文档库 最新最全的文档下载
当前位置:文档库 › 数值分析与实验(数学081_张燃_3080801119)

数值分析与实验(数学081_张燃_3080801119)

数值分析与实验(数学081_张燃_3080801119)
数值分析与实验(数学081_张燃_3080801119)

前言

数值计算方法是一种利用计算机解决数学问题的数值近似解方法,特别是无法用人工过计算器计算的数学问题。数值计算方法常用于矩阵高次代数方程矩阵特征值与特征向量的数值解法,插值法,线性方程组迭代法,函数逼近,数值积分与微分,常微分方程初值问题数值解等。

作为数学与计算机之间的一条通道,数值计算的应用范围已十分广泛,作为用计算机解决实际问题的纽带,数值算法在求解线性方程组,曲线拟合、数值积分、数值微分,迭代方法、插值法、拟合法、最小二乘法等应用广泛。

数值计算方法是和计算机紧密相连的,现代计算机的出现为大规模的数值计算创造了条件,集中而系统的研究适用于计算机的数值方法是十分必要的。数值计算方法是在数值计算实践和理论分析的基础上发展起来的。

通过数值计算方法与实验将有助于我们理解和掌握数值计算方法基本理论和相关软件的掌握,熟练求解一些数学模和运算。并提高我们的编程能力来解决实际问题。

摘要

对于本次计算方法与实习的实践环节,我们采用最小二乘法对给定的数据进行拟合,在MATLAB程序下分别用抛物线与指数函数拟合。通过误差平方和分析,我们发现本组数据在抛物线下拟合程度较好。通过本次实践环节,我们很好的了解了最小二乘法的原理。出色的完成了本次课程设计。

[关键字]:最小二乘法;拟合函数;抛物线;指数曲线

目录

前言 (1)

摘要 (2)

实验设计内容 (4)

一.曲线拟合研究 (4)

1.1实验目的 (4)

1.2实验内容 (4)

1.3算法 (4)

1.4Matlab程序 (5)

1.4.1抛物线拟合运行结果 (6)

1.4.2指数函数拟合运行结果 (6)

1.5结果分析 (7)

1.5.1抛物线的误差平方和分析 (7)

1.5.2指数函数的误差平方和分析 (7)

参考文献 (9)

实验设计内容

一:曲线拟合研究

1.1 实验目的:了解最小二乘法的基本原理,通过计算机解决实

际问题;

1.2 实验内容:利用所给数据进行数据的多项式和可转化成多项

式形式的函数拟合

试分别用抛物线2y cx bx a ++=和指数曲线bx

ae y =拟合下列数据

i x 1 1.5 2 2.5 3 3.5 4 4.5 i y 33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50

i x 5 5.5 6 6.5 7 7.5 8 i y

267.55 280.50 296.65 301.40 310.40 318.15 325.15

比较2个拟合函数的优劣。

1.3 算法

已知数据()()n j y x i i ...,21,,,

=,求多项式()()

n m x a P m

i i i <=∑=0x ,使得

()2

1010,...,∑∑==?

?

?

??-=Φn

j j i j m i i m y x a a a a 为最小。注意到此时()k

k x x =?,多项式

系数m a a a ,...,10满足下面的线性方程组:

?????

?

??????=???????????????????????

?

++m m m m m

m m T T T a a a S S S S S S S S S .........

(101021)

12110

∑==n

j k j

k x S 1 ()m k 2,...,2,1,0=

∑==n j k j

j k x y T 1

()m k ,...,2,1,0=

然后只要调用解线性方程组的函数程序即可。

1.4 Matlab 程序如下:

function ZXE(x,y,m)

S=zeros(1,2*m+1);T=zeros(m+1,1); for k=1:2*m+1

S(k)=sum(x.^(k-1)); end

for k=1:m+1

T(k)=sum(x.^(k-1).*y); end

A=zeros(m+1,m+1);a=zeros(m+1,1); for i=1:m+1 for j=1:m+1

A(i,j)=S(i+j-1); end end a=A\T; for k=1:m+1

fprintf('a[%d]=%f\n',k,a(k));

1.4.1抛物线拟合运行结果:

