文档库 最新最全的文档下载
当前位置:文档库 › 弹性比功

弹性比功

弹性比功
弹性比功

弹性比功:又称弹性比能,是金属材料吸收变形功的能力。

滞弹性:在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象。

循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力。

包申格效应:1.金属材料经过预先加载产生少量塑性变形

2.卸载后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

塑性:是指金属材料断裂前发生塑性变形的能力。

韧性:是指金属材料断裂前,吸收塑性变形功和断裂功的能力。或是指材料抵抗裂纹扩展的能力。

脆性:材料在外力作用下仅产生很小变形就发生断裂破坏的性质。

穿晶断裂:是指裂纹穿过晶体内部的断裂。

沿晶断裂:是裂纹沿着晶界扩展的断裂。

韧脆转变:金属材料的韧性和脆性是金属材料在不同条件下表现的力学状态。两者可以相互转化。如果裂纹扩展时,其前沿地区能产生显著塑性变形或某种

缺口敏感度:缺口试样的抗拉强度与等截面尺寸光滑试样的抗拉强度的比值

布氏硬度的测试方法:用一定直径D的硬质合金为压头,施加一定试验力F,将其压入试样表面。经过规定时间后卸除试验力,试样表面将残留压痕,测量压痕平均直径d。求得压痕球形面积A,布氏硬度值HBW就是试验力F除以压痕球形表面积A所得的商。

洛氏硬度测试方法:用金刚石圆锥体为压头,为保证压头与试样表面接触良好。试验时,先加初始试验力F0。在试样表面得到一压痕,深度为h。此时测量压痕深度的指针在表盘上指零。然后加上主试验力F1,压头压入深度h1.表盘上指针以逆时针方向转动到相应刻度。试样在F1作用下产生的总变形h1中包括弹性变形和塑性变形。当F1卸除后,总变形中的弹性变形恢复,压头回升一段距离h1-h。这样残留的塑性变形深度h就是压痕深度。而指针顺时针方向转动停止时所指的数值就是洛氏硬度值。

维湿硬度测试方法:以两相对面间夹角X=136度的金刚石四棱锥体为头。在试验力F作用下在试样表面压出一个四方锥形压痕。经过一定时间后卸除试验力,测量压痕对角线平均长度

布氏硬度:优点:硬度值能反应金属在较大范围内各组成相的平均性能。实验数据稳定、重复性强。缺点:对不同材料需要更换不同直径的压头和实验力。压痕测量麻烦,不便于自动化检测。压痕较大时不宜在成品表面试验。

洛氏硬度:优点:操作简单快速。硬度值可以直接读出、压痕小可以在工件表面进行试验。采用不同标尺可以测定各种软硬程度不同和厚薄不一的试样。缺点:压痕小,代表性差、重复性差,分散度大。用不同标尺测得的硬度不能直接比较。

维湿硬度:优点:不存在布氏硬度试验时要求实验力与压头直径之间所规定条件的约束。也不存在洛氏硬度实验时不同标尺的硬度值无法直接比较的弊端。维湿硬度实验力可以任意选取,压痕测量精度高,硬度值精确。缺点:硬度值需要通过测量压痕对角线长度后才能进行计算和查表,工作效率低。

冲击韧度:是指材料在冲击载荷作用下,吸收塑性变形功和断裂功的能力。

冲击吸收功:将试样水平放置在试验机支座上,缺口方向与冲击方向相反。将一定质量M的摆锤举起到一定高度H1,使摆锤获得一定位能MGH1。释放摆锤,冲断试样,摆锤的剩

余能量为MGH1-MGH2.这就是试样变形和断裂所消耗的功。称作冲击吸收功用Ak表示,单位是J。

低温脆性:体心立方晶体金属及其合金或者是某些密排六方晶体金属及其合金。在试验温度低于某一温度值时,会由韧性状态转变为脆性状态。冲击吸收功明显下降,断裂机理由微孔聚集型变为穿晶解理型。端口特征由纤维状转为结晶状。这就是低温脆性。

韧脆转变温度:材料由韧性状态转变为脆性状态的温度。

Ak:冲击吸收功。Akv:是指V型缺口试样的冲击吸收功。Aku:U型缺口冲击试样的冲击吸收功。

FATT:结晶区面积占整个断口面积50%时,所对应的韧脆转变温度。

NDT:以低阶能开始上升的温度定义的韧脆转变温度。也称作无塑性或零塑性转变温度。疲劳源:是疲劳萌生的策源地,在断口上,疲劳源一般在零件表面上。经常和裂纹,刀痕,腐蚀坑等缺陷相连。因为:1.这里应力集中容易发生疲劳裂纹。2.材料内部存在严重冶金缺陷或者内裂纹时,因为局部强度降低,也会在零件内部发生疲劳裂纹。

过载损伤:金属在高于疲劳极限应力下,运转一定周次后疲劳极限或者疲劳寿命减小的现象。过载损伤界:金属材料抵抗疲劳过载损伤的能力。

da/dn:是疲劳列为扩展速率。是疲劳裂纹扩展门槛值。

应力腐蚀:金属在拉应力和特定的化学物质共同作用下,经过一段时间后所产生的地应力脆断的现象。叫做应力腐蚀断裂SCC。

氢蚀:由于氢与金属中的第二相作用生成高压气体,使得基体金属晶界结合力减弱而导致金属催化的现象。

白点:钢中过饱和的氢未能扩散逸出,便聚集在某些缺陷处形成氢分子。此时氢的体积急剧膨胀,内压力很大以致金属局部断裂形成微裂纹。这种微裂纹的断面呈圆形或者是椭圆形,颜色为银白色,所以称作白点。

氢化物致脆:由于IVB或VB族金属如:钛、镍、钒、锆、铌及其合金与氢有较大的亲和力。极易生成脆性氢化物,使得金属催化的现象。

氢致延滞断裂:高强度钢或X+B钛合金中。处于固溶状态的氢在低于屈服强度的应力作用下经过一段孕育后。在金属内部形成裂纹,并逐步扩展,最后突然发生脆性断裂。这种由于氢延滞断裂现象称为氢致延滞断裂。

