文档库 最新最全的文档下载
当前位置:文档库 › 数控铣削加工编程图例

数控铣削加工编程图例

数控铣削加工编程图例
数控铣削加工编程图例

数控铣削加工编程图例

练习题1

零件图如图所示,完成下面工作任务:

·选择加工用刀具;用表格说明刀具所用于的加工部位;·在图中画出刀具走刀路线;

·编写加工程序。

零件图如图所示,编写加工程序。

·粗加工用φ30平底铣刀,刀具长度130mm,留1mm精加工余量;·精加工用φ10平底铣刀,刀具长度110mm

如图所示,完成下面任务:·对零件加工进行工艺设计·编写零件加工程序

如图所示,完成下面任务:·对零件加工进行工艺设计·编写零件加工程序

如图所示,完成下面任务:·对零件加工进行工艺设计·编写零件加工程序

如图所示,完成下面任务:·对零件加工进行工艺设计·编写零件加工程序

如图所示,完成下面任务:·对零件加工进行工艺设计·编写零件加工程序

如图所示,完成下面任务:·对零件加工进行工艺设计·编写零件加工程序

编写零件加工程序

编写零件加工程序

铣削零件数控加工工艺及程序设计

毕业论文 (2013届) 题目:铣削零件数控加工工艺及程序设计 姓名: 学号: 系部: 班级: 指导教师: 2013年4月

铣削零件数控加工工艺及程序设计 摘要:数控技术及数控机床在当今机械制造业中的重要地位和巨大效益,显示了其在国家基础工业现代化中的战略性作用,并已成为传统机械制造工业提升改造和实现自动化、柔性化、集成化生产的重要手段和标志。数控技术及数控机床的广泛应用,给机械制造业的产业结构、产品种类和档次以及生产方式带来了革命性的变化。数控机床是现代加工车间最重要的装备。在数控编程中,工艺分析和工艺设计是至观重要的,在加工前都要对所加工零件进行工艺分析,拟定加工方案,选择加工设备、刀具、夹具,确定切削用量,安排加工顺序,制定走刀路线等。在编程过程中,还要对一些工艺问题(如对刀点,换刀点,刀具补偿等)做相应处理。因此程序编制中的工艺分析和工艺设计是一项十分重要的工作。 本文根据铣削零件的图纸及技术要求,对该零件进行了详细的数控加工工艺分析,依据分析的结果,对该零件进行了数控加工工艺设计,并编制了工艺卡片、数控加工工序卡片和刀具卡片等。 关键词:数控编程刀具切削用量加工程序 一、绪论 随着数控技术的发展,数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业的发展起着越来越重要的作用。 数字控制机床简称数控机床,这是一种将数字计算技术应用于机床的控制技术。它把机械加工过程中的各种控制信息用代码化的数字表示,通过信息载体输入数控装置。经运算处理由数控装置发出各种控制信号,控制机床的动作,按图纸要求的形状和尺寸,自动地将零件加工出来。数控机床较好地解决了复杂、精密、小批量、多品种的零件加工问题,是一种柔性的、高效能的自动化机床,代表了现代机床控制技术的发展方向,是一种典型的机电一体化产品。 1.数控机床的组成及工作原理 数控机床是数字控制机床(Computer numerical control machine tools)的简称,是一种装有程序控制系统的自动化机床。该控制系统能够逻辑地处理具有控制编码或其他符号指令规定的程序,并将其译码,从而使机床动作数控折弯机并加工零件。

数控铣削零件的加工

数控铣削零件的加工 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

数控铣削零件的加工 2008年04月01日星期二 18:32 设备及刀具 1 .数控铣床 2 .刀具:立铣刀端面铣刀铰刀镗刀 3 .量具:游标卡尺游标深度尺 4 .夹具:平口虎钳 加工如图所示工件( 120 mm X 120mm 的平板上铣个方槽和半圆槽),但深度不同。 具体要求如下: 填写数控加工工序综合卡片 填写数控加工刀具卡片 确定刀具走刀路线 编写程序 数控加工工序综合卡片 数控加工工序综合 卡片 零件名称板编制马雪峰 程序号O0001 零件号20204 日期 工 步号工步内容 刀具名称切削用量 刀具号 长度 补偿 半径 补偿 S ( m/min ) F ( mm/min ) 切深 ( mm ) 1 粗铣顶面 端面铣刀(Φ 125 ) V =90m/min F =0.2mm/ 齿T01 270 300 2 铣半圆、长方形 两刃立铣刀(Φ 10 ) V =90m/min F =0.2mm/ 齿 3 T02 5 400 100 3 铣半圆 两刃立铣刀(Φ 10 ) V=20m/min F=0.15mm/ 齿 3 T02 5 400 100

2 、数控加工刀具卡片 (厂名)零件名称板零件号20204 数控加工刀具卡片程序号20204 编制马雪峰工 步号编号刀片名称刀柄型号 刀具尺寸( mm )补偿号 直径长度 D H 1 01 可转位端面铣 刀 40B7-80 Φ 12570 02 2 02 两刃立铣刀40B7-QQ1-75 Φ 1060 02 3 、走刀路线 4 、编写程序 粗铣顶面 10 G54G0G. N20 S270M3 N30 Z10. N40 G1Z0F300 N50 N60 G0Z10. N70 M5 N80 M30 铣槽 10 G54G0G. N20 S400M3 N30 Z10. 40 G N50