在MATLAB软件里输入:

x=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8];

y=[33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50 267.55 280.50 296.65 301.40 310.40 318.15 325.15];

m=2;

ZXE(x,y,m)

输出结果:

a[1]=-45.333297

a[2]=94.230200

a[3]=-6.131610

所以抛物线拟合函数为y=-45.333297+94.230200x-6.1316102x 1.4.2指数函数拟合运行结果

令z=log(y),m=1。

在MATLAB软件里输入:

x=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8];

y=[33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50 267.55 280.50 296.65 301.40 310.40 318.15 325.15];

m=1;

z=log(y);

y=z;

ZXE(x,y,m)

得出结果: a[1]=4.210683 a[2]=0.238960

又a=

4026

.67e

4.210683

=,由

1

,0a b e a a ==得指数曲线为

0.239000x

67.345292e =y

1.5结果分析

1.5.1抛物线的误差平方和分析

MATLAB 程序如下:

x=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8]; Y=-45.333297+94.230200*x -6.131610*(x.^2) ;

y=[33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50 267.55 280.50 296.65 301.40 310.40 318.15 325.15]; z=(Y-y).^2; sum(z) 输出结果:

ans =486.5921

1.5.2指数函数的误差平方和分析

MATLAB 程序如下:

x=[1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8]; Y=67.4026.*(exp(0.238960.*x));

y=[33.4 79.50 122.65 159.05 189.15 214.15 238.65 252.50 267.55 280.50 296.65 301.40 310.40 318.15 325.15]; z=(Y-y).^2; sum(z)

输出结果如下:

ans =4.7949e+004

由误差平方和得知:抛物线拟合函数y=-45.333297+94.230200x-6.1316102x较指数函数

0.239000x

y误差平方小,所以抛物线拟合程度好。

67.345292e

参考文献

[1]孙志终,吴宏伟,闻震初.计算方法与实验.南京:东南大学出

社,2004

[2]李庆扬,王能超,易大义.数值分析.北京:清华大学出版社,2001

[3]Sorer K,Bulirsch R.数值分析引论.孙文渝.南京:南京大学出版社,1995

[4]王能超.数值分析简明教程.北京:高等教育出版社,1984

[5]袁慰平,孙志忠,吴宏伟.计算方法与实习.南京:东南大学出

版社,2005

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

数值分析实验报告176453

实验报告 插值法 数学实验室 数值逼近 算法设计 级 ____________________________ 号 ____________________________ 名 _____________________________ 实验项目名称 实验室 所属课程名称 实验类型 实验日期

实验概述: 【实验目的及要求】 本次实验的目的是熟练《数值分析》第二章“插值法”的相关内容,掌握三种插 多项式插值,三次样条插值,拉格朗日插值,并比较三种插值方法的 优劣。 本次试验要求编写牛顿多项式插值,三次样条插值,拉格朗日插值的程序编码,并 去实现。 【实验原理】 《数值分析》第二章“插值法”的相关内容,包括:牛顿多项式插值,三次样条插值, 拉格朗日 插值的相应算法和相关性质。 【实验环境】(使用的软硬件) 软件: MATLAB 2012a 硬件: 电脑型号:联想 Lenovo 昭阳E46A 笔记本电脑 操作系统: Win dows 8专业版 处理器:In tel ( R Core ( TM i3 CPU M 350 @2.27GHz 2.27GHz 实验内容: 【实验方案设计】 第一步,将书上关于三种插值方法的内容转化成程序语言,用 MATLA B 现; 第二步,分别用牛顿多项式插值,三次样条插值,拉格朗日插值求解不同的问题。 【实验过程】(实验步骤、记录、数据、分析) 实验的主要步骤是:首先分析问题,根据分析设计 MATLA 程序,利用程序算出 问题答案,分析所得答案结果,再得出最后结论。 实验一: 已知函数在下列各点的值为 试用4次牛顿插值多项式 P 4( x )及三次样条函数 S ( x )(自然边界条件)对数据进行插值。 用图给出{( X i , y i ), X i =0.2+0.08i , i=0 , 1, 11, 10 } , P 4 ( x )及 S ( x )。 值方法:牛顿 在MATLAB 件中

