文档库 最新最全的文档下载
当前位置:文档库 › 0.18μm CMOS 3.1-10.6GHz超宽带低噪声放大器设计

0.18μm CMOS 3.1-10.6GHz超宽带低噪声放大器设计

0.18μm CMOS 3.1-10.6GHz超宽带低噪声放大器设计
0.18μm CMOS 3.1-10.6GHz超宽带低噪声放大器设计

0.18μm CMOS 3.1-10.6GHz超宽带低噪声放大器设计

作者:华明清, 王志功, 李智群, HUA Ming-qing, WANG Zhi-gong, LI Zhi-qun

作者单位:东南大学,射频与光电集成电路研究所,江苏,南京,210096

刊名:

电路与系统学报

英文刊名:JOURNAL OF CIRCUITS AND SYSTEMS

年,卷(期):2007,12(1)

被引用次数:3次

参考文献(5条)

1.Thomas H Lee The Design of CMOS Radio-Frequency Integrated Circuits 2004

2.George L Matthaei.Leo Young.E M T Jones Microwave Filters,Impedance-Matching Networks,and Coupling Structures 1964

3.Vishwakarma S.Sungyong Jung.Youngjoong Joo Ultra wideband CMOS low noise amplifier with active input matching Ultra Wideband Systems 2004

4.Wei Meng Lim.Manh Anh Do.Jian Guo Ma.Kiat Seng Yeo A broadband CMOS LNA for WLAN applications 2003

5.Yanxin Wang.Duster J S.Kornegay K T Design of an ultra-wideband low noise amplifier in 0.13/spl mu/m CMOS.Circuits and Systems 2005

相似文献(10条)

1.期刊论文宋睿丰.廖怀林.黄如.王阳元.SONG Ruifeng.LIAO Huailin.HUANG Ru.WANG Yangyuan3.1~10.6

GHz超宽带低噪声放大器设计-北京大学学报(自然科学版)2007,43(1)

采用标准0.35 μm SiGe HBT工艺设计了工作频段在3.1~10.6 GHz的超宽带低噪声放大器.从宽带电路和高频电路设计的器件选择、电路结构选择等方面讨论了超宽带低噪声放大器的设计.结果表明,通过合适的电路结构和器件参数选择,可以采用0.35μm SiGe HBT工艺制备满足超宽带系统要求的低噪声放大器.在整个工作频段内所设计的低噪声放大器输入输出匹配S11和S22均优于-8dB,噪声系数为3.5dB,电路的工作电压为2.5 V,电流消耗为4.38 mA.

2.学位论文杨凯增益可调超宽带低噪声放大器2008

近年来,超宽带技术(UwB)作为一种新兴的无线通信技术成为了研究的热点。低噪声放大器(LNA)是超宽带系统接收前端最重要的模块,其噪声性能直接影响整个系统的噪声性能,所以对于超宽带低噪声放大器的研究具有重要的意义。

本文首先介绍了超宽带低噪声放大器的研究现状和意义,并引出了增益可调超宽带低噪声放大器研制的必要性;然后系统地概述了超宽带低噪声放大器的基本理论;最终设计出了性能比较优越的连续增益可调的超宽带低噪声放大器。本文所做的工作和创新如下:

(1)总结和分析了当前超宽带低噪声放大器的各种结构,对其小信号模型,噪声模型作了分析并比较了它们的优缺点。

(2)对现有的增益可调技术作了简要地介绍,比较了它们的优缺点。

(3)设计出一种3-5GHz的具有大范围连续增益变化的CMOS可调增益低噪声放大器,采用两极的共源共栅电路结构,二阶切比雪夫滤波器作为输入,源极跟随器作为输出,在带内获得了良好的输入输出匹配和噪声性能。通过控制第二级的偏置电流,获得了36dB的连续增益可调,同时也不影响输入输出匹配.该电路在最高增益时输入和输出反射系数S11和S22分别小于-10.1dB和-15dB,最高增益达到23.8 dB,最小噪声系数只有1.5dB,三阶交调截点为-7dBm,在1.2V的供压下,功耗为6.8mW。

(4)提出应用于3-10GHz的连续增益可调的低噪声放大器,采用共栅输入,并利甩一个简单的高通滤波器置于输入端和电感峰化来实现3-10GHz的宽带匹配。同样也是通过控制第二级的偏置电流来实现连续增益可调,同时也不影响输入输出匹配。其电路性能如下:连续增益可调范围是19dB,输入和输出反射系数S11和$22分别小于-10.3dB和-10.6dB,在12.4dB的最高增益时,最小噪声系数为3.28dB,在1.5V的供压下直流为13.1mA。

本文提出的电路由ADS软件仿真,采用TSMC 0.18 μm CMOS工艺,并利用Candence软件画出版图和后仿真,前仿和后仿结果与当前发表过的UWB

LNA相比,具有很大的优越性,并实现了超宽带低噪声的连续增益可调的功能。

3.期刊论文张蔚.张万荣.谢红云.金冬月.何莉剑.王扬.沙永萍.ZHANG Wei.ZHANG Wanrong.XIE Hongyun.JIN

Dongyue.HE Lijian.WANG Yang.SHA Yongping基于SiGe HBT的超宽带低噪声放大器的设计-微电子学2008,38(2) 结合超宽带(UWB)无线通信标准,给出了超宽带低噪声放大器(LNA)的设计思路.依据这个思想,并以高性能硅锗异质结双极型晶体管为核心,设计了一款超宽带低噪声放大器.采用安捷伦的ADS,对设计的放大器进行了仿真验证.结果表明,该放大器在3.1~6 GHz带宽内,S21高于11 dB,且变化不超过3

dB;S11和S22都在-15 dB以下;S12低于-20 dB;放大器的噪声系数在1.3~1.7 dB之间,群延时在整个频带内变化在15 ps左右,且在整个频带内无条件稳定.放大器良好的性能证明了提出的设计思想的正确性.

4.学位论文杜超CMOS超宽带低噪声放大器和混频器的设计2009

无线通信技术是当前发展最迅速、最具活力的技术领域之一。在这个领域中,各种新技术、新方法层出不穷。其中超宽带(Ultra-Wide

Band,UWB)技术是在20世纪90年代以后发展起来的一种具有巨大发展潜力的新型无线通信技术。目前超宽带技术以其高速率、低功耗等特性正受到通信学术界和产业界的重视,并将获得日益广泛的应用。因此,研究并提高超宽带射频通信电路性能,对无线通信的发展具有重要的科学意义和现实意义。 本文以射频接收机前端关键器件中的低噪声放大器与混频器为研究对象,在系统分析超宽带射频接收机结构及其性能指标的基础上,根据低噪声放大器和混频器的工作原理与技术参数设计电路,然后结合国家自然科学基金项目(射频集成电路设计的电流模式方法学研究NO.60776021)并综合多种因素,提出了一种电流模式级联电路。主要工作有:

(1)针对超宽带信号的特点,慎重选择了射频接收机结构,分析了其存在的问题并提出了零点漂移、闪烁噪声等问题的解决方案;

(2)设计出一种低复杂度的超宽带低噪声放大器。该放大器工作在1-10GHz,可以应用于超宽带和蓝牙等设备。电路中采用共栅结构实现宽带输入匹配,共源放大器同时完成增益放大和输出匹配,两级之间级间电感补偿高频增益,实现了宽带内的增益平坦。该电路在整个带宽内输入和输出反射系数S11和S22都小于-10dB,最高增益达到12.1dB,最小噪声系数为3.8dB,在5GHz三阶交调截点-4.1dBm,在1.5V的供压下,功耗为12.6 mW,具有小功耗小