数控铣床编程30例带图

实例一 毛坯为70㎜×70㎜×18㎜板材,六面已粗加工过,要求数控铣出如图3-23所示的槽,工件材料为45钢。 1.根据图样要求、毛坯及前道工序加工情况,确定工艺方案及加工路线 1)以已加工过的底面为定位基准,用通用台虎钳夹紧工件前后两侧面,台虎钳固定于铣床工作台上。

2)工步顺序 ①铣刀先走两个圆轨迹,再用左刀具半径补偿加工50㎜×50㎜四角倒圆的正方形。 ②每次切深为2㎜,分二次加工完。 2.选择机床设备 根据零件图样要求,选用经济型数控铣床即可达到要求。故选用XKN7125型数控立式铣床。 3.选择刀具 现采用φ10㎜的平底立铣刀,定义为T01,并把该刀具的直径输入刀具参数表中。 4.确定切削用量 切削用量的具体数值应根据该机床性能、相关的手册并结合实际经验确定,详见加工程序。 5.确定工件坐标系和对刀点 在XOY平面内确定以工件中心为工件原点,Z方向以工件表面为工件原点,建立工件坐标系,如图2-23所示。

采用手动对刀方法(操作与前面介绍的数控铣床对刀方法相同)把点O 作为对刀点。 6.编写程序 按该机床规定的指令代码和程序段格式,把加工零件的全部工艺过程编写成程序清单。 考虑到加工图示的槽,深为4㎜,每次切深为2㎜,分二次加工完,则为编程方便,同时减少指令条数,可采用子程序。该工件的加工程序如下(该程序用于XKN7125铣床): N0010 G00 Z2 S800 T1 M03 N0020 X15 Y0 M08 N0030 G20 N01 P1.-2 ;调一次子程序,槽深为2㎜ N0040 G20 N01 P1.-4 ;再调一次子程序,槽深为4㎜ N0050 G01 Z2 M09 N0060 G00 X0 Y0 Z150 N0070 M02 ;主程序结束 N0010 G22 N01 ;子程序开始 N0020 G01 ZP1 F80 N0030 G03 X15 Y0 I-15 J0 N0040 G01 X20 N0050 G03 X20 YO I-20 J0

数控铣削加工工艺分析

目录 一、零件图的工艺分析 二、零件设备的选择 三、确定零件的定位基准和装夹方式 四、确定加工顺序及进给路线 五、刀具选择 六、切削用量选择 七、填写数控加工工艺文件

1、如图1所示,材料为45钢,单件生产,毛坯尺寸为 84mm×84mm×22mm),试对该零件的顶面和内外轮廓进行数控铣削加工工艺分析。 图1带型腔的凸台零件图 一零件图的工艺分析 1、图形分析 (1)分析零件图是否完整、正确,零件的视图是否正确、清楚,尺寸、公差、表面粗糙度及有关技术要求是否齐全、明确。从上图可以看出该零件图的尺寸符合了这一要求。 (2)分析零件的技术要求,包括尺寸精度、形位公差、表面粗糙度及热处理是否合理。过高的要求会增加加工难度,提高成本;过低的技术要求会影响工作性能,两者都是不允许的。上图的精度为IT8级,技术要求和尺寸精度都能满足加工要求。 (3)该零件图上的尺寸标注既满足了设计要求,又便于加工,各图形几何要素间的相互关系(相切、相交、垂直和平行)比较明确,条件充分,并且采用了集中标注的方法,满足了设计基准、工艺基准与编程原点的统一。因此该图的尺寸标注符合了数控加工的特点。 2、零件材料分析 由题目提供,材料为45钢。 3、精度分析

该零件最高精度等级为IT8级,所以表面粗糙度均为Ra3.2um。加工时不宜产生震荡。如果定位不好可能会导致表面粗糙度,加工精度难以达到要求。 4、结构分析 从图1上可以看出,带型腔的凸轮零件主要由圆弧和直线组成,该零件的加工内容主要有平面、轮廓、凸台、型腔、铰孔。需要粗精铣上下表面外轮廓内轮廓凸台内腔及铰孔等加工工序。 二、选择设备 由该零件外形和材料等条件,选用XK713A数控铣床。 三、确定零件的定位基准和装夹方式 由零件图可得,以零件的下端面为定位基准,加工上表面。把零件竖放加工外轮廓。 零件的装夹方式采用机用台虎钳。 四、确定加工顺序及进给路线 1、确定加工顺序 加工顺序的拟定按照基面先行,先粗后精的原则确定,因此先加工零件的外轮廓表面,加工上下表面,接着粗铣型腔,再加工孔,按照顺序再精铣一遍即可。 加工圆弧时,应沿圆弧切向切入。 2、进给路线

数控铣削加工工艺范围及铣削方式

数控铣削加工工艺围及铣削方式 铣削是铣刀旋转作主运动,工件或铣刀作进给运动的切削加工方法。铣削的主要工作及刀具与工件的运动形式如图所示。 在铣削过程中,根据铣床,铣刀及运动 形式的不同可将铣削分为如下几种: (1)根据铣床分类 根据铣床的结构将铣削方式分为立铣 和卧铣。由于数控铣削一个工序中一般要加 工多个表面,所以常见的数控铣床多为立式 铣床。 (2)根据铣刀分类 根据铣刀切削刃的形式和方位将铣削 方式分为周铣和端铣。用分布于铣刀圆柱面上的刀齿铣削工作表面,称为周铣,如图6-2(a)所示;用分布于铣刀端平面上的刀齿进行铣削称为端铣,如图6-2(b)所示。 图中平行于铣刀轴线测量的切 削层参数ap为背吃刀量。垂直于铣 刀轴线测量的切削层参数ac为切削 宽度,fz是每齿进给量。单独的周铣 和端铣主要用于加工平面类零件,数 控铣削中常用周、端铣组合加工曲面 和型腔。 (3)根据铣刀和工件的运动形 式公类 根据铣刀和工作的相对运动将铣 削方式分为顺铣和逆铣。铣削时,铣 刀切出工件时的切削速度方向与工件的进给方向相同,称为顺铣如图(6-3)a 所示; 铣削时,铣刀切入工件时的切削速度方向与工件进 给方向相反,称为逆铣,如图(6-3)b所示。 顺铣与逆铣比较:顺铣加工可以提高铣刀耐用 度2~3倍,工件表面粗糙度值较小,尤其在铣削难 加工材料时,效果更加明显。铣床工作台的纵向进 给运动一般由丝杠和螺母来实现,采用顺铣法加工 时,对普通铣床首先要求铣床有消除进给丝杠螺母 副间隙的装置,避免工作台窜动;其次要求毛坯表 面没有破皮,工艺系统有足够的刚度。如果具备这