数值分析实验报告2

实验报告 实验项目名称函数逼近与快速傅里叶变换实验室数学实验室 所属课程名称数值逼近 实验类型算法设计 实验日期 班级 学号 姓名 成绩

512*x^10 - 1280*x^8 + 1120*x^6 - 400*x^4 + 50*x^2 - 1 并得到Figure,图像如下: 实验二:编写程序实现[-1,1]上n阶勒让德多项式,并作画(n=0,1,…,10 在一个figure中)。要求:输入Legendre(-1,1,n),输出如a n x n+a n-1x n-1+…多项式。 在MATLAB的Editor中建立一个M-文件,输入程序代码,实现勒让德多项式的程序代码如下: function Pn=Legendre(n,x) syms x; if n==0 Pn=1; else if n==1 Pn=x; else Pn=expand((2*n-1)*x*Legendre(n-1)-(n-1)*Legendre(n-2))/(n); end x=[-1:0.1:1]; A=sym2poly(Pn); yn=polyval(A,x); plot (x,yn,'-o'); hold on

end 在command Windows中输入命令:Legendre(10),得出的结果为: Legendre(10) ans = (46189*x^10)/256 - (109395*x^8)/256 + (45045*x^6)/128 - (15015*x^4)/128 + (3465*x^2)/256 - 63/256 并得到Figure,图像如下: 实验三:利用切比雪夫零点做拉格朗日插值,并与以前拉格朗日插值结果比较。 在MATLAB的Editor中建立一个M-文件,输入程序代码,实现拉格朗日插值多项式的程序代码如下: function [C,D]=lagr1(X,Y) n=length(X); D=zeros(n,n); D(:,1)=Y'; for j=2:n for k=j:n D(k,j)=(D(k,j-1)- D(k-1,j-1))/(X(k)-X(k-j+1)); end end C=D(n,n); for k=(n-1):-1:1

数值分析实验报告

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p Λ 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a Λ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a Λ 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots +

数值分析实验报告

数值分析实验报告 姓名:周茹 学号: 912113850115 专业:数学与应用数学 指导老师:李建良

线性方程组的数值实验 一、课题名字:求解双对角线性方程组 二、问题描述 考虑一种特殊的对角线元素不为零的双对角线性方程组(以n=7为例) ?????????? ?????? ? ???? ?d a d a d a d a d a d a d 766 55 44 3 32 211??????????????????????x x x x x x x 7654321=?????????? ? ???????????b b b b b b b 7654321 写出一般的n (奇数)阶方程组程序(不要用消元法,因为不用它可以十分方便的解出这个方程组) 。 三、摘要 本文提出解三对角矩阵的一种十分简便的方法——追赶法,该算法适用于任意三对角方程组的求解。 四、引言 对于一般给定的d Ax =,我们可以用高斯消去法求解。但是高斯消去法过程复杂繁琐。对于特殊的三对角矩阵,如果A 是不可约的弱对角占优矩阵,可以将A 分解为UL ,再运用追赶法求解。

五、计算公式(数学模型) 对于形如????? ?? ????? ??? ?---b a c b a c b a c b n n n n n 111 2 2 2 11... ... ...的三对角矩阵UL A =,容易验证U 、L 具有如下形式: ??????? ????? ??? ?=u a u a u a u n n U ...... 3 3 22 1 , ?? ????? ? ?? ??????=1 (1) 1132 1l l l L 比较UL A =两边元素,可以得到 ? ?? ??-== = l a b u u c l b u i i i i i i 111 i=2, 3, ... ,n 考虑三对角线系数矩阵的线性方程组 f Ax = 这里()T n x x x x ... 2 1 = ,()T n f f f f ... 2 1 = 令y Lx =,则有 f Uy = 于是有 ()?????-== --u y a f y u f y i i i i i 1 1 11 1 * i=2, 3, ... ,n 再根据y Lx =可得到

