文档库 最新最全的文档下载
当前位置:文档库 › 催化作用基本原理2

催化作用基本原理2

催化剂的组成与功能

催化剂的组成与功能 催化剂的组成:活性组分 载体 助催化剂 催化剂组分与功能关系: 一、 活性组分 它是催化剂的主要组分,有时由一种物质组成,有时由多种物质组成 如:乙烯氧化制环氧乙烷的银催化剂;丙烯氨氧化制丙烯腈用的钼和铋催化剂 2% 4% 6% 8% 10% 氨 含量 Mo的混合比 Mo-Fe合金组成与活性关系

活性组分的分类: 二、载体 载体是催化剂活性组分的分散剂、粘合剂和支撑物,是负载活性组分的骨架。 例如,乙烯氧化制环氧乙烷催化剂中的Ag就是负载在“α—Al2O3上的,这里的α—Al2O 3称为载体。 载体还常分为惰性载体与活性载体。严格来说,催化剂中的组分都不是惰性的,都对主剂与助剂有所影响,只不过活性载体的作用更为明显而已。 载体的作用与助催化剂的作用在很多方面有类似之处,不同的是载体量大,助催化剂量小;前者作用较缓和,后者较明显。另外,由于载体量大,可赋予催化剂以基本的物理结构与性能,如孔结构、比表面、宏观外形、机械强度等。此外,对主催化剂和助催化剂起分散作用,尤其对贵金属既可减少其用量,又可提高其活性,降低催化剂成本。作为高效催化剂,活

性组分与裁体的选择都非常重要。 下面是载体的分类和部分常见载体的种类: 催化剂的活性随载体比表面的增加而增加,为获得较高的活性,往往将活性组分负载于大比表面载体上。 载体与催化剂的活性、选择性、热稳定性、机械强度以及催化过程的传递特性有关,因此,在筛选和制造优良的催化剂时,需要弄清载体的物理性质和它的功能。 催化剂组分与含量的表示方法:例如:合成氨催化剂Fe—K2O—Al2O3用“—’将催化剂中的各组分隔开:加氢脱硫催化剂Co—Mo/α—Al2O3,斜线上为主剂和助剂,斜线下为载体。各组分的含量可用重量%、重量比表示,也可用原子%、原子比表示。

TiO2光催化原理及应用

TiO2光催化原理及应用 一.前言 在世界人口持续增加以及广泛工业化的过程中,饮用水源的污染问题日趋严重。根据世界卫生组织的估计,地球上22% 的居民日常生活中的饮用水不符合世界卫生组织建议的饮用水标准。长期摄入不干净饮用水将会对人的身体健康造成严重危害, 世界围每年大概有200 万人由于水传播疾病死亡。水中的污染物呈现出多样化的趋势,常见的污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规的饮用水净化技术有氯气、臭氧和紫外线消毒以及过滤、吸附、静置等,但是这些方法对新生的污物往往不是非常有效,并且可能导致二次污染。包括我国在世界围广泛应用的氯气消毒法,可能在水中生成对人类健康有害的高氯酸盐。臭氧消毒是比较安全的消毒方法,但是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常的维护都需要专业的技术人员;吸附法一般需要消耗大量的吸附剂,使用过的吸附剂一般需要额外的处理。这些缺点限制了它们的应用围,迫切需要发展一种高效、绿色、简单的净化水技术。 自然界中,植物、藻类和某些细菌能在太的照射下,利用光合色素将二氧化碳(或硫化氧)和水转化为有机物,并释放出氧气(或氢气)。这种光合作用是一系列复杂代反应的总和,是生物界赖以生存的基础,也是地球碳氧循环的重要媒介。光化学反应的过程与植物的光合作用很相似。光化学反应一般可以分为直接光解和间接光解两类。直接光解为物质吸收能量达到激发态,吸收的能量使反应物的电子在轨道间的转移,当强度够大时,可造成化学键的断裂,产生其它物质。直接光解是光化学反应中最简单的形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。 半导体在光的照射下,能将光能转化为化学能,促使化合物的合成或使化合物(有机物、无机物)分解的过程称之为半导体光催化。半导体光催化是光化学反应的一个前沿研究领域,它能使许多通常情况下难以实现或不可能进行的反应在比较温和的条件下顺利进行。与传统技术相比,光催化技术具有两个最显著的特征:第一,光催化是低温深度反应技术。光催化氧化可在室温下将水、空气和土壤中有机污染物等完全氧化二氧化碳和水等产物。第二,光催化可利用紫外光或太作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目的,对净化受无机重金属离子污染的废水及回收贵金属亦有显著效果。 二.TiO2的性质及光催化原理 许多半导体材料(如TiO2,ZnO,Fe2O3,ZnS,CdS等)具有合适的能带结构可以作为光催化剂。但是,由于某些化合物本身具有一定的毒性,而且有的半导体在光照下不稳定,存在不同程度的光腐蚀现象。在众多半导体光催化材料中,TiO2以其化学性质稳定、氧化-还原性强、抗腐蚀、无毒及成本低而成为目前最为广泛使用的半导体光催化剂。 TiO2属于一种n型半导体材料,它有三种晶型——锐钛矿相、金红石相和板钛矿相,板