样的条件,应当优先考虑采用顺铣,否则应采用逆铣。目前生产中采用逆铣加工方式的比较多。数控铣床采用无间隙的滚球丝杠传动,因此数控铣床均可采用顺铣加工。 数控铣削主要特点 (1)生产率高 (2)可选用不同的铣削方式 (3)断续切削 (4)半封闭切削 数控铣削主要加工对象 (1)平面类零件 加工面平行或垂直水平面,或加工面与水平面的夹角为定角的零件为平面类零件。目前,在数控铣床上加工的绝大多数零件属于平面类零件。 (2)变斜角类零件 加工面与水平面的夹角呈连续变化的零件称为斜角类零件。这类零件多为飞机零件,如飞机上的整体梁、框、橡条与肋等。 (3)曲面类零件 加工面为空间曲面的零件称为曲面类零件。如模具、叶片、螺旋桨等。 加工曲面类零件一般采用三坐标数控铣床。当曲面较复杂、通道较狭窄、会伤及毗邻表面及需刀具摆动时,要采用四坐标或五坐标铣床。 数控铣削的刀具与选用 对数控铣削刀具的基本要求 (1)铣刀刚性要好 (2)铣刀的耐用度要高 此外,铣刀切削刃的几何参数的选择及排屑性能也非常重要。 铣刀的种类 (1)面(端)铣刀 面铣刀的圆周表面和端面上都有切削刃,端部切削刃为副切削刃。由于面铣刀的直径一般较大,为直径50~500mm,故常制成套式镶齿结构,即将刀齿和刀体分开,刀齿为高速或硬质合金,刀体采用40cr制作,可长期使用。高速钢面铣刀按国家标准规定,直径d=直径80~250mm,螺旋角β=10度,刀齿数Z=10~26. 硬质合金面铣刀与高速钢铣刀相比,铣削速度较高,加工效率高,加工表面质量也较好,并可加工带有硬皮和淬硬层的工件,故得到广泛应用。硬质合金面铣刀按刀片和刀齿的安装方式不同,可分为整体焊接式、机夹一焊接式和可转位式三种(见图6-4)。 面铣刀主要以端齿为主加工各种平面,主偏角为90度的面铣刀还能用时加工出与平面垂直的直角

第三章 数控铣削加工实例

第三章数控铣削加工实例 无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,拟定加工方案,选择合适的刀具,确定切削用量。在编程中,对一些工艺问题(如刀具选择、加工路线等)也需做一些处理。因此程序编制中的工艺分析与制订是一项十分重要的工作。 3.1数控编程的工艺基础 程序编制人员在进行工艺分析时,需借助机床说明书、编程手册、切削用量表、标准工具和夹具手册等资料,根据被加工工件的材料、轮廓形状、加工精度等选用合适的机床,制定加工方案,确定零件的加工顺序,各工序所用刀具,夹具和切削用量等。此外,编程人员应不断总结、积累工艺分析与制订方面的实际经验,编写出高质量的数控加工程序。 3.1.1 数控铣削加工零件图样的分析 1、零件图的尺寸标注应适应数控加工的特点 在数控加工零件图上,应以同一基准标注尺寸或直接给出坐标尺寸。这种标注方法既便于编程,也便于尺寸之间的相互协调,在保持设计基准、工艺基准、检测基准与编程原点设置的一致性方面带来很大方便。由于设计人员一般在尺寸标注中较多地考虑装配、功用等方面的要求,经常采用局部分散的标注方法,这样就给工序安排与数控加工带来许多不便。由于数控加工精度和重复定位精度都很高,不会因产生较大的积累误差而影响使用特性,因此可将局部的分散标注改为同一基准标注尺寸或直接给出坐标尺寸。 2、零件轮廓的几何元素的条件应充分 在手工编程时要计算基点或节点坐标。在自动编程时,要对构成零件轮廓的所有几何元素进行定义,因此在分析零件图时,要分析几何元素的给定条件是否充分,如圆弧与直线、圆弧与圆弧在图样上相切,其给出的尺寸是否与图样上的几何关系相符等。由于构成零件几何元素条件的不充分,使编程时无法下手。遇到这种情况时,应与零件设计者协商解决。 3.1.2数控铣削加工零件工艺性分析 数控加工工艺是采用数控机床加工零件时所运用各种方法和技术手段的综合,应用于整个数控加工工艺过程。 数控工艺分析主要从精度和效率两方面对数控铣削的加工艺进行分析,加工精度必须达到图纸的要求,同时又能充分合理地发挥机床的功能,提高生产效率。一般情况下应遵循下列原则: 1、在加工同一表面时,应按粗加工_半精加工_精加工的次序完成。对整个零件的加工也可以按先粗加工,后半精加工,最后精加工的次序进行。 2、当设计基准和孔加工的位置精度与机床的定位精度和重复定位精度相接近时,可采用按同一尺寸基准进行集中加工的原则,这样可以解决多个工位设计尺寸基准的加工精度问题。 3、对于复合加工(既有铣削又有镗孔)的零件,可以先铣后镗。因为铣削的切削力大,工件易变形,采用先铣后镗孔的方法,可使工件有一段时间的恢复,减少变形对精度的影响。相反,如果先镗孔再进行铣削,会在孔口处产生毛刺、飞边,从而影响孔的精度。如对于图 3.1所示零件,应先铣阶梯面,后铰φ20的6个孔。 4、在孔类零件加工时,刀具在XY平面内的运动路线,主要考虑: (1)定位要迅速,也就是在刀具不与工件、夹具和机床碰撞的前提下空行程时间尽可能短。

