文档库 最新最全的文档下载
当前位置:文档库 › 三极管及放大电路基础教案..

三极管及放大电路基础教案..

三极管及放大电路基础教案..
三极管及放大电路基础教案..

第2章三极管及放大电路基础

【课题】

2.1 三极管

【教学目的】

1.掌握三极管结构特点、类型和电路符号。

2.了解三极管的电流分配关系及电流放大作用。

3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。

4.理解三极管的主要参数的含义。

【教学重点】

1.三极管结构特点、类型和电路符号。

2.三极管的电流分配关系及电流放大作用。

3.三极管的三种工作状态及特点。

【教学难点】

1.三极管的电流分配关系和对电流放大作用的理解。

2.三极管工作在放大状态时的条件。

3.三极管的主要参数的含义。

【教学参考学时】

2学时

【教学方法】

讲授法、分组讨论法

【教学过程】

一、引入新课

搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。

二、讲授新课

2.1.1 三极管的基本结构

三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。

两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和PNP两种,

2.1.2 三极管的电流放大特性

三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电

流放大特性。

要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。 三极管三个电极的电流(基极电流B I 、集电极电流C I 、发射极电流E I )之间的关系为:

C B E I I I +=、B C I I =

--β、B

C I I ??=β 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。

1. 输入特性曲线

输入特性曲线是指当集-射极之间的电压CE V 为定值时,输入回路中的基极电流B I 与加在基-射极间的电压BE V 之间的关系曲线。

三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。

2. 输出特性曲线

输出特性曲线是指当基极电流B I 为定值时,输出电路中集电极电流C I 与集-射极间的电压CE V 之间的关系曲线。B I 不同,对应的输出特性曲线也不同。

截止区:0=B I 曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。

饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管没有电流放大作用,相当于一个开关处于闭合状态。

放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。

2.1.4 三极管的主要参数

1. 性能参数:电流放大系数-

-β、β,集电极-基极反向饱和电流CBO I ,集电极-发射极反向饱和电流CEO I 。

2. 极限参数:集电极最大允许电流CM I 、集电极-发射极反向击穿电压CEO BR V )(、集电极最大允许耗散功率CM P 。

3.频率参数:共发射极截止频率 f 、特征频率T f 。

2.1.5 三极管的分类

三极管的种类很多,分类方法也有多种。分别从材料、用途、功率、频率、制作工艺等方面对三极管的类型予以介绍。

三、课堂小结

1.三极管的结构、类型和电路符号。

2.三极管的电流放大作用。

3.三极管三种工作状态的特点。

4.三极管的主要参数。

四、课堂思考

P37 思考与练习题1、2、3。

五、课后练习

P68 一、填空题:1、2;二、判断题:1;三、选择题:1、5。

【课题】

2.2 三极管基本放大电路

【教学目的】

1.掌握基本共射极放大电路的组成并理解电路各元件的作用。

2.理解基本共射极放大电路放大信号的工作原理。

3.了解小信号放大器的主要性能指标。

4.了解共集电极放大电路和共基极放大电路的电路结构、特点及应用。

【教学重点】

1.基本共射极放大电路的组成及各元件的作用。

2.基本共射极放大电路放大信号的工作原理。

3.小信号放大器的主要性能指标。

【教学难点】

1.基本共射极放大电路放大信号的工作原理。

2.三种放大电路的电路结构及性能比较。

【教学参考学时】

2学时

【教学方法】

讲授法、分组讨论法

【教学过程】

一、复习

1.三极管的结构、类型和电路符号。

2.三极管三种工作状态的特点。

二、引入新课

通过演示功放经扬声器放出音乐的过程,向学生讲解放大电路的基本结构和信号流程,使学生对放大电路有初步的认识。

三、讲授新课

2.2.1 基本共射放大电路

1.放大电路中各元件的作用(对照书本P41页 图2.10)

V :三极管,起电流放大作用;CC V :直流电源,提供偏压和能源;b R :基极偏置电阻,向三极管的基极提供合适的偏置电流;c R :集电极负载电阻,把三极管的电流放大转换为电压放大;1C 和2C :耦合电容,传递交流信号、隔断直流电。

2.放大电路中电压、电流符号的规定

大写物理量符号大写下标,表示直流信号;小写物理量符号小写下标,表示交流信号;小写物理量符号大写下标,表示交流和直流叠加信号;大写物理量符号小写下标,表示交流信号的有效值。

3.放大电路的工作原理

对照书本P42页图2.11介绍基本共射放大电路中各处电压、电流的变化过程,使学生了解共射放大电路具有电压放大作用,同时,输出电压o v 与输入电压i v 的相位正好相反,说明共射放大电路还具有反相作用。

2.2.2 小信号放大器的主要性能指标

1.放大倍数:电压放大倍数i o v V V A =

;电流放大倍数i o i I I A =;电压增益v v A G lg 20=(dB )。

2.输入电阻:输入电阻i

i i I V R =,为输入电压与输入电流的比值,i R 越大,放大器输

入端得到的输入电压就越高。

3.输出电阻:∞==L R o o

o I V R ,为从放大器输出端看进去的交流等效电阻(它不包括外接

负载电阻L R ),o R 越小,放大器输出端带负载的能力越强。

*2.2.3 三种基本放大电路的性能比较

1.共射放大电路既能放大电流又能放大电压,输入电阻居其它两种电路之中,输出电阻较大,频带较窄;常作为低频电压放大的单元电路。

2.共集放大电路只能放大电流而不能放大电压,是三种基本放大电路中输入电阻最大、输出电阻最小的电路,并有电压跟随的特点;常用于电压放大的输入级或输出级,在功率放大电路中也常采用这种电路形式。

3.共基放大电路只能放大电压而不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射电路相当,频率特性是三种基本电路中最好的;常用作宽频带放大电路。

四、课堂小结

1.基本共射放大电路中各元件的作用。

2.基本共射放大电路信号放大的特点。

3.小信号放大器的主要性能指标。

五、课堂思考

P41 思考与练习题1、2、3。

六、课后练习

P68 一、填空题:3、5;三、选择题:3、4。

【课题】

2.3 放大电路的分析

【教学目的】

1.理解放大电路的直流通路、交流通路的概念,会画放大电路对应的直流通路和交流通路。

2.了解放大电路的分析方法。

3.掌握基本共射极放大电路静态参数和动态参数的计算方法。

【教学重点】

1.分析放大电路的直流通路和交流通路。

2.基本共射极放大电路静态参数和动态参数的计算。

【教学难点】

1.画放大电路的交流通路。

2.用估算的方法分析放大电路的静态和动态参数。

【教学参考学时】

1学时

【教学方法】

讲授法

【教学过程】

一、复习

小信号放大器的主要性能指标。

二、讲授新课

2.3.1放大器的直流通路与交流通路

1.直流通路

直流通路用于研究电路的静态工作点,画直流通路的原则为:电容视为开路、电感线圈视为短路。

2.交流通路

交流通路用于研究放大电路的动态参数及性能指标,画交流通路的原则为:电容视为短路、直流电源视为短路。

*2.3.2放大器的静态与动态分析

1.放大电路的静态分析

借助于放大电路的直流通路,估算其静态工作点Q ,即静态时电路中各处的直流电流和直流电压:B

CC BQ R V I ≈、BQ CQ I I β=、C CQ CC CEQ R I V V -=。 2.放大电路的动态分析 借助于放大电路的交流通路,估算其主要性能指标:电压放大倍数be L

v r R A 'β-=、

输入电阻be i r R ≈、输出电阻C o R R =,其中)

()(26)