催化原理习题

《催化原理》习题(一) 第一章 一、填空题 a)本世纪初,合成NH3 ,HNO3 ,H2SO4催化剂的研制成功为近代无 机化学工业的发展奠定了基础。催化裂化,催化加氢裂化,催化 重整催化剂的研制成功促进了石油化工的发展。 b)随着科学的进步,所研制的催化剂活性的提高和寿命的延长,为化工 工艺上降低反应温度、压力,缩短流程,简化反应装置提供了有 力的条件。 四.回答题 1.简单叙述催化理论的发展过程。 答:从一开始,催化剂的应用就走在其理论的前面。 1925年,Taylor的活性中心学说为现代催化理论的奠定了基础。 在以后的20多年中,以均相反应为基础,形成了中间化合物理论。 50年代,以固体能带模型为弎,又形成了催化电子理论。 60年以后,以均相配位催化为研究对象,又形成表面分子模型理论。 由此,催化理论逐渐发展起来。 2.哪几种反应可以在没有催化剂的情况下进行,在此基础上分析催化作 用的本质是什么。 答:(1)下列反应可在没有催化剂时迅速进行: a)纯粹离子间的反应 b)与自由基有关的反应 c)极性大或配们性强的物质间的反应 d)提供充分能量的高温反应 (2)在含有稳定化合物的体系中加入第三物质(催化剂),在它的作用下,反应物的某些原子会发生离子化,自由基化或配位化,从而导致 反应历程的变化,使反应较容易进行。这就是催化剂催化作用的本质。第二章 一.概念题(催化剂的) 选择性,催化剂失活,可逆中毒,催化剂机械强度 答:催化剂的选择性:是衡量催化剂加速某一反应的能力。 催化剂失活:催化剂在使用过程中,其结构和组成等逐渐遭到破坏,导致催化剂活性和选择性下降的现象,称为催化剂失活。 可逆中毒:指毒物在活性中心上的吸附或化合较弱,可用简单方法使催化剂的活性恢复。 催化剂机械强度:指固体催化剂颗粒抵抗摩擦、冲击、重力的作用,以及温度、相变作用的能力。 二.填空题: a) 按照反应机理中反应物被活化的方式催化反应可分为: 氧化还原催化反 应,酸碱催化反应,配位催化反应。 b)结构性助剂可改变活性组分的物理性质,而调变形助剂可改变活性组 分的化学性质。

催化作用原理(名词解释+填空)

【名词解释】 1、可持续发展:既满足当代人的需求,又不对后代人满足其需求的能力构成危害的发展称为可 持续发展。 2、催化裂化:是在热和催化剂的作用下使重质油发生裂化反应,转变为裂化气、汽油和柴油等 过程。 3、加氢裂化:在较高的压力和温度下,氢气经催化剂作用使重质油发生加氢、裂化和异构化 反应,转化为轻质油(汽油、煤油、柴油或催化裂化、裂解制烯烃的原料)的加工过程。 4、催化重整:是在催化剂作用下从石油轻馏分生产高辛烷值汽油组分或芳香烃的工艺过程。 5、加氢精制:是指在催化剂和氢气存在下,石油馏分中含硫、氮、氧的非烃组分发生脱除硫、 氮、氧的反应,含金属有机化合物发生氢解反应,同时,烯烃发生加氢饱和反应。 6、温室效应:由于大气层中的某些气体对太阳辐射的红外线吸收而导致大气层温度升高,地球 变暖的现象。 7、催化剂:是一种能够改变一个化学反应的速度,却不改变化学反应热力学平衡位置,本身在 化学反应中不被明显消耗的化学物质。 催化作用:指催化剂对化学反应所产生的效应。 8、活化:通过还原或硫化使催化剂活性组份由金属氧化物变为金属态或硫化态的过程。 9、化学吸附是反应物分子活化的关键一步,反应物分子与催化活性表面相互作用产生新的化学 物种——反应活性物种。 10、吸附现象:当气体与清洁的固体表面接触时,在固体表面上气体的浓度高于气相的现象。 吸附质:被吸附的气体。 吸附剂:吸附气体的固体。 吸附态:吸附质在固体表面上吸附后存在的状态。 吸附中心或吸附位:通常吸附是发生在固体表面的局部位置,这样的位置。 吸附中心与吸附态共同构成表面吸附络合物。 吸附平衡:当吸附过程进行的速率与脱附过程进行的速率相等时,表面上气体的浓度维持不变的状态。 11、积分吸附热 在一定温度下,当吸附达到平衡时,平均吸附1mol气体所放出的热量称为积分吸附热q积。 微分吸附热 催化剂表面吸附的气体从n mol 增加到 (n+d n) mol时,平均吸附每摩尔气体所放出的热量。 12、化学吸附态一般是指吸附物种在固体表面进行化学吸附时的化学状态、电子结构和几何构 型。 13、凡是能给出质子的物质称为酸(B酸) 所谓酸(L酸),乃是电子对的受体,如BF3 固体酸:能给出质子或者接受电子对的固体称为固体酸。 14、相容性: 发生催化反应时,催化剂与反应物要相互作用。除表面外,不深入到体内,此即相容性。 15、d带空穴: 金属镍原子的d带中某些能级未被充满,称为“d带空穴”。 16、溢流现象是指固体催化剂表面的活性中心(原有的活性中心)经吸附产生出一种离子或者自 由基的活性物种,它们迁移到别的活性中心处(次级活性中心)的现象。 17、结构敏感反应:反应速率对金属表面的微细结构变化敏感的反应。 结构不敏感反应:反应速率不受表面微细结构变化的影响。 18、沸石:自然界存在的结晶型硅铝酸盐(由于晶体中含有大量结晶水,加热汽化,产生类似