Kiscc:应力腐蚀临界应力场强度因子。

磨损:两零件表面相接触,并作相对运动时,表面逐渐有微小的颗粒分离出来形成磨屑,使得表面材料逐渐流失,造成表面损伤的现象。

接触疲劳:是零件两相接触面做滚动或者是滚动加滑动摩擦时,在交变接触压应力长期作用下,材料表面因疲劳而损伤。导致局部区域产生小片状或小块状金属剥落而使材料流失的现象,又称作疲劳磨损。

等强温度:晶粒与晶界两者强度相等的温度。

蠕变:是金属在长时间恒温和恒载荷作用下,缓慢产生塑性变形的现象。

扩散蠕变:在较高温度下,金属一端有拉应力作用时。在多晶体内产生不均匀的应力场。对于承受拉应力的晶界,空位浓度增加。对于产生压应力的晶界,空位浓度减小。因而,在晶体内部,空位将从受拉晶界向受压晶界迁移。院子则朝相反方向移动,致使晶体产生逐渐伸长的蠕变。这种现象就是扩散蠕变。

疲劳:1.疲劳时低应力循环、延时断裂。2.疲劳时脆性断裂。3.疲劳对缺陷十分敏感。4.疲劳有明显的疲劳源、疲劳敏感区。

疲劳宏观端口特征及其形成过程:

1.疲劳源:在零件表面上常和缺口裂纹等缺陷相连或者在内部冶金缺陷处。断口光亮,面积大。多个疲劳源时,源区光亮度越大,相邻疲劳区越大,贝纹线越多越密,疲劳源越容易产生。

2.疲劳区:是疲劳裂纹亚稳扩展所形成的断口区域。断口光滑并分布有贝纹线或者海滩花

3.瞬断区:是裂纹最厚失稳快速扩展所形成的断口区域。脆性端口呈结晶状,韧性断口呈放射状。

疲劳的分类:

1.按应力状态分:弯曲疲劳、扭转疲劳、拉压疲劳、高温疲劳和复合疲劳。

2.按环境接触情况分:大气疲劳、腐蚀疲劳、高温疲劳、热疲劳、接触疲劳。

3.按寿命和应力高低分:高周疲劳,低周疲劳。

高周疲劳和低周疲劳的不同点:高周疲劳的断裂寿命长,Nf》一万周次,断裂应力水平较低,也称作低应力疲劳。低周疲劳的断裂寿命短,Nf=100到一万周次,断裂应力水平高,往往有塑性应变发生,也称作高应力疲劳。

接触疲劳破坏的机理:

1.麻点剥落:在滚动接触过程中,由于表面最大综合切应力反复作用。在表面局部区域,

产生塑性变形。损伤逐步积累形成裂纹,然后润滑油挤入裂纹使裂纹扩展产生二次裂纹。

二次裂纹也受到高压油的作用不断向表面扩展。就剥落下一小块金属形成一凹坑。

2.浅层剥落:产生于距表面0.5b处,该处切应力最大。塑性变形最强烈形成裂纹。裂纹扩

展到表面。另一端形成悬臂梁,因反复弯曲形成弯断,从而形成浅层剥落。

3.深层剥落:常在表面硬化零件的过渡区内产生,沿过渡区扩展,再垂直于表面扩展形成

深层剥落。

弹性模量决定的因素,为什么说它是一个对组织不敏感的力学性能指标?

弹性模量决定于:金属原子本性和晶格类型。因为合金化、热处理、冷塑性变形对弹性模量影响比较小。所以它是一个对组织不敏感的力学性能指标。温度、加载速率等外在因素对其影响也不大。

韧性断裂和脆性断裂的区别:

韧性断裂:金属断裂前产生明显宏观塑性变形的断裂。它有一个缓慢的撕裂过程。在裂纹扩展中不断消耗能量。断口特征由纤维区、放射区和剪切唇组成。

脆性断裂:是突然发生的断裂,断裂前基本不发生塑性变形。没有明显征兆。因而危害性大,断口特征:平齐光亮,呈放射状或结晶状。

解理断裂、微观聚集断裂在微观结构上的特点:

解理断裂:是沿特定界面发生脆性穿晶断裂。基本围观特征是:解理台阶、河流花样、舌状花样。

围观聚集断裂:是金属材料在断裂前塑性变形进行到一定程度时产生微孔。然后长大、聚合直到断裂。基本特征是:韧窝。

冲击载荷下金属变形和断裂的特点:

冲击载荷下金属主要发生塑性变形。它比较集中在某些局部区域。这反映了塑性变形是极不均匀的。这种不均匀的清苦限制了徐行变形的发展导致屈服强度、抗拉强度提高。且屈服强度的提高比抗拉强度的提高大。

在一定加载规范和温度下,材料产生正断,则断裂应力变化不大,塑性随应变速率增加而减小。如果材料产生切断,则断裂应力随应变速率的提高,塑性可能不变也可能提高。

试表述应力场强度因子的意义及典型裂纹Ki的表达式:

Ki的大小直接影响应力场的大小:Ki越大,则应力场各应力分量越大。

金属产生应力腐蚀的条件:应力、化学物质、金属材料、

金属产生应力腐蚀的机理:钝化膜的生成、应力作用、钝化膜破裂、形成微电池、阳极溶解、表面形成腐蚀坑、应力集中、裂纹扩展。

裂纹扩展的三种基本形式:张开型、滑开型、撕开型。

裂纹扩展的特点:1.尖端附近总是处于弹性状态。2.应力、应变呈线性关系。

循环应力波形:正弦波、矩形波、三角形波

变动载荷:载荷大小甚至方向都随时间变化的载荷。

变动应力:变动载荷在单位面积上的平均值。

疲劳:金属零件在变动应力和应变长期作用下。由于累积损伤而引起的断裂。

疲劳断裂应力判据:对称应力循环:

非对称应力循环:

氢在金属中的存在形式:1.以间隙原子固溶于金属中。2.以氢分子状态存在。3.形成氢化物。

4.与第二相作用生成气体产物。

氢蚀断裂的宏观断口形貌呈:1.氧化色。2.颗粒状。3.微观断口上晶界明显加宽呈沿晶断裂。氢致延滞断裂的特点:1.只在一定温度范围内出现。2.应变速率提高、材料对氢的敏感性降低。3.降低金属断后延伸率。4.高强度下有可逆性。

防止氢脆的措施:1.环境因素。2.力学因素。3.材料因素.