1(300mA I mV r EQ be β++Ω=。 三、课堂小结

1.直流通路与交流通路的概念、绘制原则。

2.基本共射放大电路静态工作点的估算。

3.基本共射放大电路主要性能指标的估算。

四、课堂思考

P44 思考与练习题1、2。

五、课后练习

P68 一、填空题:6;三、选择题:2;四、技能实践题:2;五、综合题:1。

【课题】

2.4 放大器静态工作点的稳定

【教学目的】

1.理解设置静态工作点的重要性。

2.掌握分压式偏置电路、集电极-基极偏置电路组成特点及稳定静态工作点的原理。

3.了解分压式偏置电路静态工作点的估算方法。

【教学重点】

1.放大器静态工作点稳定的意义。

2.分压式偏置电路、集电极-基极偏置电路的组成特点及稳定静态工作点的原理。【教学难点】

1.分压式偏置电路、集电极-基极偏置电路稳定静态工作点的原理。

2.分压式偏置电路静态工作点的估算。

【教学参考学时】

1学时

【教学方法】

讲授法、分组讨论法

【教学过程】

一、复习

基本共射放大电路静态工作点的估算。

二、引入新课

通过静态工作点对输出波形影响的演示实验,使学生认识到静态工作点变化,会对输出波形造成影响。

三、讲授新课

2.4.1 放大器静态工作点稳定的意义

由演示实验可知,当静态工作点发生变化,放大电路的工作状态也会发生变化,甚至会出现波形失真。如静态工作电流BQ I 变大,会出现饱和失真;静态工作电流BQ I 变小,会出现截止失真。

实际应用中电源电压的波动、元件的老化或因温度变化引起三极管参数的变化,都会造成静态工作点变化,从而使动态参数发生变化,最终导致电路出现异常。为了保证电路在各种复杂情况下能正常工作,采用能稳定静态工作点的偏置电路,是非常必要的。

2.4.2 放大器静态工作点的稳定措施

1.分压式偏置电路

电路结构见书本P49页图2.19。静态工作点稳定的条件为:BQ I I I >>≈21。

稳定静态工作点的过程为:

(某原因)→

CQ I ↑→ CQ I ↓

分压式偏置电路静态工作点的估算:CC b b b BQ V R R R V 212+=、e

BEQ BQ CQ R V V I -≈、 βCQ

BQ I I =、)(e c CQ CC CEQ R R I V V +-≈。

2.集电极-基极偏置电路

电路结构见书本P50页图2.21。该电路的特点是:偏置电阻b R 跨接在三极管的c 极与b 极之间。

自动稳定静态工作点的过程为:温度升高→

CQ I CQ I 四、课堂小结

1.放大器静态工作点稳定的意义。

2.分压式偏置电路稳定静态工作点的过程。

3.集电极-基极偏置电路稳定静态工作点的过程。

五、课堂思考

P47 思考与练习题1、2、3、4。

六、课后练习

P68 一、填空题:7;二、判断题:2;四、技能实践题:1;五、综合题:2。

【课题】

2.5 多级放大电路

【教学目的】

1.掌握多级放大电路常用级间耦合方式的电路连接特点及应用场合。

2.了解多级放大电路主要参数的计算方法。

【教学重点】

1.多级放大电路常用的级间耦合方式。

2.不同级间耦合方式的电路连接特点及应用场合。

3.多级放大电路主要参数的计算。

【教学难点】

放大电路的频率特性及通频带的概念。

【教学参考学时】

1学时

【教学方法】

讲授法

【教学过程】

一、复习

1.基本共射放大电路放大倍数的估算公式。

2.分析一个单管共射放大电路放大倍数的范围。

二、引入新课

如果在实际的信号放大中,要求的放大倍数远远超过单管放大电路所能放大的范围,那么就应该考虑将二个或更多个单管放大电路连接起来,得到更大的放大倍数。

三、讲授新课

2.5.1 多级放大电路的极间耦合方式

在多级放大电路中,级间耦合一方面要确保各级放大电路有合适的静态工作点,另一方面要使前一级的输出信号尽量不受衰减地传至后一级。

1.阻容耦合

将放大电路的前级输出端通过电容接到后级输入端。阻容耦合放大电路中各级的静态

工作点相互独立,但低频特性差且不便于集成化,因此,广泛应用在分立元件电路中。

2.变压器耦合

将放大电路的前级输出端通过变压器接到后级输入端或负载电阻上。变压器耦合放大电路的各级静态工作点各自独立,具有阻抗变换作用,易于实现级间的阻抗匹配,但低频特性差且不便于集成化,因此,在分立元件功率放大电路中应用较多。

3. 直接耦合

将放大电路的前一级输出端直接连接到后一级的输入端。直接耦合放大电路有良好的低频特性,便于集成化,但各级之间的静态工作点相互牵连、互相影响,且存在零点漂移,因此,多应用于集成放大电路中。

4.光电耦合

将放大电路的前级输出端通过光电耦合器接到后级输入端。光电耦合放大电路各级电路的静态工作点互不影响,且实现了前后电路的电气隔离,但直接用来传输模拟量时精度较差,在电子设备中得到广泛的应用。

2.5.2 多级放大电路的主要性能指标

1. 电压放大倍数

vn v v v A A A A K K 21?=、)(21dB G G G G vn v v v +++=K K

2.输入电阻和输出电阻

输入电阻是第一级的输入电阻1i i R R =;输出电阻是最后一级的输出电阻on o R R =。

3.频率特性与通频带

工程上,把电压放大倍数下降到中频时的0.707倍所对应的低端频率称为下限频率L f ,对应的高端频率称为上限频率H f ,并把L f 与H f 之间的频率范围称为该放大电路的通频带,用BW 表示,即 L H f f BW -= 。

多级放大电路提高了电压放大倍数,但通频带变窄。因此,为了满足多级放大电路通频带的要求,必须把每个单级放大电路的通频带设计得更宽一些。

四、课堂小结

1.多级放大电路常用的级间耦合方式。

2.阻容耦合、变压器耦合、直接耦合、光电耦合的电路连接特点、各自的优缺点及应用场合。

3.多级放大电路电压放大倍数、输入输出电阻的计算。

4、通频带的概念,以及多级放大电路与单级放大电路相比,通频带的变化情况。

五、课堂思考

P52 思考与练习题1、2、3。

六、课后练习

P68 一、填空题:4;二、判断题:3。

【课题】

2.6 场效晶体管放大器

【教学目的】

1.了解绝缘栅型和结型场效晶体的结构特点、类型。

2.掌握绝缘栅型和结型场效晶体管的电路符号。

3.理解场效晶体管电压控制原理、特性曲线及三个工作区域的特点。

4.了解场效晶体管主要参数的含义。

5.了解场效晶体管放大电路的结构及偏置方式。

【教学重点】

1.绝缘栅型和结型场效晶体管的结构特点、类型和电路符号。

2.场效晶体管的电压控制原理、特性曲线及三个工作区域的特点。

3.场效晶体管放大电路结构及偏置方式。

【教学难点】

1.绝缘栅型和结型场效晶体管的结构特点。

2.场效晶体管电压控制原理及三个工作区域的特点。

3.场效晶体管主要参数的含义。

【教学参考学时】

2学时

【教学方法】

讲授法

【教学过程】

一、复习

1.三极管的电流放大原理。

2.分压偏置式单管共射放大电路组成特点及稳定静态工作点的原理。

二、讲授新课

2.6.1 场效晶体管简介

场效晶体管简称场效管,是利用输入电压产生的电场效应来控制输出电流的器件,故其属于电压控制型半导体器件。与三极管相比,它具有输入电阻高、噪声低、功耗小等优点,因此,在大规模集成电路中得到广泛的应用。

1.绝缘栅场效管

结构:绝缘栅场效管有耗尽型和增强型两大类,每一类又有N 沟道和P 沟道两种。其电路符号见书本P56页图2.30,衬底的实线和虚线分别表示有预留导电沟道和没有预留导电沟道,箭头指向管内表示为N 沟道MOS 管,箭头指向管外表示为P 沟道MOS 管。

工作原理(书本P56页图2.31):以增强型MOS 场效管为例,当栅、源极间电压0=GS V 时,漏、源极间没有导电沟道,漏极电流0=D I ,处于截止状态。当0>GS V 时,漏区和源区间有导电沟道(N 沟道),此时,如果在漏极和源极之间加正向电压DS V ,则会有电流经沟道到达源极,形成漏极电流D I ,场效管处于导通状态。