催化燃烧原理及催化剂

催化燃烧的基本原理 催化燃烧是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。在催化燃烧过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行。借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H20, 同时放出大量热能,其反应过程为: 2 催化燃烧的特点及经济性 2.1催化燃烧的特点 2.1.1起燃温度低,节省能源 有机废气催化燃烧与直接燃烧相比,具有起燃温度低,能耗也小的显著特点。在某些情况下,达到起燃温度后便无需外界供热。 二、催化剂及燃烧动力学 2.1催化剂的主要性能指标 在空速较高,温度较低的条件下,有机废气的燃烧反应转化率接近100%,表明该催化剂的活性较高[9]。催化剂的活性分诱导活化、稳定、衰老失活3 个阶段,有一定的使用限期,工业上实用催化剂的寿命一般在2年以上。使用期的长短与最佳活性结构的稳定性有关,而稳定性取决于耐热、抗毒的能力。对催化燃烧所用催化剂则要求具有较高的耐热和抗毒的性能。有机废气的催化燃烧一般不会在很严格的操作条件下进行,这是由于废气的浓度、流量、成分等往往不稳定,因此要求催化剂具有较宽的操作条件适应性。催化燃烧工艺的操作空速较大,气流对催化剂的冲击力较强,同时由于床层温度会升降,造成热胀冷缩,易使催化剂载体破裂,因而催化剂要具有较大的机械强度和良好的抗热胀冷缩性能。 2.2催化剂种类 目前催化剂的种类已相当多,按活性成分大体可分3 类。2.2.1贵金属催化剂 铂、钯、钌等贵金属对烃类及其衍生物的氧化都具有很高的催化活性,且使用寿命长,适用范围广,易于回收,因而是最常用的废气燃烧催化剂。如我国最早采用的Pt-Al203 催化剂就属于此类催化剂。但由于其资源稀少,价格昂贵,耐中毒性差,人们一直努力寻找替代品或尽量减少其用量。2.2.2过渡金属氢化物催化剂 作为取代贵金属催化剂,采用氧化性较强的过渡金属氧化物,对甲烷等烃类和一氧化碳亦具有较高的活性,同时降低了催化剂的成本,常见的有Mn0x、CoOx和CuOx等催化剂。大连理工大学研制的含Mn02催化剂,在130C及空速13000h-1 的条件下能消除甲醇蒸气,对乙醛、丙酮、苯蒸气的清除也很有效果。

光催化原理、应用

广州和风环境技术有限公司 https://www.wendangku.net/doc/3b12871912.html,/ 光催化原理、应用及常见问题 更多有关废气处理核心技术,请百度:和风环境技术。接下来和风带领大家认识一下。 随着全球工业化进程的加速,环境污染问题日益严重,环境治理已受到世界各国的广泛重视,其中政府在环境治理方面投入了巨大的人力、物力和财力对环境净化材料和环境净化技术的研究和产业化提供支持,其中,光催化材料和光催化技术占有重要的地位。TiO2是一种常用的光催化材料,具有活性高、稳定性好,几乎可以无选择地将有机物进行氧化,不产生二次污染,对人体无害,价格便宜等诸多优点,成为最受重视和具有广阔应用前景的光催化材料。 光催化材料在紫外光或太阳光的作用下,激发价带上的电子(e-)跃迁到导带,在价带上产生相应的空穴(h+),光生空穴与光催化材料表面的水反应,生成羟基自由基,而光生电子与光催化剂表面的氧反应,生成超氧负离子。羟基自由基和超氧负离子具有较强的氧化还原电位,可将挥发性有机物氧化分解成无害的CO2和H2O,达到净化空气、分解挥发性有机物的目的。二氧化钛光催化材料在光照下能一直持续释放自由基,对挥发性有机物进行氧化分解,而自己不发生变化,具有长期活性。

广州和风环境技术有限公司 https://www.wendangku.net/doc/3b12871912.html,/ 1、光催化反应原理 羟基自由基和超氧负离子是除氟之外,最强的氧化剂,但是氟对人体和环境有着巨大的危害,在很多场合不再使用。 2、常温催化材料 光催化材料是一种常温催化材料,可在室温及稍高温度下进行反应(通常低于65℃)。提高光催化材料性能的途径有三个:一个是降低纳米催化材料粒子的粒径,目的在于提高光催化材料的比表面积;二是通过金属掺杂、过渡金属掺杂和非金属离子掺杂改变半导体催化剂的性质来提高光催化性能;三是通过表面修饰和敏化,改变半导体催化剂的表面的形貌和结构,而引起表面性能的优化。 3、光催化材料应用中的影响因素 湿度的影响:光催化反应中,羟基自由基来源于水,所以必须保持有一定的湿度才能持续产生羟基自由基;在闭环的光催化反应中,已经证实随着水的不断消耗,光催化性能在不断的下降。 氧分量的影响:光催化反应中,超氧负离子来源于氧,所以在21%含量的

催化原理

一、催化剂的定义与催化作用的特征 1.定义:凡能加速化学反应趋向平衡,而在反应前后其化学组成和数量不发生变化的物质。2.特征:①加快反应速率;②反应前后催化剂不发生化学变化(催化剂的化学组成--不变化物理状态---变化(晶体、颗粒、孔道、分散))③不改变化学平衡④同时催化正、逆反应。⑤对化学反应有定向选择性。 二、催化剂的评价指标 工业催化剂的四个基本指标:选择性、稳定性、活性、成本。 对工业催化剂的性能要求:活性、选择性、生产能力、稳定性、寿命、机械强度、导热性能、形貌和粒度、再生性。 1.活性催化剂使原料转化的速率:a=-(1/w)d(nA)/dt 2.生产能力--时空收率:单位体积(或单位质量)催化剂在单位时间内所生产的目的产物量Y v,t=n p/v.t or Y W,t=n p/w.t 3.选择性:目的产物在总产物中的比例S=Δn A→P/Δn A=(p/a).(n P/Δn A) =r P/Σr i 4.稳定性:指催化剂的活性随时间变化 5.寿命:是指催化剂从运行至不适合继续使用所经历的时间 三、固体催化剂催化剂的组成部分 主催化剂---活性组份:起催化作用的根本性物质,即催化剂的活性组分,如合成氨催化剂中的Fe。其作用是:化学活性,参与中间反应。 共催化剂:和主催化剂同时起作用的组分,如脱氢催化剂Cr2O3-Al2O3中的Al2O3。甲醇氧化的Mo-Fe催化剂。 助催化剂:它本身对某一反应无活性,但加入催化剂后(一般小于催化剂总量10%)能使催化剂的活性或选择性或稳定性增加。加助催化剂的目的:助活性组份或助载体。 载体:提高活性组份分散度,对活性分支多作用,满足工业反应器操作要求,满足传热传质要求。 四、固体催化剂的层次结构 初级粒子:内部具有紧密结构的原始粒子; 次级粒子:初级粒子以较弱的附着力聚集而成-----造成固体催化剂的细孔; 催化剂颗粒:次级粒子聚集而成-----造成固体催化剂的粗孔; 多孔催化剂的效率因子:η=K多孔/K消除内扩散=内表面利用率<1 五、催化剂的孔内扩散模型 物理吸附:分子靠范德华力吸附,类似于凝聚,分子结构变化不大,不发生电子转移与化学键破坏。 努森扩散(微孔扩散):当气体浓度很低或催化剂孔径很小时,分子与孔壁的碰撞远比分子间的碰撞频繁,扩散阻力主要来自分子与孔壁的碰撞。散系数D K=9700R(T/M)0.5 式中:R是孔半径,cm; T是温度,K;M是吸附质相对分子量。 体相扩散(容积扩散):固体孔径足够大,扩散阻力与孔道无关,扩散阻力是由于分子间的碰撞,又称分子扩散。体相扩散系数D K=νγθ/(3τ)式中ν、γ 分别是气体分子的平均速率和平均自由程;θ 固体孔隙率;τ 孔道弯曲因子,一般在2~7。 过渡区扩散:介于Knudsen扩散与体相扩散间的过渡区。分子间的碰撞及分之与孔道的碰撞都不可忽略 构型扩散:催化剂孔径尺寸与反应物分子大小接近,处于同一数量级时,分子大小发生微小变化就会引起扩散系数发生很大变化。例如:分子筛择形催化 六、催化过程的分类 均相催化:反应物和催化剂处于同一相