磨损类型:1.粘着磨损。2.磨粒磨损。3.冲蚀磨损。4.疲劳磨损。5腐蚀磨损。

磨损过程三国阶段:1.饱和阶段。2.稳定磨损阶段。3.剧烈磨损阶段。

相对耐磨性:C=标准试样的磨损量除以被测试样的磨损量。

退货低碳钢在拉伸力作用下的变形过程可分为:1.弹性变形。2.不均匀屈服塑性变形。3.均匀塑性变形。4.不均匀集中塑性变形和断裂,几个阶段。

工程上弹性模量被称为材料的刚度,表征金属材料对弹性变形的抗力。其值越大,则在相同应力下产生的弹性变形就越小。

单晶体金属的弹性模量在不同晶体学方向上是不一样的。表现出弹性各向异性。多晶体金属的弹性模量为各晶粒弹性模量的平均值,呈现为各项同性。

塑性变形的主要方式是:滑移和孪生。

塑性变形的特点:1.各晶粒变形的不同时性和不均匀性。2.各晶粒变形的相互协调性。

影响屈服强度的内在因素:1.金属本性及晶格类型。2.晶粒大小与亚结构。3.溶质元素。4.第二相。

影响屈服强度的外在因素:1.温度。2.应变速率。3.应力状态。

磨损、腐蚀和断裂时零件三种主要失效形式,其中以断裂的危害性最大。

断裂依据其特征可分为:1.韧性断裂和脆性断裂。2.穿晶断裂和沿晶断裂。3.绕剪切断裂和微孔聚集型断裂、解理断裂。

韧性断裂断口呈:纤维状、灰暗色。

断口特征三要素:纤维区、放射区、剪切唇。

脆性断裂的断裂面一般与正应力垂直,断口平齐光亮,常呈放射状或结晶状。

弹性模量、泊松比测试

弹性模量、泊松比测试 测样品的弹性模量通常分动态法和静态法,静态法是在试样上施加一个恒定的拉伸(或压缩)应力,测定其弹性变形量;动态法包括共振和超声波测试。 静态法属于对试样具有破坏性质的一种方法,不具有重复测试的机会。动态法属于不破坏试样结构和性能的一种无损检测方法,试样可重复测试,因此对于力学性能波动较大的脆性材料,反复多次的无损力学检测显得重要而有意义。 超声波法测弹性模量 1.原理: 在各向同性的固体材料中,根据应力和应变满足的胡克定律,可以求得超声波传播的特征方程: 其中,为势函数,c为超声波传播速度。 当介质中质点振动方向与超声波的传播方向一致时,成为纵波;当质点振动方向与超声波的传播方向垂直时,称为横波,在固体介质内部,超声波可以按纵波和横波两种波形传播,无论是材料中的纵波还是横波,其速度可表示为: 其中,d为声波传播距离,t为声波传播时间。 对于同一种材料,其纵波波速和横波波速的大小一般不一样,但是它们都由弹性介质的密度,杨氏模量,泊松比等弹性参数决定,即影响这些物理常数的因素都对声速有影响,因此,利用超声波方法可以测量材料有关的弹性常数。 固体在外力作用下,其长度的方向产生变形,变形时应力与应变之比定义为杨氏模量,用E表示。 固体在应力作用下,沿纵向有一正应变,沿横向有一负应变,横向纵向应变之比定义为泊松比,用u表示。 在各向同性固体介质中,各种波形的超声波声速为: 纵波声速: 横波声速: 相应的通过测量介质的纵波声速和横波声速,利用以上公式可以计算介质的弹性常数,计算公式如下: 弹性模量: 泊松比: 其中,,为密度 2.测试方法: 使用25DL PLUS型超声波弹性模量测试仪分别测试材料的纵波声速和横波声速,代入上述公式,计算得到弹性模量和泊松比数值。

几个基本常数弹性模量泊松比应力应变曲线

几个基本常数弹性模量 泊松比应力应变曲线 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

全应力-应变曲线 测量岩石的应力应变曲线一般可以有两中试验机:一种是,柔性试验机,使用这种试验机测量时,容易发发生“岩爆”现象,导致试验中不能得到峰值以后的应力应变信息。另种是,刚性试验机,这种试验机刚度比较高,有“让压”的特点,就不会有“岩爆”现象发生,可以得到全应力-应变曲线用以研究岩石破裂的性质。 刚度矩阵的物理意义: 单元刚度矩阵的物理意义,一句话概括说来就是各个节点在广义力的作用下节点的位移变化量。 强度是零件的抗应力程度,反映的是什么时候断裂,破损等 刚度反映的是变形大小,就是零件受力后的变形。 刚度矩阵和柔度矩阵的物理意义: 一般将刚度矩阵记为[D],柔度矩阵为[C],二者互为逆矩阵。

[C]矩阵中任一元素Cij的物理意义为:当微小单元体上仅作用有j 方向的单位应力增加,而其他方向无应力增量时,i方向的应变增量分量就等于Cij。 [D]矩阵中任一元素Dij的物理意义为:要使微小单元体只在j方向发生单位应变,而其他方向不允许发生应变,则必须造成某种应力组合,在这种应力组合中,i方向应力分量为Dij。 对于各向异性材料,[D]和[C]都是非对称矩阵,从机理上来说是合理的,然而它给数学模型带来复杂性,也增加了有限元计算的困难。从工程实用的角度来考虑,往往忽略这种非对称性,而处理为对称矩阵。 物理概念:杨氏模量和泊松比 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。而横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量。1807年因英国医生兼物理学家(Thomas Young, 1773-1829) 所得到的结果而命名。根据,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 FL/EA=△L,其中F是力,L是长度,E是弹性模量,A是截面积,△L是长度变化量,也就是形变。弹性模量可视为衡量材料产生弹性变形难