(3)设计出一种应用于3.1-10.6GHz的电流模式混频器。混频器共享前级放大器的负载实现匹配和高增益。放大器的输出电流可以直接作为混频器的输入信号,这样省去了混频器的跨导级,从而节约了芯片面积和功耗。混频器负载级采用交差耦合对管来放大电流,以提高转换增益。此级联电路最高转换增益达到21dB,输入和输出反射系数S11和S22小于-10dB,最小单边带噪声系数为8.5dB,在5GHz点的IIP3为-4 dBm,在1.5V的供压下整个级联电路的功耗只有13.6 mW,性能优良。

本文所提出的电路先由ADS软件优化仿真,然后通过Candence软件仿真确认后画出版图,进行后仿真验证。通过与国内外发表的设计做比较发现,本文提出的电路在线性度和功耗方面有一定的优势。

5.期刊论文王祖文.吴治霖.石玉.WANG Zu-wen.WU Zhi-lin.SHI Yu超宽带低噪声放大器反馈与匹配技术研究-磁

性材料及器件2010,41(3)

针对宽带放大器平坦度低、宽带匹配性差等问题,从负反馈电路理论、超宽带匹配技术以及宽带电路和高频电路设计的器件选取等方面讨论了宽带低噪声放大器的设计.在ADS辅助下,设计了工作频段在0.2~3GHz超宽带低噪声放大器.通过优化电路元件各项参数,实现了30dB的高增益、±1.5dB平坦度、低于1.5dB的噪声系数、优于-10dB的输入输出回波损耗的目标.

6.期刊论文廖新鼎.敖发良.舒芳.陈辉2.4~6.0 GHz超宽带低噪声放大器的设计-世界科技研究与发展

2009,31(4)

采用标准0.5μm GaAs PHEMT工艺设计了工作频段在2.4~6 GHz可应用于无线局域网(WLAN)和超宽带(UWB)接收机的超宽带低噪声放大器.从宽带电路的选择、高频电路设计的器件选择和电路结构的选择等方面讨论了如何进行超宽带低噪声放大器的设计.结果表明,通过合适的电路结构和器件参数选择,可以采用0.5μmGaAs PHEMT工艺制备满足超宽带系统要求的低噪声放大器.在UWB 3.1~5.15 GHz低频带内,该LNA增益20.8~21.6 dB,噪声系数低于

0.9~1.1 dB,输入输出驻波比均小于-10 dB.在2.4~3 GHz频带(涵盖802.11 b/g的使用范围)内,该LNA增益20.8~21.5 dB,噪声系数低于2 dB,输入输出驻波比均小于-10 dB.在频带5.2-6GHz,该LNA的噪声系数增大到1.332 dB,增益则从21.4 dB下降到19.7 dB.电路的工作电压为3.3 V.

7.期刊论文肖勇.樊勇.闫鸿.刘柏江.XIAO Yong.FAN Yong.YAN Hong.LIU Bo-jiang0.5~3.3GHz超宽带低噪声放

大器设计-电讯技术2009,49(12)

选用Agilent公司的PHEMT晶体管ATF-54143,基于负反馈技术,设计了一种超宽带低噪声放大器.其匹配网络是由微带与集总元件共同组成,使用

ADS2009对整个电路进行优化设计.在0.5~3.3 GHz的超宽带频率范围内,低噪声放大器增益大于25 dB,增益不平坦度为1.5,噪声系数不大于2 dB.可用相对介电常数为9.2、厚度为1 mm的介质基板实现该放大器,可应用于各种微波通信领域.

8.期刊论文徐国明.XU Guo-ming CMOS超宽带低噪声放大器的设计-电子与封装2010,10(8)

由于超宽带技术能够在短距离内传输几百兆的数据,帮助人们摆脱对导线的依赖,因此使得大带宽数据的无线传输从几乎不可能变为现实.尽管目前超宽带技术的标准还没有统一,但是低噪声放大器终归是其接收机中一个不可或缺的重要模块.文章介绍了一种基于0.18 μm CMOS工艺、适用于超宽带无线通信系统接收前端的低噪声放大器.结合计算机辅助设计,该超宽带低噪声放大器输入、输出均实现良好的阻抗匹配,在3GHz~10GHz的频带范围内实现了增益G=29±1dB,噪声系数小于4dB.在1.8V工作电压下放大器的直流功耗约为35mW.

9.期刊论文徐洪波.陈向东.周建明.XU Hong Bo.CHEN Xiang Dong.ZHOU Jian Ming一种超宽带低噪声放大器-电

子技术应用2009,35(6)

提出一个共源共栅结构的超宽带低噪声放大器.该电路基于台积电0.18 μm CMOS工艺,工作在3 GHz~5 GHz频率下,用来实现超宽带无线电.仿真结果表明,该低噪声放大器有最大13.6 dB的增益.整个频段噪声系数小于1.9 dB.输入和输出反射损耗都小于-11 dB.一阶压缩点在-15 dBm左右.功耗为18.7 mW.

10.学位论文孙肖磊用于超宽带系统的CMOS宽带低噪声放大器设计2008

超宽带技术(UWB)最近成为工业界和学术界共同关注的一种技术,由于其高速率、低功耗和适合短距离通信的特点,可广泛的应用于无线个域网(WPAN)等领域中。

在超宽带射频系统中,低噪声放大器(INA)的设计是最大的挑战之一。低噪声放大器必须在足够宽的范围内有足够高的增益来压缩后级电路噪声的影响,而且必须具有尽可能低的噪声系数。本文设计了一个可应用于UWB系统的宽带低噪声放大器,设计频率6-9GHz,采用0.18um CMOS工艺。论文主要内容如下:

1.详细分析了可实现宽带低噪声放大器的几种结构,对比其性能,根据本次设计的具体要求,选取共栅放大器结构作为电路的输入级,一个cascode放大器作为第二级电路来满足增益要求。并且对该结构的噪声性能做了详细的理论分析。

2.分析了恒跨导偏置源可能存在的振荡因素,设计了一个可稳定工作的恒跨导偏置电路。

3.完成版图的设计

引证文献(2条)

1.肖奔.邓爱萍一种0.8GHz~6GHz CMOS超宽带低噪声放大器设计[期刊论文]-电子技术应用 2008(12)

2.张蔚.张万荣.谢红云.金冬月.何莉剑.王扬.沙永萍基于SiGe HBT的超宽带低噪声放大器的设计[期刊论文]-微电子学 2008(2)

本文链接:https://www.wendangku.net/doc/3a13283184.html,/Periodical_dlyxtxb200701009.aspx

授权使用:南京理工大学图书馆(wfnjlg),授权号:6c828994-4eb5-4b1c-98c6-9ea701553212

下载时间:2011年3月15日

宽带低噪声放大器设计毕业设计

本科毕业设计 学院 专业 年级 姓名 设计题目宽带低噪声放大器设计 指导教师职称 ****年* 月* 日

目录 摘要 (1) Abstract. (1) 1概述 (1) 2低噪声放大器设计的原理 (2) 2.1噪声系数 (2) 2.2低噪声放大器的功率增益以及分配电压增益 (2) 2.3端口驻波比 (3) 2.4工作带宽与增益平坦度 (3) 2.5动态范围以及压缩点 (3) 2.6三阶截断点 (4) 2.7低噪声放大器的稳定性 (4) 3器件的选择 (4) 3.1放大器的选择 (5) 3.2放大器的介绍 (5) 3.3电源的供电 (5) 3.4选用器件的介绍 (5) 4模拟电路设计 (5) 4.1方案选择 (6) 4.2模拟电路设计 (6) 4.3电源电路 (6) 5电路的调试 (8) 5.1调试过程 (8) 5.2测试结果 (8) 5.3系统的改进措施 (10) 6总结 (11) 参考文献 (11)