光催化原理及应用

姓学号:0903032038 合肥学院 化学与材料工程系 固 体 物 理 姓名:杜鑫鑫 班级:09无机非二班 学号:0903032038 课题名称:光催化原理及应用 指导教师:韩成良

光催化原理及应用 引言:目前,全球性环境污染问题受到广泛重视。光催化反应可对污水中的农 药、染料等污染物进行降解,还能够处理多种有害气体;光催化还可应用于贵金属回收、化学合成、卫生保健等方面。光催化反应在化工、能源及环境等领域都有广阔的应用前景。本文论述了主要光催化剂类型及光催化技术的应用研究成果。 关键词:光催化、应用、发展、环境、处理 光催化机理: 半导体材料在紫外及可见光照射下,将光能转化为化学能,并促进有机物的合成与分解,这一过程称为光催化。当光能等于或超过半导体材料的带隙能量时,电子从价带(VB)激发到导带(CB)形成光生载流子(电子-空穴对)。 在缺乏合适的电子或空穴捕获剂时,吸收的光能因为载流子复合而以热的形式耗散。价带空穴是强氧化剂,而导带电子是强还原剂。大多数有机光降解是直接或间接利用了空穴的强氧化能力。 例如TiO 2 是一种半导体氧化物,化学稳定性好(耐酸碱和光化学腐蚀), 无毒,廉价,原料来源丰富。 TiO 2 在紫外光激发会产生电子-空穴对,锐钛 型TiO 2 激发需要3.2 eV的能量,对应于380 nm左右的波长。光催化活性高(吸收紫外光性能强;能隙大,光生电子的还原性和和空穴的氧化性强)。因此其广泛应用于水纯化,废水处理,有毒污水控制,空气净化,杀菌消毒等领域。 主要的光催化剂类型: 1.1 金属氧化物或硫化物光催化剂 常见的金属氧化物或硫化物光催化剂有TiO,、ZnO、WO 3、Fe 2 O 3 、ZnS、CdS 和PbS等。其中,CdS的禁带宽度较小,与太阳光谱中的近紫外光段有较好的匹配性,可以很好地利用自然光源,但容易发生光腐蚀,使用寿命有限。TiO,具

催化作用原理总复习答案

催化作用原理总复习答案 催化作用原理基础一、单项选择题在下列每小题的四个备选答案中选出一个正确的答案,并将其字母标号填入题干的括号内。 1. 沉淀法制备催化剂过程中,晶粒的生长速度正比于( c ) A. 饱和度C* B. 沉淀物浓度C C. (C-C) 值 D. 溶剂量 2. 浸渍法制备催化剂时,等量浸渍是指( d ) A. 溶液的量与活性组分的量相等 B. 载体的量与活性组分的量相等 C. 溶液的量与载体的重量相等 D. 溶液的体积等于载体的空体积 3. 分子筛催化剂的基础结构是指( b ) A. 硅原子 B. 硅氧四面体或铝氧四面体 C. 铝原子 D. 笼状结构 4. 汽车尾气转化器中催化剂的载体是( d ) A. 贵金属Pt B. 贵金属Rh C. 金属Pd D. 多孔

陶瓷或合金 5. 内扩散是指( c ) A. 反应物在反应器内的流动 B. 反应物在反应器外管道内的流动 C. 反应物分子在催化剂孔道内的传质 D. 反应物分子在催化剂孔道外的传质 6. 硅铝分子筛中硅是以什么形式存在的( b ) A. 零价硅原子的形式B. 硅氧四面体形式 C. 六配位的硅离子的形式 D. 硅-铝化学键的形式 7. 负载型催化剂制备过程中采用的分离出过多的浸渍液,并快速干燥,是为了( c ) A. 活性组分在孔道内均匀B. 活性组分在孔道外均匀 C. 活性组分分布在孔口和外表面 D. 活性组分在外表面均匀 8. 催化剂的载体决定催化剂的( c ) A. 支撑物B. 活性组分 C. 孔结构 D. 包装水平 9. 产品收率不但取决于反应物的转化率,还取决于产物的( b ) A. 催化剂制备程度中载体用的量 B. 选择性 C. 已转化的反应物质的多少 D. 反应物进料的量的多少

催化剂与催化作用复习资料(很有用的)