拉伸时材料弹性模量E和泊松比的测定

实验三 电测法测定材料的弹性模量和泊松比 弹性模量E 和泊松比μ是各种材料的基本力学参数,测试工作十分重要,测试方法也很多,如杠杆引伸仪法、电测法、自动检测法,本次实验用的是电测法。 一、 实验目的 在比例极限内,验证胡克定律,用应变电测法测定材料的弹性模量E 和泊松比μ。 二、 实验仪器设备和试样 1. 材料力学多功能实验台 2. 静态电阻应变仪 3. 游标卡尺 4. 矩形长方体扁试件 三、 预习要求 1. 预习本节实验内容和材料力学书上的相关内容。 2. 阅读并熟悉电测法基本原理和电阻应变仪的使用操作。 四、实验原理和方法 材料在比例极限范围内,正应力σ和线应ε变呈线性关系,即:εσE = 比例系数E 称为材料的弹性模量,可由式3-1计算,即:ε σ=E (3-1) 设试件的初始横截面面积为o A ,在轴向拉力F 作用下,横截面上的正应力为: o A F = σ 把上式代入式(3-1)中可得: ε o A F E = (3-2) 只要测得试件所受的荷载F 和与之对应的应变ε,就可由式(3-2)算出弹性模量E 。

受拉试件轴向伸长,必然引起横向收缩。设轴向应变为ε,横向应变为ε'。试验表明,在弹性范围内,两者之比为一常数。该常数称为横向变形系数或泊松比,用μ表示,即: ε εμ'= 轴向应变ε和横向应变ε'的测试方法如下图所示。在板试件中央前后的两面沿着试件轴线方向粘贴应变片1R 和'1R ,沿着试件横向粘贴应变片2R 和'2R 。为了消除试件初曲率和加载可能存在偏心引起的弯曲影响,采用全桥接线法。分别是测量轴向应变ε和横向应变ε'的测量电桥。根据应变电测法原理基础,试件的轴向应变和横向应变是每台应变仪应变值读数的一半,即: r εε21= '='r εε2 1 实验时,为了验证胡克定律,采用等量逐级加载法,分别测量在相同荷载增量F ?作用下的轴向应变增量ε?和横向应变增量ε'?。若各级应变增量相同,就验证胡克定律。 五、 实验步骤 1. 测量试件。在试件的工作段上测量横截面尺寸,并计算试件的初始横截面面积o A 2. 拟定实验方案。 1) 确定试件允许达到的最大应变值(取材料屈服点S σ的70%~80%)及所需的最大载 荷值。 2) 根据初荷载和最大荷载值以及其间至少应有5级加载的原则,确定每级荷载的大小。 3) 准备工作。把试件安装在试验台上的夹头内,调整试验台,按图的接线接到两台应 变仪上。 4) 试运行。扭动手轮,加载至接近最大荷载值,然后卸载至初荷载以下。观察试验台 和应变仪是否处于正常工作状态。 5) 正式实验。加载至初荷载,记下荷载值以及两个应变仪读数r ε、'r ε。以后每增加 一级荷载就记录一次荷载值及相应的应变仪读数r ε、' r ε,直至最终荷载值。以上实验重复3遍。

弹性模量E和泊松比

00 EA A P == ε σε 弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为: 式中 A 0为零件的横截面积。 由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。 (一) (一) 试验目的 1. 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ; 2. 2.验证虎克定律; 3. 3.掌握电测方法的组桥原理与应用。 (二) (二) 试验原理 1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: 0EA PL L ?= ?(1) 若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。 (2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即 (3) 所以(2)成为: (4) 0)(A L PL E ???= )(L L ??= ?εε ???= 10A P E

常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━ (有限元材料库的参数为:45号钢密度7890kg/m3,泊松比0.269,杨氏模量209000GP.) (HT200,弹性模量为135GPa,泊松比为0.27) (HT200 密度:7.2-7.3,弹性模量:70-80; 泊松比0.24-0.25?;热膨胀系数加热:10冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E=1.22e 11 Pa, 泊松比λ=0.25,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为0.3) ( HT200,其弹性模量 E=140GPa,泊松比μ=0.25,密度ρ=7.8×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,C-3.47%,Si-2.5%,密度 7210 kg / m3 ,泊松比 0.27。) (箱体材料为HT200,其性能参数为:弹性模量E=1.4×10 11 Pa,泊松比μ=0.3,密度为ρ=7.8×10 3 kg.m -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度7.25 t/m 3 ,弹性模量126 GPa, 泊松比0.3) (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

弹性模量E和泊松比

00 EA A P == ε σε 弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在 拉压构件中其刚度为: 式中 A 0为零件的横截面积。 由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。 (一) (一) 试验目的 1. 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ; 2. 2.验证虎克定律; 3. 3.掌握电测方法的组桥原理与应用。 (二) (二) 试验原理 1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: 0EA PL L ?= ? (1) 若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。 (2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即

材料弹性模量E和泊松比实验测定

实验三 材料弹性模量E 和泊松比μ的测定实验 一、实验目的 1、测定常用金属材料的弹性模量E 和泊松比μ。 2、验证胡克(Hooke )定律。 二、实验仪器设备和工具 1、组合实验台中拉伸装置 2、XL2118系列力&应变综合参数测试仪 三、实验原理和方法 试件采用矩形截面试件,电阻应变片布片方式如图3-1。在试件中央截面上,沿前后两面的轴线方向分别对称的贴一对轴向应变片R1、R1ˊ和一对横向应变片R2、R2ˊ,以测量轴向应变ε和横向应变εˊ。 补偿块 图 3-1 拉伸试件及布片图 1、 弹性模量 E 的测定 由于实验装置和安装初始状态的不稳定性,拉伸曲线的初始阶段往往是非线性的。为了尽可能减小测量误差,实验宜从一初载荷00(0)P P ≠开始,采用增量法,分级加载,分别测量在各相同载荷增量P ?作用下,产生的应变增量ε?,并求出ε?的平均值。设试件初始横截面面积为0A ,又因L L ε=?,则有 A E P ε??=0 上式即为增量法测E 的计算公式。 式中 0A — 试件截面面积 ε? — 轴向应变增量的平均值 组桥方式采用1/4桥单臂测量方式,应变片连接见图3-2。