宽带低噪声放大器设计 学生姓名:*** 学号:*********** 学院:专业: 指导老师:职称: 摘要:本文介绍了一个15V单电源供电的低噪声放大器设计,设计采用三级级联的方式。该系统主要是宽带低噪声放大器,为了满足要求,采用了高速运算放大器μa741作为前两级放大,末级用CA3140作为功率放大电路。测试结果表明,放大倍数为100倍,带宽有1MHz。 关键词:μa741;放大器;带宽;噪声系数 The design of the low noise amplifier with broadband Abstract: This article describes the design of a single 15V power supply and low noise amplifier. The system has three amplifier consisted ofμa741 and CA3140, which meet the requirements of broadband and low noise. Test results show that a amplifier with bandwidth 1MHz is 100 times. Keywords: μa741;amplifier;Bandwidth;noise figure 1概述 我们知道低噪声放大器是射频电路的重要组成部分,并且在有源滤波器等电子电路当中宽带低噪声放大器起着重要作用。而且在射频微波电路当中,放大器也起着重要作用,它的好坏直接决定了射频微波电路的功能的实现,具有很重要的现实意义,所以在制做低噪声放大器的时候我们要注意它的各项指标是否能够达标。 除此之外,我们知道随着社会的发展,以及各项科学技术的发展,对通信带宽的要求也越来越宽因此各种通信设备在宽频带上的工作要求不再是以前的一个或者几个频点。由于我国对放大器设计的技术相对来说还不算很先进,所以更需要后起之秀对放大器设计进行进一步的探索和研究。 随着时代的发展,人们对通信质量的要求也更高,其中包括要使工作频率更高、工作频率更宽以及噪声系数更小,这已经成为各项科学技术设备发展的趋势。本文介绍了一种比较简单易行的宽带低噪声放大器设计方法。本设计利用具有低噪声,高速运算的放大器μa741,以及DC-DC交换器TPS61087DCR作为此宽带的噪声放大器

高频功率放大器的设计及仿真

东北大学秦皇岛分校电子信息系 综合课程设计 高频功率放大器的设计及仿真 专业名称电子信息工程 班级学号5081112 学生姓名姜昊昃 指导教师邱新芸 设计时间2011.06.20~2011.07.01

课程设计任务书 专业:电子信息工程学号:5081112学生姓名(签名): 设计题目:高频功率放大器的设计及仿真 一、设计实验条件 Multisim软件 二、设计任务及要求 1.设计一高频功率放大器,要求的技术指标为:输出功率Po≥125mW,工作 中心频率fo=6MHz,η>65%; 2.已知:电源供电为12V,负载电阻,RL=51Ω,晶体管用2N2219,其主要参 数:Pcm=1W,Icm=750mA,V CES=1.5V, f T=70MHz,hfe≥10,功率增益Ap≥13dB(20倍)。 三、设计报告的内容 1.设计题目与设计任务(设计任务书) 2.前言(绪论)(设计的目的、意义等) 3.设计主体(各部分设计内容、分析、结论等) 4.结束语(设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间:2周 2、设计时间安排: 熟悉实验设备、收集资料:2 天 设计图纸、实验、计算、程序编写调试:4 天 编写课程设计报告:3 天 答辩:1 天

1.设计题目与设计任务(设计任务书) 1.1 设计题目 高频功率放大器的设计及仿真 1.2 设计任务 要求设计一个技术指标为输出功率Po≥125mW,工作中心频率fo=6MHz η>65%的高频功率放大器。 2. 前言(绪论) 我们通过“模电”课程知道,当输入信号为正弦波时放大器可以按照电流的导通角的不同,将其分为甲类、乙类、甲乙、丙类等工作状态。甲类放大器电流的导通角为360度,适用于小信号低功率放大;乙类放大器电流的导通角约等于180度;甲乙类放大器电流的导通角介于180度与360度之间;丙类放大器电流的导通角则小于180度。乙类和丙类都适用于大功率工作。 丙类工作状态的输出功率和效率是上述几种工作状态中最高的。高频功率放大器大多工作于丙类。但丙类放大器的电流波形失真太大,因而只能用于采用调谐回路作为负载的谐振功率放大。由于调谐回路具有滤波能力,回路电流与电压仍然极近于正弦波形,失真很小。 可是若仅仅是用一个功率放大器,不管是甲类或者丙类,都无法做到如此大的功率放大。 综上,确定此高频电路由两个模块组成:第一模块是两级甲类放大器;第二模块是一工作在丙类状态的谐振放大器,它作为功放输出级,最好能工作在临界状态。此时,输出交流功率达到最大,效率也较高,一般认为此工作状态为最佳工作状态。 3. 系统原理 3.1 高频功率放大器知识简介 在通信电路中,为了弥补信号在无线传输过程中的衰耗要求发射机具有较大的功率输出,通信距离越远,要求输出功率越大。为了获得足够大的高频输出功率,必须采用高频功率放大器。高频功率放大器是无线电发射设备的重要组成部分。在无线电信号发射过程中,发射机的振荡器产生的高频振荡信号功率很小,

宽带高频功率放大器

5.4 宽带高频功率放大器 以LC谐振回路为输出电路的功率放大器,因其相对通频带只有百分之几甚至千分之几,因此又称为窄带高频功率放大器。这种放大器比较适用于固定频率或频率变换范围较小的高频设备,如专用的通讯机、微波激励源等。除了LC谐振回路以外,常用于高频功放电路负载还有普通变压器和传输线变压器两类。这种以非谐振网络构成的放大器能够在很宽的波段内工作且不需调谐,称之为宽带高频功率放大器。 以高频变压器作为负载的功率放大器最高工作频率可达几百千赫至十几兆赫,但当工作频率更高时,由于线圈漏感和匝间分布电容的作用,其输出功率将急剧下将,这不符合高频电路的要求,因此很少使用。以传输线变压器作为负载的功率放大器,上限频率可以达到几百兆赫乃至上千兆赫,它特别适合要求频率相对变化范围较大和要求迅速更换频率的发射机,而且改变工作频率时不需要对功放电路重新调谐。本节重点分析传输线变压器的工作原理,并介绍其主要应用。 5.4.1 传输线变压器 1. 传输线变压器的结构及工作原理 传输线变压器是将传输线(双绞线、带状线、或同轴线)绕在高导磁率铁氧体的磁环上构成的。如图5-24(a)所示为1:1传输线变压器的结构示意图。 传输线变压器是基于传输线原理和变压器原理二者相结合而产生的一种耦合元件,它是以传输线方式和变压器方式同时进行能量传输。对于输入信号的高频频率分量是以传输线方式为主进行能量传输的;对于输入信号的低频频率分量是以变压器方式为主,频率愈低,变压器方式愈突出。 如图5-24(b)为传输线方式的工作原理图,图中,信号电压从1、3端输入,经传输线 R上。如果信号的波长与传输线的长度相比拟,变压器的传输,在2、4端将能量传到负载 L 两根导线固有的分布电感和相互间的分布电容就构成了传输线的分布参数等效电路,如图 5-24(d)所示。若认为分布参数为理想参数,信号源的功率全部被负载所吸收,而且信号的上限频率将不受漏感、分布电容及高导磁率磁芯的限制,可以达到很高。 图5-24 1:1传输线变压器的结构示意图及等效电路