第1、2章复习思考题 1、催化剂是如何定义的? 催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。 2、催化剂在工业上的作用功能或者效果有哪些? 1)使得原来难以在工业上实现的过程得以实现。 2)由过去常常使用的一种原料,可以改变为多种原料。 3)原来无法生产的过程,可以实现生产。 4)原来需要多步完成的,变为一步完成。 5)由原来产品质量低,能耗大,变为生产成本低,质量高 6)由原来转化率低,副产物多,污染严重,变为转化率高,产物单一,污染减少 3、载体具有哪些功能和作用? ①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性;⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。 4、代表催化剂性能的重要指标是什么? 催化剂的反应性能是评价催化剂好坏的主要指标,它主要包括催化剂的活性、选择性和稳定性。 (1)催化剂的活性:指催化剂能加快化学反应的反应速度的程度 (2)催化剂的选择性:使反应向生成某一特定产物的方向进行。 (3)催化剂的稳定性:是指在使用条件下,催化剂具有稳定活性的周期 5、多相催化反应的过程步骤可分为哪几步?实质上可分为几步? (1)外扩散—内扩散—化学吸附—表面反应—脱附—内扩散—外扩散 (2)物理过程—化学过程—物理过程 6、吸附是如何定义的? 气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。 7、物理吸附与化学吸附的本质不同是什么? 本质:二者不同在于其作用力不同,前者为范德华力,后者为化学键力,因此吸附形成的吸附物种也不同,而且吸附过程也不同等诸多不同。 不同的表现形式为:(后面) 8、为何说Langmuir吸附为理想吸附?基本假设是什么? 模型假设:①吸附表面均匀,各吸附中心能量相同;②吸附分子间无相互作用;③单分子层吸附,吸附分子与吸附中心碰撞进行吸附,一个分子只占据一个吸附中心;④在一定条件下,吸附与脱附可建立动态平衡。 9、催化剂的比表面测定有哪些实验方法? (1)BET法测比表面积 1)测定原理和计算方法 依据BET提出的多层吸附理论以及BET吸附等温曲线进行测定和计算的。利用BET方程进行作图,采用试验采集数据并利用图解法进行计算。 2)实验方法 测定表面积的实验方法通常有,低温氮吸附容量法、重量法和色谱法等,当表面积比较小时,采用氮吸附法。 (2)色谱法测定比表面积 色谱法测定比表面积时载气一般采用He或H2,用N2做吸附质,吸附在液氮温度下进行。 10、何为扩散?催化剂颗粒内部存在几种扩散形式? (1)扩散:分子通过随机运动,从高浓度向低浓度进行传播的现象。 (2)1)普通扩散(分子扩散):分子扩散的阻力来自分子间的碰撞,通常在大孔(孔径大于100nm)或者压力较高的条件下发生的扩散多为分子扩散。 2)微孔扩散(努森扩散Kundsen):微孔扩散的阻力重要来自分子与孔壁的碰撞 3)过渡区扩散:指介于分子扩散与微孔扩散之间的过渡区。 4)构型扩散:在同一孔隙中扩散,由于分子构型不同,而扩散系数相差很大的扩散,称为构型扩散。 5)表面扩散:由于表面上分子的运动而产生的传质过程

催化作用原理课程教学大纲

催化作用原理课程教学大纲 英文名称:Catalysis Principles 课程编码: 学时:32 学分:2 课程性质:专业限选课课程类别:理论课 先修课程:无机化学、分析化学、有机化学、物理化学 开课学期:第五学期 适用专业:化学工程与工艺 一、课程的性质与任务 本课程是化学工程与工艺专业的专业限选课。 本课程的教学任务是:使学生理解催化剂与催化作用的基础知识,掌握酸碱催化剂、金属及过渡金属氧化物催化剂、络合催化剂等几种典型催化剂的催化作用原理,了解环境催化的特点及研究内容,使学生具备有关催化剂合成、表征与测试的基础知识及基本技能,使学生了解本学科的最新发展动态。 二、教学目标与要求 使学生了解有关催化剂与催化作用的基础知识,掌握酸碱催化剂、金属及过渡金属氧化物催化剂、络合催化剂等重要工业催化剂的催化反应原理,了解环境催化等本学科及交叉学科的发展动态。使学生具备有关催化剂的合成、表征与测试等基本理论知识,了解相关的研究方法,培养学生分析和解决催化剂制备技术中各种实际问题的能力,以适应社会对于化工专业人才的需求。 三、课程的基本内容与教学要求 第一章催化剂与催化作用的基础知识 [教学目的与要求]: 了解催化剂与催化作用的基本特征、催化反应的分类等基础知识,明确固体催化剂的组成与结构,催化剂的反应性能及对工业催化剂的要求等。 [本章主要内容]: 1.1 催化剂与催化作用的特征 1.2 催化反应和催化剂的分类 1.3 固体催化剂的组成与结构 1.4 催化剂的反应性能 1.5 多相催化反应体系分析 [本章重点]: 1.催化剂与催化作用的基本特征 2.多相催化反应体系中的物理过程与化学过程分析 [本章难点]:

络合催化剂及其催化作用机理

络合催化剂及其催化作用机理 1 基本知识 络合催化剂,是指催化剂在反应过程中对反应物起络合作用,并且使之在配位空间进行催化的过程。 催化剂可以是溶解状态,也可以是固态;可以是普通化合物,也可以是络合物,包括均相络合催化和非均相络合催化。 络合催化的一个重要特征,是在反应过程中催化剂活性中心与反应体系,始终保持着化学结合(配位络合)。能够通过在配位空间内的空间效应和电子因素以及其他因素对其过程、速率和产物分布等,起选择性调变作用。故络合催化又称为配位催化。 络合催化已广泛地用于工业生产。有名的实例有: ①Wacker工艺过程: C2H4 + O2 CH3?CHO C2H4 + O2 + CH3?COOH CH3?COO C2H4 + H2O R?CH? (CHO) ?CH3R?CH2?CH2?CH② 0X0 工艺过程: R?CH=CH2 + CO/H2 催化剂:HCo(CO)4 , 150 °C, 250X 105Pa;RhCI(CO)(PPh3)2 , 100 C, 15X 105Pa ③Monsanto甲醇羰化工艺过程: CH3OH + CO CH3?COOH 催化剂:RhCI(CO)(PPh3)2/CH3I 从以上的几例可以清楚地看到,络合催化反应条件较温和,反应温度一般在100~200 C左右,反应压 力为常压到20X105Pa上下。反应分子体系都涉及一些小分子的活化,如CO、H2、O2、C2H4、C3H6等,便于研究反应机理。主要的缺点是均相催化剂回收不易,因此均相催化剂的固相化,是催化科学领域较重要的课题之一。 2 过渡金属离子的化学键合 (1 )络合催化中重要的过渡金属离子与络合物 过渡金属元素(T.M.)的价电子层有5个(n - 1)d,1个ns和3个np,共有9个能量相近的原子轨道,容易组成d、s、p 杂化轨道。这些杂化轨道可以与配体以配键的方式结合而形成络合物。凡是含有两个或两个以上的孤对电子或n键的分子或离子都可以作配体。过渡金属有很强的络合能力,能生成多种类型的络合物,其催化活性都与过渡金属原子或离子的化学特性有关,也就是和过渡金属原子(或离子)的电子结构、成键结构有关。同一类催化剂,有时既可在溶液中起均相催化作用,也可以使之成为固体催化剂在多相催化中起作用。 空的(n - 1)d轨道,可以与配体L(CO、C2H4…等)形成配键(M?:L),可以与H、R-①-基形成M-H、M-C型b键,具有这种键的中间物的生成与分解对络合催化十分重要。由于(n - 1)d轨道或nd外轨道参与 成键,故T.M.可以有不同的配位数和价态,且容易改变,这对络合催化的循环十分重要。 大体趋势是:①可溶性的Rh、lr、Ru、Co的络合物对单烯烃的加氢特别重要;②可溶性的Rh、Co 的络合物对低分子烯烃的羰基合成最重要;③Ni络合物对于共轭烯烃的齐聚较重要;④ Ti、V、Cr络合物 催化剂适合于a烯烃的齐聚和聚合;⑤第VHI族T.M.元素的络合催化剂适合于烯烃的齐聚。这些可作为研 究开发工作的参考。 (2)配位键合与络合活化各种不同的配体与T.M.相互作用时,根据各自的电子结构特征形成不同的配位键合,配位体本身得到活化, 具有孤对电子的中性分子与金属相互作用时,利用自身的孤对电子与金属形成给予型配位键,记之为L- M,如:NH3、H2就是。给予电子对的L:称为L碱,接受电子对的M称为L酸。M要求具有空的d或p空轨道。 H?, R?等自由基配体,与T.M.相互作用,形成电子配对型b键,记以L-M。金属利用半填充的d、p轨道电 子,转移到L 并与L 键合,自身得到氧化。 带负电荷的离子配位体,如C-、Br- OH -等,具有一对以上的非键电子对,可以分别与T.M.的2个 空d或p轨道作用,形成一个b键和一个n键。这类配位体称为n-给予配位体,形成o- n键合。具有重键的配位

光催化材料的基本原理

二,光催化材料的基本原理 半导体在光激发下,电子从价带跃迁到导带位置,以此,在导带形成光生电子,在价带形成光生空穴。利用光生电子-空穴对的还原氧化性能,可以降解周围环境中的有机污染物以及光解水制备H2和O2。 高效光催化剂必须满足如下几个条件:(1)半导体适当的导带和价带位置,在净化污染物应用中价带电位必须有足够的氧化性能,在光解水应用中,电位必须满足产H2和产O2的要求。(2)高效的电子-空穴分离能力,降低它们的复合几率。(3)可见光响应特性:低于420nm左右的紫外光能量大概只占太阳光能的4%,如何利用可见光乃至红外光能量,是决定光催化材料能否在得以大规模实际应用的先决条件。常规anatase-type TiO2 只能在紫外光响应,虽然通过搀杂改性,其吸收边得以红移,但效果还不够理想。因此,开发可见光响应的高效光催化材料是该领域的研究热点。只是,现在的研究状况还不尽人意。 三,光催化材料体系的研究概况 从目前的资料来看,光催化材料体系主要可以分为氧化物,硫化物,氮化物以及磷化物 氧化物:最典型的主要是TiO2及其改性材料。目前,绝大部分氧化物主要集中在元素周期表中的d区,研究的比较多的是含Ti,Nb,

Ta的氧化物或复合氧化物。其他的含W,Cr,Fe,Co,Ni,Zr等金属氧化物也见报道。个人感觉,d区过渡族金属元素氧化物经过炒菜式的狂轰乱炸后,开发所谓的新体系光催化已经没有多大潜力。目前,以日本学者J. Sato为代表的研究人员,已经把目光锁定在p区元素氧化物上,如含有Ga,Ge,Sb,In,Sn,Bi元素的氧化物。 硫化物:硫化物虽然有较小的禁带宽度,但容易发生光腐蚀现象,较氧化物而言,稳定性较差。主要有ZnS,CdS等 氮化物:也有较低的带系宽度,研究得不多。有Ta/N,Nb/N等体系 磷化物:研究很少,如GaP 按照晶体/颗粒形貌分类: (1)层状结构 **半导体微粒柱撑于石墨及天然/人工合成的层状硅酸盐 **层状单元金属氧化物半导体如:V2O5,MoO3,WO3等 **钛酸,铌酸,钛铌酸及其合成的碱(土)金属离子可交换层状结构和半导体微粒柱撑于层间的结构 **含Bi层状结构材料,(Bi2O2)2+(An-1BnO3n+1)2- (A=Ba,Bi,Pb;B=Ti,Nb,W),钙钛矿层(An-1BnO3n+1)2-夹在(Bi2O2)2+层之间。典型的有:Bi2WO6,Bi2W2O9,Bi3TiNbO9