R 1 R 工作片 Uab A C 补偿片 R 3 R 4 机内电阻 D E 图3-2 1/4桥连接方式 实验时,在一定载荷条件下,分别对前、后两枚轴向应变片进行单片测量,并取其平均值 '11()2 εεε+=。显然ε代表载荷P 作用下试件的实际应变量。而且前后两片应变片可以相互抵消偏心弯曲引起的测量误差。 2、 泊松比μ的测定 利用试件上的横向应变片和纵向应变片合理组桥,为了尽可能减小测量误差,实验宜从一初载荷00(0)P P ≠开始,采用增量法,分级加载,分别测量在各相同载荷增量△P 作用下,横向应变增量ε'?和纵向应变增量ε?。求出平均值,按定义 'εμε ?=? 便可求得泊松比μ。 四、实验步骤 1、明确试件尺寸的基本尺寸,宽30mm ,厚5mm 。 2、调整好实验加载装置。 3、按实验要求接好线,调整好仪器,检查整个测试系统是否处于正常工作状态。 4、均匀缓慢加载至初载荷P 0,记下各点应变的初始读数;然后分级等增量加载,每增加一级 载荷,依次记录各点电阻应变片的应变值,直到最终载荷。将实验记录填入实验报告 5、 作完实验后,卸掉载荷,关闭电源,整理好所用仪器设备,清理实验现场,将所用仪器设备复原,实验资料交指导教师检查签字。

常用材料的弹性模量及泊松比数据表

常用材料的弹性模量及泊松比数据表(S) 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 ~ 2 碳钢196~206 79 ~ 3 铸钢172~202 - 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 ~ 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 ~ 8 轧制纯铜108 39 ~ 9 轧制锰青铜108 39 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 ~ 12 轧制锌82 31 13 硬铝合金70 26 - 14 轧制铝68 25~26 ~ 15 铅17 7 16 玻璃55 22 17 混凝土14~23 ~~ 18 纵纹木材~12 - 19 横纹木材~~- 20 橡胶- 21 电木~~~ 22 尼龙 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 - - 29 夹布酚醛塑料4~- - 30 石棉酚醛塑料- - 31 高压聚乙烯~- - 32 低压聚乙烯~- - 33 聚丙烯~- -

Q235等属于碳素结构钢,35#、45#等属于优质碳素钢,强度较高,塑性和韧性都比碳素钢好。 屈服强度:是弹性变形的极限也叫屈服点。增加应力到一定程度时成为塑性变形,也就是变弯了。每种钢的屈服强度是不一样的 镍铬钢、合金钢的弹性模量是206GPa 碳钢的弹性模量为196~206GPa,计算时一般取206GPa 铸钢的弹性模量为172~202Gpa

弹性模量E和泊松比

00EA A P ==ε σε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉 压构件中其刚度为: 式中 A 0为零件的横截面积。 由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。 (一) (一) 试验目的 1.1.用电测方法测定低碳钢的弹性模量E 及泊松比μ; 2.2.验证虎克定律; 3.3.掌握电测方法的组桥原理与应用。 (二) (二) 试验原理 1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: 0EA PL L ?= ? (1) 若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。 (2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即 (3) 所以(2)成为: )(A L PL E ???=0 ) (L L ??=?ε

泊松比、弹性模量、剪切模量

目录 泊松比 (1) 杨氏模量 (1) 弹性模量 (2) 剪切模量 (3) 基本概念 (3) 纤维复合材料层间剪切模量测试 (3) 筑坝堆石料的剪切模量 (4) 弹性模量和切变模量 (7) 弹簧钢的切变模量取值 (8) 泊松比 法国数学家 Simeom Denis Poisson 为名。 在材料的比例极限内,由均匀分布的纵向应力所引起的横向应变与相应的纵向应变之比的绝对值。比如,一杆受拉伸时,其轴向伸长伴随着横向收缩(反之亦然),而横向应变 e' 与轴向应变 e 之比称为泊松比 V。材料的泊松比一般通过试验方法测定。 可以这样记忆:空气的泊松比为0,水的泊松比为0.5,中间的可以推出。 主次泊松比的区别Major and Minor Poisson's ratio 主泊松比PRXY,指的是在单轴作用下,X方向的单位拉(或压)应变所引起的Y 方向的压(或拉)应变 次泊松比NUXY,它代表了与PRXY成正交方向的泊松比,指的是在单轴作用下,Y 方向的单位拉(或压)应变所引起的X方向的压(或拉)应变。 PRXY与NUXY是有一定关系的: PRXY/NUXY=EX/EY 对于正交各向异性材料,需要根据材料数据分别输入主次泊松比, 但是对于各向同性材料来说,选择PRXY或NUXY来输入泊松比是没有任何区别的,只要输入其中一个即可 杨氏模量

杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量。1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 杨氏弹性模量是选定机械零件材料的依据之一是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声波)等实验技术和方法测量杨氏模量。 胡克定律和杨氏弹性模量 固体在外力作用下将发生形变,如果外力撤去后相应的形变消失,这种形变称为弹性形变。如果外力后仍有残余形变,这种形变称为范性形变。 协强(ε):单位面积上所受到的力(F/S)。 协变(ζ)是指在外力作用下的相对形变(相对伸长DL/L)它反映了物体形变的大小。 胡克定律:在物体的弹性限度内,胁强于胁变成正比,其比例系数称为杨氏模量(记为Y)。用公式表达为: Y=(F·L)/(S·△L) Y在数值上等于产生单位胁变时的胁强。它的单位是与胁强的单位相同。杨氏弹性模量是材料的属性,与外力及物体的形状无关。 弹性模量 拼音:tanxingmoliang 英文名称:modulusofelasticity 定义:材料在弹性变形阶段,其应力和应变成正比例关系(即 符合胡克定律),其比例系数称为弹性模量。 单位:达因每平方厘米。 意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。