数控铣床锥螺纹加工实例

数控铣床锥螺纹加工实例(宏程序) 使用FANUC系统的数控铣床或加工中心加工内锥螺纹之前应先了解系统中的一个重要参数:即No.3410参数,该参数定义为:在G02/G03指令中,设定起始点的半径与终点的半径之差的允许极限值,当由于机械原因或编程原因造成圆加工的起始点与终点在半径方向的差值超过此值(既不在同一个标准圆上)时,系统将发出P/S报警No.20,该值通常为0~30μm,由机床厂家设定。((如果设定值为0,(系统)反而不进行圆弧半径差的检查))。该参数可以说是决定能否实现使用螺旋差补功能来加工锥度螺纹的关键因素! 建议:适当修改此参数,或直接设为0。 下面就是一个加工程序实例: 加工说明:右旋内锥螺纹,中心位置为(50,20),螺纹大端直径为ф60mm,螺距=4mm,螺纹深度为Z-32,单刃螺纹铣刀半径R=13.5mm,螺纹锥度角=10° 假设螺纹底孔已预先加工,为简明扼要说明宏程序原理,这里使用一刀精加工,实际加工可合理分配余量分次加工! O0101 S2000 M03 G54 G90 G00 X0 Y0 Z30. G65 P8101 A10. B0 D60. Q4. R13.5 X50. Y20. Z-32. F500 M30 自变量赋值说明; #1=A 螺纹的锥度角(以单边计算) #2=B 螺纹顶面Z坐标(非绝对值) #7=D 螺纹起始点(大端)直径 #9=F 进给速度 #17=Q 螺距 #18=R 刀具半径(应使用单刃螺纹铣刀) #24=X 螺纹中心X坐标值 #25=Y 螺纹中心Y坐标值 #26=Z 螺纹深度(Z坐标,非绝对值) 宏程序 O8101 G52 X#24 Y#25 在螺纹中心(X,Y)建立局部坐标系 #3=#7/2-#18 起始点刀心回转半径(初始值) #4=TAN[#1] 锥度角正切值 #5=#17*#4 一个螺距所对应的半径变化量 #6=#3+#26*#4 螺纹底部(小端)半径 G00 X#3 Y0 G00移动到起始点的上方 Z[#2+1.] G00下降到Z#2面以上1.处 G01 Z#2 F#9 G01进给到Z#2面 WHILE [#3 GT #6] DO 1 如果#3>#6,循环1继续 G91 G02 X-#5 I-#3 Z-#17 F#9 G02螺旋加工至下一层,实际轨迹为圆锥插补 ##=#3-#5 刀心回转半径依次递减#5

数控铣床加工零件及数控编程

数控铣床加工零件及数控 编程 Last revision on 21 December 2020

辽宁工程技术大学《数控技术》综合训练二班级:机自14-2 学号: 姓名:张钦雷 指导教师:王洁 完成日期: 2017-04-20

任务书 一、设计原始资料 由教师指定。 二、设计任务 (1)对教师给定的装配体或零件进行设计,内容包括:二维图绘制和三维建模,建模软件可根据自己熟练程度选择。 (2)对零件进行结构分析,学生自行选择分析软件。 (3)针对某工步进行虚拟仿真制造,生成程序代码。 三、设计成果 (1)零件图(A4或A3) 1张 (2)三维模型及仿真过程 1份 (3)数控程序代码 1份 (4)说明书(2000-5000字) 1份 四、成绩评定 指导教师:王洁 日期: 摘要

本次研究的目的是加深对于二维,三维软件的应用,学习用数控仿真进行模拟加工。利用二维软件对零件进行结构和使用要求的分析。利用三维软件对零件尺寸进行建模。再通过CAM对零件进行加工轨迹,刀具参数,程序代码生成等相关参数设定。进而生成仿真动画,立体直观的了解零件仿真的全过程。最后完成对零件仿真的整个过程。 关键词:二维软件,三维软件,建模,CAM,仿真 Abstract The purpose of this research is to deepen for 2 d, 3 d software applications, learning to use numerical simulation to simulate machining. Using two-dimensional software components for the analysis of the structure and the use requirement. Parts size to make use of 3 d software modeling. Travel through the CAM track of parts processing, cutting tool parameters, application code generation and related parameters setting. , in turn, generate simulation animation, three-dimensional visual simulation during the process of understanding of parts. Finally complete the whole process of simulation of parts. Keywords: 2 d software, 3 d software, modeling, CAM, simulation 目录 1.工件二维图形的绘 制 (5) 1.1绘制二维图的软件caxa (5) 1.2工件的平面图及零件加工工艺分析 (5) 2.工件的三维建模 (6) 三维软件的介绍Inventor (6) 工件的三维建模过程 (6)

