文档库 最新最全的文档下载
当前位置:文档库 › A01.动力总成选型设计规范

A01.动力总成选型设计规范

A01.动力总成选型设计规范
A01.动力总成选型设计规范

动力总成选型匹配设计规范

编制:

校对:

审核:

奔腾动力科技有限公司

2009年3月26日

目录

前言 2

1.适用范围 3 2.引用标准 3 3.选型匹配设计主要工作内容及流程 4

4.产品策划 5 5.资源调查 5 6.分析与筛选 6 7.设计参数输入 6 8.预布置与匹配分析计算 6

9.法规对策分析 18

前言

本标准是为了规范我公司汽车动力总成(MT)匹配设计而编制。标准中对设计程序、参数的输入、参照标准、匹配计算等方面进行了描述和规定,此标准可作为今后汽车动力总成(MT)匹配设计参考的规范性指导文件。

1.适用范围

本方法适用于基于现有动力总成资源,选择满足整车设计要求的动力总成(MT)的一般方法与原则。

2.引用标准

GB 16170 汽车定置噪声限制

GB 1495 汽车加速行驶车外噪声限值及测量方法

GB/T12536-1990 汽车滑行试验方法

GB/T12543-1990 汽车加速性能试验方法

GB/T12544-1990 汽车最高车速试验方法

GB/T12539-1990 汽车爬陡坡试验方法

GB/T12545.1- 2001 乘用车燃油消耗量试验方法

GB/T18352.3- 2005 轻型汽车污染物排放限值测量方法

3.选型匹配设计主要工作内容及流程

4.产品策划

产品策划的目的是依据整车设计要求,确定动力总成选型的范围、条件及基本技术指标。

根据整车设计任务书要求,确定以下输入条件:

整车输入条件—车辆类型(轿车、SUV等);

市场定位—经济型、中级或高级;

动力总成布置型式—横置前驱、纵置后驱、纵置四驱;

整车尺寸参数—外形尺寸、轮距、轴距、整备质量、离地间隙、机舱纵梁及前围板初步硬点;前悬和后悬;轮胎规格;风阻系数;

整车重量参数—整备质量、载客量、总质量、轴荷分配

整车目标性能—动力性(最高车速、加速时间、汽车的比功率和比转矩指标、最大爬坡度)、经济性指标、排放水平;

产品策划的内容是根据整车设计要求,确定资源调查的具体指标范围:型式(类型)、排量范围、对配套变速器的要求。

5.资源调查

根据设计任务书及产品策划要求进行资源调查,调查市场上发动机及变速器资源及相关信息,包括:

(1)发动机、变速器技术参数

外形尺寸—长宽高及相对变速器输出轴尺寸

技术指标—功率、扭矩、速比、排放水平

技术状态—开发阶段、定型产品、匹配车型、批量生产

(2)品牌及产品来源—国产化、自主研发、合作开发

(3)服务—配套车型、附件提供状态、配套体系完整性

(4)风险性分析—配套意向、批量供货能力

资源调查方法为信息收集与厂家专访。

6.分析与筛选

根据排量、功率、扭矩及排放指标并结合参考样车的发动机舱尺寸与动力总成外廓尺寸对比,综合评价技术状态、产量、配套意向、品牌、服务、附件提供状态、配套体系完整性,初选两-三种动力总成进行进一步分析和对比调查。

7.设计参数输入

根据初选的两-三种动力总成,确认供应商意向,并收集以下匹配计算资料及参数:

(一)动力性计算参数

发动机使用外特性或外特性曲线

发动机最低转速n min和最高转速n max

主减速器传动比

变速器传动比(各档)

(二)燃油经济性计算参数

发动机万有特性图

(三)预布置参数

动力总成外廓数模、主要附件数模、主要硬点数据(差速器中心、悬置安装点)、重心及重量参数、安装要求。

8.预布置与匹配分析计算

8.1预布置

通过预布置初步确认动力总成布置可行性。根据造型设计确定的前悬、发动机罩型线、前围板及纵梁位置、传动轴容许安装角等设计硬点,结合设计间隙要求并参考对标车或相近车型空气滤清器、中冷器、冷凝器、散热器、蓄电池和副车架规格统计尺寸或数模,以满载状态为基准进行动力总成模型布置,预测机舱尺寸、与主要总成的间隙及离地间隙是否满足设计要求。

预布置工作的输入条件:

动力总成外形数模、差速器接口数模、机舱、纵梁及前结构设计硬点及线框模型、机舱内主要总成数模、轮胎规格、轮毂与传动轴连接尺寸;安全性相关指标要求;

预布置主要间隙要求如下表:

序号内容间隙值(mm)备注

1 发动机皮带轮处与纵梁的最小间隙≥30

2 变速器与纵梁的最小间隙≥30

≥35 排气管前置式

3 与散热器及风扇的最小间隙

≥20 排气管后置式

4 与副车架和转向机的最小间隙≥17

5 与周围固定的其他零部件的最小间隙≥25

6 满载状态时的最小离地间隙≥120

预布置状态:预布置在整车坐标系下进行。

预布置工作输出结果:最小离地间隙,动力总成与纵梁、E/G罩外板、前围板静态最小间隙,主要总成布置可行性及与周边零件最小间隙;传动轴静态安装角(一般不大于4°);