数值分析实验报告2

实验名称 插值法 实验目的 (1)学习并熟练掌握MA TLAB 语言的编程; (2)通过课程实习能够应用MATLAB 软件来计算函数的插值,了解函数插值方法。 实验原理 牛顿差商形式多项式 P(x)=f(x0)+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+…+f[x0,x1,x2…xn](x-x0)…(x-xn-1) 牛顿插值多项式的余项 Rn(x)=f[x0,x1,x2…xn]wn+1(x) 实验题目 {1}已知函数在下列各点的值为 i x 0.2 0.4 0.6 0.8 1.0 ()i f x 0.98 0.92 0.81 0.64 0.38 试用4次牛顿插值多项式()4P x 及三次样条函数()Q x (自然边界条件)对数据进行插 值。用图给出{(,i i x y ),i x =0.2+0.08i ,i=0,1,11,10},()4P x 及()Q x 。 ①实验过程 x1=[0.2 0.4 0.6 0.8 1.0]; y1=[0.98 0.92 0.81 0.64 0.38]; n=length(y1); c=y1(:); for j=2:n %求差商 for i=n:-1:j c(i)=(c(i)-c(i-1))/(x1(i)-x1(i-j+1)); end end syms x df d ; df(1)=1;d(1)=y1(1); for i=2:n %求牛顿差值多项式 df(i)=df(i-1)*(x-x1(i-1)); d(i)=c(i-1)*df(i); end P4=vpa(sum(d),5) %P4即为4次牛顿插值多项式,并保留小数点后5位数 pp=csape(x1,y1, 'variational');%调用三次样条函数 q=pp.coefs; q1=q(1,:)*[(x-.2)^3;(x-.2)^2;(x-.2);1]; q1=vpa(collect(q1),5) q2=q(1,:)*[(x-.4)^3;(x-.4)^2;(x-.4);1]; q2=vpa(collect(q2),5) q3=q(1,:)*[(x-.6)^3;(x-.6)^2;(x-.6);1];

数值分析实验报告

实验一、误差分析 一、实验目的 1.通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; 2.通过上机计算,了解误差、绝对误差、误差界、相对误差界的有关概念; 3.通过上机计算,了解舍入误差所引起的数值不稳定性。 二.实验原理 误差问题是数值分析的基础,又是数值分析中一个困难的课题。在实际计算中,如果选用了不同的算法,由于舍入误差的影响,将会得到截然不同的结果。因此,选取算法时注重分析舍入误差的影响,在实际计算中是十分重要的。同时,由于在数值求解过程中用有限的过程代替无限的过程会产生截断误差,因此算法的好坏会影响到数值结果的精度。 三.实验内容 对20,,2,1,0 =n ,计算定积分 ?+=10 5dx x x y n n . 算法1:利用递推公式 151--=n n y n y , 20,,2,1 =n , 取 ?≈-=+=1 00182322.05ln 6ln 51dx x y . 算法2:利用递推公式 n n y n y 51511-= - 1,,19,20 =n . 注意到 ???=≤+≤=10 10202010201051515611261dx x dx x x dx x , 取 008730.0)12611051(20120≈+≈y .: 四.实验程序及运行结果 程序一: t=log(6)-log(5);

n=1; y(1)=t; for k=2:1:20 y(k)=1/k-5*y(k-1); n=n+1; end y y =0.0884 y =0.0581 y =0.0431 y =0.0346 y =0.0271 y =0.0313 y =-0.0134 y =0.1920 y =-0.8487 y =4.3436 y =-21.6268 y =108.2176 y =-541.0110 y =2.7051e+003 y =-1.3526e+004 y =6.7628e+004 y =-3.3814e+005 y =1.6907e+006 y =-8.4535e+006 y =4.2267e+007 程序2: y=zeros(20,1); n=1; y1=(1/105+1/126)/2;y(20)=y1; for k=20:-1:2 y(k-1)=1/(5*k)-(1/5)*y(k); n=n+1; end 运行结果:y = 0.0884 0.0580 0.0431 0.0343 0.0285 0.0212 0.0188 0.0169

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

数值分析实验报告

学生实验报告实验课程名称 开课实验室 学院年级专业班 学生姓名学号 开课时间至学年学期

if(A(m,k)~=0) if(m~=k) A([k m],:)=A([m k],:); %换行 end A(k+1:n, k:c)=A(k+1:n, k:c)-(A(k+1:n,k)/ A(k,k))*A(k, k:c); %消去end end x=zeros(length(b),1); %回代求解 x(n)=A(n,c)/A(n,n); for k=n-1:-1:1 x(k)=(A(k,c)-A(k,k+1:n)*x(k+1:n))/A(k,k); end y=x; format short;%设置为默认格式显示,显示5位 (2)建立MATLAB界面 利用MA TLAB的GUI建立如下界面求解线性方程组: 详见程序。 五、计算实例、数据、结果、分析 下面我们对以上的结果进行测试,求解:

? ? ? ? ? ? ? ? ? ? ? ? - = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - - - - 7 2 5 10 13 9 14 4 4 3 2 1 13 12 4 3 3 10 2 4 3 2 1 x x x x 输入数据后点击和,得到如下结果: 更改以上数据进行测试,求解如下方程组: 1 2 3 4 43211 34321 23431 12341 x x x x ?? ???? ?? ???? ?? ???? = ?? ???? - ?? ???? - ???? ?? 得到如下结果:

数值分析2016上机实验报告

序言 数值分析是计算数学的范畴,有时也称它为计算数学、计算方法、数值方法等,其研究对象是各种数学问题的数值方法的设计、分析及其有关的数学理论和具体实现的一门学科,它是一个数学分支。是科学与工程计算(科学计算)的理论支持。许多科学与工程实际问题(核武器的研制、导弹的发射、气象预报)的解决都离不开科学计算。目前,试验、理论、计算已成为人类进行科学活动的三大方法。 数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。现在面向数值分析问题的计算机软件有:C,C++,MATLAB,Python,Fortran等。 MATLAB是matrix laboratory的英文缩写,它是由美国Mathwork公司于1967年推出的适合用于不同规格计算机和各种操纵系统的数学软件包,现已发展成为一种功能强大的计算机语言,特别适合用于科学和工程计算。目前,MATLAB应用非常广泛,主要用于算法开发、数据可视化、数值计算和数据分析等,除具备卓越的数值计算能力外,它还提供了专业水平的符号计算,文字处理,可视化建模仿真和实时控制等功能。 本实验报告使用了MATLAB软件。对不动点迭代,函数逼近(lagrange插值,三次样条插值,最小二乘拟合),追赶法求解矩阵的解,4RungeKutta方法求解,欧拉法及改进欧拉法等算法做了简单的计算模拟实践。并比较了各种算法的优劣性,得到了对数值分析这们学科良好的理解,对以后的科研数值分析能力有了极大的提高。

目录 序言 (1) 问题一非线性方程数值解法 (3) 1.1 计算题目 (3) 1.2 迭代法分析 (3) 1.3计算结果分析及结论 (4) 问题二追赶法解三对角矩阵 (5) 2.1 问题 (5) 2.2 问题分析(追赶法) (6) 2.3 计算结果 (7) 问题三函数拟合 (7) 3.1 计算题目 (7) 3.2 题目分析 (7) 3.3 结果比较 (12) 问题四欧拉法解微分方程 (14) 4.1 计算题目 (14) 4.2.1 方程的准确解 (14) 4.2.2 Euler方法求解 (14) 4.2.3改进欧拉方法 (16) 问题五四阶龙格-库塔计算常微分方程初值问题 (17) 5.1 计算题目 (17) 5.2 四阶龙格-库塔方法分析 (18) 5.3 程序流程图 (18) 5.4 标准四阶Runge-Kutta法Matlab实现 (19) 5.5 计算结果及比较 (20) 问题六舍入误差观察 (22) 6.1 计算题目 (22) 6.2 计算结果 (22) 6.3 结论 (23) 7 总结 (24) 附录