数控铣削加工工艺参数的确定

数控铣削加工工艺参数的确定 确定工艺参数是工艺制定中重要的内容,采用自动编程时更是程序成功与否的关键。 (一)用球铣刀加工曲面时与切削精度有关的工艺参数的确定 1、步长l (步距)的确定 步长l (步距)——每两个刀位点之间距离的长度,决定刀位点数据的多少。 曲线轨迹步长l 的确定方法: 直接定义步长法:在编程时直接给出步长值,根据零件加工精度确定 间接定义步长法:通过定义逼近误差来间接定义步长 2、逼近误差e r 的确定 逼近误差e r ——实际切削轨迹偏离理论轨迹的最大允许误差 三种定义逼近误差方式(如图16-4所示) : 指定外逼近误差值:以留在零件表面上的剩余材料作为误差值 (精度要求较高时一般采用,选为0.0015~0.03mm ) 指定内逼近误差值:表示可被接受的表面过切量 同时指定内、外逼近误差 3、行距S (切削间距)的确定 行距S (切削间距)——加工轨迹中相邻两行刀具轨迹之间的距离。 行距小:加工精度高,但加工时间长,费用高 行距大:加工精度低,零件型面失真性较大,但加工时间短。 两种方法定义行距: (1)直接定义行距 算法简单、计算速度快,适于粗加工、半精加工和形状比较平坦零件的精加工的刀具运动轨迹的生成 (2)用残留高度h 来定义行距 残留高度h ——被加工表面的法矢量方向上两相邻切削行之间残留沟纹的高度。 大:表面粗糙度值大 小:可以提高加工精度,但程序长,占机时间成倍增加,效率降低 选取考虑:粗加工时,行距可选大些,精加工时选小一些。有时为减小刀峰高度,可在原两行之间加密行切一次,即进行曲刀峰处理,这相当于将S 减小一半,实际效果更好些。 图3.2.6 指定逼近误差

数控铣削加工工艺习题

单元六数控铣削加工工艺习题 一判断题 1.数控铣床属于直线控制系统。() 2.在卧式铣床上加工表面有硬皮的毛坯零件时,应采用逆铣切削。() 3.执行程序铣削工件前,宜依程序内容将刀具移至适当位置。() 4.弹簧筒夹用于夹持直柄铣刀,亦可用于夹持斜柄铣刀。() 5.端铣刀直径愈小,每分钟铣削回转数宜愈高。() 6.铣削速度=π×铣刀直径×每分钟回转数。() 7.平铣刀的刀刃螺旋角愈大,同时铣削的刀刃数则愈少。() 8.端铣刀之柄径须配合筒夹内径方可确实夹紧。() 9.安装或拆卸铣刀时,宜用抹布承接以防刀具伤及手指。() 10.较硬工件宜以低速铣削。() 11.铣削中发生紧急状况时,必须先按紧急停止开关。() 12.使用螺旋铣刀可减少切削阻力,且较不易产生振动。() 13.在可能情况下,铣削平面宜尽量采用较大直径铣刀。() 14.球形端铣刀适用于重铣削。() 15面铣刀的切除率多大于端铣刀。() 16.端铣刀可以铣削盲孔。() 17.T槽铣刀在铣削时,只有圆外围的刃口与工件接触。() 18.端铣刀可采较大铣削深度,较小进给方式进行铣削。() 19.端铣刀不仅可用端面刀刃铣削,亦可用柱面刀刃铣削。() 20.铣刀材质一般常用高速钢或碳钢。() 21.铸铁工件宜采用逆铣削。() 22.顺铣削是铣刀回转方向和工件移动方向相同。() 23.铣刀直径100㎜,以25m/min速度铣削,其每分钟转数为40。() 24.铣刀直径50㎜,以30m/min切削速度铣削,其每分钟回转数为80。() 25.刃之面铣刀,以80rpm铣削,如每一刀刃进刀为0.2㎜,则进给率为每分钟96㎜。() 26.切削液之主要目的为冷却与润滑。() 27.精铣削时,在不考虑螺杆背隙情况下,顺铣削法较不易产生振动。() 28.铣刀寿命与每刃进给量无关。() 29.逆铣削法较易得到良好的加工表面。() 30.铣刀的材质优劣是影响铣削效率的主要因素之一。()

数控铣床典型零件加工实例

数控铣床典型零件加工实例模块五 如果希望掌握这门技列举了典型数控铣削编程实例,本单元从综合数控技术的实际应用出发,术,就应该仔细的理解和消化它,相信有着举一反三的效果。学习目标 知识目标:●学会对工艺知识、编程知识、操作知识的综合运用 能力目标:●能够对适合铣削的典型零件进行工艺分析、程序编制、实际加工。 ——槽类零件一、数控铣床加工实例1所示的槽,工×㎜毛坯为70×70㎜18㎜板材,六面已粗加工过,要求数控铣出如图2-179 钢。件材料为45 图2-179 凹槽工件 1.根据图样要求、毛坯及前道工序加工情况,确定工艺方案及加工路线