根据预布置结果判断动力总成布置可行性。

8.2匹配分析计算

根据整车设计参数及动力总成参数,计算整车的动力性、经济性指标,同时进行离合器容量匹配计算,判断选用动力总成是否能满足整车动力性、经济性指标,选用离合器是否适用,并提出改型意见。为综合衡量和判断动力总成的适用性提供依据。

8.2.1动力性计算

动力性是汽车各项性能中最基本、最重要的性能之一。动力性的好坏,直接影响到汽车在城市和城际公路上的使用情况。因此在新车开发阶段,必须进行动力性计算,以指导设计方案是否满足设计目标和使用要求。 动力性计算的主要内容如下: a) 汽车的最高车速

b) 加速时间(0→100km/h 连续换挡加速时间) c) 最大爬坡度。

8.2.1.1汽车的最高车速计算

汽车动力性能计算的主要依据是汽车的驱动力和行驶阻力之间的平衡关系,汽车的驱动力-行驶阻力平衡方程为:

j

i w f t F F F F F +++=

其中:t F —驱动力;f F —滚动阻力;w F —空气阻力;i F —坡道阻力;j F —加速阻力; 驱动力:

d

T g tq t r i i F T η 0 =

其中:tq T 发动机的转矩,单位为N ·m ;g i 变速器各个档位的传动比;0i 主减速器速比;T η动力传动系统机械效率;d r 车轮滚动半径,单位为m 。

发动机外特性曲线是发动机功率、转矩以及燃油消耗率与发动机曲轴转速之间的函数关系。发动机的功率、转矩随发动机曲轴转速变化的关系曲线通过拟合方式确定,已知条件为功率曲线通过原点,最大功率点,最大转矩点,最大功率点在功率曲线上的导数为零,最大转矩点在转矩曲线上的导数为零。

轿车发动机在使用过程中还要为水泵、发电机、空调等设备提供动力,其使用外特性要比外特性小,用于汽车行驶的有效扭矩和有效功率均在原来基础上有所减少,一般汽油发动机使用外特性比外特性约小10%,取有效扭矩=扭矩×90%,有效功率=功率×90%。

传动系统的机械效率主要由变速器传动效率、传动轴万向节传动效率、主减速器传动效率等部分组成。参照汽车工程手册,取变速器传动效率为95%、传动轴万向节传动效率为98%、主减速器传动效率为96%。采用有级机械变速器传动系的轿车传动系统效率一般在90%到92%之间。 滚动阻力:

f

F =αcos mgf

其中:m 汽车计算载荷工况下的质量,单位为kg ;g 重力加速度,单位为m/s 2;f 滚动阻力系数;α道路坡角,单位为rad ;

滚动阻力系数采用推荐的轿车轮胎在良好路面上的滚动阻力系数经验公式进行估算:

f =???

???????????+??????+4

410100100a a u f u f f c

其中,0f —0.0072~0.0120以上,取0.012;

1f —0.00025~0.00280,取0.0027;

4f —0.00065~0.002以上,取0.002;

c —对于良好沥青路面,取1.2;

空气阻力:

15

.212

a

D w u A C F =

其中:D C 空气阻力系数;A 迎风面积,根据车身外表面及各种附件的数模投影计算迎风面积,单位为m 2;a u 汽车行驶速度,单位为km/h 。 坡道阻力:

i F =αsin mg

其中:m 计算载荷工况下汽车的质量,单位为kg ;g 重力加速度,单位为m/s 2;α道路坡角,单位为rad 。 加速阻力:

dt

du m F a

j δ=

其中:δ旋转质量换算系数;m 计算载荷工况下汽车的质量,单位为kg ;dt

du a

汽车行驶加速度,单位为m/s 2。

在进行动力性初步计算时,如无汽车飞轮、轮胎等旋转部件准确的转动惯量数值,对于旋转质量换算系数δ,可根据下述经验公式进行估算确定:

δ=2

211g i δδ++

式中:1δ=

2w I

d

r

m ×∑(其中I w —车轮的转动惯量(kg.m 2));2δ=

2

2

02d T

g f r m i i I ××××η(其中I f —飞轮

的转动惯量(kg.m 2));

如不知道ΣI w 和I f 的准确值,1δ和2δ值可按经验取,范围在0.03-0.05之间。

在进行不同档位的驱动力和阻力计算时,汽车速度与发动机转速之间的关系按下式换算:

377

.0i i n

r u g d a =

其中,a u 汽车行驶速度,单位为km/h ;n 发动机转速,单位为r/min ;0i 主减速器传动比;g i 变速器各个档位的传动比;d r 车轮的滚动半径,单位为m 。