主要特性:场效管的主要特性有转移特性和输出特性。着重介绍输出特性曲线的三个区域——可变电阻区、饱和区和击穿区。

2.结型场效管

结构:结型场效管有N 沟道和P 沟道两大类。其电路符号见书本P58页图2.33,栅极箭头指向管内表示为N 沟道结型场效管,栅极箭头指向管外表示为P 沟道结型场效管。

主要特性:与绝缘栅型场效管相似,简单介绍。

3.场效管的主要参数

开启电压)(th GS V 、 夹断电路)(off GS V 、 漏极饱和电流DSS I 、 跨导m g 、 漏源击穿电压DS BR V )(。

2.6.2 场效晶体管放大电路

场效管放大电路也有三种组态:共源极放大电路、共漏极放大电路和共栅极放大电路,分别与三极管放大电路的共射放大电路、共集放大电路和共基放大电路相对应。其中最常见的是共源极放大电路。

1. 分压式偏置放大电路

介绍电路结构,各元件的作用及简单的工作原理。

2.自给偏压式偏置放大电路

介绍电路结构,各元件的作用及简单的工作原理。

三、课堂小结

1.绝缘栅型和结型场效晶体管的类型和电路符号。

2.场效晶体管的电压控制原理、特性曲线及三个工作区域的特点。

3.场效晶体管主要参数的含义。

4、场效晶体管放大电路结构及偏置方式。

四、课堂思考

P57 思考与练习题1、2、3。

五、课后练习

P68 一、填空题:8;二、判断题:4。

【课题】

实训项目2.1三极管的管脚识别和质量判断

【实训目标】

1.掌握常用三极管的管脚识别方法。

2.掌握常用三极管的类型判断和质量判断方法。

【实训重点】

1.常用三极管的管脚识别方法。

2.常用三极管的质量判断。

【实训难点】

三极管的质量判断

【参考实训课时】

1学时

【实训方法】

讲授法、演示法、实操法

【实训过程】

一、实训任务

任务一三极管的类型及管脚识别

三极管的型号一般都直接标注在管壳上,根据三极管的命名方法即可知其类型是NPN

还是PNP。其管脚的分布有一定的规律,可通过分布特征直接分辨三极管的三个管脚。利用实训室提供的不同型号三极管介绍管脚的分布规律。

如果不知道三极管的类型及管子的引脚排列,可用指针式万用表按照书本P61页的操作步骤进行识别。介绍判定基极b和三极管类型、判定集电极c和发射极e的方法。

任务二三极管的质量判断(以NPN型管为例)

I的估测

1.穿透电流

CEO

(1)将万用表置于欧姆挡R×100或×1K挡。

(2)将三极管基极b悬空,万用表红表笔接发射极e,黑表笔接集电极c,此时测得阻值应在几十到几百千欧以上。若阻值很小,说明穿透电流大,稳定性差;若阻值为零,说明管子已经击穿;若阻值无穷大,说明管子内部断路;若阻值不稳定或阻值逐渐下降,说明管子噪声大、不稳定,不宜采用。

2.电流放大系数β的测量

h挡。

(1)将万用表量程开关旋至

FE

(2)将三极管的3个电极对应插入N列的三个插孔中,此时读出的数值即为该三极管的电流放大系数β,如果β太小,则表示该三极管已失去放大作用。

任务三综合训练

对3只不同型号的三极管,按上述步骤分别进行类型及引脚的识别和质量判断。

二、实训小结

1.三极管的类型判断和管脚的识别。

2.三极管的质量判断。

三、课堂思考

如果三极管为PNP型,应如何对其进行管脚的识别和质量判断?

四、课后作业

1.实训报告及本次实训的体会和收获。

2.完成项目实训评价表的学生自评部分。

【课题】

实训项目2.2 三极管放大电路的测量

【实训目标】

1.掌握分压式偏置电路静态工作点的测量方法。

2.掌握示波器和信号发生器的使用。

3.掌握分压式偏置电路输入、输出波形及电压放大倍数的测量方法。

4.了解波形失真的原因,并用示波器观察不同的失真波形。

【实训重点】

1.分压式偏置电路静态工作点的测量方法。

2.示波器和信号发生器的使用。

3.分压式偏置电路输入、输出波形及电压放大倍数的测量。

【实训难点】

1.分压式偏置电路输入、输出波形及电压放大倍数的测量。

2.用示波器观察不同的失真波形,了解波形失真的原因。

【参考实训课时】

2学时

【实训方法】

讲授法、演示法、实操法

【实训过程】

一、实训任务

任务一 分压式偏置电路静态工作点的测量

1.根据电路原理图在实训箱中完成分压式偏置放大电路的连接。

2.检查无误后给放大电路加上15V 直流电源,并调节电位器1W R ,使放大器处于放大的工作状态。

3.用万用表分别测量分压式偏置电路的静态工作点BQ V 、BEQ V 、CEQ V 、CQ I 。 任务二 示波器、信号发生器的使用练习

1.熟悉示波器面板上各开关、旋钮的位置,按使用说明将各开关、旋钮置于合适的挡位。通电后,调节各个旋钮,直至荧光屏上呈现清晰的扫描线。

2.熟悉信号发生器面板上各开关、旋钮的位置和作用。

3.由低频信号发生器输出幅度为100 mV ,频率分别为 100Hz 、200 Hz 、1kHz 、10kHz 的正弦波、矩形波和三角波信号,利用示波器观察波形;测出其周期;再计算各自的频率,并与信号发生器所示频率对比。

说明:由于学时的原因,在本实训开始前,应利用课余时间教会学生对示波器和信号发

生器的初步使用。

任务三 波形及电压放大倍数测量

1.保持放大器的静态工作点不变,在放大电路的输入端加入正弦波信号s v ,其频率KHz f 1=、幅度为mV 10,放大电路的输出端接示波器。当输出波形无失真现象时,用晶体管毫伏表分别测出s v 、i v 、o v (∞=L R )的大小。

2.增大输入信号幅度,用示波器监视放大器输出波形,用晶体管毫伏表测出最大不失真输出电压max o v 。

3.放大器输出端接入负载电阻Ω=K R L 2,保持输入端信号频率KHz f 1=、幅度为

mV 10不变,测出此时的输出电压o v (Ω=K R L 2)

。 4.用示波器双踪显示功能同时观察o v 和i v 的波形,测出它们的大小和相位。

任务四 波形失真分析

1.在mA I CQ 5.1=,∞=L R 的情况下,将频率为KHz 1的正弦信号加在放大器的输入端,增大输入信号幅度,用示波器监视放大器的输出信号o v 为不失真的正弦波。

2.调节电位器1P R 使其阻值增大,直至从示波器观察到放大器的输出波形出现失真,记录此时的波形,并测出相应的集电极静态电流CQ I 。

3.调节电位器1P R 使其阻值减小,直至从示波器观察到放大器的输出波形出现失真,记录此时的波形,并测出相应的集电极静态电流CQ I 。

二、实训小结

1.分压式偏置放大电路静态工作点的测量。

2.示波器、信号发生器面板上各开关、旋钮的位置和作用。

3.分压式偏置放大电路输入输出波形及电压放大倍数测量。

4.分压式偏置放大电路波形失真的测量。

三、课堂思考

1.负载对放大电路电压放大倍数有什么影响?

