及探究其影响等具有十分重要的意义。 参考文献 [1]王路,徐亮,王瑞琮.岩石力学在石油工程中的应用[J].石化技术,2017, 24(3):157-157. [2]陈勉.我国深层岩石力学研究及在石油工程中的应用[J].岩石力学与工程学报,2003,23(14):2455-2462. [3]杨永明,鞠杨,刘红彬,etal.孔隙结构特征及其对岩石力学性能的影响[J].岩石力学与工程学报,2009,28(10):2031-2038. [4]陈新,杨强,何满潮,etal.考虑深部岩体各向异性强度的井壁稳定分析[J].岩石力学与工程学报,2005(16):2882-2888. [5]陈德光,田军,王治中,etal.钻井岩石力学特性预测及应用系统的开发[J].石油钻采工艺,1995,17(5):012-16. [6]王大勋,刘洪,韩松,etal.深部岩石力学与深井钻井技术研究[J].钻采工艺,2006,29(3):6-10. [7]阎铁.深部井眼岩石力学分析及应用[D].2001. [8]陈新,杨强,何满潮,etal.考虑深部岩体各向异性强度的井壁稳定分析[J].岩石力学与工程学报,2005(16):2882-2888.

流体的物理性质

编号:SY-AQ-08047 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 流体的物理性质 Physical properties of fluids

流体的物理性质 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管 理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关 系更直接,显得更为突出。 流体流动与输送过程中,流体的状态与规律都与流体的物理性质有关。因此,首先要了解流体的常见物理和化学性质,包括密度、压力、黏度、挥发性、燃烧爆炸极限、闪点、最小引燃能量、燃烧热等。 一、密度与相对密度 密度是用夹比较相同体积不同物质的质量的一个非常重要的物理量,对化工生产的操作、控制、计算等,特别是对质量与体积的换算,具有十分重要的意义。 流体的密度是指单位体积的流体所具有的质量,用符号ρ表示,在国际单位制中,其单位是ke/m3。 式中m——流体的质量,kg; y——流体的体积,m3。 任何流体的密度都与温度和压力有关,但压力的变化对液体密

度的影响很小(压力极高时除外),故称液体是不可压缩的流体。工程上,常忽略压力对液体的影响,认为液体的密度只是温度的函数。例如,纯水在277K时的密度为1000kg/m3,在293K时的密度为998.2kg/m3,在373时的密度为958.4kg/ms。因此,在检索和使用密度时,需要知道液体的温度。对大多数液体而言,温度升高,其密度下降。 液体纯净物的密度通常可以从《物理化学手册》或《化学工程手册》等查取。液体?昆合物的密度通常由实验测定,例如比重瓶法、韦氏天平法及波美度比重计法等。其中,前两者用于精确测量,多用于实验室中,后者用于快速测量,在工业上广泛使用。 在工程计算中,当混合前后的体积变化不大时,液体混合物的密度也可由下式计算,即: 式中ρ—液体混合物的密度,kg/ms; ρ1、ρ2、ρi、ρn——构成混合物的各纯组分的密度,ks/m3; w1、w2、wi、wn——混合物中各组分的质量分数。 气体具有明显的可压缩性及热膨胀性,当温度、压力发生变化

第二节 储层岩石的孔隙度

第二节 储层岩石的孔隙性(3学时) 一、教学目的 掌握孔隙的分类、定义、 测量方法和影响因素。 二、教学重点、难点 教学重点 1、孔隙的分类和定义 教学难点 1、孔隙的分类和定义 三、教法说明 课堂讲授并辅助以多媒体课件展示相关的数据和图表 四、教学内容 本节主要介绍四个方面的问题: 一、孔隙度的定义和分类 二、孔隙度的测量 三、影响孔隙度的因素 (一)、孔隙度的定义和分类 1、孔隙度的定义 岩石的孔隙度是指岩石的孔隙体积与岩石外观体积的比值,常用百分数表示,记为φ 式中: Vr——岩石的骨架体积,米3,cm3 Vp——岩石的孔隙体积,米3,cm3 V f——岩石的视体积,米3,cm3 φ——岩石的孔隙度,% 2、孔隙度的分类 我们已知讲过,孔隙空间可以分为有效孔隙和无效孔隙,所以相应地,孔隙度也可以分为: A、绝对孔隙度,φa 绝对孔隙度是指岩石所有孔隙体积(有效+无效)与岩石视体积之比。 Vap——总孔隙体积,=V有效+V无效 V f——岩石的视体积 φa——岩石的绝对孔隙度