根据上述公式,编制相应的计算软件,计算出汽车在任意发动机转速、档位下的驱动力、行驶阻力,进而可以绘制出汽车的驱动力-行驶阻力平衡图。

在驱动力-行驶阻力平衡图中,最高档下驱动力和行驶阻力曲线的交点处对应的速度值即为汽车的最高车速。

8.2.1.2 0-100Km/h 加速时间计算

汽车的加速能力一般用水平良好路面上直接档行驶时,由最低稳定车速加速到一定车速所需的时间表明汽车的加速能力。

汽车加速时,驱动力除了用来克服空气阻力、滚动阻力以外,主要用来克服加速阻力,此时不考虑坡道阻力i F (i F =0)

。 根据驱动力-行驶阻力平衡方程得:

j w f t a F F F m dt du =??=][1

δ

由上式,编制相应软件计算可得出汽车的加速行驶曲线:

加速时间:

t =∫t

dt 0=∫2

1

1

u u

j

du a 通过数值积分方法对上式进行积分求解,可以得到所需要的加速时间。如Ⅰ挡与Ⅱ挡加速度曲线有交点,以交点对应车速换挡;如无交点,则以Ⅰ挡加速行驶至发动机转速达到最高转速时换入Ⅱ挡;其他各档间换档时刻依此确定。 换档经历时间按0.1秒计。

8.2.1.3最大爬坡度计算

最大爬坡度

在计算爬坡度时,认为汽车的驱动力除了用来克服空气阻力、滚动阻力外,剩余驱动力都用来克服坡道阻力,即加速阻力j F 为零。

根据驱动力-行驶阻力平衡方程可以得到如下公式:

w

t i f F F F F ?=+

转换后可得到如下公式:

α=arcsin(F t -(F f +F w ))/mg

由上式,然后根据公式i =tg α进行转换,编制相应软件计算得出汽车车速与相应档位的爬坡度关系,绘制出爬坡度曲线图计算出爬坡度。其中最大爬坡度为Ⅰ挡时的最大爬坡度。 I 档附着条件校核

汽车发动机在I 档时可提供的最大驱动力在转矩值最大时取得:

max t F =

r

i i T T

g tq η0

同时,满载时驱动轴载荷为1Z F ,考虑良好的混凝土或沥青路面,取路面附着系数为?=0.8,这时路面可提供的最大附着力为:

1X F =1Z F ?

1X F 应大于等于max t F ,即汽车在实际行驶中可达到最大驱动力。

计算结果应以满足附着条件的爬坡度作为最大爬坡度,并应满足设计指标要求。

8.2.2燃油经济性计算

8.2.2.1等速百公里油耗的计算方法

汽车等速百公里油耗指汽车在一定载荷(国标规定轿车为半载)下,以最高档在水平良好路面上等速行驶100Km/h 的燃油消耗量。汽车等速百公里油耗计算主要是依据汽车发动机的万有特性曲线以及汽车功率平衡图进行的。

在汽车的行驶方程式的基础上,在公式两端同时乘以车辆速度a u ,经过单位换算、整理就可以得到汽车的功率平衡方程式:

)

3600761403600)sin(3600)cos((13

dt du mu Au C u mg u mgf P a a a

D a a g

e δααη+++=

其中,e P 发动机功率,单位为kW 。

其它各个参数的意义和单位同上述说明。

利用上式就可以计算出汽车行驶功率平衡关系,以纵坐标表示功率,横坐标表示车速,将发动机功率、汽车的阻力功率对车速的关系绘制在坐标图上,可绘制出功率平衡图。

汽车的发动机功率可以根据功率平衡关系由阻力功率计算获得。发动机功率同时要考虑发动机附件的功率损失10%,可以用下式来表示:P =

%

90p e

其中:P —发动机功率;

P e —克服阻力功率应提供的发动机功率

不同车速下以最高档位行驶时的阻力功率计算:

在汽车等速行驶情况下,阻力功率主要表现为滚动阻力功率、空气阻力功率。这时的汽车功率平衡方程为:

???

?????+=76140360013T a

D a e Au C mgfu P η 其中:Pe —克服阻力功率应提供的发动机功率,单位为kW ;

T η—传动系统各个档位情况下的传动效率;

m —汽车试验载荷,单位为kg ; g —重力加速度,单位为m/s 2; f —汽车滚动阻力系数;

D C —空气阻力系数;

A —迎风面积,单位为m 2; ua—汽车行驶速度,单位为km/h 。 特定档位下发动机转速和车速之间有如下关系:

377

.0i i n

r u g d a = 其中:a u —汽车行驶速度,km/h ;

n —发动机转速,r/min ;

0i —传动系统各个档位的传动比; d r —车轮滚动半径,m 。

发动机万有特性曲线横坐标通常是发动机转速或车速,纵坐标则是发动机有效输出扭矩、平均有效压力或发动机有效功率等。

对于四冲程发动机,平均有效压力和发动机有效功率通过下式进行相互转换。

120

Vn

p P me =

×10-3 p me —发动机平均有效压力,KPa ;