弹性模量E和泊松比

(3) 弹性模量E 和泊松比 卩的测定 拉伸试验中得到的屈服极限6 b 和强度极限6 s ,反映了材料对力的作用的承受能力,而 延伸率3或截面收缩率",反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗 变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来 的,这是因为一旦零件按应力设计定型, 在弹性变形范围内的服役过程中, 是以其所受负荷 而产生的变性量来判断其刚度的。 一般按引起单为应变的负荷为该零件的刚度, 例如,在拉 压构件中其刚度为: 式中A o 为零件的横截面积。 由上式可见,要想提高零件的刚度 E A o ,亦即要减少零件的弹性变形,可选用高弹性模量 的材料和适当加大承载的横截面积, 刚度的重要性在于它决定了零件服役时稳定性, 对细长 杆件和薄壁构件尤为重要。 因此,构件的理论分析和设计计算来说, 弹性模量E 是经常要用 到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的 比例常数就是材料的弹性模量 E,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比 卩 也叫横向变性系数,它是反映材料横向变形的弹性常数。 因此金属才料拉伸时弹性模量 E 地测定是材料力学最主要最基本的一个实验,下面用电 测法测定低碳钢弹性模量 E 和泊松比卩。 (一) (一) 试验目的 1. 1 ?用电测方法测定低碳钢的弹性模量 2. 2 .验证虎克定律; 3. 3 .掌握电测方法的组桥原理与应用。 (二) (二) 试验原理 1. 测定材料弹性模量 E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克 定律,其荷载 与变形关系为: PL 。 EA o 若已知载荷△ P 及试件尺寸,只要测得试件伸长 AL 即可得出弹性模量 E 。 PL 。 (L)A o (L ) L o 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即 EA 。 E 及泊松比11; (1)

常用金属材料的弹性模量及泊松比

常用材料的弹性模量及泊松比 名称弹性模量E切变模量G 泊松比μ备注GPa GPa 灰、白口铸铁115~160 45 0.23 ~0.27 球墨铸铁151~160 61 0.25 ~0.29 碳钢200~220 81 0.24-0.28 合金钢210 81 0.25 ~0.3 铸钢175 70-84 0.25 ~0.29 轧制磷青铜115 42 0.32 ~0.35 轧制锰黄铜110 40 0.35 铸铝青铜105 42 0.25 网上下载硬铝合金71 27 冷拔黄铜91~99 35-37 0.32 ~0.42 轧制纯铜110 40 0.31 ~0.34 轧制锌84 32 0.27 轧制铝69 26-27 0.32 ~0.36 铅17 7 0.42 钢207 0.29 铝71.7 0.33 铸铁100 0.211 不锈钢190 0.305 镁44.8 0.35 镍207 0.291 玻璃46.2 0.245 黄铜106 0.324 摘自adams 材料库 铜119 0.326 右墨36.5 0.425 钛102.04 0.3 钨344.7 0.28 木材11 0.33 钛的热膨胀系数为(9.41~ 10.3) ×10-6/℃ Ti-6Al-4V 的线膨胀系数只 有8.8×10-6K-1. 杨氏模量剪切模量泊松比 Cr 250 115 0.12 Pt 169 61 0.38 Co 210 83 0.32

以上杨氏模量(E)和剪切模量(G)的单位为GPa 材料线膨胀系数(x0.000001/ °C) 一般铸铁9.2-11.8 一般碳钢10~13 铬钢10~13 镍铬钢13-15 铁12-12.5 铜 18.5 青铜17.5 黄铜18.5 铝合金23.8 金14.2 金属铬常温25 摄氏度下: 线膨胀系数 6.2x10exp (-6)/K 体膨胀系数是线膨胀系数的三倍。 铜17.7X10^-6/ 。C 无氧铜18.6X10^-8/ 。C 铝23X10^-6/ 。C 铁12X10^-6/ 。C 常见金属的热膨胀系数: 物质αin 10-6/K 20 C° 铝23.2 纯铝23.0 锑10.5 铍12.3 铅29.3 铜 17.5 镉41.0 铬 6.2 铁 12.2 锗 6.0 金 14.2 灰铸铁 9.0 不变钢 1.7- 2.0 铱 6.5 康 铜15.2 铜16.5 镁 26.0 锰 23.0 黄铜 18.4 钼 5.2 新银 18.0

常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━2003表统一取弹性模量206000MPa。泊松比约为) (有限元材料库的参数为:45号钢密度7890kg/m3,泊松比,杨氏模量209000GP.) (HT200,弹性模量为135GPa,泊松比为) (HT200 密度:,弹性模量:70-80; 泊松比?;热膨胀系数加热: 10冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25)(HT200,弹性模量E= 11 Pa, 泊松比λ=,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为 ( HT200,其弹性模量 E=140GPa,泊松比μ=,密度ρ=×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,%,%,密度 7210 kg / m3 ,泊松比。) (箱体材料为HT200,其性能参数为:弹性模量E=×10 11 Pa,泊松比μ=,密度为ρ=×10 3 -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度 t/m 3 ,弹性模量126 GPa, 泊松比 (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) ? 表58-23,常用材料的弹性模量,泊松比和线胀系数

黄铜80~18—16铝合金69~21—20镁铝合金40~—25 常用材料弹性模量及泊松比 ━━━━━━━━━━━━━━━━━━ 名称弹性模量E 切变模量G 泊松比μ GPa GPa ────────────────── 镍铬钢 206 合金钢 206 碳钢 196-206 79 铸钢 172-202 球墨铸铁 140-154 73-76 灰铸铁 113-157 44 白口铸铁 113-157 44 冷拔纯铜 127 48 轧制磷青铜 113 41 轧制纯铜 108 39 轧制锰青铜 108 39 铸铝青铜 103 41 冷拔黄铜 89-97 34-36 轧制锌 82 31 硬铝合金 70 26 轧制铝 68 25-26 铅 17 7 玻璃 55 22 混凝土 14-23 纵纹木材

弹性模量E和泊松比

弹性模量E和泊松比 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

00EA A P ==ε σε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受 能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为: 式中 A 0为零件的横截面积。 由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用 高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。 (一) (一) 试验目的 1. 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ; 2. 2.验证虎克定律; 3. 3.掌握电测方法的组桥原理与应用。 (二) (二) 试验原理 1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: 0EA PL L ?= ? (1) 若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。 (2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即 (3) 所以(2)成为: (4) 式中: ΔP ——载荷增量,kN ;