1)以已加工过的底面为定位基准,用通用机用平口虎钳夹紧工件前后两侧面,虎钳固定于铣床工作台上。 2)工步顺序 四角倒圆的正方形。㎜50×㎜50铣刀先走两个圆轨迹,再用左刀具半径补偿加工①. ②每次切深为2㎜,分二次加工完。 2.选择机床设备 根据零件图样要求,选用经济型数控铣床即可达到要求。 3.选择刀具 现采用φ10㎜的平底立铣刀,定义为T01,并把该刀具的直径输入刀具参数表中。 4.确定切削用量 切削用量的具体数值应根据机床性能、相关的手册并结合实际经验确定,详见加工程序。 5.确定工件坐标系和对刀点 在XOY平面内确定以工件中心为工件原点,Z方向以工件上表面为工件原点,建立工件坐标系,如图2-118所示。 采用手动对刀方法(操作与前面介绍的数控铣床对刀方法相同)把点O作为对刀点。 6.编写程序 考虑到加工图示的槽,深为4㎜,每次切深为2㎜,分二次加工完。为编程方便,同时减少指令条数,可采用子程序。该工件的加工程序如下:

数控铣宏程序实例()

数控铣宏程序实例 §4.1 椭圆加工(编程思路:以一小段直线代替曲线)例1:整椭圆轨迹线加工(假定加工深度为2mm) 方法一:已知椭圆的参数方X=acosθ Y=bsinθ 变量数学表达式 设定θ= #1(0°~ 360°) 那么 X= #2 = acos[#1] Y= #3= bsin[#1] 程序 O0001; S1000 M03; G90 G54 G00 Z100; G00 Xa Y0; G00 Z3; G01 Z-2 F100; #1=0; N1 #2=a*cos[#1]; #3=b*sin[#1]; G01 X#2 Y#3 F300; #1=#1+1; IF[#1LE360]GOT01; GOO Z50; M30;

例2:斜椭圆且椭心不在原点的轨迹线加工(假设加工深度为2mm) 椭圆心不在原点的参数方程 X=a*COS[#1]+ M Y=b*SIN[#1]+ N 变量数学表达式 设定θ=#1; (0°~360°) 那么X=#2=a*COS[#1]+ M Y=#3=b*SIN[#1]+ N 因为此椭圆绕(M ,N)旋转角度为A 可运用坐标旋转指令G68 格式 G68 X - Y - R - X,Y:旋转中心坐标; R: 旋转角度 程序 O0002; S1000 M03; G90 G54 G00 Z100; GOO Xa+M YN; GOO Z3; G68 XM YN R45; #1=0; N99 #2=a*COS[#1]+M; #3=b*SIN[#1]+N; GO1 X#2 Y#3 F300; G01 Z-2 F100; #1=#1+1; IF[#1LE360]GOTO99; G69 ; GOO Z100; M30;

数控铣床编程实例

第五节数控铣床编程实例(参考程序请看超级链接) 实例一毛坯为70㎜×70㎜×18㎜板材,六面已粗加工过,要求数控铣出如图3-23所示的槽,工件材料为45钢。 1.根据图样要求、毛坯及前道工序加工情况,确定工艺方案及加工路线 1)以已加工过的底面为定位基准,用通用台虎钳夹紧工件前后两侧面,台虎钳固定于铣床工作台上。 2)工步顺序 ①铣刀先走两个圆轨迹,再用左刀具半径补偿加工50㎜×50㎜四角倒圆的正方形。 ②每次切深为2㎜,分二次加工完。 2.选择机床设备 根据零件图样要求,选用经济型数控铣床即可达到要求。故选用XKN7125型数控立式铣床。3.选择刀具 现采用φ10㎜的平底立铣刀,定义为T01,并把该刀具的直径输入刀具参数表中。 4.确定切削用量 切削用量的具体数值应根据该机床性能、相关的手册并结合实际经验确定,详见加工程序。5.确定工件坐标系和对刀点 在XOY平面内确定以工件中心为工件原点,Z方向以工件表面为工件原点,建立工件坐标系,如图2-23所示。 采用手动对刀方法(操作与前面介绍的数控铣床对刀方法相同)把点O作为对刀点。 6.编写程序 按该机床规定的指令代码和程序段格式,把加工零件的全部工艺过程编写成程序清单。 考虑到加工图示的槽,深为4㎜,每次切深为2㎜,分二次加工完,则为编程方便,同时减少指令条数,可采用子程序。该工件的加工程序如下(该程序用于XKN7125铣床): N0010 G00 Z2 S800 T1 M03 N0020 X15 Y0 M08 N0030 G20 N01 P1.-2 ;调一次子程序,槽深为2㎜ N0040 G20 N01 P1.-4 ;再调一次子程序,槽深为4㎜ N0050 G01 Z2 M09

数控铣床编程实例.

数控铣床编程实例.

数控铣床编程实例(参考程序请看超级链接) 实例一毛坯为70㎜×70㎜×18㎜板材,六面已粗加工过,要求数控铣出如图3-23所示的槽,工件材料为45钢。 1.根据图样要求、毛坯及前道工序加工情况,确定工艺方案及加工路线 1)以已加工过的底面为定位基准,用通用台虎钳夹紧工件前后两侧面,台虎钳固定于铣床工作台上。 2)工步顺序 ①铣刀先走两个圆轨迹,再用左刀具半径补偿加工50㎜×50㎜四角倒圆的正方形。 ②每次切深为2㎜,分二次加工完。 2.选择机床设备 根据零件图样要求,选用经济型数控铣床即可达到要求。故选用XKN7125型数控立式铣床。3.选择刀具 现采用φ10㎜的平底立铣刀,定义为T01,并把该刀具的直径输入刀具参数表中。 4.确定切削用量 切削用量的具体数值应根据该机床性能、相关的手册并结合实际经验确定,详见加工程序。5.确定工件坐标系和对刀点 在XOY平面内确定以工件中心为工件原点,Z方向以工件表面为工件原点,建立工件坐标系,如图2-23所示。 采用手动对刀方法(操作与前面介绍的数控铣床对刀方法相同)把点O作为对刀点。 6.编写程序 按该机床规定的指令代码和程序段格式,把加工零件的全部工艺过程编写成程序清单。 考虑到加工图示的槽,深为4㎜,每次切深为2㎜,分二次加工完,则为编程方便,同时减少指令条数,可采用子程序。该工件的加工程序如下(该程序用于XKN7125铣床): N0010 G00 Z2 S800 T1 M03 N0020 X15 Y0 M08 N0030 G20 N01 P1.-2 ;调一次子程序,槽深为2㎜ N0040 G20 N01 P1.-4 ;再调一次子程序,槽深为4㎜