宽带放大器设计报告

宽带放大器设计报告 ―-武汉大学电子设计基地设计组第1组:许可崔振威谢超 摘要:本系统利用可变增益放大器AD600作为核心,通过模拟开关选通不同的控制电压的方式来达到增益步进6dB,总增益从0dB到30dB的目的,其控制电压均由2.5v电压基准MAX873经过精密电阻分压得到,有效的保证了控制电压的稳定度,获得良好的波形。前置放大采用由AD844构成的正向放大器,可以有效的提高输入电阻,使输入电阻达到兆欧级别。后级放大采用增益固定为10dB的同向放大器,从而使整个电路的增益能从10dB变化到40dB,该放大器由高精度宽带运放MAX477构成,在保证良好输出波形的同时,可以使输出电压有效值大于3V。前置放大和后级放大的输出均采用峰值检测电路检测出正半周最大电压值,用于有效值的计算,采用AD603构成的AGC电路,在输入信号在0.05V~1.00V内变化时,能将输出有效值稳定在2.05~2.6 V。整个系统的通频带为1K~14.6MHz。由12位A/D 转换器MAX197对输出信号的峰值进行测量,分辨率达到1mV 。AT89S52和CycloneFPGA构成的单片机小系统板可以通过键盘,人为预置增益值来获取相应的放大倍数,同时实时显示实际增益值、输出有效值和当前增益误差。整个系统采用中文显示,界面友好美观,控制方便。

一、方案论证与选择 1.增益控制部分: 方案一 采用普通宽带运算放大器组成的放大电路,同时由分立元件构成的AGC控制电路,通过包络检波再反馈回放大器的方法来控制放大倍数,这种方法构成电路简单,但是反馈控制比较困难,难以实现步进,精度也很低。 方案二 采用集成可变增益放大器AD600作为增益控制。AD600是一款低噪声、精密控制的可变增益放大器,温度稳定性高,最大增益误差为0.5dB,满足题目要求的精度,其增益(dB)与控制电压成线性关系,因此可以方便的采用控制电压的方式来控制放大器的增益.采用D/A变换装置输出电压控制高速压控放大器AD600来实现增益的步进,采用此种方法可以获得很小的步进。但是由这种方法得到的控制电压有一定的纹波,而芯片AD600对控制电压非常敏感,微小的电压波动就能造成输出波形上下起伏,波形不佳。 方案三 主控芯片采用AD600,利用电压基准源通过精密电阻分压得到各个增益值对应得控制电压,在用模拟开关CD4051来选则不同的控制电压来达到控制增益的目的。电压基准源采用MAXIM公司2.5 V基准MAX873。 经过比较,选用方案三。 2.有效值测量部分 方案一 采用检波二极管构成的峰值检测电路,然后用A/D转换器对其检测结果进行读数。峰值检测的原理是当输入电压正半周通过时,检波管导通,对电容C充电,适当选择电容值,使得电容放电速度大于充电速度,这样,电容两端的电压可以保持在最大电压处,该电压通过一个用运算放大器构成的射极跟随器输出电压峰值。采用这种电路优点是频带响应宽,频率越高检测反而越准确,且电路简单。但是由于检波二极管存在一定的导通压降,且为非线性,测量精度低,小信号时尤其明显。同时电容值的选取也使得电路有一定的局限性,如选取太大,放电时间过长,会改善输出电压发纹波,但是会导致该电路响应速度慢;如果电容选的太小,放电时间过短,能改善电路的响应时间,但也会导致低频时输出电压纹波较大。 方案二 采用集成电路AD637作为有效值运算,它测量有效值的范围为0-7V,精度优于0.5%,且外围元件少,频带宽,对于一个有效值为1V的信号,它的3dB带宽为8MHz,并且可对输入信号的电平以dB形式表示。该方案精度高,直接输出有效值,但电路稍复杂,且不适合高频信号。 经过比较,方案二中AD637对小信号测量具有很大优势,而方案一中在频带方面满足要求,考虑到题目的频带范围和制作成本的因素,采用方案一。 3.自动增益控制部分(AGC) 方案一 AGC电路实际上是一个根据输出电压的动态的调整放大倍数,从而使输出稳定在预定范围的反馈型电路。根据该特点可以引入CPU、A/D和D/A转换器通过程序对放大倍数进行控制,即数字式AGC,此种AGC电路的输出范围完全由人为设定,可以很容易满足题目要求,

一种增益可控的射频宽带放大器设计

一种增益可控的射频宽带放大器设计 射频宽带放大器是各类电子仪器与仪表里很常用、很重要的一个單元电路。为此,论述了一款增益可控的射频宽带放大器的设计选型的过程,给出了参数的计算过程和选型是要考虑的技术指标和功能。因此结论对模拟放大电路的设计具有一定的参考价值。 标签:射频;宽带放大器;参数计算;选型要求 doi:10.19311/https://www.wendangku.net/doc/3a13283184.html,ki.16723198.2017.09.088 1理论计算 1.1设计要求 根据用户对高频、大信号的放大要求,课题研究小组进过分析和研究,得出下列的具体设计参数: (1)被设计的放大器的电压增益A V≥52dB,增益可控52dB,输入信号电压的有效值Vi≤5mV,其输入阻抗、输出阻抗均为50欧姆,负载电阻50欧姆,且输出电压有效值V o≥2V,波形无明显失真; (2)在50MHz~160MHz频率范围内增益波动不大于2dB; (3)-3dB的通频带不窄于40MHz~200MHz,即fL≤40MHz和fH≥200MHz; (4)电压增益A V≥52dB,当输入信号频率f≤20MHz或输入信号频率f≥270MHz时,实测电压增益A V均不大于20dB; (5)放大器采用+12V单电源供电,所需其它电源电压自行转换。 通过对上述设计要求的分析可知,此课题对宽带放大器的参数选型提出了很高的要求,诸如:压摆率、增益带宽积、最大输出功率、高频高输出摆幅等都要进行严格的计算。只有做到科学计算,才能为正确的集成放大器选型打下坚实的基础,为后续设计提供科学保障。 1.2放大器的参数计算 (1)最小增益需要达到52dB(400倍),带宽200MHz,系统增益带宽积高达8*109MHz(*此处应注意多级放大和增益分配*); (2)输入电压有效值最大5mv,需要做小信号低噪声放大;

宽带射频功率放大器设计

?阻抗变换器和阻抗匹配网络已经成为射频电路以及最大功率传输系统中的基本部件。为了使宽带射频功率放大器的输入、输出达到最佳的功率匹配,匹配电路的设计成为射频功率放大器的重要任务。要实现宽带内的最大功率传输,匹配电路设计非常困难。本文设计的同轴变换器电路就能实现高效率的电路匹配。同轴变换器具有功率容量大、频带宽和屏蔽好的特性,广泛应用于VHF/UHF波段。常见的同轴变换器有1:4和1:9阻抗变换,如图1所示。但是实际应用中,线阻抗与负载不匹配时,它们的阻抗变换不再简单看作1:4或1:9.本文通过建立模型,提出一种简化分析方法。 1 同轴变换器模型 同轴变换器有三个重要参数:阻抗变换比、特征阻抗和电长度。这里用电长度是为了分析方便。当同轴线的介质和长度一定时,电长度就是频率的函数,可以不必考虑频率。 1.1理想模型 理想的1:4变换器的输入、输出阻抗都匹配,每根同轴线的输入、输出阻抗等于其特征阻抗Z0,其等效模型如图2所示。