B、有效孔隙度 由于储油岩石孔隙的复杂性,所以在岩石孔隙中,并非所有的孔隙都是有用的,比如说函端孔隙和孔道半径很小(r<0.0001mm)的孔隙,这样的孔隙实际上对流体的流动毫无价值,所以人们将流体能在其中流动且相互连通的孔道称为有效孔隙,有效孔隙与岩石视体积的比值称为有效孔隙度。 Vep——岩石有效孔隙体积 V f——岩石的外观体积 φe——岩石的有效孔隙度 大家值得注意的是:由于流体只能在大于0.0001mm半径的孔道中流动,因此,孔道小于0.0001mm的那些孔隙也被看作是死孔隙,同样被这些微小孔道包围的大孔道当然也属于死孔隙之列。 另外,从上面的分析中我们不难看出,还应当存在一种孔隙度。 C、流动孔隙度φm Vmp——流动孔隙度 V f——岩石的外观体积 φm——流动体积 很显然,流动体积是指有效孔隙中,允许流何流动的那一部分孔道体积。它不仅排除了死孔隙,也包括束缚水占据的部分以及岩石表面吸附流体所占据的孔道部分。可见,在相互连通的孔隙中并不是全部孔道都能让流体流动。直得注意的是被吸附流体的厚度有时相当可观,可把原来流动的孔道堵住,或者使渗重能力下降,这一点在三次采油中尤为重要。 综合上述的三种孔隙度不难看出: φa>φe>φm 对于砂岩:φa≈φe>φm 泥质砂岩:φa>>φe>φm 泥岩:φa>>>φe>φm 岩石孔隙度在油田中应用极广,通常在地质储量计算中用有效孔隙度φe,在计算可采储量时要用流动孔隙度,而绝对孔隙度只有岩石学上的意义,应用很少。 利用岩石的孔隙度(有效孔隙度)还可以用来进行油层评价,一般砂岩φe=10~25% φ 评价 5~10% 差

轻烃分析技术识别储层流体性质的应用

轻烃分析技术识别储层流体性质的应用 随着勘探开发工作的不断深入,油水层的识别评价工作越来越困难,逐渐由宏观识别向宏观、微观相结合的方向发展。本文提出一种利用轻烃分析技术识别油水层量化的方法,该项技术建立多参数综合解释模板自动进行储层流体性质的评价方法,对流体性质的解释符合率达到80%以上,为轻烃分析技术在储层评价中的应用提供了成功借鉴。建立了油水层识别、评价的应用方法。 标签:轻烃分析技术;油水层;参数选取;评价方法;识别 0 引言 輕烃分析是将气相色谱分离分析与样品的预处理相结合的一种简便、快速的分析技术。最新的油藏有机地球化学研究表明C6~C9左右的轻烃包含的油层信息最丰富。因此重点分析C1~C9组份的轻烃分析技术在储层评价中逐渐受到重视。 轻烃组分主要包括正构烷烃、异构烷烃、环烷烃和芳香烃四大类等103个单体烃类,这些组分经过色谱分离成各个单体烃,进行定性定量检测。然后进行数学处理,归纳为几十项轻烃参数,根据这些参数的变化进行油气藏的评价。 1 轻烃自动解释方法 1.1 轻烃评价参数的选择依据 轻烃的分析参数是可以检出和定性的103个化合物的保留时间、峰面积、峰高及峰面积的百分数。这些参数无法直接应用,其原因:一是参数多,二是这些参数也只反应每个组分丰度的大小。所以,必须根据需求,从大量的信息中归纳、提取出有用的信息。 C1~C4之间的烃类常温下为氣体,是评价气层的主要参数。C9以后的烃类其化学性质过于稳定,在轻烃评价储层性质时不予考虑。C5~C8之间的烃类组分最全,相对含量最高,准确定性、定量分析容易,是储层评价首选的参数。 1.2 储层原油烃类特征的主控因素及影响因素 储层原油由烃源岩受烃源岩有机质类型和热演化程度的控制,然后原油在储层中受各种蚀变作用即热演化作用、水洗作用、生物降解作用的改造而发生变化。. 在精细评价的时候,成因不同或演化程度不同的区块,需要建立不同的模板。而每一个模板的建立,都是一个统计的过程,做的数据越多,模板的解释符合率就越高。