常用材料弹性模量及泊松比

(《钢结构设计规范》GB 50017━2003表3.4.3统一取弹性模量206000MPa。泊松比约为0.3 ) (有限元材料库的参数为:45号钢密度7890kg/m3,泊松比0.269,杨氏模量209000GP.) (HT200,弹性模量为135GPa,泊松比为0.27) (HT200 密度:7.2-7.3,弹性模量:70-80; 泊松比0.24-0.25 ;热膨胀系数加热:10冷却-8) (用灰铸铁 HT200,根据资料可知其密度为7340kg/m3,弹性模量为120GPa ,泊松比为0. 25) (HT200,弹性模量E=1.22e 11 Pa, 泊松比λ=0.25,密度ρ=7800 kg/m 3) ( HT200 122 /0. 3 /7. 2 ×10 - 6) (材料HT200,密度为7. 8103 kg / m 3 ,弹性模量为 145 GPa,泊松比为0.3) ( HT200,其弹性模量 E=140GPa,泊松比μ=0.25,密度ρ=7.8×10 3 kg/m 3) (模具材料为灰口铸铁 HT200,C-3.47%,Si-2.5%,密度 7210 kg / m3 ,泊松比 0.27。) (箱体材料为HT200,其性能参数为:弹性模量E=1.4×10 11 Pa,泊松比μ=0.3,密度为ρ=7.8×10 3 kg.m -3 ) (模型材料HT200,其主要物理与机械性能参数如下:密度7.25 t/m 3 ,弹性模量126 GPa, 泊松比0.3) (垫板的材料采用 HT200, 材料相关参数查表可得, 弹性模量 E = 1120 ×10 5 N /mm 2 , 泊松比μ= 0125, 密度ρ=712 ×10 - 9 t /mm 3) 表58-23,常用材料的弹性模量,泊松比和线胀系数

弹性模量E和泊松比

弹性模量E和泊松比 Prepared on 22 November 2020

00EA A P ==ε σε弹性模量E 和泊松比μ的测定 拉伸试验中得到的屈服极限бb 和强度极限бS ,反映了材料对力的作用的承受能力,而 延伸率δ 或截面收缩率ψ,反映了材料缩性变行的能力,为了表示材料在弹性范围内抵抗变行的难易程度,在实际工程结构中,材料弹性模量E 的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变性量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为: 式中 A 0为零件的横截面积。 由上式可见,要想提高零件的刚度E A 0,亦即要减少零件的弹性变形,可选用高弹性 模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E 是经常要用到的一个重要力学性能指标。 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E ,也叫杨氏模量。横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 因此金属才料拉伸时弹性模量E 地测定是材料力学最主要最基本的一个实验,下面用电测法测定低碳钢弹性模量E 和泊松比μ。 (一) (一) 试验目的 1. 1.用电测方法测定低碳钢的弹性模量E 及泊松比μ; 2. 2.验证虎克定律; 3. 3.掌握电测方法的组桥原理与应用。 (二) (二) 试验原理 1.测定材料弹性模量E 一般采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其荷载与变形关系为: 00EA PL L ?=? (1) 若已知载荷ΔP 及试件尺寸,只要测得试件伸长ΔL 即可得出弹性模量E 。 (2) 由于本试验采用电测法测量,其反映变形测试的数据为应变增量,即 (3) 所以(2)成为: (4) 式中: ΔP ——载荷增量,kN ; A 0-----试件的横截面面积,cm 为了验证力与变形的线性关心,采用增量法逐级加载,分别测量在相同载荷增量 ΔP 作用下试件所产生的应变增量Δε。

弹性模量和泊松比的测定实验

二)、弹性模量和泊松比的测定实验 弹性模量和泊松比的测定实验大纲 1. 通过材料弹性模量和泊松比的测定实验,使学生掌握测定材料变形的基本方法,学会拟定实验加载方案,验证虎克定律。 2. 机测材料的弹性模量,使学生学会用引伸计(球铰式引伸计)测量试样的变形,并通过实验加强实验中的协作及配合精神。主要设备:材料试验机;主要耗材:低碳钢拉伸弹性模量试样,每次实验1根。 3. 电测材料的弹性模量和泊松比,使学生学会用电阻应变计和电阻应变仪测量材料的变形。主要设备:材料试验机或多功能电测实验装置;主要耗材:低碳钢拉伸弹性模量试样,每次实验1根。 拉伸弹性模量(E)及泊松比(?)的测定指导书 一、实验目的 1 、用电测法测量低碳钢的弹性模量 E 和泊松比 ? 2 、在弹性范围内验证虎克定律 二、实验设备 1 、多功能电测实验装置。 2 、智能全数字式静态应变仪 3 、游标卡尺 三、实验原理和方法 测定材料的弹性模量 E ,通常采用比例极限内的拉伸试验,材料在比例极限内服从虎克定律,其关系式为 : ( 3-12 ) 由此可得 ( 3-13 ) 式中: E :弹性模量 P :载荷 S0 :试样的截面积 ε:应变 Δ P 和Δε分别为载荷和应变的增量。 由公式( 3 - 13 )即可算出弹性模量 E 。 实验方法如图 3 - 9 所示,采用矩形截面的拉伸试件,在试件上沿轴向和垂直于轴向的两面各贴两片电阻应变计,可以用半桥和全桥两种方式进行实验。 1 )、半桥接法:把试件两面各粘贴的沿轴向(或垂直于轴向)的两片电阻应变计(简称工作片)的两端分别接在应变仪的 A 、 B 接线端上,温度补偿片接到应变仪的 B 、 C 接 线端上,然后给试件缓慢加载,通过电阻应变仪即可测出对应载荷下的轴向应变值(或 横向应变值)。再将实际测得的值代入( 3-13 )式中,即可求得弹性模量 E 之值。 2 )、全桥接法:把两片轴向(或两片垂直于轴向)的工作片和两片温度补偿片按图 3 - 9中( a)( 或( b)) 的接法接入应变仪的 A 、 B 、 C 、 D 接线柱中,然后给试件缓慢加