催化作用原理第二章

1、多相催化反应是在物相不同的反应物和催化剂的两相界面上进行的。 2、多相催化的反应步骤:反应物A由气相主体扩散到颗粒外表面(反应物外扩散)、反应物A由外表面向孔内扩散,到达活性中心(反应物内扩散)、A的吸附、A在吸附活性中心反应生成B、B的脱附、产物B由内表面扩散到外表面(产物内扩散)、产物B由颗粒外表面扩散到气相主体(产物外扩散)。其中,3/4/5过程属于表面反应,反应物和产物的内外扩散属于物理过程,反应物分子在催化剂表面的化学吸附、表面化学反应以及产物的脱附属于化学过程。(七步) 3、多相催化的反应步骤:反应物分子从催化剂周围的介质向催化剂表面以及孔内扩散、反应物分子在催化剂表面和孔内活性中心上吸附、被吸附的反应物分子与催化剂表面以及孔内的活性中心相互作用进行化学反应、反应产物从催化剂表面和孔内活性中心上脱附、反应产物离开催化剂表面以及孔内向催化剂周围的介质扩散,1/5是反应物和产物的扩散过程,属于传质过程,2/3/4属于表面进行的化学过程,也叫化学动力学过程。(五步) 4、多相催化反应中的物理过程:内外扩散过程,为充分发挥催化作用,要尽量消除扩散过程的影响。 5、消除内外扩散阻力的方法:提高空速(外扩散);减小催化剂颗粒尺寸、增大催化剂孔隙直径(内扩散); 6、反应物分子在催化剂表面的吸附:分为物理吸附和化学吸附。物理吸附是由表面质点和吸附分子之间的分子力而引起的。具体是由永久偶极、诱导偶极、色散力等三种范德华引力引起的。化学吸附是由催化剂表面质点与吸附分子间的化学作用力而引起的,是由化学键力引起的。 7、物理吸附与化学吸附区别: 1)物理吸附:吸附力是范德华力、吸附层是单层或多层、选择性是无、热效应是较小、吸附速率是较快。 2)化学吸附:吸附力是化学键力、吸附层是单层、选择性是有、热效应是较大、吸附速率是较慢。 8、如何鉴别物理吸附和化学吸附? 答:物理吸附只能使原吸附分子的特征吸收带产生位移变化和强度变化,若出现了新的特征吸收带或光电子能谱发生明显变化,就表示发生了化学吸附。 9、多相催化反应的控制步骤: 1)扩散控制:当催化反应为扩散控制时,催化剂的活性无法充分显示出来,此时需要改善催化剂的颗粒大小和微孔构造,才能提高催化效率; 2)化学反应控制:催化反应若为动力学控制时,从改善催化剂组成和微观结构入手,可以有效地提高催化效率,特别是反应温度和压力对催化反应的影响比对扩散过程的影响要大。 10、化学吸附态:一般是指分子或原子在固体表面进行化学吸附时的化学状态、电子结构等。 11、化学吸附种类:吸附粒子状态是解离与非解离;吸附中心状态:单点与多点; 12、吸附作用基本概念: 1)当气体与固体接触时,固体表面上气体的浓度大于气相浓度,这种现象称之为吸附现象;2)被吸附的气体称之为吸附质; 3)吸附气体的固体称之为吸附剂; 4)吸附质在固体表面上吸附后存在的状态称之为吸附态; 5)通常吸附是发生在固体表面的局部位置,这类位置称之为吸附中心或吸附位; 6)吸附中心与吸附态共同构成表面吸附络合物; 7)吸附质浓度在吸附剂上增加的过程,称之为吸附过程; 8)吸附质浓度在吸附剂上减少的过程,称之为脱附过程;

催化作用原理课论文

各类催化剂的特点及应用 姓名 xxx 学号 201400xx 院系化学工程学院 专业化学工程与技术 年级研究生1班 科目催化作用原理

1.前言 催化剂的主要作用是降低化学反应的活化能,加快反应速度,因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动这些行业发展的最有效的动力之一。一种新型催化材料或新型催化工艺的问世,往往会引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913年,铁基催化剂的问世实现了氨的合成,从此化肥工业在世界范围迅速发展;20世纪50年代末,Ziegler-Natta催化剂开创了合成材料工业;20世纪50年代初,分子筛凭借其特殊的结构和性能引发了催化领域的一场变革;20世纪70年代,汽车尾气净化催化剂在美国实现工业化,并在世界范围内引起了普遍重视;20世纪80年代,金属茂催化剂使得聚烯烃工业出现新的发展机遇。 目前,人类正面临着诸多重大挑战,如:资源的日益减少,需要人们合理开发、综合利用资源,建立和发展资源节约型农业、工业、交通运输以及生活体系;经济发展使环境污染蔓延、自然生态恶化,要求建立和发展物质全循环利用的生态产业,实现生产到应用的清洁化。这些重大问题的解决无不与催化剂和催化技术息息相关。因此,许多国家尤其是发达国家,非常重视新催化剂的研制和催化技术的发展,均将催化剂技术作为新世纪优先发展的重点。 催化剂和催化作用:催化剂能加速化学反应而本身不被消耗的物质。催化作用是一种化学作用,是靠少量催化剂来加速化学反应的现象。 催化剂的基本特性:加快反应速度,但只能加速热力学上可能进行的化学反应;不能改变化学平衡的位置,故对正反应有效的催化剂对逆反应也有效;对反应有选择性。 催化剂的分类:目前工业上用的催化剂有2000多种,有不同的分类方法,按工艺与工程特点分为多相固体催化剂、均相配合物催化剂和酶催化剂三类。2. 均相催化 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作用,能起均相催化作用的催化剂为均相催化剂。均相催化剂包括液体酸、碱催化剂和色可赛思固体酸和碱性催化剂。溶性过渡金属化合物(盐类和络合物)等。均相催化剂以分子或离子独立起作用,活性中心均一,具有高活性和高选择性。