其源阻抗Zg与ZL负载阻抗变换比为: 图2和公式(1)表明:变换器的阻抗变换比等于输入阻抗与输出阻抗之比。 同轴变换器的输入阻抗等于同轴线的输入阻抗并联,输出阻抗等于同轴线的输出阻抗串联。 1.2通用模型 由于特征阻抗是实数,而源阻抗与负载阻抗一般都是复数,所以,就不能简单的用变换比来计算。阻抗匹配就是输入阻抗等于源阻抗的共轭,实现功率的最大传输。特征阻抗为Z0,电长度为E的无耗同轴线接复阻抗的电路如图3所示。 由于源阻抗与同轴线特征不匹配,电路的反射系数就不是负载反射系数。 由于同轴线是无耗的,进入同轴线的功率就等于负载消耗的功率。那就可以把电路简化只有一个负载Zin,又因为Zg与Zin都是复数且串联,就可以把Zg中的虚部等效到Zin中,最后得到反射系数为: 其中:

宽带放大器设计论文

本科生毕业论文(设计) 题目(中文):宽带放大器 (英文): Wide-band Amplifier 学生姓名: 学号: 系别:物理与电子信息工程 专业:电子信息科学与技术 指导教师: 起止日期: 2010年 5月 23日

怀化学院本科毕业论文(设计)诚信声明 本人郑重声明:所呈交的本科毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文(设计)作者签名: 年月日

目录 摘要.............................................................................................. I 关键字.............................................................................................. I Abstract ............................................................................................. I Key words ......................................................................................... II 1 前言 .. (1) 1.1运算放大器的发展及应用概况 (1) 1.2宽带放大器简介 (2) 1.3课题研究的意义 (3) 2 设计任务与要求 (3) 2.1设计任务 (3) 2.2设计要求 (3) 2.2.1 基本要求 (3) 2.2.2 发挥部分 (4) 3 设计方案的选择与论证 (4) 3.1宽带放大器的总体设计方案 (4) 3.1.1 增益控制电路设计方案 (6) 3.1.2 功率输出部分设计方案 (7) 3.1.3 有效值测量电路设计方案 (7) 3.1.4 自动增益控制(AGC)设计方案 (7) 4 理论分析与参数计算 (8) 4.1带宽增益积 (8) 4.2电压控制增益的原理 (8) 4.3自动增益控制介绍 (11) 4.4正弦电压有效值的计算 (12) 5 系统各模块的电路设计 (12) 5.1直流稳压电源部分 (12) 5.2输入缓冲和增益控制部分 (12) 5.3增益控制部分 (13)

功率放大器设计的关键:输出匹配电路的性能要点

功率放大器设计的关键:输出匹配电路的性能 对于任何功率放大器(功率放大器)设计,输出匹配电路的性能都是个关键。但是,在设计过程中,有一个问题常常为人们所忽视,那就是输出匹配电路的功率损耗。这些功率损耗出现在匹配网络的电容器、电感器,以及其他耗能元件中。功率损耗会降低功率放大器的工作效率及功率输出能力。 因为输出匹配电路并不是一个50Ω的元件,所以耗散损失与传感器增益有很大的区别。输出匹配的具体电路不同,损耗也不一样。对于设计者而言,即使他没有选择不同技术的余地,在带宽和耗散损失之间,在设计方面仍然可以做很多折衷。 匹配网络是用来实现阻抗变化的,就像是功率从一个系统或子系统传送另一个系统或者子系统,RF设计者们在这上面下了很大的功夫。对于功率放大器,阻抗控制着传送到输出端的功率大小,它的增益,还有它产生的噪声。因此,功率放大器匹配网络的设计是性能达到最优的关键。 损耗有不同的定义,但是这里我们关心的是在匹配网络中,RF功率以热量的形式耗散掉的损耗。这些损耗掉的功率是没有任何用途。依据匹配电路功能的不同,损耗的可接受范围也不同。对功率放大器来讲,输出匹配损耗一直是人们关注的问题,因为这牵涉到很大的功率。效率低不仅会缩短通话时间,而且还会在散热和可靠性方面带来很大的问题。 例如,一个GSM功率放大器工作在3.5V电压时,效率是55%,能够输出34dBm 的功率。在输出功率为最大时,功率放大器的电流为1.3A。匹配的损耗在 0.5dB到1dB的数量级,这与输出匹配的具体电路有关。在没有耗散损失时,功率放大器的效率为62%到69%。尽管损耗是无法完全避免的,但是这个例子告诉我们,在功率放大器匹配网络中,损耗是首要问题。 耗散损失 现在我们来看一个网络,研究一个匹配网络(图1a)中的耗散损失。电源通过无源匹配网络向无源负载传输功率。在电源和负载阻抗之间没有任何其他的限制。把匹配网络和负载合在一起考虑,电源输出一个固定量的功率Pdel到这个网络(图1b)。输出功率的一部分以热量的形式耗散在匹配网络中。而其余的则传输到负载。Pdel是传输到匹配网络和负载(图 1c)上的总功率,PL是传输到负载的那部分功率。 了解了这两个量,我们就可以知道,实际上到底有多大的一部分功率是作为有用功率从电源传输到了负载,其比例等于PL/Pdel。 这是对功率放大器输出匹配的耗散损失的正确测量,因为它只考虑了实际传输

实验四线性宽带功率放大器

47 实验四 线性宽带功率放大器 一、实验目的 了解线性宽带功率放大器工作状态的特点 二、实验内容 1. 了解线性宽带功率放大器工作状态的特点 2. 掌握线性功率放大器的幅频特性 三、实验原理及实验电路说明 1. 传输线变压器工作原理 现代通信的发展趋势之一是在宽波段工作范围内能采用自动调谐技术,以便于迅速转换工作频率。为了满足上述要求,可以在发射机的中间各级采用宽带高频功率放大器,它不需要调谐回路,就能在很宽的波段范围内获得线性放大。但为了只输出所需的工作频率,发射机末级(有时还包括末前级)还要采用调谐放大器。当然,所付出的代价是输出功率和功率增益都降低了。因此,一般来说,宽带功率放大器适用于中、小功率级。对于大功率设备来说,可以采用宽带功放作为推动级同样也能节约调谐时间。 最常见的宽带高频功率放大器是利用宽带变压器做耦合电路的放大器。宽带变压器有两种形式:一种是利用普通变压器的原理,只是采用高频磁芯,可工作到短波波段;另一种是利用传输线原理和变压器原理二者结合的所谓传输线变压器,这是最常用的一种宽带变压器。 传输线变压器它是将传输线(双绞线、带状线或同轴电缆等)绕在高导磁芯上构成的,以传输线方式与变压器方式同时进行能量传输。图9-1为4:1传输线变压器。图9-2 为传输线变压器的等效电路图。