V—发动机气缸工作容积,L 。

在发动机万有特性曲线图上,根据曲线进行插值计算,可以得到对应特定发动机转速和发动机功率处的燃油消耗率m g ,再根据下列公式即可计算得到特定速度下的等速百公里油耗:

g

u g Q a m

S ρ02.1P ?=

其中:S Q —等速百公里油耗,单位为L/100km ;

m g —发动机的实际燃油消耗率,单位为g/(kW ?h); P —发动机工作功率,单位为kW ;

a u —汽车行驶速度,单位为km/h ;

ρ—燃油密度,单位为kg/L;g—重力加速度,m/s2;汽油的ρg可取6.96-7.15N/L;

燃油经济性计算输出结果:等速行驶工况燃油消耗量

8.2.3离合器匹配计算

8.2.3.1输入参数

整车参数:

M a汽车总质量;r轮胎滚动半径;

动力总成参数:

T emax最大扭矩;i g一挡速比;i o主减速比;发动机转速n e(为接合时转速,车辆进行起步时发动机转速,一般轿车取1000rpm,货车取1500rpm);

离合器参数:

D摩擦片外径;d摩擦片内径;f静摩擦系数;F压紧力;Z摩擦面数;

8.2.3.2匹配计算

静摩擦力矩T c

T c=fFZR c

R c为摩擦片用半径,R c=D3-d3/(D2-d2)

离合器主、从动部分间的摩擦力矩传递发动机转矩。为保证离合器可靠传递发动机转矩,T c 应大于发动机最大转矩,一般静摩擦力矩计算结果应大于发动机最大扭矩的1.2倍。

后备系数β

β=T c/T emax,

为保证完全传递发动机的最大转矩和防止产生过大的滑磨,β不宜过小;为防止离合器尺寸过大和避免传动系过载,β也不宜过大;根据车辆类型,β可在1.2-2.5之间选择,一般轿车β值应在1.2-1.75;膜片弹簧离合器因磨损后压紧力变化小,β可选较小值;

单位面积滑摩功W

W=4πn e2M a2r2/(1800i o2i g2Z(D2-d2))

换挡过程中离合器的滑摩功小,有利于提高离合器的使用寿命。对于轿车,一般W≦「W」=0.4J/m2

摩擦片最大圆周速度V D

V D=πDn emax/60

为避免相对滑磨速度差别太大造成摩擦面磨损不均,且不利于散热,摩擦片最大圆周速度一般不超过65-70m/s。

9.法规对策分析

法规对策分析是针对现行强制性法规要求及产品销售期内可能施行的强制性法规要求,分析动力总成满足排放、噪声、节能等要求的可能性,并提出对策及建议。

排放、噪声要求是根据现装车采用相关动力总成满足法规要求的实绩,对比现装车与目标车的整车参数进行初步判断,或采用CAE软件分析评估整车排放、噪声水平。

节能要求可根据燃油经济性计算结果,对比法规要求及对标车指标进行初步判断。

文件名: 090831动力总成选型设计规范.rtf

目录: E:\NAIP项目文件\中气成果文件\090617NAIP项目阶段性成果展示\设计规范

模板: C:\Documents and Settings\hxf\Application

Data\Microsoft\Templates\Normal.dot

标题: 办公用品申购计划表(月度)

主题:

作者: 微软用户

关键词:

备注:

创建日期: 2009-6-2 16:32:00

修订号: 33

上次保存日期: 2009-9-25 17:12:00

上次保存者: hxf

编辑时间总计: 249 分钟

上次打印时间: 2009-9-25 17:13:00

打印最终结果

页数: 19

字数: 1,218 (约)

字符数: 6,945 (约)

离心式压缩机技术规定

《离心压缩机工程技术规定》 《离心压缩机工程技术规定》对工业装置内使用的离心压缩机提出了最低限度的要求,对离心压缩机采用的标准、规范及其性能、设计、结构、动力学、辅助设备、驱动机、试验及标志、包装和采购等方面作了规定。 《离心压缩机工程技术规定》由中国成达工程公司漆明贵编写,范德明、魏宗胜负责校审。 1. 总则 2. 基本设计 3. 辅助设备 4.检验和试验 5.涂漆、标志、包装和运输 6.卖方应提供的图纸及资料 7.保证 8.拒收 附录 A 设计基础 B 主要参考标准、规范和规定 C 参考的卖方供货范围 D 卖方应提供的图纸及资料 E 油漆颜色 1. 总则 范围 本规定连同订货合同书/询价书和数据表一起提出对离心式压缩机及辅助设备等在设计、制造、检验、试验等方面的基本要求。 工程特殊要求 “工程特殊要求”是根据用户特殊要求或现场的特殊要求以及特定工程设计基础数据对本通用规定有关条款所作的修改,作为本通用规定的附件。当“工程特殊要求”与本规定发生矛盾时,以“工程特殊要求”为准。 准和规范 下列标准和规范及附件A列出的标准和规范的最新版应构成本规定的一部分: API 617 一般炼油厂用离心式压缩机 或JB/T6443 离心压缩机(根据具体工程的要求选用) API 613 炼油厂用特殊用途齿轮箱 API 614 特殊用途的润滑油,密封油及调节油系统 API 670 振动、轴位移和轴承温度监控系统 API 671 炼油厂特殊用途联轴器