页岩气储层岩石物理性质研究

页岩气储层岩石物理性质研究 学生:袁亚丽陈改杰蔡家琛李龙指导老师:樊振军 (数理学院) 【摘要】页岩气藏开采首先要对其进行评价,充分考虑其储层性质和开采能力。储层性质主要通过储层参数来描述,通过对相关参数的分析进一步评价储层的生产能力,制定相应的增产措施和开采方案。本实验以龙马溪组页岩为例,采用电阻率测试装置、YS-Hf岩电声波综合测试仪器等仪器对页岩气储层岩石的物理性质进行了测试,并分析总结页岩气储层物理参数对页岩气开采的指导意义,为提高我国页岩气岩石物理实验分析技术和研究水平,为我国页岩气勘探开发奠定坚实的基础。 【关键词】页岩气;电导率;横波;纵波;泊松比 【项目编号】2015AB061 【背景意义】页岩气藏开采首先要对其进行评价,充分考虑其储层性质和开采能力.储层性质主要通过储层参数来描述,通过对相关参数的分析评价储层的生产能力,制定相应的增产措施和开采方案。页岩气储层以纳米级孔隙为主的特性,使得页岩岩石物理基础实验及相关理论模型研究在页岩气储层测井评价中发挥举足轻重的作用。页岩气地质条件和形成机理完全不同于传统石油地质理论,国内外针对页岩气形成机理、富集规律和主控因素等尚未完全搞清。由于页岩储层低孔隙度、超低渗透率、以纳米级孔隙为主的特性,使得页岩气储层岩石物理基础实验及相关理论模型研究在页岩气储层评价中发挥重大的作用,而中国目前在这方面的研究尚处于起步阶段。因此,急需了解和借鉴国外相关实验技术和研究方法,提高我国页岩气岩石物理实验分析技术和研究水平,为我国页岩气勘探开发奠定坚实的基础。. 1.电阻率测井 页岩气储层识别所利用的常规测井方 法有: 自然伽马测井、声波时差测井、体密度测井、中子密度测井、岩性密度测井、电阻率测井、井径测井等[2],本实验采用电阻率的方法对页岩含有机质量进行了评价,有机质不导电,随 TOC含量增加电阻率增大。在测井中可采用电阻率测井对有机质含量进行评价。本实验采用电阻率测试装置对四川沙坝乡龙马溪组的页岩的电阻率进行了测试,数据如表1所示;天津蓟县页岩的数据如表2所示:

岩石物理学及岩石性质

岩石物理学及岩石性质 一、矿物 1.1矿物 矿物是单个元素或若干个元素在一定地质条件下形成的具有特定理化性质的化合物,是构成岩石的基本单元。矿物多数是在地壳(地球)物理化学条件下形成的无机晶质固体,也有少数呈非晶质和胶体。 1.2矿物的主要物理特性 1.2.1光学特性 (1)颜色:矿物的颜色由矿物对入射光的反映呈现出来。一般来说矿物的颜色是矿物对入射光吸收色的补色。 (2)条痕:条痕色指矿物经过在不涂釉的瓷板上擦划,在瓷板上留下的矿物粉粒的颜色。 (3)光泽:光泽是矿物表面对入射光所射的总光量。根据光泽有无金属感,将光泽分为金属光泽与非金属光泽。矿物光泽特性既与矿物组成和结构有关,又与矿物表面特征有关。 (4)透明度:透明度与矿物对矿物透射光的多少有关。 1.2.2力学性质 (1)硬度: 矿物的硬度是指矿物的坚硬程度。一般采用摩氏硬度法鉴别矿物硬度。即采用标准矿物的硬度对未知矿物进行相对硬度的鉴别。摩氏硬度中选取十种矿物作为标准矿物,将矿物分为10级,称为摩氏硬度计。这十种矿物硬度由1级到10级的顺序是:①滑石,②石膏,③方解石,④磷灰石,⑤萤石,⑥正长石,⑦石英,⑧黄玉,⑨刚玉,⑩金刚石。 (2)解理与断口: 矿物受力后产生破裂出现的没有一定方向的不规则的断开面,谓之断口。当晶质体矿物受力断开时,出现一系列平行的、平整的裂面时,称为解理。断口出现的程度跟解理的完善程度相互消长,解理程度越低的矿物越容易形成断口。因此,断口具有了非晶质体的基本含义。解理与晶质体内质点间距有明显的关系,

解理常出现在质点密度较大的方向上。 (3)延展性: 矿物的延展性,也可以称为矿物的韧性。其特征是表现为矿物能被拉成长丝和辗成薄片的特性。这是自然金属元素具有的基本特性。 1.3重要矿物 (1)自然元素矿物:这类矿物较少,其中包括人们所熟知的矿物,如金、铂、自然铜、硫磺、金刚石(见图1)、石墨等。 图1金刚石 (2)硫化物类矿物:本类是金属元素与硫的化合物,大约200多种,Cu、Pb、Mo、Zn、As、Sb、Hg等金属矿床多有此类矿物富集而称,具有很大的经济价值。 方铅矿PbS。闪锌矿ZnS。黄铁矿FeS2(见图2) 图2黄铁矿 (3)氧化物及氢氧化物类矿物:本类矿物分布相当广泛,共约180多种,包括重要的造盐矿物如石英及Fe、Al、Mn、Cr、Ti、Sn、U、Th等的氧化物或氢

流体及其主要物理性质

第1章流体及其主要物理性质 一、概念 1、什么是流体?什么是连续介质模型?连续介质模型的适用条件; 2、流体粘性的定义;动力粘性系数、运动粘性系数的定义、公式;理想流体的 定义及数学表达;牛顿内摩擦定律(两个表达式及其物理意义);粘性产生的机理,粘性、粘性系数同温度的关系;牛顿流体的定义; 3、可压缩性的定义;体积弹性模量的定义、物理意义及公式;气体等温过程、 等熵过程的体积弹性模量;不可压缩流体的定义及体积弹性模量; 4、作用在流体上的两种力。 二、计算 1、牛顿内摩擦定律的应用-间隙很小的无限大平板或圆筒之间的流动。 第2章流体静力学 一、概念 1、流体静压强的特点;理想流体压强的特点(无论运动还是静止); 2、静止流体平衡微分方程,物理意义及重力场下的简化; 3、不可压缩流体静压强分布(公式、物理意义),帕斯卡原理; 4、绝对压强、计示压强、真空压强的定义及相互之间的关系; 5、各种U型管测压计的优缺点; 6、作用在平面上的静压力(公式、物理意义)。