2.放大电路的输出信号波形失真与基极偏置电流大小的关系。

四、课后作业

1.实训报告及本次实训的体会和收获。

2.完成项目实训评价表的学生自评部分。

【课题】

实训项目2.3 分压式偏置放大器的安装和调试

【实训目标】

1.掌握分压式偏置放大器的工作原理。

2.掌握分压式偏置放大器的安装与调试方法。

【实训重点】

1.分压式偏置放大器的元器件识别和检测。

2.分压式偏置放大器的安装与调试。

【实训难点】

1.分压式偏置放大器的工作原理

2.分压式偏置放大器的调试

【参考实训课时】

2学时

【实训方法】

讲授法、演示法、实操法

【实训过程】

一、实训任务

说明:由于学时的原因,可根据学生的实际情况,将实训任务的部分内容安排在课余时间完成。

任务一分压式偏置放大器的元器件识别

对分压式偏置放大器所包含的元器件进行识别,并了解它们在电路中的作用。

任务二分压式偏置放大器元器件的检测

在分压式偏置放大器中,主要的元器件有三极管、电解电容、电位器和电阻,在安装之前必须对它们进行检测,以确保元器件是好的。

任务三分压式偏置放大器的电路安装

利用万能板对照实物连接图进行元器件的焊接和装配。

任务四分压式偏置放大器的调试

按实训项目2.2.的任务一和任务二所述步骤,对安装好的分压式偏置放大器进行静态工作点的测量及电压放大倍数的测量。

注意:电路通电前,必须先对整个电路板的焊点、连线进行检查,当确认安装无误时,方可通电调试。

二、实训小结

1.分压式偏置放大器的工作原理。

2.分压式偏置放大器的调试过程。

三、课堂思考

通过理论计算的方法,估算出分压式偏置放大器的静态工作点及电压放大倍数,并与实训测量值进行比较。

四、课后作业

1.实训报告及本次实训的体会和收获。

2.完成项目实训评价表的学生自评部分。

详解经典三极管基本放大电路

详解经典三极管基本放大电路 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP 两种。我们仅以NPN三极管的共发射极放大电路为例来说明一下三极管放大电路的基本原理。 图1:三极管基本放大电路 下面的分析仅对于NPN型硅三极管。如上图所示,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I 可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因。首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 下面说说三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前)。

基本共射放大电路.教案

江苏省职业学校 理论课程教师教案本 (2015 —2016学年第一学期) 专业名称预科班课程名称电子技术授课教师左爱娟学校江苏省高邮中等专业学校

了解基本共射放大电路的结构,了解工作原理。 学会 画直流通路和交流通路。 学会计算静态工作点。 授课时间 2015-10-12 教者 左爱娟 授课班级 13预科 课程名称 授课章节 名 称 使用教具 电子技术 授课形式 新授 基本共射放大电路(固定偏置电路) 纸质导学案、多媒体、黑板等 授课课时 2课时 教学目的 教学重点 了解基本共射放大电路的结构,了解工作原理。 教学难点 学会画直流通路和交流通路,计算静态工作点。 课外作业 补充 三极管单管放大电路 放大 的实质:用较小的信号去控制较大的信号。 一、共发射极基本放大电路的组成及工作原理 主要内容 板书设计 + U cc 、共发射极基本放大电路的静态分析 + RS + O U B 缶 U

课堂教学安排 主要教学内容及步骤 复习:1、三极管的工作状态 2、三极管的输出特性 三极管单管放大电路 放大的 实质:用较小的信号去控制较大的信号。 一、共发射极基本放大电路的组成及工作原理 (1) 晶体管V 。放大元件,用基极电流iB 控制集电极电流iC 。 (2) 电源UCC 和UBB 。使晶体管的发射结正偏,集电结反偏, 晶体管处在放大状态,同时也是放大电路的能量来源,提供电流 iB 和iC o UCC 一般在几伏到十几伏之间。 (3) 偏置电阻RB 。用来调节基极偏置电流IB ,使晶体管有一个 合适的工作点,一般为几十千欧到几百千欧。 (4) 集电极负载电阻RC 。将集电极电流iC 的变化转换为电压的 变化,以获得电压放大,一般为几千欧。 (5) 电容Cl 、C2o 用来传递交流信号,起到耦合的作用。同时, 又使放大电路和信号源及负载间直流相隔离,起隔直作用。为了 减小传递信号的电压损失,Cl 、C2应选得足够大,一般为几微法 至几十微法,通常采用电解电容器。 二、共发射极基本放大电路的静态分析 静态是指无交流信号输入时,电路中的电流、电压都不变的状态, 静态时三极管各极电流和电压值称为静态工作点 Q (主要指IBQ 、 ICQ 和UCEQ )o 静态分析主要是确定放大电路中的静态值 IBQ 、 ICQ 和 UCEQ o + U cc 教学过程 复习导入 教学设计 课堂讨论

三极管及放大电路基础教案..

第 2 章三极管及放大电路基础 课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。4.理解三极管的主要参数的含义。【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2 学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和 集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电 流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。

三极管三个电极的电流(基极电流1 B、集电极电流l C、发射极电流l E)之间的关系为: I E| |I C I C l B l C、 l B l B 2.1.3三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1.输入特性曲线 输入特性曲线是指当集-射极之间的电压V CE为定值时,输入回路中的基极电流I B与加在基-射极间的电压V BE之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2.输出特性曲线 输出特性曲线是指当基极电流I B为定值时,输出电路中集电极电流I C与集-射极间的 电压V CE之间的关系曲线。I B不同,对应的输出特性曲线也不同。 截止区:I B 0曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反 偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管 没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1?性能参数:电流放大系数、,集电极-基极反向饱和电流I CBO,集电极-发射极反向饱和电流I CEO。 2.极限参数:集电极最大允许电流I CM、集电极-发射极反向击穿电压V(BR)CEO、集电 极最大允许耗散功率P CM 。 3.频率参数:共发射极截止频率 f 、特征频率f T 。 2.1.5 三极管的分类三极管的种类很多,分类方法也有多种。分别从材料、用途、功率、频率、制作工艺等方面对 三极管的类型予以介绍。 三、课堂小结1.三极管的结构、类型和电路符号。2.三极管的电流放大作用。 3.三极管三种工作状态的特点。4.三极管的主要参数。 四、课堂思考 P37 思考与练习题1、2、3。

认识基本放大电路教案

宜兴技师学院 江苏城市职业学院宜兴办学点 江苏省宜兴中等专业学校 教 案 授课者:汤丽亚 授课学科:《电子线路》 授课课题:认识基本放大电路 授课课时间:2011月4月26日上午第4节课授课地点:电教楼304

【指导思想】 本教案内容选自中等职业学校国家规划教材《电子线路》第二版第三章单级低频小信号放大器§3.1-§3.4(P37-P50)。 单级低频小信号放大器是日常实用电路之一,它能够把微弱的电信号增强到所要求的值。常用于各种复杂电路的中间级起放大作用,在实际生活中广泛应用于扩音器、音响、助听器等音频放大设备中。本章主要的学习内容是基本放大电路的组成、静态分析和动态分析、非线性失真、稳定静态工作点原理,研究方法主要是图解法和估算法。本单元所介绍的知识是第四章多级放大器和负反馈放大器、第五章直接耦合放大器的基础,其估算法作为电路分析的重要手段,在今后电路的学习被普遍使用。 中职学生本身对于理论性较强的学科就缺乏兴趣,本书的设计比较注重理论知识的传授,从而影响学习效果;另外,中职学生知道自己的定位是工作,更加看重知识在今后工作中的实用性。 ⑴考虑到中职学生的学习特点和兴趣取向,选取和日常生活联系紧密的电子助听器电路作为项目背景将第三章的内容联系起来,形成一个有机的整体。既可以将零散的知识整合,又可以让学生看到实用性。 本单元的教学内容及课时安排如下: 任务一:认识基本放大电路1课时 任务二:静态工作点的测试和分析1课时 任务三:放大电路交流工作状态测试1课时 任务四:放大电路异常现象的测试1课时 任务五:Q点对输出波形影响的测试1课时 任务六:分析工作点稳定的放大电路1课时 任务七:组装电子助听器2课时 ⑵内容安排上从对三极管相关知识的复习,到放大器的定义、电路组成、放大倍数的测试计算和放大器作用的分析,层层递进,实现从理论到实践的飞跃。 ⑶教学手段上,增加幻灯片图片、FLASH动画、软件仿真等,来丰富课堂形式,调节气氛,提高课堂效率。 【教学目标】 1.能力目标:⑴能描述晶体管放大电路的结构

(整理)三极管应用电路和基本放大电路.