数控铣床加工零件及数控编程

辽宁工程技术大学《数控技术》综合训练二 班级:机自14-2 学号: 1407010228 姓名:张钦雷 指导教师:王洁 完成日期: 2017-04-20

任务书 一、设计原始资料 由教师指定。 二、设计任务 (1)对教师给定的装配体或零件进行设计,内容包括:二维图绘制和三维建模,建模软件可根据自己熟练程度选择。 (2)对零件进行结构分析,学生自行选择分析软件。 (3)针对某工步进行虚拟仿真制造,生成程序代码。 三、设计成果 (1)零件图(A4或A3)1张 (2)三维模型及仿真过程1份 (3)数控程序代码1份 (4)说明书(2000-5000字)1份 四、成绩评定 指导教师:王洁 日期: 2017.4.20

摘要 本次研究的目的是加深对于二维,三维软件的应用,学习用数控仿真进行模拟加工。利用二维软件对零件进行结构和使用要求的分析。利用三维软件对零件尺寸进行建模。再通过CAM对零件进行加工轨迹,刀具参数,程序代码生成等相关参数设定。进而生成仿真动画,立体直观的了解零件仿真的全过程。最后完成对零件仿真的整个过程。 关键词:二维软件,三维软件,建模,CAM,仿真

Abstract The purpose of this research is to deepen for 2 d, 3 d software applications, learning to use numerical simulation to simulate machining. Using two-dimensional software components for the analysis of the structure and the use requirement. Parts size to make use of 3 d software modeling. Travel through the CAM track of parts processing, cutting tool parameters, application code generation and related parameters setting. , in turn, generate simulation animation, three-dimensional visual simulation during the process of understanding of parts. Finally complete the whole process of simulation of parts. Keywords: 2 d software, 3 d software, modeling, CAM, simulation

数控铣削加工工艺范围及铣削方式

数控铣削加工工艺范围及铣削方式 铣削是铣刀旋转作主运动,工件或铣刀作进给运动的切削加工方法。铣削的主要工作及刀具与工件的运动形式如图所示。 在铣削过程中,根据铣床,铣刀及运动 形式的不同可将铣削分为如下几种: (1)根据铣床分类 根据铣床的结构将铣削方式分为立铣 和卧铣。由于数控铣削一个工序中一般要加 工多个表面,所以常见的数控铣床多为立式 铣床。 (2)根据铣刀分类 根据铣刀切削刃的形式和方位将铣削 方式分为周铣和端铣。用分布于铣刀圆柱面上的刀齿铣削工作表面,称为周铣,如图6-2(a)所示;用分布于铣刀端平面上的刀齿进行铣削称为端铣,如图6-2(b)所示。 图中平行于铣刀轴线测量的切 削层参数ap为背吃刀量。垂直于铣 刀轴线测量的切削层参数ac为切削 宽度,fz是每齿进给量。单独的周铣 和端铣主要用于加工平面类零件,数 控铣削中常用周、端铣组合加工曲面 和型腔。 (3)根据铣刀和工件的运动形 式公类 根据铣刀和工作的相对运动将铣 削方式分为顺铣和逆铣。铣削时,铣 刀切出工件时的切削速度方向与工件的进给方向相同,称为顺铣如图(6-3)a 所示; 铣削时,铣刀切入工件时的切削速度方向与工件进 给方向相反,称为逆铣,如图(6-3)b所示。 顺铣与逆铣比较:顺铣加工可以提高铣刀耐用 度2~3倍,工件表面粗糙度值较小,尤其在铣削难 加工材料时,效果更加明显。铣床工作台的纵向进 给运动一般由丝杠和螺母来实现,采用顺铣法加工 时,对普通铣床首先要求铣床有消除进给丝杠螺母 副间隙的装置,避免工作台窜动;其次要求毛坯表 面没有破皮,工艺系统有足够的刚度。如果具备这