当买方的数据表/工程规定与规定的标准和规范或法规要求有偏离时,卖方应及时将偏离内容提交买方供确认。 数据表及相关规定 买方数据表给出基本的工艺数据和特殊要求。 装置通用工程规定与离心式压缩机组的设计、制造、检验、试验等有关的相关专业工程技术规定,在工程设计中必须遵守执行。 当卖方不能接受买方数据表或工程技术规定的某些条款时,卖方应及时通知买方,列出偏差表并推荐可选的设计以征求买方意见。 卖方图纸和资料要求 卖方应按买方采购申请单要求的图纸和资料的项目和进度分期分批提交图纸和资料。具体要求将在合同中进一步明确。 买方对卖方提供的图纸和资料的审查和同意并不能解除卖方对订货合同书应尽的义务。 所有图纸和资料应给出业主名称、买方工程号、合同号、设备位号及设备名称。 卖方提交文件中所有的参数应采用国际单位制表示。 文件的优先顺序 买方文件的优先顺序是订货合同、数据表、工程技术规定、有关的标准和规范。 2. 基本设计 一般要求 除非另有规定,压缩机制造厂应对整个压缩机组包括齿轮箱、驱动机、油系统、控制及仪表、辅机和管道系统等负全部责任,并负责各部件之间的协调。 所有部件应有经证实的在相似操作条件下使用的成功经验。除非经买方特别同意,样机将不被接受。 机组的布置应合理,以便为操作和维护提供足够的空间和安全通道。 卖方应根据给定气体组分核算比热、压缩性系数及其它压缩机设计所需的气体物性参数。卖方应保证所有规定工况下的性能(即流量和压头)及正常工况下的轴功率。 对于变转速压缩机,正常工况时的压头和流量应能在正常转速的+2%范围内得到满足,轴功率容差在+4%以内。对于恒速压缩机,在保证正常流量的同时,压头的容差应在+4%~0%之间,且轴功率容差在+4%~0%之间。 压缩机的压力—流量的性能曲线从额定点到喘振点应连续上升。 机壳 机壳的厚度应适合于规定的设计压力和试验压力,并考虑至少有 mm腐蚀裕度。 机壳的设计压力至少应等于最高吸入压力与跳闸转速时所有规定工况条件的最恶劣的组合条件下操作压缩机可能产生的最大升压之和,或等于买方规定的安全阀设定值。任何情况下,上述最高吸入压力不低于大气压。 对于低温条件操作的压缩机机壳的设计温度应低于预计的最低操作温度;其它场合使用的压缩机,机壳的设计温度应不低于预计的最高操作温度加10℃。

空气压缩机设备选型能力核算

空气压缩机设备选型能力核算 一、计算依据 根据国家煤矿安全监察局安监总煤装[2010]146号文件精神,要求“煤矿和非煤矿山要制定和实施生产技术装备标准,安装监测监控系统、井下人员定位系统、紧急避险系统、压风自救系统、供水施救系统和通信联络系统等技术装备,并于3年之内完成”的要求。压风管路通过主斜井送至井下。 最大班下井人数73人,其中回采工作面34人,每个掘进工作面14人。 现根据国家安监总局、国家煤监局2007年8月9日颁发安监总煤行[2007]第167号文件,按用于灾害防治时,最大班下井总人数每人0.3m3/min计算确定压风系统供风量。矿井风动设备配备见表7-4-1。 表7-4-1 风动工具配备表 名称及型号 技术参数 台数压力耗风量 湿式混凝土喷射机ZP-Ⅱ0.5MPa 5~8m3/min 1 风镐G10 0.5MPa 1.2m3 /min 2 气动锚杆钻机MFC-1218/2962 0.5MPa 2.8m3 /min 2 凿岩机ZY24 0.5MPa 2.8m3 /min 2 风煤钻ZQS-20 0.5MPa 1.2m3 /min 3 二、空气压缩机选型 1.压缩机必须的供气量

(1)风动工具所需压缩机必须的供气量 Q=a 1a 2γΣq i n i k i =32.72m 3/min 式中: a 1——沿管路全长的漏气系数,a 1=1.2; a 2——机械磨损耗气量增加系数,取1.15; γ——海拔高度修正系数,a 3=1.01; q i ——每台风动工具的耗气量,ZP-Ⅱ型混凝土喷射机耗风量8m 3/min ,G10型风镐耗风量1.2m 3/min ,MFC-1218/2962型气动锚杆钻机耗风量2.8m 3/min ,ZY24型凿岩机耗风量2.8m 3/min ,ZQS-20型风煤钻耗风量1.2m 3/min ; n i ——用气量最大班次内,同型号风动机具的台数,ZP-Ⅱ型混凝土喷射机1台,G10型风镐2台, MFC-1218/2962型气动锚杆钻机2台,ZY24型凿岩机2台,ZQS-20型风煤钻3台; k i ——同型号风动机具的同时工作系数,ZP-Ⅱ型混凝土喷射机取1,G10型风镐取0.90,MFC-1218/2962型气动锚杆钻机取0.9,ZY24型凿岩机取0.90,ZQS-20型风煤钻取0.90。 (2)井下发生事故时,工作人员所需压缩机必须的供气量 Q =3.0731???γα=1.2×1.01×73×0.3=26.54m 3/min 。 式中:0.3——每人所需供气量0.3m 3/min ; 73——压风供氧人数。 2.压缩机必须的出口压力:p=p g +ΣΔp+0.1=0.7Mpa 式中:p g ——风动工具所需的工作压力,p g =0.5Mpa ; ΣΔp——压气管路的最大压力损失之和,ΣΔp=0.1Mpa ; 0.1——考虑到橡皮软管、旧管和上、下山的影响而需要增加的压力值,Mpa 。 3.压缩机的选择