三极管应用电路和基本放大电路 2G 郭标2005-11-29 三极管应用电路和基本放大电路 (1) 一、三极管三种基本组态 (2) 二、应用电路 (3) A、偏置使用 (3) B、放大电路应用 (5) 三、射频FET小信号放大器设计 (7) 1、基本概念: (7) 2、基于S-参数和圆图的分析方法 (8) 四、集成中小功率放大器 (9) 附1:容易发生自激的电路形式 (11) 附2 电路分析实例 (11)

一、三极管三种基本组态 共发 共集 共基 特点:共发-对电压电流都有放大,适合制做放大器 共集-电压跟随器 共基-电流继随器 直流工作点选取 交流小信号混和PI 型等效模型 e

二、应用电路 A 、偏置使用 1、有源滤波电路: R1 R2 特点:直流全通,交流对地呈高容性。 使用时可在b 和e 对地接大电容,增强滤波。 2、有源负载电路: Vcc 特点:直流负载很小,交流负载大,提高放大器的Rc 3、恒流源电路 独立电流源 镜像电流源 特点:较大的偏置电压变化,有较小的电流变化

4、电平控制与告警电路 特点:利用导通截至特性,控制电平可调整 5、电流补偿偏置电路 特点:补偿偏置三极管能够补偿放大管因长期工作时,gm变低导致的Ic变低而改变工作点。

特点:适用于设计低噪声、高增益、高稳定性、较低频的放大电路。选择特定的材料可以做到高频。 1、共发放大的形式: ☆发射级接电阻的: 电压放大倍数接近为Rc/Re ☆接有源负载的: 共发有源负载的作用:直流负载很小,交流负载大 以此提高Rc,增大电压放大倍数 电压和电流同时放大的形式只有共发。 2、cb和cc的放大器一般只作为辅助。电流接续和电压接续或隔离作用。 3、级联考虑: 差分放大一般在组合放大的第一级,目的不在提供增益,而是良好的输入性能,如共模抑制比,温度漂移等;(互补型)共集电路(前置隔离级)做为最后一级,可兼容不同负载。而中间级一般是为了取得较高的增益,所以采用(有源偏置的)共发放大器。 放大电路中采用恒流偏置电路提高稳定性。 互补型共集电路 互补型共集电路特点:作为隔离级,提高动态范围

三极管及放大电路基础教案..

第2章三极管及放大电路基础 【课题】 2.1 三极管 【教学目的】 1.掌握三极管结构特点、类型和电路符号。 2.了解三极管的电流分配关系及电流放大作用。 3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。 4.理解三极管的主要参数的含义。 【教学重点】 1.三极管结构特点、类型和电路符号。 2.三极管的电流分配关系及电流放大作用。 3.三极管的三种工作状态及特点。 【教学难点】 1.三极管的电流分配关系和对电流放大作用的理解。 2.三极管工作在放大状态时的条件。 3.三极管的主要参数的含义。 【教学参考学时】 2学时 【教学方法】 讲授法、分组讨论法 【教学过程】 一、引入新课 搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。 二、讲授新课 2.1.1 三极管的基本结构 三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。 两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和PNP两种, 2.1.2 三极管的电流放大特性 三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电

流放大特性。 要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。 三极管三个电极的电流(基极电流B I 、集电极电流C I 、发射极电流E I )之间的关系为: C B E I I I +=、B C I I = --β、B C I I ??=β 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。 1. 输入特性曲线 输入特性曲线是指当集-射极之间的电压CE V 为定值时,输入回路中的基极电流B I 与加在基-射极间的电压BE V 之间的关系曲线。 三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。 2. 输出特性曲线 输出特性曲线是指当基极电流B I 为定值时,输出电路中集电极电流C I 与集-射极间的电压CE V 之间的关系曲线。B I 不同,对应的输出特性曲线也不同。 截止区:0=B I 曲线以下的区域。此时,发射结处于反偏或零偏状态,集电结处于反偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。 饱和区:曲线上升和弯曲部分的区域。此时,发射结和集电结均处于正偏状态,三极管没有电流放大作用,相当于一个开关处于闭合状态。 放大区:曲线中接近水平部分的区域。此时,发射结正偏,集电结反偏。三极管具有电流放大作用。 2.1.4 三极管的主要参数 1. 性能参数:电流放大系数- -β、β,集电极-基极反向饱和电流CBO I ,集电极-发射极反向饱和电流CEO I 。 2. 极限参数:集电极最大允许电流CM I 、集电极-发射极反向击穿电压CEO BR V )(、集电极最大允许耗散功率CM P 。

完整版三极管及放大电路原理

测判三极管的口诀 三极管的管型及管脚的判别是电子技术初学者的一项基本功,为了帮助读者迅速掌握测判方法,笔者总结出四句口诀:三颠倒,找基极;PN结,定管型;顺箭头,偏转大;测不准, 动嘴巴。’下面让我们逐句进行解释吧。 一、三颠倒,找基极 大家知道,三极管是含有两个PN结的半导体器件。根据两个PN结连接方式不同,可以分 为NPN型和PNP型两种不同导电类型的三极管,图1是它们的电路符号和等效电路。 测试三极管要使用万用电表的欧姆挡,并选择R X100或RX1k挡位。图2绘出了万用电表 欧姆挡的等效电路。由图可见,红表笔所连接的是表内电池的负极,黑表笔则连接着表内电池的正极。 假定我们并不知道被测三极管是NPN型还是PNP型,也分不清各管脚是什么电极。测试 的第一步是判断哪个管脚是基极。这时,我们任取两个电极(如这两个电极为1、2),用万用 电表两支表笔颠倒测量它的正、反向电阻,观察表针的偏转角度;接着,再取1、3两个电极和2、3两个电极,分别颠倒测量它们的正、反向电阻,观察表针的偏转角度。在这三次颠倒测量中,必然有两次测量结果相近:即颠倒测量中表针一次偏转大,一次偏转小;剩下一次必然是颠倒测量前后指针偏转角度都很小,这一次未测的那只管脚就是我们要寻找的基 极(参看图1、图2不难理解它的道理)。 二、PN结,定管型 找出三极管的基极后,我们就可以根据基极与另外两个电极之间PN结的方向来确定管子的 导电类型(图1)。将万用表的黑表笔接触基极,红表笔接触另外两个电极中的任一电极,若表头指针偏转角度很大,则说明被测三极管为NPN型管;若表头指针偏转角度很小,则被 测管即为PNP型。 三、顺箭头,偏转大 找出了基极b,另外两个电极哪个是集电极c,哪个是发射极e呢?这时我们可以用测穿透 电流ICEO的方法确定集电极c和发射极e。 (1)对于NPN型三极管,穿透电流的测量电路如图3所示。根据这个原理,用万用电表的 黑、红表笔颠倒测量两极间的正、反向电阻Rce和Rec,虽然两次测量中万用表指针偏转 角度都很小,但仔细观察,总会有一次偏转角度稍大,此时电流的流向一定是:黑表笔TC 极~b极极T红表笔,电流流向正好与三极管符号中的箭头方向一致(顺箭头”,)所以此 时黑表笔所接的一定是集电极c,红表笔所接的一定是发射极e。

基本共射放大电路教案

基本共射放大电路教案 教材分析 基本共发射极放大电路是模拟电子技术中非常重要的内容,是学生掌握负反馈放大电路、功率放大电路的基础。考虑到职校学生的学习特点和兴趣取向,选取和日常生活联系紧密的扩音机电路作为项目背景,本次课是该项目中任务二共射基本放大电路的学习。通过本项目的学习,既可以将零散的知识整合,又可以让学生看到实用性。让学生由被动变为主动,达到学生乐于学习,积极性增强的效果。 学情分析, 学生们在认知方面,已经具有了一定分析、概括与归纳的能力,能较快接受新的知识,掌握新技能。而且在通过前一章半导体器件的学习,已经具备了良好的学习基础。 教学目标 1.能力目标:⑴能描述基本共射放大电路的结构 ⑵说明各电路组成部分的作用 2.知识目标:⑴掌握基本共射放大电路的组成 ⑵理解基本共射放大电路的各元件作用 3.情感目标:⑴培养学生对该门专业课的兴趣 ⑵促进学生形成严密的逻辑思维。 4.思想目标:帮助学生克服对专业基础课的畏难情绪,从被动学习转变为主动学习。 教学重难点: 1.共射放大电路的组成 2.共射放大电路的各元件作用 教学方法 讲授法和任务驱动法并用,发挥学生的主体地位,以小组为单位,在学生独立自主的基础上,进行合作交流。结合丰富的网络资源库,激发学生的学习兴趣,在动手活动中,让学生掌握基本共射基本放大电路的结构,增加幻灯片图片、FLASH动画等,来丰富课堂形式,调节气氛,提高课堂效率。 教学过程 一、创设情景,项目引领 展示扩音机图片和实物,扩音机是如何实现扩音功能的呢? 二、新课学习,任务实施: (一)放大的概念