的扩展方法是相互制约的。为 了扩展下限频率,就需要增大 初级线圈电感量,使其在低频 段也能取得较大的输入阻抗, 如采用高磁导率的高频磁芯和 增加初级线圈的匝数,但这样 做将使变压器的漏感和分布电容增大,降低了上限频率;为了扩展上限频 率,就需要减小漏感和分布电容,如采用低磁导率的高频磁芯和减少线圈 的匝数,但这样做又会使下限频率提高。 把传输线的原理应用于变压器,就可以提高工作频率的上限,并解决 带宽问题。传输线变压器有两种工作方式:一种是按照传输线方式来工作, 即在它的两个线圈中通过大小相等、方向相反的电流,磁芯中的磁场正好 相互抵消。因此,磁芯没有功率损耗,磁芯对传输线的工作没有什么影响。 这种工作方式称为传输线模式。另一种是按照变压器方式工作,此时线圈 中有激磁电流,并在磁芯中产生公共磁场,有铁芯功率损耗。这种方式称 为变压器模式。传输线变压器通常同时存在着这两种模式,或者说,传输 变压器正是利用这两种模式来适应不同的功用的。 当工作在低频段时,由于信号波长远大于传输线长度,分布参数很小, 可以忽略,故变压器方式起主要作用。由于磁芯的磁导率很高,所以虽然 传输线段短也能获得足够大 的初级电感量,保证了传输 线变压器的低频特性较好。 图9-3传输线变压器高频段等效电路图 48

宽带放大器(王正齐)

宽带放大器 作者:王正齐陈华奇邓如岑(华中科技大学)编号:1-16 赛前辅导老师:尹仕文稿整理辅导老师:肖看 本设计利用可变增益宽带放大器AD603来提高增益和扩大AGC控制范围,通过软件补偿减小增益调节的步进间隔和提高准确度。输入部分采用高速电压反馈型运放OPA642作跟随器提高输入阻抗,并且在不影响性能的条件下给输入部分加了保护电路。使用了多种抗干扰措施以减少噪声并抑制高频自激。功率输出部分采用分立元件制作。整个系统通频带为1kHz~20MHz,最小增益0dB,最大增益80dB。增益步进1dB,60dB以下预置增益与实际增益误差小于0.2dB。不失真输出电压有效值达9.5V,输出4.5V-5.5V时AGC控制范围为66dB。 方案论证与比较 1 增益控制部分 方案一:原理框图如图1所示,场效应管工作在可变电阻区,输出信号取自电阻与场效应管与对'V的分压。采用场效应管作AGC控制可以达到很高的频率和很低的噪声,但温度、电源等的漂移将会引起分压比的变化,用这种方案很难实现增益的精确控制和长时间稳定。 方案二:采用可编程放大器的思想,将输入的交流信号作为高速D/A的基准电压,这时的D/A作为一个程控衰减器。理论上讲,只要D/A的速度够快、精度够高可以实现很宽范围的精密增益调节。但是控制的数字量和最后的增益(dB)不成线性关系而是成指数关系,造成增益调节不均匀,精度下降。 2所示,使用控制电压与增益成线性关系的可编程增益放大器 图1 方案一示意图

PGA ,用控制电压和增益(dB )成线性关系的可变增益放大器来实现增益控制。用电压控制增益,便于单片机控制,同时可以减少噪声和干扰。 综上所述,选用方案三,采用集成可变增益放大器AD603作增益控制。AD603是一款低噪声、精密控制的可变增益放大器,温度稳定性高,最大增益误差为0.5dB ,满足题目要求的精度,其增益(dB )与控制电压(V )成线性关系,因此可以很方便地使用D/A 输出电压控制放大器的增益。 2 功率输出部分 根据赛题要求,放大器通频带从10kHz 到6MHz ,单纯的用音频或射频放大的方法来完成功率输出,要做到6V 有效值输出难度较大,而用高电压输出的运放来做又很不现实,因为市面上很难买到宽带功率运放。这时候采用分立元件就能显示出优势来了。 3 测量有效值部分 方案一:利用高速ADC 对电压进行采样,将一周期内的数据输入单片机并计算其均方根值,即可得出电压有效值: ∑== n i i U N U 1 21 此方案具有抗干扰能力强、设计灵活、精度高等优点,但调试困难,高频时采样困难而且计算量大,增加了软件难度。 方案二:对信号进行精密整流并积分,得到正弦电压的平均值,再进行ADC 采样,利用平均值和有效值之间的简单换算关系,计算出有效值显示。只用了简单的整流滤波电路和单片机就可以完成交流信号有效值的测量。但此方法对非正弦波的测量会引起较大的误差。 方案三:采用集成真有效值变换芯片,直接输出被测信号的真有效值。这 图2 方案三示意图 输入缓冲

射频功率放大器宽带匹配如何解决

射频功率放大器宽带匹配如何解决 在很多远程通信、雷达或测试系统中,要求发射机功放工作在非常宽的频率范围。例如,工作于多个倍频程甚至于几十个倍频程。这就需要对射频功放进行宽带匹配设计,宽带功放具有一些显著的优点,它不需要调谐谐振电路,可实现快速频率捷变或发射宽的多模信号频谱。宽带匹配是宽带阻抗匹配的简称,是宽带射频功放以及最大功率传输系统的主要电路,宽带匹配的作用是,使射频功率放大管的输入、输出达到最佳的阻抗匹配,实现宽带内的最大功率放大传输。因此,宽带阻抗匹配网络的设计是宽带射频功放设计的主要任务。同轴电缆阻抗变换器简称同轴变换器,能实现有效的宽带匹配,可以为射频功率放大管提供宽频带工作的条件。同轴变换器具有功率容量大、频带宽和屏蔽性能好的特性,可广泛应用于HF/VHF/UHF波段。 1方案设计 同轴变换器及其组合是一种具有高阻抗变换比的宽带阻抗匹配网络,它能将射频功率放大管的较低的输入阻抗或输出阻抗有效匹配到系统的标准阻抗50 Ω。同轴变换器设计方案多选用1:1变比形式、1:4变比形式及其组合形式。 1.1 同轴变换器原理 同轴变换器是由套上铁氧体磁芯的一段同轴电缆或同轴电缆绕在铁氧体磁芯上构成,一般称为“巴伦”。“巴伦”的结构如图1(a)所示,其等效电路如图1(b)所示。

同轴变换器处于集中参数与分布参数之问。因此,在低频端,它的等效电路可用传统的低频变压器特性描述,而在较高频率时,它是特性阻抗为Zo的传输线。同轴变换器的优点在于寄生的匝间电容决定了它的特性阻抗,而在传统的离散的绕匝变压器中,寄生电容对频率性能的贡献是负面作用。 当Rs=RL= Zo时,“巴伦”可以认为是1:1的阻抗变换器。同轴变换器在设计使用上有两点必须注意:源阻抗、负载阻抗和传输线阻抗的匹配关系;输入端和输出端应在规定的连接及接地方式下应用。在大多数情况下,电缆长度不能超过最小波长的八分之一。为了保证低频响应良好,还必须有一定绕组长度,可以依据下列经验公式来估算在频率高端和频率低端时所需绕组的长度。 在高频端: lmax≤ 18 O00n/fh(cm) (1) (1)式中,fh为最高工作频率(MHz);n为常数,一般取为0.08左右。 在低频端: lmin≥ 50Rl / [ (1 u/uo ) × fl ] (2) (2)式中,fl为最低工作频率(MHz);u/uo为磁芯在时的相对磁导率。 磁芯的影响可以用等效电感来反应,等效电感决定了频段低段反射量的大小,计算为: L=uo ur n2 (S/J) (3)