催化剂与催化作用复习总结

催化剂的作用的特征有哪些?催化剂能否改变化学平衡? (1)催化剂只能加速热力学上可以进行的反应,而不能加速热力学上无法进行的反应 (2)催化剂只能加速反应趋于平衡,而不能改变平衡的位置(平衡常数) (3)催化剂对反应具有选择性 (4)催化剂的寿命。催化剂能改变化学反应的速率,其自身并不进入反应的产物,在理想的情况下不为反应所改变。但在实际过程中不能无限制的使用,催化剂经过多次使用后会失活。 催化剂如何加快化学反应速度? 催化剂加快反应速率的原因与温度对反应速率的影响是根本不同的。催化剂可以改变反应的路线,降低反应的活化能,使反应物分子中活化分子的百分数增大,反应速率加快。 催化作用可分为均相催化和非均相催化两种。如果催化剂和反应物同处于气态或液态,即为均相催化。若催化剂为固态物质,反应物是气态或液态时,即称为非均相催化。 在均相催化中,催化剂跟反应物分子或离子通常结合形成不稳定的中间物即活化络合物。这一过程的活化能通常比较低,因此反应速率快,然后中间物又跟另一反应物迅速作用(活化能也较低)生成最终产物,并再生出催化剂。该过程可表示为: A+B=AB(慢)A+C=AC(快)AC+B=AB+C(快) 式中A、B为反应物,AB为产物,C为催化剂。 由于反应的途径发生了改变,将一步进行的反应分为两步进行,两步反应的活化能之和也远比一步反应的低。该理论被称为“中间产物理论”。 在非均相催化过程中,催化剂是固体物质,固体催化剂的表面存在一些能吸附反应物分子的特别活跃中心,称为活化中心。反应物在催化剂表面的活性中心形成不稳定的中间化合物,从而降低了原反应的活化能,使反应能迅速进行。催化剂表面积越大,其催化活性越高。因此催化剂通常被做成细颗粒状或将其附载在多孔载体上。许多工业生产中都使用了这种非均相催化剂,如石油裂化,合成氨等,使用大量的金属氧化物固体催化剂。该理论称为“活化中心理论”。 催化剂可以同样程度地加快正、逆反应的速率,不能使化学平衡移动,不能改变反应物的转化率。请注意加快逆反应也就是减慢反应速率,这种催化剂也叫负催化剂! 催化剂的活性、选择性的含义? 催化剂的活性,又称催化活性,是指催化剂对反应加速的程度,可以作为衡量催化剂效能大小的标准。催化剂的选择性是使反应向生成某一特定产物的方向进行。转化为目的产物所消耗的某反应物量/某反应转化的总量。 催化反应的活化能是否与非催化反应的相同?为什么? (1)不改变反应热:因为催化剂只是通过改变化学反应历程来降低活化能,而化学反应前后的能量变化是由反应物和产物在反应体系中的相对能位来决定,反应物与产物的结构确定了它们的相对能位,即不改变反应物与生成物的摩尔焓,因此加入催化剂不改变反应热。 (2)降低活化能:因为催化剂通过改变反应历程,使反应沿着一条更容易进行的途径进行。 催化剂为什么具有寿命?影响催化剂的寿命的因素有哪些? 指催化剂的有效使用期限,是催化剂的重要性质之一。催化剂在使用过程中,效率会逐渐下降,影响催化过程的进行。例如因催化活性或催化剂选择性下降,以及因催化剂粉碎而引起床层压力降增加等,均导致生产过程的经济效益降低,甚至无法正常运行。 ①化学稳定性:化学组成与化学状态稳定,活性组分与助剂不反应与流失; ②耐热稳定性:不烧结、微晶长大和晶相变化; ③抗毒稳定性:抗吸附活性毒物失活; ④机械稳定性:抗磨损率、压碎强度、抗热冲击。决定催化剂使用过程中的破碎和磨损 举例说明催化循环? 非缔合活化催化循环定义:在催化反应过程中催化剂以两种明显的价态存在,反应物的活化经由催化剂与

光催化的原理

光催化原理 光催化净化是基于光催化剂在紫外线照射下具有的氧化还原能力而净化污染物。 光催化原理 半导体光催化剂大多是n型半导体材料(当前以为TiO2使用最广泛)都具有区别于金属或绝缘物质的特别的能带结构,即在价带(ValenceBand,VB)和导带(ConductionBand,CB)之间存在一个禁带(ForbiddenBand,BandGap)。由于半导体的光吸收阈值与带隙具有式K=1240/Eg(eV)的关系,因此常用的宽带隙半导体的吸收波长阈值大都在紫外区域。当光子能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生光生电子(e-)和空穴(h+)。此时吸附在纳米颗粒表面的溶解氧俘获电子形成超氧负离子,而空穴将吸附在催化剂表面的氢氧根离子和水氧化成氢氧自由基。而超氧负离子和氢氧自由基具有很强的氧化性,能将绝大多数的有机物氧化至最终产物CO2和H2O,甚至对一些无机物也能彻底分解。 光催化应用技术 利用光催化净化技术去除空气中的有机污染物具有以下特点: 1直接用空气中的氧气做氧化剂,反应条件温和(常温常压) 2可以将有机污染物分解为二氧化碳和水等无机小分子,净化效果彻底。 3半导体光催化剂化学性质稳定,氧化还原性强,成本低,不存在吸附饱和现象,使用寿命长。光催化净化技术具有室温深度氧,二次污染小,运行成本低和可望利用太阳光为反应光源等优点,所以光催化特别合适室内挥发有机物的净化,在深度净化方面显示出了巨大的应用潜力。 常见的光催化剂多为金属氧化物和硫化物,如TiO2, ZnO,CdS,WO3等,其中TiO2的综合性能最好,应用最广。自1972年Fujishima和Honda发现在受辐照的TiO2上可以持续发生水的氧化还原反应,并产生H2以来,人们对这一催化反应过程进行了大量研究。结果表明,TiO2具有良好的抗光腐蚀性和催化活性,而且性能稳定,价廉易得,无毒无害,是

相关文档