二、计算 1、U型管测压计的计算; 2、绝对压强、计示压强及真空压强的换算; 3、平壁面上静压力大小的计算。 第3章流体运动概述 一、概念 1、描述流体运动的两种方法(着眼点、数学描述、拉格朗日及欧拉变数); 2、流场的概念,定常场、非定常场、均匀场、非均匀场的概念及数学描述; 3、一元、二元、三元流动的概念; 4、物质导数的概念及公式:物质导数(质点导数)、局部导数(当地导数)、对 流导数(迁移导数、位变导数)的物理意义、数学描述;流体质点加速度、不可压缩流体、均质不可压缩流体的数学描述; 5、流线、迹线、染色线的定义、特点和区别,流线方程、迹线方程,什么时候 三线重合;流管的概念; 6、线变形的概念:相对伸长率、相对体积膨胀率公式,不可压缩流体的相对体 积膨胀率应为什么?旋转的概念:旋转角速度公式,什么样的流动是无旋的? 角变形率公式。 7、微分形式连续方程的适用条件、物理意义、公式及各种简化形式。 二、计算 1、物质导数的计算,如流体质点加速度或流体质点某物理量对时间的变化率;

第一节 砂岩的物理性质

第一节砂岩的物理性质 一、名词解释。 1.岩石的比面S(rock specific surface): 2.岩石的骨架(rock framework): 3.岩石的粒度组成(rock grain size composition): 4.不均匀系数(nonuniformity coefficient): 5.分选系数(sorting coefficient): 二.判断题。 1.粒度组成愈均匀,则岩石孔隙度愈大。() 2.粒度组成分布曲线尖峰愈高,则粒度组成愈均匀。() 3.不均匀系数愈大,则粒度组成愈均匀。() 4.颗粒平均直径愈大,则岩石孔隙度愈大。() 5.分选系数愈大,则粒度组成愈均匀。() 6.砂岩粒度平均直径越大,比面越大。() 7.胶结物含量越大,则比面越大。() 三.选择题。 1.对比右图所示的A,B两个岩样的粒度组成曲线,A岩样的分选性 较,A岩样的平均颗粒直径较。 A.好,大 B.好,小 C.差,大 D.差,小 ( ) 2.若某岩样的颗粒分布愈均匀,即意味着不均匀系数愈,或者说其分选系数愈。 A.大,大 B.大,小

C.小,大 D.小,小 ( ) 3.岩石孔隙组成分选性越 ,迂回度愈 ,则岩石的渗透率愈低。 A. 好、大, B. 差、大 C. 好、小, D. 差、小 ( ) 4.三种岩石胶结类型的胶结强度由弱到强为 A.接触胶结<孔隙胶结<基底胶结 B.孔隙胶结<基底胶结<接触胶结 C. 基底胶结<接触胶结<孔隙胶结 D.孔隙胶结<接触胶结<基底胶结 ( ) 5.若f S ,p S ,S S 分别问以岩石的外表体积,孔隙体积,骨架体积为基准的避免,则三者关系为 A. f S >p S >S S B. S S >p S >f S C. p S >S S >f S , D. f S >S S >p S ( ) 6.岩石比面愈大,则岩石的平均颗粒直径愈 ,岩石对流体吸附阻力愈 。 A.大,大 B.小,小 C.小,大 D.小,小 ( )

油藏流体高压物性实验报告

中国石油大学油层物理实验报告 实验日期: 2012.11.26 成绩: 班级:石工10-15班 学号: 10131504 姓名: 于秀玲 教师: 张俨彬 同组者: 秘荣冉 张振涛 宋文辉 地层油高压物性测定 一、实验目的 1.掌握地层油高压物性仪的结构及工作原理; 2.掌握地层油的饱和压力、单次脱气的测定方法; 3.掌握地层油溶解气油比、体积系数、密度等参数的确定方法; 4.掌握落球法测量地层油粘度的原理及方法。 二、实验原理 1.绘制地层油的体积随压力的关系,在泡点压力前后,曲线的斜率不同,拐 点对应的应力即为泡点压力。 2.使PVT 筒内的压力保持在原始压力,保持压力不变将PVT 筒内一定量的地层油放入分离瓶中,记录放出油的地下体积,记录分离瓶中分出的油、气的体积,便可计算地层油的溶解气油比、体积系数等数据。 3.在地层条件下,钢球在光滑的盛有地层油的标准管中自由下落,通过记录钢球的下落时间,由下式计算原油的粘度: t k )(21ρρμ-= 其中 μ- 原油动力粘度,mPa ·s; t- 钢球下落时间,s ; ρ1、ρ2- 钢球和原油的密度,g/cm 3; k- 粘度计常数,与标准管的倾角、钢球的尺寸及密度有关。 三、实验流程 图一 高压物性试验装置流程图