数值计算实验报告2

贵州师范大学数学与计算机科学学院学生实验报告 课程名称: 数值分析 班级: 实验日期:2013年9月27日 学 号: 姓名: 指导教师: 实验成绩: 一、实验名称 实验二: Lagrange 插值与曲线拟合的最小二乘法 二、实验目的及要求 1.让学生掌握Lagrange 插值与曲线拟合的最小二乘法 2.让学生能够用这些方法解决一些实际问题 三、实验环境 每人一台计算机,要求安装Windows XP 操作系统,Microsoft office2003、MATLAB6.5(或7.0). 四、实验内容 题1: 对函数2 11 )(x x f += ,取n+1个等距分布的插值节点,取不同的n ,作n 次Lagrange 插值,把)(x f 和插值多项式的图象绘制在同一张图上进行比较. 题2: 给定数据点 分别用一次,二次,和三次多项式曲线,以及最小二乘法拟合这些数据点,哪一种曲线拟合较好?为什么?你能找出更好的拟合曲线吗? 提示:用残差平方的大小来判断拟合的优劣,越小越好. 五、算法描述及实验步骤 针对实验1: (1)运用Matlab 创建M 文件 (2)在命令窗口调用文件 针对实验2: (1)运用Matlab 作出上面表中的数据的散点图 (2)分别作出一次二次三次多项式拟合曲线 (3)比较三种曲线拟合的精度即比较残差平方的大小

六、调试过程及实验结果 https://www.wendangku.net/doc/3b12539332.html,grange插值: (1)命令窗口输入: >> f=shuru(-5,5,10) (回车) f = Columns 1 through 6 0.0385 0.0588 0.1000 0.2000 0.5000 1.0000 Columns 7 through 11 0.5000 0.2000 0.1000 0.0588 0.0385 (2)所得结果为图形所示: 2. 曲线拟合的最小二乘法 (1)先作出该散点图的一次拟合曲线(程序如下):>> x=[-3,-1,0,1,3,5]; >> t=-4:0.01:6; >> y=[-6,-3,-1,0,1,3]; >> subplot(1,3,1) >> scatter(x,y,'filled','r'); >> hold on >> p1=polyfit(x,y,1) p1 = 1.0776 -1.8980 >> y1=polyval(p1,x);

数值分析实验报告资料

机电工程学院 机械工程 陈星星 6720150109 《数值分析》课程设计实验报告 实验一 函数插值方法 一、问题提出 对于给定的一元函数)(x f y =的n+1个节点值(),0,1,,j j y f x j n ==。试用Lagrange 公式求其插值多项式或分段二次Lagrange 插值多项式。 数据如下: (1 求五次Lagrange 多项式5L ()x ,计算(0.596)f ,(0.99)f 的值。(提示:结果为(0.596)0.625732f ≈, (0.99) 1.05423f ≈) 实验步骤: 第一步:先在matlab 中定义lagran 的M 文件为拉格朗日函数 代码为: function[c,l]=lagran(x,y) w=length(x); n=w-1; l=zeros(w,w); for k=1:n+1 v=1; for j=1:n+1 if(k~=j) v=conv(v,poly(x(j)))/(x(k)-x(j)); end end l(k,:)=v; end c=y*l; end

第二步:然后在matlab命令窗口输入: >>>> x=[0.4 0.55 0.65 0.80,0.95 1.05];y=[0.41075 0.57815 0.69675 0.90 1.00 1.25382]; >>p = lagran(x,y) 回车得到: P = 121.6264 -422.7503 572.5667 -377.2549 121.9718 -15.0845 由此得出所求拉格朗日多项式为 p(x)=121.6264x5-422.7503x4+572.5667x3-377.2549x2+121.9718x-15.0845 第三步:在编辑窗口输入如下命令: >> x=[0.4 0.55 0.65 0.80,0.95 1.05]; >> y=121.6264*x.^5-422.7503*x.^4+572.5667*x.^3-377.2549*x.^2+121.9718 *x-15.0845; >> plot(x,y) 命令执行后得到如下图所示图形,然后 >> x=0.596; >> y=121.6264*x.^5-422.7503*x.^4+572.5667*x.^3-377.2549*x.^2+121.9718 *x-15.084 y =0.6257 得到f(0.596)=0.6257 同理得到f(0.99)=1.0542

数值分析实验报告2

实验报告 一、实验名称 复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。 二、实验目的及要求 1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤. 2. 培养Matlab 编程与上机调试能力. 三、实验环境 计算机,MATLAB 软件 四、实验内容 1.用不同数值方法计算积分9 4 ln 1 0-=? xdx x 。 (1)取不同的步长h 。分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。 (2)用龙贝格求积计算完成问题(1)。 (3)用自适应辛普森积分,使其精度达到10-4。 五、算法描述及实验步骤 1.复合梯形公式 将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(),得 )]()([2 )(b f a f a b dx x f b a +-≈? () )]()(2)([2)]()([21 1 110b f x f b f h x f x f h T n k k k n k k n ++=+=∑∑-=+-= () ),(),(12 )(' '2b a f h a b f R n ∈-- =ηη () 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。 2.复合辛普森求积公式 将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(),得 )]()2 (4)([6b f b a f a f a b S +++-= ()