(以扩音机为例分析总结放大电路出放大电路的结构) (1)放大的概念 教师使用扩音机演示,引导学生讨论分析扩音机的工作流程,并总结扩音机结构框图。使用PPT课件展示。 扩音机结构框图 放大的对象:变化量 放大的本质:能量的控制 放大的特征:功率放大 放大的基本要求:不失真,放大的前提 (2)基本共射放大电路的组成及各元件的作用 VBB、Rb:使UBE>Uon,且有合适的IB。 VCC:使UCE≥Uon,同时作为负载的能源。 Rc:将ΔiC 转换成ΔuCE(uo) 。 动态信号作用时: 输入电压ui为零时,晶体管各极的电流、b-e间的电压、管压降称为静态工作点Q,记作IBQ、ICQ(IEQ)、UBEQ、UCEQ。 (3)设置静态工作点的必要性 为什么放大的对象是动态信号,却要晶体管在信号为零时有合适的直流电流和极间电压? 输出电压必然失真! 设置合适的静态工作点,首先要解决失真问题,但Q点几乎影响着所有的动态参数! ) ( o CE c b i c u u i i i u R ? → ? → → →

模拟电路基础问答题总结教学内容

模拟电路基础问答题 总结

模拟电路基础问答题总结 1、基尔霍夫定理的内容是什么? a. 基尔霍夫电流定律:在电路的任一节点,流入、流出该节点电流的代数和为零。 b. 基尔霍夫电压定律:在电路中的任一闭合电路,电压的代数和为零。 2、戴维南定理 一个含独立源、线性电阻和受控源的二端电路,对其两个端子来说都可等效为一个理想电压源串联内阻的模型。其理想电压源的数值为有源二端电路的两个端子的开路电压,串联的内阻为内部所有独立源等于零时两端子间的等效电阻。 3、三极管曲线特性 4、描述反馈电路的概念,列举他们的应用。 反馈,就是在电子系统中,把放大电路中的输出量(电流或电压)的一部分或全部,通过一定形式的反馈取样网络并以一定的方式作用到输入回路以影响放大电路输入量的过程。

反馈的类型有:电压串联负反馈、电流串联负反馈、电压并联负反馈、电流并联负反馈。 负反馈对放大器性能有四种影响: 1)提高放大倍数的稳定性,由于外界条件的变化(T℃,Vcc,器件老化等),放大倍 数会变化,其相对变化量越小,则稳定性越高。 2)减小非线性失真和噪声。 3)改变了放大器的输入电阻Ri和输出电阻Ro。 4)有效地扩展放大器的通频带。 电压负反馈的特点:电路的输出电压趋向于维持恒定。 电流负反馈的特点:电路的输出电流趋向于维持恒定。 引入负反馈的一般原则为: 1)为了稳定放大电路的静态工作点,应引入直流负反馈;为了改善放大电路的动态性 能,应引入交流负反馈(在中频段的极性)。 2)信号源内阻较小或要求提高放大电路的输入电阻时,应引入串联负反馈;信号源内 阻较大或要求降低输入电阻时,应引入并联系反馈。 3)根据负载对放大电路输出电量或输出电阻的要求决定是引入电压还是电流负反馈。 若负载要求提供稳定的信号电压或输出电阻要小,则应引入电压负反馈;若负载 要求提供稳定的信号电流或输出电阻要大,则应引入电流负反馈。 4)在需要进行信号变换时,应根据四种类型的负反馈放大电路的功能选择合适的组 态。例如,要求实现电流——电压信号的转换时,应在放大电路中引入电压并联 负反馈等。 5、有源滤波器和无源滤波器的区别 无源滤波器:这种电路主要有无源元件R、L和C组成。 有源滤波器:集成运放和R、C组成,具有不用电感、体积小、重量轻等优点。 集成运放的开环电压增益和输入阻抗均很高,输出电阻小,构成有源滤波电路后还具有一定的电压放大和缓冲作用。但集成运放带宽有限,所以目前的有源滤波电路的工作频率难以做得很高。

第三章_三极管放大电路基础习题解答

第三章 三极管放大电路基础习题解答 3.1 对于典型的晶体管,其β值范围一般为150~50,试求其对应的α值范围。 解:因为β β α+= 1,当β值范围为150~50,α值的范围为0.98~0.993。 3.2 如果两个晶体管的参数α分别为0.99和0.98,则两个晶体管的β分别为多少?若其集电极的电流为mA 10,则对应的基极电流分别为多少? 解:因为α α β-= 1,C B I I β 1 = 。当99.0=α时,100=β,mA I B 1.0=;当98 .0=α时,50=β,mA I B 2.0=。 3.3 对于一个晶体管,若其基极电流为A μ5.7,集电极电流为A μ940,试问晶体管的β和α分别为多少? 解:33.1255 .7940=== B C I I β, 992.033.125133 .1251=+=+=ββα 3.4 对于一个PNP 型晶体管,当集电极电流为mA 1,其发射结电压V v EB 8.0=。试问,当集电极电流分别为mA 10、A 5时,对应的发射结电压EB v 分别为多少? 解:因为T B E V V S C e I I =,则有? ?? ? ??=S C T BE I I V V ln ,因此有???? ??=S C T BE I I V V 11ln 。所以有??? ? ??=-C C T BE BE I I V V V 11ln 若令 mA I C 101=时,V I I V V V C C T BE BE 06.0110ln 26ln 11=??? ???=? ?? ? ??=-,则V V V BE BE 86.006.08.006.01=+=+= 若令 A I C 51=时,V I I V V V C C T BE BE 22.015000ln 26ln 11=??? ???=? ?? ? ??=-,则 V V V BE BE 02.122.08.022.01=+=+=。 3.5 在图P3.5所示的电路中,假设晶体管工作在放大模式,并且晶体管的β为无限大,试确定各图中所对应标注的电压、电流值。

模拟电子技术基础教案

《模拟电子技术基础》教案 1、本课程教学目的: 本课程是电气信息类专业的主要技术基础课。其目的与任务是使学生掌握常用半导体器件和典型集成运放的特性与参数,掌握基本放大、负反馈放大、集成运放应用等低频电子线路的组成、工作原理、性能特点、基本分析方法和工程计算方法;使学生具有一定的实践技能和应用能力;培养学生分析问题和解决问题的能力,为后续课程和深入学习这方面的内容打好基础。 2、本课程教学要求: 1.掌握半导体器件的工作原理、外部特性、主要参数、等效电路、分析方法及应用原理。 2.掌握共射、共集、共基、差分、电流源、互补输出级六种基本电路的组成、工作原理、特点及分析,熟悉改进放大电路,理解多级放大电路的耦合方式及分析方法,理解场效应管放大电路的工作原理及分析方法,理解放大电路的频率特性概念及分析。 3.掌握反馈的基本概念和反馈类型的判断方法,理解负反馈对放大电路性能的影响,熟练掌握深度负反馈条件下闭环增益的近似估算,了解负反馈放大电路产生自激振荡的条件及其消除原则。 4.了解集成运算放大器的组成和典型电路,理解理想运放的概念,熟练掌握集成运放的线性和非线性应用原理及典型电路;掌握一般直流电源的组成,理解整流、滤波、稳压的工作原理,了解电路主要指标的估算。