压缩机选型设计规范

压缩机选型设计规范 (发布日期:2008-07-21) -- 1适用范围 本规范适用于房间空调器选用定速R22/R407C/R410A制冷剂压缩机时的设计。具体数值如与压缩机厂家提供的规格书有冲突部分,以相应的厂家提供的规格书为准。其它制冷剂压缩机可参考执行。 2规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 7725 房间空气调节器 GB 12021.3 房间空气调节器能源效率限定值及节能评价值 QMG-J11.009 家用产品试验指引 QMG-J21.001 房间空气调节器 QMG-J80.004 零部件耐候性试验和评价方法 QMG-J81.001 包装运输试验评价方法 QMG-J81.004 振动运输试验方法 QMG-J82.001 异常噪声检测、判定方法 QMG-J82.007 房间空气调节器凝露试验判定方法 QMG-J82.014 分体式空调器非标安装评价方法 QMG-J84.001 产品可靠性评定导则 QMG-J84.002 产品可靠性试验室评定方法 QMG-J84.006 整机一般环境长期运行试验规范 QMG-J85.004 家用空调和类似用途产品安全标准 3设计要求 3.1 压缩机选用参考: 3.1.1 对于压机本体能力的挑选要根据冷媒种类、设计要求的能效比、所用系统的大小等综合来决定。 (例如要开发EER为3.4的R22冷媒35机,要选的压机本体能力约为3500W,如是R410A 机型则可按下浮5%来选取) 3.1.2 压缩机必须预留有接地螺丝孔(一般为M4)。 3.1.3 对于T1工况机型:在满足整机能效要求情况下尽量选用转子式压缩机,能效实在满足不了才 用涡旋式压缩机。对于T3工况机型:尽量选用转子式压缩机,客户指定时才用活塞式压缩机。

板框压滤机选型计算

详细计算 1、板框压滤机的选型 已知:d Q /m 3003=总 (98%) d Q /m ?32= (78%) 1)求泥经过板框压滤机后体积 15 13.002.07.0198.01112112==--=--=ρρV V 倍数 ρ——含水率 1ρ——含水率 98%(表示未经压滤机处理泥的含水率) 2ρ——含水率70%(表示经过压滤机处理后泥的含水率) 31300m V = (含水率为98%) 计算得出:32m 20=V (15倍 板框压滤机后的处理量) 也就是说将含水98%的污泥经过板框压滤机后含水率在70%,体积缩小15倍。 2)板框机的选型计算 已知设备需要工作16小时,板框压滤机每次工作周期2小时(注意在选定设备时建议具体问问工作周期及保压时间)。 即可知一天内板框压滤机工作8个周期 于是得到板框压滤机滤室总容量:20/8=2.5m 3/周期=2500L/周期 以杭州金龙压滤机有限公司为例:(见横线提示)

螺杆泵的选型: h h V Q /30m .51h 16/m 300.5116)(33=?=?=(安全系数)(工作时间)设计流量总 要处理污水的工厂,往往为了节省成本,自建污水池,反应池,沉淀池来解决要处理的污水,但在选择厢式压滤机时候,往往并不清楚,到底该选择什么型号的压滤机才能处理每天要处理的污水,下面,粗略介绍--这个方法很大众化,一般的工厂皆适合此法来计算污水处理量与压滤机的选配。 本文主要针对我司生产的厢式压滤机,应用在环保行业污泥脱水的选型设计参数阐述(过滤面积的设计计算),常用计算方法有湿污泥量法、干污泥量法以及悬浮物量法等方法,而在这些设计计算方法当中,湿污泥量法是相对精确及数据来源较好取得,建议优先采用此方法计算过滤面积: 湿污泥量法: 1、 过滤面积标准:按国标生产制造的压滤机的过滤面积每平方等价于15L 的固体容积。 2、压滤前:体积V1(M3)、压滤前污水含水率a=97.5%~99.2%(一般经验值)。 3、压滤后:体积V2(M3)、压滤后污泥含水率b=75%。 4、压滤周期: 每天压滤次数t 。 5、 含固量平衡法:V1×(1-a )= V2×(1-b ),得出V2= V1×(1-a )/(1-b )。 6、 过滤面积: =1000×V2/15/t=1000× V1×(1-a )/(1-b )/15/t 。 7、 举例说明:广东五金厂,每天经处理后(到污泥浓缩池)产生湿污泥量V1=6.0 M3,含水率a=98.0%,拟准备每天对污泥浓缩的污泥处理一次,其需选用压滤机的过滤面积=1000×6.0×(1-98%)/(1-75%)/15/1=32,根据计算建议选用35M2(比32 M2大点)的XMYJ35/800-UB 压滤机一台。 注:X ——为厢式压滤机。M ---明流。Y ----液压自动。J ---手动千斤顶。a ——为暗流(除污水含腐蚀性或易挥发等成份之外,一般不选择暗流。k ——可洗。b ---不可洗。u ——塑料滤板