数值分析实验报告1

实验一 误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对(1.1)中19x 的系数作一个小的扰动。我们希望比较(1.1)和(1.2)根的差别,从而分析方程(1.1)的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b = 的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve =

数值分析实验报告77712

《数值分析》 实验报告 学院:计算机科学与软件学院姓名:XXX 班级:计算机XX班 学号:XXXXXX 实验一:舍入误差与数值稳定性

实验目的: 1、 通过上机编程,复习巩固以前所学程序设计语言; 2、 通过上机计算,了解舍入误差所引起的数值不稳定性。 3、 通过上机计算,了解运算次序对计算结果的影响,从而尽量避免大数吃小数的现象。 实验内容:用两种不同的顺序计算644834.1100001 2≈∑=-n n ,分析其误差 的变化。 实验流程图: 实验源程序:

#include #include void main() { int i; float s1=0,s2=0,d1,d2; for (i=1;i<=10000;i++) s1=s1+1.0f/(i*i); for (i=10000;i>=1;i--) s2=s2+1.0f/(i*i); d1=(float)(fabs(1.644834-s1)); d2=(float)(fabs(1.644834-s2)); printf("正向求和结果为%f\n 误差为%f\n\n",s1,d1); printf("反向求和结果为%f\n 误差为%f\n\n",s2,d2); if(d1

实验分析:第一次做数值实验,又一次使用C语言编程,没有了刚学习C语言的艰难,能够将实验步骤转换成流程图并编写出完整的实验代码,在经过多次调试、改正后得到正确的程序和结果。这个实验较简单,计算误差时如果输入数据有误差,而在计算过程中舍入误差不增长,则称此算法是稳定的,否则称此算法是数值不稳定的,减少运算次数可以减小舍入误差。在运算中,如果参加运算的数的数量级相差很大,而计算机位数有限,如不注意运算次序就可能出现大数“吃掉”小数的现象,进而影响计算结果的可靠性,所以计算过程中要注意运算次序,避免出现这种现象。 实验二:拉格朗日插值法和牛顿插值法 实验目的:分别用拉格朗日差值和牛顿插值解决数学问题,并比较各方法的优略。 1、拉格朗日插值 实验内容: x i -3.0-1.0 1.0 2.0 3.0 y i 1.0 1.5 2.0 2.0 1.0 作二次插值,并求x 1=-2,x 2 =0,x 3 =2.75时的函数近似值。

数值计算方法实验报告

差值法实验日志 实验题目:插值法 实验目的: 1.掌握拉格朗日插值、牛顿插值、分段低次插值和样条插值的方法。 2.对四种插值结果进行初步分析。 实验要求: (1)写出算法设计思想; (2)程序清单; (3)运行的结果; (4)所得图形; (5)四种插值的比较; (6)对运行情况所作的分析以及本次调试程序所取的经验。如果程序未通过,应分析其原因。 实验主要步骤: 1.已知函数) f满足: (x x0.0 0.1 0.195 0.3 0.401 0.5 f(0.39894 0.39695 0.39142 0.38138 0.36812 x ) 0.35206 (1)用分段线性插值; 打开MATLAB,按以下程序输入: x0=-5:5; y0=1./(1+x0.^2); x=-5:0.1:5; y=1./(1+x.^2); y1=lagr(x0,y0,x); y2=interp1(x0,y0,x); y3=spline(x0,y0,x);

for k=1:11 xx(k)=x(46+5*k); yy(k)=y(46+5*k); yy1(k)=y1(46+5*k); yy2(k)=y2(46+5*k); yy3(k)=y3(46+5*k); end [xx;yy;yy2;yy3]' z=0*x; plot(x,z,x,y,'k--',x,y2,'r') plot(x,z,x,y,'k--',x,y1,'r') pause plot(x,z,x,y,'k--',x,y3,'r') 回车得以下图形:

(2) 拉格朗日插值。 创建M 文件,建立lagr 函数: function y=lagr1(x0,y0,x) n=length(x0);m=length(x); for i=1:m z=x(i); s=0.0; for k=1:n p=1.0; for j=1:n if j~=k p=p*(z-x0(j))/(x0(k)-x0(j)); end end s=p*y0(k)+s; end y(i)=s; end 新建一个M 文件,输入: x0=[0.0 0.1 0.195 0.3 0.401 0.5]; y0=[0.39894 0.39695 0.39142 0.38138 0.36812 0.35206]; x=0.0:0.01:0.5; y1=lagr1(x0,y0,x); 00.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

数值分析实验报告2

一、实验名称 复合梯形求积公式、复合辛普森求积公式、龙贝格求积公式及自适应辛普森积分。 二、实验目的及要求 1. 掌握复合梯形求积计算积分、复合辛普森求积计算积分、龙贝格求积计算积分和自适应辛普森积分的基本思路和步骤. 2. 培养Matlab 编程与上机调试能力. 三、实验环境 计算机,MATLAB 软件 四、实验内容 1.用不同数值方法计算积分9 4 ln 1 0-=? xdx x 。 (1)取不同的步长h 。分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h 的函数,并与积分精确指比较两个公式的精度,是否存在一个最小的h ,使得精度不能再被改善。 (2)用龙贝格求积计算完成问题(1)。 (3)用自适应辛普森积分,使其精度达到10-4。 五、算法描述及实验步骤 1.复合梯形公式 将区间[a,b]划分为n 等份,分点x k =a+ah,h=(b-a)/h,k=0,1,...,n ,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用梯形公式(),得 )]()([2 )(b f a f a b dx x f b a +-≈ ? () )]()(2)([2)]()([21 1 110b f x f b f h x f x f h T n k k k n k k n ++=+=∑∑-=+-= () ),(),(12 )(' '2b a f h a b f R n ∈-- =ηη () 其中Tn 称为复合梯形公式,Rn 为复合梯形公式的余项。 2.复合辛普森求积公式 将区间[a,b]划分为n 等份,在每个子区间[x k ,x k +1](k=0,1,...,n-1)上采用辛普森公式(),得 )]()2 (4)([6b f b a f a f a b S +++-= ()

数值分析实验报告

实验五 解线性方程组的直接方法 实验5.1 (主元的选取与算法的稳定性) 问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。 实验内容:考虑线性方程组 编制一个能自动选取主元,又能手动选取主元的求解线性方程组的Gauss 消去过程。 实验要求: (1)取矩阵?? ? ?? ?? ?????????=????????????????=1415157,6816816816 b A ,则方程有解T x )1,,1,1(* =。取n=10计算矩阵的 条件数。让程序自动选取主元,结果如何? (2)现选择程序中手动选取主元的功能。每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。 (3)取矩阵阶数n=20或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。 (4)选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。重复上述实验,观察记录并分析实验结果。 思考题一:(Vadermonde 矩阵)设 ?? ??????????????????????=? ? ? ?????????????=∑∑∑∑====n i i n n i i n i i n i i n n n n n n n x x x x b x x x x x x x x x x x x A 0020 10022222121102001111 ,, 其中,n k k x k ,,1,0,1.01 =+=, (1)对n=2,5,8,计算A 的条件数;随n 增大,矩阵性态如何变化? (2)对n=5,解方程组Ax=b ;设A 的最后一个元素有扰动10-4,再求解Ax=b (3)计算(2)扰动相对误差与解的相对偏差,分析它们与条件数的关系。 (4)你能由此解释为什么不用插值函数存在定理直接求插值函数而要用拉格朗日或牛顿插值法的原因吗? 相关MATLAB 函数提示: zeros(m,n) 生成m 行,n 列的零矩阵 ones(m,n) 生成m 行,n 列的元素全为1的矩阵 eye(n) 生成n 阶单位矩阵 rand(m,n) 生成m 行,n 列(0,1)上均匀分布的随机矩阵 diag(x) 返回由向量x 的元素构成的对角矩阵 tril(A) 提取矩阵A 的下三角部分生成下三角矩阵

相关文档