3、使用的教材: 杨栓科编,《模拟电子技术基础》,高教出版社 主要参考书目: 康华光编,《电子技术基础》(模拟部分)第四版,高教出版社 童诗白编,《模拟电子技术基础》,高等教育出版社, 张凤言编,《电子电路基础》第二版,高教出版社, 谢嘉奎编,《电子线路》(线性部分)第四版,高教出版社, 陈大钦编,《模拟电子技术基础问答、例题、试题》,华中理工大学出版社,唐竞新编,《模拟电子技术基础解题指南》,清华大学出版社, 孙肖子编,《电子线路辅导》,西安电子科技大学出版社, 谢自美编,《电子线路设计、实验、测试》(二),华中理工大学出版社, 绪论 本章的教学目标和要求: 要求学生了解放大电路的基本知识;要求了解放大电路的分类及主要性能指标。 本章总体教学内容和学时安排:(采用多媒体教学) §1-1 电子系统与信号0.5 §1-2 放大电路的基本知识0.5

共射极基本放大电路分析教案

共射极基本放大电路分析 教学内容分析:§2-2共发射极低频电压放大电路的分析中的“近似估算法”: 近似估算静态工作点、电压放大倍数。 教学对象及分析:1、基础知识:学生已基本掌握了共发射极低频电压放大电路 组成及工作原理。 2、分析与理解能力:由于放大电路的工作原理比较抽象,学生对此理解不够深刻,并且动手调试电子电路的能力有待提高。所以本次课堂将结合共发射极低频电压放大电路演示测试方式调动学生的主动性和积极性。 教学目的: 1、了解、掌握放大电路的分析方法:近似估算法; 2、培养学生分析问题的能力。 3、培养学生耐心调试的科学精神。 教学方法:演示法、启发法、讲练结合法 教具准备:分压式偏置放大电路实验板、示波器、万用表。 教学重点: 1、共射极放大电路的静态工作点的估算; 2、放大器的电压放大倍数的估算。 教学难点:静态工作点的估算。 教学过程: 一、复习及新课引入: 1、复习旧知识:(1)放大电路的工作原理。 (提问:简述共发射极放大电路的工作原理。) (2)基本放大电路的工作状态分:静态和动态。 (3)静态工作点的设置。 (提问:设置静态工作点的目的是什么?) 2、启发、提出问题:(1)放大电路设置静态工作点的目的是为了避免产生非线 性失真,那么如何设置静态工作点才能避免非线性失真呢? (2)放大器的主要功能是放大信号,那怎样计算放大器的放 大能力呢? 引入新课题:必须学习如何分析放大电路。

难点突破:解释U BE 的含义。 得到: I B ===4.0×10-5A=40μA 分析:由于V CC >>U BE ,故U BE 可忽略。 I B =。 ⑥计算I C ; 由β?=得到 I C =β?I B 又因为β≈β? 所以 I C =βI B =50×40μA=2mA ⑦计算U CE ; 对I C 回路应用电压方程有: I C R C +U CE = V CC 得: U CE = V CC -I C R C =20-2×16=8(V) ⑧总结静态分析的解题步骤; ⑨学生课堂练习:在演示板电路上让学生用万用表测量其静态工作点,然后根据线路元件参数估算静态工作点,两者进行比较。 2.放大器的电压放大倍数的估算: (1)、动态分析需要计算的物理量。 提问:放大器的作用是什么? 回答:主要作用是将微弱信号进行放大。 分析:对于放大器,我们最关心的是它的放大能力,以及它对信号源的要求和负载能力。因此必须计算放大倍 数、输入电阻和输出电阻。 (2)、放大器的电压放大倍数的估算的步骤: ①画出放大电路的交流通路。 方法:电容及直流电源视为短路,其余不变。学生自己画出直流通路 思考

半导体三极管及放大电路基础

半导体三极管及放大电 路基础 Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

第二章半导体三极管及放大电路基础 第一节学习要求 第二节半导体三极管 第三节共射极放大电路 第四节图解分析法 第五节小信号模型分析法 第六节放大电路的工作点稳定问题 第七节共集电极电路 第八节放大电路的频率响应概述 第九节本章小结 第一节学习要求 (1)掌握基本放大电路的两种基本分析方法--图解法与微变等效电路法。会用图解法分析电路参数对电路静态工作点的影响和分析波形失真等;会用微变等效电路法估算电压增益、电路输入、输出阻抗等动态指标。 (2)熟悉基本放大电路的三种组态及特点;掌握工作点稳定电路的工作原理。 (3)掌握频率响应的概念。了解共发射极电路频率特性的分析方法和上、下限截止频率的概念。 第二节半导体三极管(BJT) BJT是通过一定的工艺,将两个PN结结合在一起的器件,由于PN结之间的相互影响,使BJT表现出不同 于单个 PN结的特性而具有电流放大,从而使PN结的应 用发生了质的飞跃。本节将围绕BJT为什么具有电流放 大作用这个核心问题,讨论BJT的结构、内部载流子的 运动过程以及它的特性曲线和参数。 一、BJT的结构简介 BJT又常称为晶体管,它的种类很多。按照频率分,有高频管、低频管;按照功率分,有小、中、大功

率管;按照半导体材料分,有硅管、锗管;根据结构不同,又可分成NPN型和PNP型等等。但从它们的外形来看,BJT都有三个电极,如图所示。 图是NPN型BJT的示意图。它是由两个 PN结的三层半导体制成的。中间是一块很薄的P型半导体(几微米~几十微米),两边各为一块N型半导体。从三块半导体上各自接出的一根引线就是BJT的三个电极,它们分别叫做发射极e、基极b和集电极c,对应的每块半导体称为发射区、基区和集电区。虽然发射区和集电区都是N 型半导体,但是发射区比集电区掺的杂质多。在几何尺寸上,集电区的面积比发射区的大,这从图也可看到,因此它们并不是对称的。 二、BJT的电流分配与放大作用 1、BJT内部载流子的传输过程 BJT工作于放大状态的基本条件:发射结正偏、集电结反偏。 在外加电压的作用下, BJT内部载流子的传输过程为: (1)发射极注入电子 由于发射结外加正向电压V EE,因此发射结的空间电荷区变窄,这时发射区的多数载流子电子不断通过发射

实验二 三极管基本放大电路(指导书)

实验二三极管基本放大电路 一、实验目的 学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 掌握放大器电压放大倍数、及最大不失真输出电压的测试方法。 熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 共射放大电路既有电流放大,又有电压放大,故常用于小信号的放大。改变电路的静态工作点,可调节电路的电压放大倍数。而电路工作点的调整,主要是通过改变电路参数来实现,负载电阻R L的变化不影响电路的静态工作点,只改变电路的电压放大倍数。该电路输入电阻居中,输出电阻高,适用于多级放大电路的中间级。 静态工作点是否合适,对放大器的性能和输出波形都有很大影响。如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时V0的负半周将被削底;如工作点偏低易产生截止失真,即V0的正半周被缩顶(一般截止失真不如饱和失真明显)。这些情况都不符合不失真放大的要求。所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一不定期的V i,检查输出电压V0的大小和波形是否满足要求。如不满足,则应调节静态工作点的位置。工作点偏高或偏低不是绝对的,应该是相对信号的幅度而言,如信号幅度很小,即使工作点较高或较低也不一定会出现失真。所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。 图2-1 基本放大电路实验图 三、实验内容与步骤 1.调整静态工作点:按图连线,然后接通12V电源,调节信号发生器的频率和幅值调切旋 钮,使之输出f=1000Hz,Ui=10mV的低频交流信号,然后调节电路图中Rp1和Rp2使放大器输出波形幅值最大,又不失真。 2.去掉输入信号(最好使输入端交流短路),测量静态工作点(Ic,U ce,U be) 3.测量电压放大倍数:重新输入信号,在波形不失真的条件下用交流毫伏表测量下述二种 情况下的U0值(加入信号和无信号),此时的U0和U i相位相反。 4.测量幅频频特性曲线:保持输入信号的幅度不变,改变信号源频率f,按照下面的的频率 要求逐点测出相应的输出电压U0,记入下表,并且画出幅频特性曲线。