样的条件,应当优先考虑采用顺铣,否则应采用逆铣。目前生产中采用逆铣加工方式的比较多。数控铣床采用无间隙的滚球丝杠传动,因此数控铣床均可采用顺铣加工。 数控铣削主要特点 (1)生产率高 (2)可选用不同的铣削方式 (3)断续切削 (4)半封闭切削 数控铣削主要加工对象 (1)平面类零件 加工面平行或垂直水平面,或加工面与水平面的夹角为定角的零件为平面类零件。目前,在数控铣床上加工的绝大多数零件属于平面类零件。 (2)变斜角类零件 加工面与水平面的夹角呈连续变化的零件称为斜角类零件。这类零件多为飞机零件,如飞机上的整体梁、框、橡条与肋等。 (3)曲面类零件 加工面为空间曲面的零件称为曲面类零件。如模具、叶片、螺旋桨等。 加工曲面类零件一般采用三坐标数控铣床。当曲面较复杂、通道较狭窄、会伤及毗邻表面及需刀具摆动时,要采用四坐标或五坐标铣床。 数控铣削的刀具与选用 对数控铣削刀具的基本要求 (1)铣刀刚性要好 (2)铣刀的耐用度要高 此外,铣刀切削刃的几何参数的选择及排屑性能也非常重要。 铣刀的种类 (1)面(端)铣刀 面铣刀的圆周表面和端面上都有切削刃,端部切削刃为副切削刃。由于面铣刀的直径一般较大,为直径50~500mm,故常制成套式镶齿结构,即将刀齿和刀体分开,刀齿为高速或硬质合金,刀体采用40cr制作,可长期使用。高速钢面铣刀按国家标准规定,直径d=直径80~250mm,螺旋角β=10度,刀齿数Z=10~26. 硬质合金面铣刀与高速钢铣刀相比,铣削速度较高,加工效率高,加工表面质量也较好,并可加工带有硬皮和淬硬层的工件,故得到广泛应用。硬质合金面铣刀按刀片和刀齿的安装方式不同,可分为整体焊接式、机夹一焊接式和可转位式三种(见图6-4)。 面铣刀主要以端齿为主加工各种平面,主偏角为90度的面铣刀还能用时加工出与平面垂直的直角

数控铣宏程序实例[1]

第四章数控铣宏程序实例 §4.1 椭圆加工(编程思路:以一小段直线代替曲线)例1 整椭圆轨迹线加工(假定加工深度为2mm) 方法一:已知椭圆的参数方X=acosθ Y=bsinθ 变量数学表达式 设定θ= #1(0°~ 360°) 那么 X= #2 = acos[#1] Y= #3= bsin[#1] 程序 O0001; S1000 M03; G90 G54 G00 Z100; G00 Xa Y0; G00 Z3; G01 Z-2 F100; #1=0; N99 #2=a*cos[#1]; #3=b*sin[#1]; G01 X#2 Y#3 F300; #1=#1+1; IF[#1LE360]GOTO99; GOO Z50; M30;

例2 斜椭圆且椭心不在原点的轨迹线加工(假设加工深度为2mm ) 椭圆心不在原点的参数方程 X=a*C OS [#1]+ M Y=b*SIN [#1]+ N 变量数学表达式 设定θ=#1; (0°~360°) 那么X=#2=a*C OS [#1]+ M Y=#3=b*SIN [#1]+ N 因为此椭圆绕(M ,N )旋转角度为A 可运用坐标旋转指令G68 格式 G68 X - Y - R - X,Y :旋转中心坐标; R: 旋转角度 程序 O0002; S1000 M03; G90 G54 G00 Z100; GOO X0 Y0; GOO Z3; G68 XM YN R45; #1=0; N99 #2=a*COS [#1]+M; #3=b*SIN [#1]+N;

GO1 X#2 Y#3 F300; G01 Z-2 F100; #1=#1+1; IF[#1LE360]GOTO99; G69 GOO Z100; M30; 例3:椭圆轮廓加工(深度2mm) 采用椭圆的等距加工方法使椭圆的长半轴和短半轴同时减少一个行距的方法直到短半轴小于刀具的半径R 根据椭圆的参数方程可设 变量表达式θ=#1(0°~360°) a=#2 b=#3(b-R~R) X=#2*COS[#1]=#4 Y=#3*SIN[#1]=#5 程序 O0003; S1000 M03; G90 G54 G00 Z100;

毕业设计-数控铣削零件加工工艺设计及自动编程之欧阳光明创编

正文 欧阳光明(2021.03.07) 一数控加工工艺 1 图面分析 如图1—1所示,毛坯为110X110x40加工下图零件,要求外形加工深为10mm、开放槽与内孔加工深为5mm、U形槽与键槽加工深为4mm。尺寸无公差要求。 图1—1 2零件毛坯的工艺分析 零件在进行数控铣削加工时,由于加工过程的自动化,所以要注意各方面的问题,如装夹问题在设计毛坯时就要仔细考虑好。毛坯应该有足够的余量及加工钢度,这里毛坯选择:45#钢尺寸:102mmx102mmx12mm 3零件加工工艺的分析 数控加工工艺文件既是数控加工、产品的依据,也是操作者必须遵守、执行的规程。它是编程人员在编制加工程序单时必须编制的技术文件。本零件由于轨迹加工复杂,而且精度要求高,所以选择在数控铣床上加工 4加工方案及加工路线的确定 确定加工方案时,首先应该根据主要表面的精度和表面粗糙度的要求,初步确定为达到这些要求所需要的加工方法。此时要考虑

数控机床使用的合理性和经济性,并充分发挥数控机床的功能。 以零件平台左下角作为坐标原点,工件需要加工的地方有U形槽、开放槽、键槽和外形轮廓,按所选刀具进行加工路线的确定:粗、精铣外轮廓——粗、精铣键槽——粗铣开放槽和U形槽——精铣开放槽和U形槽。 1)数控铣削加工的编程任务书,见表1—1 表1—1 数控编程任务书 2)确定装夹方案:由于夹具确定了零件在数控机床坐标系中的位置,因而根据要求夹具能保证零件在机床坐标系的正确坐标方向,同时协调零件与机床坐标系的尺寸。工件坐标系在工件的中心位置,Z轴方向在工件的上表面。根据零件的结构特点,加工外形轮廓、内形轮廓,可选用精密压板进行装夹。 3)数控铣削加工工序:数控铣削加工分粗加工和精加工二次铣削进行,其基本工序如下:外形轮廓粗铣加工使用直径是12mm

相关文档
相关文档 最新文档