选择压缩机应注意问题

工作行为规范系列 选择压缩机应注意问题(标准、完整、实用、可修改)

编号:FS-QG-38090选择压缩机应注意问题 Pay attention to the problems when choosing a compressor 说明:为规范化、制度化和统一化作业行为,使人员管理工作有章可循,提高工作效率和责任感、归属感,特此编写。 选择空压机的基本准则是经济性、可靠性与安全性。 一是应考虑排气压力的高低和排气量大小。一般用途空气动力用压缩机排气压力为0.7MPa,老标准为0.8MPa。目前社会上有一种排气压力为0.5MPa的空压机,从使用角度看是不合理的,因为对风动工具而言其压力余量太小,输气距离稍远一些就不能使用。另外,从设计角度看,这种压缩机设计为一级压缩,压比太大,易引起排气温度过高,造成气缸积炭,导致事故发生。如果用户所用的压缩机大于0.8MPa,一般要特别制造,不能采取强行增压的办法,以免造成事故。 排气量是空压机的主要参数之一,选择空压机的气量要和所需的排气量相匹配,并留有10%的余量。如果用气量大而空压机排气量小,风动工具一开动,会造成空压机排气压力的大大降低,而不能驱动风动工具。当然盲目追求大排气

量也是错误的,因为排气量越大压缩机配的电机越大,不但价格高,而且浪费购置资金,使用时也会浪费电力能源。 另外,在选排气量时还要考虑高峰用量和通常用量及低谷用量。如果低谷用量较大,而通常用量和高峰用量都不大,国外通常的办法是以较小排气量的空压机并联取得较大的排气量,随着用气量增大而逐一开机,这样不但对电网有好处,而且能节约能源。 二是要考虑用气场合和条件。如用气场地狭小(船用、车用),应选立式;如用气场合有长距离的变化(超过500米),则应考虑移动式;如果使用场合不能供电,则应选择柴油机驱动式;如果使用场合没有自来水,就必须选择风冷式。 在风冷、水冷两种冷却方式上,用户常有错误的认识,认为水冷好,其实不然。国内外小型压缩机中风冷式大约占到90%以上,这是因为在设计上风冷简便,使用时无需水源。 而水冷式压缩机的致命缺点有四:必须有完备的上下水系统,投资大;水冷式冷却器寿命短;在北方冬季还容易冻坏气缸;在正常的运转中会浪费大量的水。 三是要考虑压缩空气质量。一般空压机产生的压缩空气

空气压缩机额定容量及储气罐容积选择计算

空气压缩机额定容量及储气罐容积选择计算公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

空气压缩机额定容量及储气罐容积选择计算 (参照EBASCO设计准则) 一. 空气压缩机额定容量选择 1. 不论是仪用或厂用压缩空气,其消耗量以每分钟标态立方米表示(此处标态指国际stp标准:大气压, 气温0℃;此外尚有国际MSC标准中气温15℃,美国15.6℃的),而进入空气压缩机的尚未压缩的空气必须以每分钟实态立方米表示。 2. 设计者经对仪用及厂用压缩空气消耗量分析统计后得到气量的予计的统计值,另加10-20%的裕量后成的为系统消耗气量的设计值。 3. 系统消耗气量设计值加倍后即得到一台空气压缩机额定容量。在此额定容量下,压缩机50%时间满负荷运转(LOADING),其余50%时间仅维持空转(UNLOADING)。 选择计算示例 问题:假设内蒙古苏里格电厂需安装压缩空气系统,其中仪用气供67只气动调节阀用气,厂用气统计为3Nm3/min,,请选定合用系统空气压缩机额定容量 已知:苏里格海拔高度1308m,,年均气压870hPa, 年均气温8℃. 解: EBASCO建议数据:气动调节阀耗气量按每只min标态计 仪用标态耗气量统计值K NY =67*= Nm3/min 厂用标态耗气量统计值K NC = Nm3/min 标态耗气量设计值K N =K NY +K NC =(+)*==*= Nm3/min 气压气温修正后的实态耗气量K=*(273+8)/273*870=9.81 m3/min (即在空气压缩机进口气体状态下) 结论:选定的空气压缩机额定容量为C=*2==20 m3/min 3台 二. 储气罐容积选择计算 1. EBASCO建议数据: A.储气罐的最小容纳时间,取为2分钟(min.) B.储气罐容纳时间期内气压变动为:厂用气 (p2)至 MPa(p1);仪用气EBASCO 要求在 MPa压力下运行,未明确(p2) (p1)的具体数值.。qcx 建议仪用气