宽带直流放大器设计方案

宽带直流放大器方案设计 一、方案的选择和论证 分析题目要求,设计需要满足以下几个技术指标:在输入电压有效值Vi≤10 mV 情况下放大器电压增益必须大于60dB,且电压增益为60dB时,输出端噪声电压的峰-峰值VONPP≤0.3V。另外,3dB通频带0~10MHz;在0~9MHz通频带内增益起伏≤1dB,能为50欧姆的负载输出正弦有效值10V的电压。 基于以上要求,我们把整个放大器分为5个板块来设计。前置缓冲级,中间增益可调放大级,后级功率放大电路,电源部分和滤波器。 系统总体框图: 1.前置缓冲级方案论证 方案一:采用宽带高精度集成运放。 缓冲级对整个放大电路来说尤为重要,高质量的前级是放大电路的基本保障,故本设计中采用宽带高精度低噪声运算放大器OPA620构成电压增益为6dB的缓冲级。该运放增益宽带乘积为200M赫兹,能很好的满足题目要求。 方案二:采用普通运放。 普通运放虽然价格稍低,但是带宽和精度都十分有限,理论上虽然能用反馈的方式扩宽通频带,但是题目要求的10M赫兹频带太宽,故普通低价的运放很难达到实验要求。 比较上述两种方案,方案一能更好的完善题要求的指标,方案二虽然成本较低,但是不容易达到题目要求,且前级配置的高低对后级电路影响很大。故选择方案一。 2.中间增益放大级方案论证 方案一:采用三极管构成多级放大电路

若用分立元件构成60dB放大器,则须采用三极管构成的多级放大器。此方案有选材方便和成本较低的优点,但是选择性能合适的三级管比较费时间,选择合适的三极管配对组合更是不容易,并且题目给出的指标较高,三级管构成的多级放大器容易引起更多的干扰,影响放大质量。此外,晶体管构成的多级放大电路不易实现大范围的增益连续可调,这是相比于集成运算放大器的又一大缺点。所以,我们对下一种方案进行论证。 方案二:使用集成运放OPA620构成2级放大 单个OPA620的增益可调范围为 -20bB — +20dB ,采用两级相连,则可以实现-40dB-+40dB的可调范围。从厂商的数据手册可以看出,OPA620外围电路简单,容易操控,通频带内增益起伏小于0.05dB,且放大效果较好。但是若要求实现提高部分0-60dB全范围的连续可调,两级OPA620放大则不能达到题目要求。 方案三:使用低噪声增益可控放大器AD603 使用两级AD603构成的增益可调放大电路。 AD603是主要用于RF和IF AGC系统的低噪声可调增益放大器,它具有引脚可编程增益功能,可以使用一个外部电阻设置增益范围内的任何增益子范围,控制接口可以输入差分电压,也可以输入单端的正控制或负控制电压,使用十分方便。单级AD603便可以实现0-40dB的电压放大,且该增益范围内有30MHz的频带宽,性能优异,如果采用两级连放,理论上可以实现0-80dB的增益可调范围,能满足题目要求。其次,AD603构成的增益可控放大电路有很大的提升空间,可以通过电位器获取基准电压进行手动控制,通过模拟开关连接电阻器实现增益程控,通过单片机配合DAC模块实现不同精度的增益数控。 所以比较上述两种方案,AD603与OPA620相比,容易实现增益数控,AD603有更高的性价比,我们最终选择方案三。 3.增益控制电路 方案一:单片机和数模转换芯片实现增益可调 使用89C51单片机,选择稳定的基准电压,配合DAC0832输出电压信号控制AD603,从而实现增益数控。 DAC0832是采样频率为8位的D/A转换芯片,集成电路内有两级输入寄存器,D/A转换结果采用电流形式输出,理论精度为1/256,能满足增益步进5dB的要求。该芯片价格便宜,使用方便,算是较常用的8位DAC芯片。该芯片为电流输出型,若采用该芯片实现AD603的增益可控,则须在输出端加上运算放大器LM324,实现电流到电压的转换,从而稳定实现增益可调。 方案二:单片机、模拟开关和电阻网络实现增益可调 使用89C51单片机,配合模拟开关控制不少于12个串联的电阻,通过取得电阻上的稳定电压控制AD603,从而实现步进为5dB的增益数控。模拟开关控制电阻网络与DAC模块工作原理相似,但是精度就远远不如8位DAC,并且使用模拟开关和电阻网络扩大了控制电路,电路集成度降低,引入更多的干扰因素。再者,从成本上看来,该方案也是不经济的。 方案三:滑动变阻器实现增益手动可调 通过电位器获取与基准电压成一定比例的控制电压输入AD603控制端,实现手动增益可调。 该方案很容易实现增益连续可调,相比以上两种方案成本是最低的,理论控制精度最高,精度仅有电阻器可调精度决定,但是此方案仅适用于固定范围内的手动

宽带功率放大器预失真技术综述

宽带功率放大器预失真技术综述 摘要:随着无线需求和无线业务的不断增加,传输信号必将不断向高质量高速率宽带宽发展。在宽带应用中,由于传输信号带宽增加,宽带功率放大器不同于窄带输入下的无记忆特性,将表现出频率有关的记忆非线性特性。本文重点阐述了功率放大器的线性化技术,数字预失真的基本原理及学习结构,功率放大器的基本模型及模型的评估指标。 关键词:功率放大器,线性化,数字预失真,模型 0引言 随着无线通信技术的日益发展和普遍使用,为高速多媒体业务需求而开发的移动通信 3G技术在通讯容量与质量等方面将不能满足人们日趋增长的需求,而且移动4G系统也日益商用化,其系统不只是单一地为了适应宽带和用户数的增长,更为重要的是它适应多媒体的传输需求,将多媒体等洪量信息通过信道高速传输出去,而且对通讯服务质量提出了更高的要求。近年来,随着全球对环保要求的提高,人们关注的不仅仅是频谱效率的提高问题,还关注到功率效率、能量效率的提高问题。绿色通信的概念正是在这样的背景下提出的,大量提高功效和能效的技术也涌现出来。绿色通信技术主要采用创新性的分布式技术、高功率放大器、多载波等技术以减小能量消耗。作为无线通信系统中不可或缺的重要部件之一,关于功率放大器的线性化研究及其实现,对推动绿色通信概念及理论的深入发展、对节能减排的意义重大,是一项具有理论意义和实际应用价值的课题。 功率放大器是通信系统中的一个关键部件,功放的非线性特性引起的频谱扩张会对邻道信号产生干扰,并且带内失真也会增加误码率。随着新业务的发展,现代无线通信系统中广泛采用了正交幅度调制(Quadrature Amplitude Modulation, QAM)、正交频分复用(Orthogonal Frequency Division Multiplexing, OFDM)技术等高频谱利用率的调制方式。这些调制方式对发射机中射频功放的线性度提出了很高的要求。因此为了保障通信系统的功率效率和性能,必须有效的补偿放大器的非线性失真,使放大器能够高效的线性工作。 1功率放大器的线性化技术 为了更好地利用频谱资源和实现更高速率的无线传输,通常会选择具有更高效、更先进的无线通信技术,如QAM和OFDM技术,QAM技术采用非恒定包络调制方式,对放大器线性度要求高,与非线性功率放大器在通信系统中的共同使用,会由于功率放大器对信号产生的畸变,使信号频谱扩展,导致对相邻信道其他用户的干扰,恶化系统误比特率(bit error rate, BER)性能。OFDM技术以其高的频谱利用率、很强的抗多径干扰及窄带干扰能力、便于移动接收等优点,成为无线通信高速率传输中十分有竞争力的一种技术。但是OFDM 技术对同步误差的高度敏感性以及高的峰均比(peak-to-average power ratio, PAPR)是OFDM 系统面临的主要难题。高PAPR会使传输的射频信号工作在功率放大器的临近饱和区,从而在接收端产生无法恢复的畸变。另外,对于便携移动设备,比如手机,平板电脑,功率放大器是产生功耗的最大的一部分,如果采用一定的线性化技术来提高功率放大器的效率,就能在很大程度上减小便携移动设备的耗电量,从而延长待机时间。 国内外关于功率放大器的非线性特性及线性化技术的研究,截止目前,已先后提出了一系列技术,各种技术都有自己的优、缺点。常用的功率放大器线性化技术有:功率回退技术(power back off, PBO)[1][2]、包络消除和恢复技术(envelope elimination and restoration,