四、实验步骤 1.泡点压力测定 ⑴粗测泡点压力 从地层压力起以恒定的速度退泵,压力以恒定速度降低,当压力下降到速度减慢或不下降甚至回升时,停止退泵。稳定后的压力即为粗测的泡点压力。 ⑵细测泡点压力 A.升压至地层压力,让析出的气体完全溶解到油中。从地层压力开始降压,每降低一定压力(如2.0MPa)记录压力稳定后的泵体积读数。 B.当压力降至泡点压力以下时,油气混合物体积每次增大一定值(如5cm3),记录稳定后的压力(泡点压力前后至少安排四个测点)。 2.一次脱气 ⑴将PVT筒中的地层原油加压至地层压力,搅拌原油样品使温度、压力均衡,记录泵的读数; ⑵取一个干燥洁净的分离瓶称重,将量气瓶充满饱和盐水; ⑶将分离瓶安装在橡皮塞上,慢慢打开放油阀门,保持地层压力不变排出一定体积的地层油,当量气瓶液面下降200ml左右时,关闭放油阀门,停止排油。记录计量泵的读数; ⑷提升盐水瓶,使盐水瓶液面与量气瓶液面平齐,读取分离出的气体体积,同时记录室温、大气压; ⑸取下分离瓶,称重并记录。 3.地层油粘度测量 ⑴将地层油样转到落球粘度计的标准管中,加热至地层温度; ⑵转动落球粘度计使带有阀门的一端(上部)朝下,按下“吸球”开关,使钢球吸到上部的磁铁上; ⑶转动落球粘度计使其上部朝上,固定在某一角度。按下“落球”开关,钢球开始下落,同时计时开始。当钢球落到底部时自动停止计时,记录钢球下落时间。重复3次以上,直到测得的时间基本相同。 五、数据处理与计算 1.泡点压力的确定: 根据测定的一系列压力P和相应的累积体积差ΔV,绘制P-ΔV关系图,由曲线拐点求出泡点压力值。 表一压力与体积关系测定原始记录 地层温度:40.0℃地层压力:12MPa 粗测泡点压力P b=2.6 MPa 由P和ΔV的数据得出P-ΔV关系图,如图2所示:

(完整版)第三章储层岩石的物理性质

第三章储层岩石的物理性质 3-0 简介 石油储集岩可能由粒散的疏松砂岩构成,也可能由非常致密坚硬的砂岩、石灰岩或白云岩构成。岩石颗粒可能与大量的各种物质结合在一起,最常见的是硅石、方解石或粘土。认识岩石的物理性质以及与烃类流体的相互关系,对于正确和评价油藏的动态是十分必要的。 岩石实验分析是确定油藏岩石性质的主要方法。岩心是从油藏条件下采集的,这会引起相应的岩心体积、孔隙度和流体饱和度的变化。有时候还会引起地层的润湿性的变化。这些变化对岩石物性的影响可能很大,也可能很小。主要取决于油层的特性和所研究物性参数,在实验方案中应考虑到这些变化。 有两大类岩心分析方法可以确定储集层岩石的物理性质。 一、常规岩心实验 1、孔隙度 2、渗透率 3、饱和度 二、特殊实验 1、上覆岩石压力, 2、毛管压力, 3、相对渗透率, 4、润湿性, 5、表面与界面张力。 上述岩石的物性参数对油藏工程计算必不可少,因为他们直接影响这烃类物质的数量和分布。而且,当与流体性质结合起来后,还可以研究某一油藏流体的流动状态。