三极管放大电路及其分析方法

三极管电路放大电路及其分析方法 一、教学要求 1.重点掌握的内容 (1)放大、静态与动态、直流通路与交流通路、静态工作点、负载线、放大倍数、输入电阻与输出电阻的概念; (2)用近似计算法估算共射放大电路的静态工作点; (3)用微变等效电路法分析计算共射电路、分压式工作点稳定电路的电压放大倍数A u和A us,输入电阻R i和输出电阻R0。 2.一般掌握的内容 (1)放大电路的频率响应的一般概念; (2)图解法确定共射放大电路的静态工作点,定性分析波形失真,观察电路参数对静态工作点的影响,估算最大不失真输出的动态范围; (3)三种不同组态(共射、共集、共基)放大电路的特点; (4)多级放大电路三种耦合方式的特点,放大倍数的计算规律。 3.一般了解的内容 (1)共射放大电路f L、f H与电路参数间的定性关系,波特图的一般知识。多级放大电路与共射放大电路频宽的定性分析; (2)用估算法估算场效应管放大电路静态工作点的方法。 二.内容提要 1.共射接法的两个基本电路 共射放大电路和分压式工作点稳定电路是模拟电路中最基本的单元电路。学习这两种基本电路的分析方法是学习比较复杂的模拟电路的基础。 2.两种基本分析方法——图解法和微变等效电路法 在“模拟电路”中,三极管是非线性元件,因此不能简单地采用“电路与磁路”课中线性电路地分析方法。图解法和微变等效电路法就是针对三极管非线性的特点而采用的分析方法。 3.放大电路的三种组态——共射组态、共集组态和共基组态 由于放大电路输入、输出端取自三极管三个不同的电极,放大电路有三种组态——共射组态、共集组态和共基组态。由于组态的不同,其放大电路反映出的特性是不同的。在实际中,可根据要求选择相应组态的电路。 4.两种放大元件组成的放大电路——双极型三极管放大电路和场效应管放大电路 一般来说,双极性三极管是一种电流控制元件,它通过基极电流i B的变化控制集电极电流I c的变化。而场效应管是一种电压控制元件,它通过改变栅源间的电压u GS来控制漏极电流i D的变化;其次,双极性三极管的输入电阻较小,而场效应管的输入电阻很高,静态时栅极几乎不取电流。由于它们性能和特点的不同,可根据要求选用不同元件组成的放大电路。 5.多级放大电路的三种耪合方式——阻容耦合、直接耦合和变压器耦合 将多级放大电辟连接起来的时候,就出现了级与级之间的耦合方式问题。通过电阻和电容将两级放大电路连接起来的方式称为阻容耦合。由于电容的作用,

《模拟电子技术》教案:基本放大电路

授课教案 课程:模拟电子技术任课教师:教研室主任: 课号:5课题:第二章基本放大电路 2.1 简单交流放大电路 教学目的:(1)熟练掌握基本放大电路的组成,工作原理及作用。 (2)重点掌握静态工作点的建立条件、作用 教学内容:放大的概念,共射电压放大器及偏置电路,放大电路的技术指标和基本分析方法 教学重点:基本放大电路的组成、工作原理 教学难点:放大过程中交直流的叠加 教学时数:2学时 课前提问及复习:结型场效应管、绝缘栅型场效应管的构造原理和特性参数 新课导入:放大的概念,应用场合以及放大电路。 新课介绍: 第二章基本放大电路 2.1 概述 2.1.1 放大的概念 放大对象:主要放大微弱、变化的信号(交流小信号),使V O或I O、P O得到放大! 放大实质:能量的控制和转换,三极管——换能器。 基本特征:功率放大。 有源元件:能够控制能量的元件。 放大的前提是不失真,即只有在不失真的情况下放大才有意义。 2.1.2 放大电路的性能指标 为了反映放大电路的各方面的性能,引出如下 主要性能指标。 1、放大倍数 输出量与输入量之比,根据输入量为电流、电压和输 出量为电流、电压的不同,可以得到四种放大倍数。 2、输入电阻 输入电阻Ri为从放大电路输入端看进去的等效电阻, 定义为输入电压有效值Ui和输入电流有效值Ii之比,即Ri=Ui/Ii。 3、输出电阻 任何的放大电路的输出都可以等效成一个有内阻的电压源,从放大电路输出端看进去的等效内阻称为输出电阻Ro。 4、通频带 通频带用于衡量放大电路对不同频率信号的放大能力。 中频放大倍数下限截止频率上限截止频率f bw=f H-f L

三极管放大电路基本原理

三极管放大电路基本原理 三极管是电流放大器件,有三个极,分别叫做集电极C,基极B,发射极E。分成NPN和PNP两种。以NPN三极管的共发射极放大电路为例来说明三极管放大电路的基本原理。 以NPN型硅三极管为例,我们把从基极B流至发射极E的电流叫做基极电流Ib;把从集电极C流至发射极E的电流叫做集电极电流Ic。这两个电流的方向都是流出发射极的,所以发射极E上就用了一个箭头来表示电流的方向。 三极管的放大作用就是:集电极电流受基极电流的控制(假设电源能够提供给集电极足够大的电流的话),并且基极电流很小的变化,会引起集电极电流很大的变化,且变化满足一定的比例关系:集电极电流的变化量是基极电流变化量的β倍,即电流变化被放大了β倍,所以我们把β叫做三极管的放大倍数(β一般远大于1,例如几十,几百)。如果我们将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式 U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 三极管在实际的放大电路中使用时,还需要加合适的偏置电路。这有几个原因: 首先是由于三极管BE结的非线性(相当于一个二极管),基极电流必 须在输入电压大到一定程度后才能产生(对于硅管,常取0.7V)。当基极与发射极之间的电压小于0.7V时,基极电流就可以认为是0。但实际中要放大的信号往往远比0.7V要小,如果不加偏置的话,这么小

的信号就不足以引起基极电流的改变(因为小于0.7V时,基极电流都是0)。如果我们事先在三极管的基极上加上一个合适的电流(叫做偏置电流,上图中那个电阻Rb就是用来提供这个电流的,所以它被叫做基极偏置电阻),那么当一个小信号跟这个偏置电流叠加在一起时,小信号就会导致基极电流的变化,而基极电流的变化,就会被放大并在集电极上输出。 另一个原因就是输出信号范围的要求,如果没有加偏置,那么只有对那些增加的信号放大,而对减小的信号无效(因为没有偏置时集电极电流为0,不能再减小了)。而加上偏置,事先让集电极有一定的电流,当输入的基极电流变小时,集电极电流就可以减小;当输入的基极电流增大时,集电极电流就增大。这样减小的信号和增大的信号都可以被放大了。 三极管的饱和情况。像上面那样的图,因为受到电阻Rc的限制(Rc是固定值,那么最大电流为U/Rc,其中U为电源电压),集电极电流是不能无限增加下去的。当基极电流的增大,不能使集电极电流继续增大时,三极管就进入了饱和状态。一般判断三极管是否饱和的准则是:Ib*β〉Ic。进入饱和状态之后,三极管的集电极跟发射极之间的电压将很小,可以理解为一个开关闭合了。这样我们就可以拿三极管来当作开关使用:当基极电流为0时,三极管集电极电流为0(这叫做三极管截止),相当于开关断开;当基极电流很大,以至于三极管饱和时,相当于开关闭合。如果三极管主要工作在截止和饱和状态,那么这样的三极管我们一般把它叫做开关管。 如果我们在上面这个图中,将电阻Rc换成一个灯泡,那么当基极电流为0时,集电极电流为0,灯泡灭。如果基极电流比较大时(大于流过灯泡的电流除以三极管的放大倍数β),三极管就饱和,相当于开关闭合,灯泡就亮了。由于控制电流只需要比灯泡电流的β分之一大一点就行了,所以就可以用一个小电流来控制一个大电流的通断。如果基极电流从0慢慢增加,那么灯泡的亮度也会随着增加(在三极管未饱和之前。 但是在实际使用中要注意,在开关电路中,饱和状态若在深度饱和时会影响其开关速度,饱和电路在基极电流乘放大倍数等于或稍大于集电极电流时是浅度饱和,远大于集电极电流时是深度饱和。因此我们只需要控制其工作在浅度饱和工作状态就可以提高其转换速度。对于PNP型三极管,分析方法类似,不同的地方就是电流方向跟NPN 的刚好相反,因此发射极上面那个箭头方向也反了过来——变成朝里

相关文档
相关文档 最新文档