岩石的弹性模量E_和泊松比μ的值列举

岩石的弹性模量E 和泊松比μ的值列举 岩石种类E(104MPa)μ 闪长岩10.1021-11.7565 0.26-0.37 细粒花岗岩8.1201-8.2065 0.24-0.29 斜长花岗岩 6.1087-7.3984 0.19-0.22 斑状花岗岩 5.4938-5.7537 0.13-0.23 花岗闪长岩 5.5605-5.8302 0.20-0.23 石英砂岩 5.3105-5.8685 0.12-0.14 片麻花岗岩 5.0800-5.4165 0.16-0.18 正长岩 4.8387-5.3104 0.18-0.26 片岩 4.3298-7.0129 0.12-0.25 玄武岩 4.1366-9.6206 0.23-0.32 安山岩 3.8482-7.6965 0.21-0.32 绢云母页岩 3.3677 +++++ 花岗岩 2.9823-6.1087 0.17-0.36 细砂岩 2.7900-4.7622 0.15-0.52 中砂岩 2.5782-4.0308 0.10-0.22 中灰岩 2.4056-3.8296 0.18-0.35 石英岩 1.7946-6.9374 0.12-0.27 板状页岩 1.7319-2.1163 +++++ 粗砂岩 1.6642-4.0306 0.10-0.45 片麻岩 1.4043-5.5125 0.20-0.34 页岩 1.2503-4.1179 0.09-0.35 大理岩0.9620-7.4827 0.06-0.35 炭质砂岩0.5482-2.0781 0.08-0.25 泥灰岩0.3658-0.7316 0.30-0.40 石膏0.1157-0.7698 0.30

几个基本常数弹性模量-泊松比-应力应变曲线

全应力-应变曲线 测量岩石的应力应变曲线一般可以有两中试验机:一种是,柔性试验机,使用这种试验机测量时,容易发发生“岩爆”现象,导致试验中不能得到峰值以后的应力应变信息。另种是,刚性试验机,这种试验机刚度比较高,有“让压”的特点,就不会有“岩爆”现象发生,可以得到全应力-应变曲线用以研究岩石破裂的性质。 刚度矩阵的物理意义: 单元刚度矩阵的物理意义,一句话概括说来就是各个节点在广义力的作用下节点的位移变化量。 强度是零件的抗应力程度,反映的是什么时候断裂,破损等 刚度反映的是变形大小,就是零件受力后的变形。 刚度矩阵和柔度矩阵的物理意义: 一般将刚度矩阵记为[D],柔度矩阵为[C],二者互为逆矩阵。 [C]矩阵中任一元素Cij的物理意义为:当微小单元体上仅作用有j方向的单位应力增加,而其他方向无应力增量时,i方向的应变增量分量就等于Cij。 [D]矩阵中任一元素Dij的物理意义为:要使微小单元体只在j方向发生单位应变,而其他方向不允许发生应变,则必须造成某种应力组合,在这种应力组合

中,i方向应力分量为Dij。 对于各向异性材料,[D]和[C]都是非对称矩阵,从机理上来说是合理的,然而它给数学模型带来复杂性,也增加了有限元计算的困难。从工程实用的角度来考虑,往往忽略这种非对称性,而处理为对称矩阵。 物理概念:杨氏模量和泊松比 在弹性范围内大多数材料服从虎克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。而横向应变与纵向应变之比值称为泊松比μ,也叫横向变性系数,它是反映材料横向变形的弹性常数。 杨氏模量(Young's modulus)是表征在弹性限度内物质材料抗拉或抗压的物理量,它是沿纵向的弹性模量。1807年因英国医生兼物理学家托马斯·杨(Thomas Young, 1773-1829) 所得到的结果而命名。根据胡克定律,在物体的弹性限度内,应力与应变成正比,比值被称为材料的杨氏模量,它是表征材料性质的一个物理量,仅取决于材料本身的物理性质。杨氏模量的大小标志了材料的刚性,杨氏模量越大,越不容易发生形变。 FL/EA=△L,其中F是力,L是长度,E是弹性模量,A是截面积,△L是长度变化量,也就是形变。弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。力学里没有弹性系数这个物理量。 杨氏弹性模量是选定机械零件材料的依据之一是工程技术设计中常用的参数。杨氏模量的测定对研究金属材料、光纤材料、半导体、纳米材料、聚合物、陶瓷、橡胶等各种材料的力学性质有着重要意义,还可用于机械零部件设计、生物力学、地质等领域。 测量杨氏模量的方法一般有拉伸法、梁弯曲法、振动法、内耗法等,还出现了利用光纤位移传感器、莫尔条纹、电涡流传感器和波动传递技术(微波或超声

常用材料的弹性模量及泊松比

常用材料的弹性模量及泊松比 序号材料名称弹性模量\E\Gpa 切变模量\G\Gpa 泊松比\μ 1 镍铬钢、合金钢206 79.38 0.25~0.3 2 碳钢196~206 79 0.24~0.28 3 铸钢172~202 - 0.3 4 球墨铸铁140~154 73~76 - 5 灰铸铁、白口铸铁113~157 44 0.23~0.27 6 冷拔纯铜12 7 4 8 - 7 轧制磷青铜113 41 0.32~0.35 8 轧制纯铜108 39 0.31~0.34 9 轧制锰青铜108 39 0.35 10 铸铝青铜103 41 - 11 冷拔黄铜89~97 34~36 0.32~0.42 12 轧制锌82 31 0.27 13 硬铝合金70 26 - 14 轧制铝68 25~26 0.32~0.36 15 铅17 7 0.42 16 玻璃55 22 0.25 17 混凝土14~23 4.9~15.7 0.1~0.18 18 纵纹木材9.8~12 0.5 - 19 横纹木材0.5~0.98 0.44~0.64 - 20 橡胶0.00784 - 0.47 21 电木 1.96~2.94 0.69~2.06 0.35~0.38 22 尼龙28.3 10.1 0.4 23 可锻铸铁152 - - 24 拔制铝线69 - - 25 大理石55 - - 26 花岗石48 - - 27 石灰石41 - - 28 尼龙1010 1.07 - - 29 夹布酚醛塑料4~8.8 - - 30 石棉酚醛塑料 1.3 - - 31 高压聚乙烯0.15~0.25 - - 32 低压聚乙烯0.49~0.78 - - 33 聚丙烯 1.32~1.42 - -

相关文档
相关文档 最新文档