3-1 岩石的孔隙度 岩石的孔隙度是衡量岩石孔隙储集流体(油气水)能力的重要参数。 一、孔隙度定义 岩石的孔隙体积与岩石的总体积之比。绝对孔隙度和有效孔隙度。 特征体元和孔隙度:对多孔介质进行数学描述的基础定义是孔隙度。定义多孔介质中某一点的孔隙度首先必须选取体元,这个体元不能太小,应当包括足够的有效孔隙数,又不能太大,以便能够代表介质的局部性质。 i i p U U U U M i ??=?→?)(lim )(0 φ,)(lim )(M M M M '=' →φφ 称体积△U 0为多孔介质在数学点M 处的特征体元—多孔介质的质点。这样的定义结果,使得多孔介质成为在每个点上均有孔隙度的连续函数。若这样定义的孔隙度与空间位置无关,则称这种介质对孔隙度而言是均匀介质。对于均匀介质,孔隙度的简单定义为: 绝对孔隙度:V V V V V G P a -==φ 有效孔隙度:V V V V V V n G eP --= = φ 孔隙度是标量,有线孔隙度、面孔隙度、绝对孔隙度、有效孔隙度之分。区分 U 0多孔介质孔隙度的定义 φ

煤储层及其基本物理性质

第二章煤储层及其基本物理性质 煤储层是指在地层条件下储集煤层气的煤层。煤储层具有双重孔隙介质、渗透性较低、孔隙比表面积较大、吸附能力极强、储气能力大等特点。 第一节主要内容: 煤储层是由固态、气态、液态三相物质所构成。 固态物质:是煤基质 液态物质:一般是煤层中的水(有时也含有液态烃类物质) 气态物质:即煤层气 一、煤储层固态物质组成: 1、宏观煤岩组成 煤是一种有机岩类,包括三种成因类型: ①主要来源于高等植物的腐植煤 ②主要有低等生物形成的腐泥煤 ③介于前两者之间的腐植腐泥煤 (自然界中以腐植煤为主,也是煤层气赋集的主要煤储层类型) 2、显微煤岩组成 显微煤岩组成包括显微组分和矿物质。 显微组分是在光学显微镜下能够识别的煤的基本有机成分,其鉴别标志包括:颜色,突起,反射力,光学各向异性,结构,形态等。 矿物质是煤及煤储层中含有数量不等的无机成分,主要为黏土类和硫化类矿物,其次为碳酸盐类、氧化硅类矿物以颗粒状。团块状散布于煤中,常见显微条带状产出的黏土矿物。 3、煤的大分子结构 煤中有机质大分子结构基本结构单元(BSU)的骨架结构由缩合芳香体系组成,其基本化学结构为芳香环。 煤中有机质大分子结构基本结构单元的缩聚过程主要起源于三种反应机制:芳构化作用、环缩合作用和拼叠作用。 芳构化作用是指:非芳香化合物经由脱氢生成芳香化合物的作用,可通过碳数不低于六个的链烃的闭环、五圆或六圆脂环和杂环的脱氢等方式实现,是煤中有机质生气的主要机理。 环缩合作用通过单个芳香环间联结、稠环芳香分子间或分子内联结、自由基分子间重新结合等方式得以实现,是中~高级无烟煤阶段芳香体系缩聚的主要机理。 拼叠作用是指基本结构单元之间相互联结而使煤中有机质化学结构短程有序化范围(有序畴)增大的作用,与自由基反应密切相关,是高级无烟煤阶段基本结构单元增大和秩理化程度增高的主要机理。 二、煤储层液态物质组成 煤储层中液态物质包括裂隙、大孔隙中的自由水(油)及煤基质中的束缚水。 在煤化学中,将煤中水划分为三类,即外在水分、内在水分和化合水。外在