宽带放大器设计

宽带放大器设计 一、设计目的 (1) 掌握宽带放大器的设计、组装与调试方法; (2) 熟悉集成电路的使用方法。 二、设计内容及要求 (1) 设计一个宽频带放大器,要求带宽大于30MHz,可扩展; (2) 带宽增益积大于300MHz,可扩展; (3) 输出阻抗为600 Q,输出电压》1V。 三、宽带放大器原理 几种常见宽带放大器(参考): 1?二级直接耦合宽带放大器电路 图1是二级直接耦合宽带放大器电路,第二级采用PNP型晶体管,这种电路适合于提 高电源电压的利用率,需要给出较大输出振幅的电路。各级开环增益为20dB,与R1串接 的电位器RP1用于调整晶体管最适宜的偏置。隔直电容C1和C2的参数由低频特性确定, 频率特性上限由所使用的晶体管(特别是VT2 )限制,若使用2SA495晶体管,约有30MHz 的带宽。VT2要求具有高截止频率f H,低输入电容C ob晶体管。直流偏置是降低集电极负载电阻,有较大工作电流。这种电路要采用稳定电源供电,低负载使用时,要在VT2输出增 设1级射随电路。两级宽带放大器构成电压串联负反馈电路,其电压放大倍数 R5 Auf =1 11 R4

2.宽带缓冲器电路 宽带缓冲器电路如图 2所示。这种电路用作电流驱动能力较弱的通用宽带运放输出电 路,要求高速动作的无放电电路及 50 Q 负载的线路驱动电路等。 该电路属于简易功率合成器, VT1、VT2、VT3和VT4均工作在射极跟随状态。要求 VT1与VT2 , VT3与VT4参数一致。输入的功率 P IN 在A 点一分为二,经过电流放大后, 在B 点合成。电压放大倍数不超过 2,但接近2。但电流放大倍数较大,因此功率放大倍数 也较大。此电路输入阻抗高,而输出阻抗低,正适合于作驱动级。 输出 loon 输入 O 图2宽带缓冲器电路 电阻Ri 用于防止高频振荡等异常动作。旁路电容 Cl 和C2也很重要,要靠近晶体 管安装。 3.10MHz 以上的宽带放大器电路 图3是采用卩PC4539C 构成的宽带放大器电路。视频放大器常采用差动输入/差动输 出的卩A733,此电路是电流差动型的宽带放大器电路,转换速率高 (60V /卩s), GB 乘积大 (300MHz),高频特性优良,并由 卩PC4539外部设定工作条件。 o-|?V 2SOJ45 2SA733 2SC94> 2SA733 1

高频功率放大器

1.原理说明 利用选频网络作为负载回路的功率放大器称为谐振功率放大器。它是无线电发射机中的重要组成部件。根据放大器电流导通角θ的范围可以分为甲类、乙类、丙类等不同类型的功率放大器。电流导通角θ愈小放大器的效率η愈高。如甲类功放的θ=180o ,效率η最高也只能达50%,而丙类功放的θ<90o ,效率η可达到80%。甲类功率放大器适合作为中间级或输出功率较小的末级功率放大器。丙类功率放大器通常作为末级功放以获得较大的输出功率和较高的效率。 高频功率放大器按其工作频带的宽窄划分为窄带高频功率放大器和宽带高频功率放大器两种,窄带高频功率放大器通常以具有选频滤波作用的选频电路作为输出回路,故又称为调谐功率放大器或谐振功率放大器;宽带高频功率放大器的输出电路则是传输线变压器或其他宽带匹配电路,因此又称为非调谐功率放大器。高频功率放大器是一种能量转换器件,它将电源供给的直流能量转换成为高频交流输出。 1.1高频功放的主要技术指标 1.1.1 功率关系: 功率放大器的作用原理是利用输入到基极的信号来控制集电极的直流电源所供给的直流功率O P ,使之一部分转变为交流信号功率1P 输出去,一部分功率以热能的形式消耗在集电极上,成为集电极耗散功率C P 。 根据能量守衡定理:1o C P P P =+ 直流功率: 输出交流功率:221111 1222 c c c c L L U P U I I R R = ?== C U -----回路两端的基频电压 c1I ----- 基频电流 L R ----回路的负载阻抗。 1.1.2 放大器的集电极效率 1 101 122 c c o CC c U I P P U I ηξγ?===? 其中集电极电压利用系数:1c c L CC CC U I R U U ξ= = 0o c CC P I U =?

高频宽带功率放大器的设计与制作

----有关遥控 有关射频 有关无线通讯的 专业文档资料站 315MHz.COM 遥控网 RF315.COM 射频网  RF315.COM首页 | 遥控制作(无线 红外 载波 DTMF等) | 相关元器件 | 基础知识 | 标准、法规 | │传感器 单片机 自控 CAD等综合版│ 基础知识>Follow me Radio跟我学无线电>第二章:高频宽带功率放大器的设计与制作(2)输入回路阻抗变换电路的设计 输出1W功率高频晶体管放大电路的设计 输出回路阻抗变换电路的设计  日期:2006-01-11 15作者:来源:microearonline.com 《高频电路设计与制作》第二章高频放大器设计与制作2-4 高频宽带功率放大器的设计与制作(第二部分) 输入回路阻抗变换电路的设计 输出1W功率高频晶体管放大电路的设计 输出回路阻抗变换电路的设计 《高频电路设计与制作》章节目录 第一章高频电路基本常识 第二章高频放大器设计与制作 第三章高频振荡电路的设计与制作 第四章PLL数字锁相环电路设计与制作 第五章变频器电路设计与制作 第六章FM频率调制/解调电路的设计制作 第七章AM幅度调制/解调电路设计与制作 第八章实用高频电测仪表制作 回总目录页查看28个制作总装效果 电路原理图PCB墨稿PROTEL格式文件器材供应 第二章高频放大器设计与制作查看本章节详细目录 2-1 高频信号放大器所应具备的特征 2-2 使用FET(场效应管)高频放大期的设计-制作 2-3 使用IC的宽频带放大器的设计-制作 2-4 宽频带功率放大器的设计-制作 小信号放大器与功率放大器的差异 功率放大器工作点选取方法 阻抗匹配-提高效率 本AB类功率放大器的设 计要点

相关文档