储层岩石物性及孔隙结构特征

3. 储层岩石物性及孔隙结构特征 本章将重点分析柴西北区N1 2 ~N2 2 储层岩石的孔隙度、渗透率、储集空间类 型及分布、大小等反映储层孔隙结构特征的性质,区域上仍以南翼山、油泉子、尖顶山和咸水泉作为研究对象。 3.1 储层岩石物性分析 3.1.1 南翼山储层岩石物性 南翼山构造位于青海省柴达木盆地西部北区,属于西部坳陷区——茫崖凹陷南翼山背斜带上的一个三级构造。该构造为两翼基本对称的大而平缓的箱状背斜构造,两翼倾角20°左右,构造轴线近北西西向,长轴50km,短轴15km,闭合面积620km2,闭合高度820m。构造的基本模式为两断夹一隆,南翼山背斜的形成主要受控于翼北、翼南两组断层,由于该断层的控制作用,使得本区产生了一个宽缓的背斜构造,主体构造两翼基本对称。浅层(N21以上)构造隆起幅度较中深层要略小,表现为轴部地层较薄,两翼地层增厚的特征。 N21~N22时期柴西北区广泛发育较深湖、浅湖和滨湖相。南翼山地区N21时期为较深湖—浅湖沉积,该地区中部受构造古隆起的控制主要为浅湖沉积;N22时期随着湖盆沉积中心的进一步往北东方向迁移,主要沉积浅湖相。 共收集该区N22~N21储层岩石Ⅰ~Ⅵ油层组18口井钻井取心样品物性分析资料,其中孔隙度1802块、渗透率1897块,碳酸盐含量933块、氯离子含量514块。物性统计结果见表3-1。 21

从统计结果来看,南翼山油田除Ⅰ+Ⅱ油组孔隙度和渗透率稍高些,Ⅲ+Ⅳ和Ⅴ+Ⅵ油层组物性基本一致,均表现出物性总体较差,属典型中-低孔隙度、低-特低渗透率储层。图3-1是该油田统计的所有样品的孔隙度与渗透率关系图。 图3-1 南翼山N22-N21储层岩石孔渗关系 由图3-1可以看出,该区孔渗分布存在明显的两个区域(图中大圈和小圈),小圈内的孔渗稍高些,是浅部Ⅰ+Ⅱ油层组岩石的孔渗分布,孔隙度一般大于25%,而深透率一般在10mD左右。而大圈内是Ⅲ+Ⅳ和Ⅴ+Ⅵ油层组岩石的孔渗分布,孔隙度一般在5%-20%之间,渗透率在0.01mD-10mD之间。 由于南翼山浅部Ⅰ+Ⅱ油层组埋深浅,岩石受压实作用较弱,岩性以泥质粉砂岩、粉砂质泥岩为主,部分保留了原生粒间孔隙,因此储层物性相对较好,但其岩石成岩性极差,泥质含量高,岩石固结疏松,因此给开采带来很大的难度。下部的Ⅲ+Ⅳ和Ⅴ+Ⅵ储层岩石其成岩性明显好于上部Ⅰ+Ⅱ油层组,岩石胶结较致密,岩性以含灰泥岩以及灰质泥岩为主,水平纹层发育,另有部分砾屑、砂屑、生屑、球粒支撑的颗粒灰岩及含藻屑泥灰岩(风暴岩)。此类岩石其原生粒间孔隙几乎全部损失,除仍保存大量微孔隙外,有效储集和渗流空间仅为溶蚀孔隙和微裂缝,而且孔隙和微裂缝内往往被方解石充填,因此物性较差。 另外,在进行孔渗测量的同时,部分样品同时还测定了碳酸盐含量及氯离子含量。通过分析,各油层组碳酸盐含量随深度有增加趋势,而氯离子含量有减少趋势,但变化不明显。各油层组碳酸盐含量平均不到40%,仅有部分样品超过50%。

相关文档
相关文档 最新文档