最新整理离心式压缩机技术规定.docx

最新整理离心式压缩机技术规定 1. 总则 1.1 范围 本规定连同订货合同书/询价书和数据表一起提出对离心式压缩机及辅助设备等在设计、制造、检验、试验等方面的基本要求。 1.2 工程特殊要求 “工程特殊要求”是根据用户特殊要求或现场的特殊要求以及特定工程设计基础数据对本通用规定有关条款所作的修改,作为本通用规定的附件。当“工程特殊要求”与本规定发生矛盾时,以“工程特殊要求”为准。 1.3 准和规范 1.3.1 下列标准和规范及附件A列出的标准和规范的最新版应构成本规定的一部分: ·API 617 一般炼油厂用离心式压缩机 ·或JB/T6443 离心压缩机(根据具体工程的要求选用) ·API 613 炼油厂用特殊用途齿轮箱 ·API 614 特殊用途的润滑油,密封油及调节油系统 ·API 670 振动、轴位移和轴承温度监控系统 ·API 671 炼油厂特殊用途联轴器 1.3.2 卖方必须使其设计、制造、检验和试验等符合规定的标准和规范以及有关的法规要求。 1.3.3 当买方的数据表/工程规定与规定的标准和规范或法规要求有偏离时,卖方应及时将偏离内容提交买方供确认。 1.4 数据表及相关规定 1.4.1 买方数据表给出基本的工艺数据和特殊要求。 1.4.2 装置通用工程规定与离心式压缩机组的设计、制造、检验、试验等有关的相关专业工程技术规定,在工程设计中必须遵守执行。 1.4.3 当卖方不能接受买方数据表或工程技术规定的某些条款时,

卖方应及时通知买方,列出偏差表并推荐可选的设计以征求买方意见。 1.5 卖方图纸和资料要求 1.5.1 卖方应按买方采购申请单要求的图纸和资料的项目和进度分期分批提交图纸和资料。具体要求将在合同中进一步明确。 1.5.2 买方对卖方提供的图纸和资料的审查和同意并不能解除卖方对订货合同书应尽的义务。 1.5.3 所有图纸和资料应给出业主名称、买方工程号、合同号、设备位号及设备名称。 1.5.4 卖方提交文件中所有的参数应采用国际单位制表示。 1.6 文件的优先顺序 买方文件的优先顺序是订货合同、数据表、工程技术规定、有关的标准和规范。 2. 基本设计 2.1 一般要求 2.1.1 除非另有规定,压缩机制造厂应对整个压缩机组包括齿轮箱、驱动机、油系统、控制及仪表、辅机和管道系统等负全部责任,并负责各部件之间的协调。 2.1.2 所有部件应有经证实的在相似操作条件下使用的成功经验。除非经买方特别同意,样机将不被接受。 2.1.3 机组的布置应合理,以便为操作和维护提供足够的空间和安全通道。 2.1.4 卖方应根据给定气体组分核算比热、压缩性系数及其它压缩机设计所需的气体物性参数。 2.1.5 卖方应保证所有规定工况下的性能(即流量和压头)及正常工况下的轴功率。 对于变转速压缩机,正常工况时的压头和流量应能在正常转速的+2%范围内得到满足,轴功率容差在+4%以内。对于恒速压缩机,在保证正常流量的同时,压头的容差应在+4%~0%之间,且轴功率容差在+4%~0%之间。 2.1.6 压缩机的压力-流量的性能曲线从额定点到喘振点应连续上

空气压缩机额定容量及储气罐容积选择计算

空气压缩机额定容量及储气罐容积选择计算 (参照EBASCO设计准则) 一.空气压缩机额定容量选择 1. 不论是仪用或厂用压缩空气,其消耗量以每分钟标态立方米表示(此处标态指国际stp标准:大气压, 气温0℃;此外尚有国际MSC标准中气温15℃,美国15.6℃的),而进入空气压缩机的尚未压缩的空气必须以每分钟实态立方米表示。 2. 设计者经对仪用及厂用压缩空气消耗量分析统计后得到气量的予计的统计值,另加10-20%的裕量后成的为系统消耗气量的设计值。 3. 系统消耗气量设计值加倍后即得到一台空气压缩机额定容量。在此额定容量下,压缩机50%时间满负荷运转(LOADING),其余50%时间仅维持空转(UNLOADING)。 选择计算示例 问题:假设内蒙古苏里格电厂需安装压缩空气系统,其中仪用气供67只气动调节阀用气,厂用气统计为3Nm3/min,,请选定合用系统空气压缩机额定容量? 已知:苏里格海拔高度1308m,,年均气压870hPa, 年均气温8℃. 解:EBASCO建议数据:气动调节阀耗气量按每只min标态计 仪用标态耗气量统计值K NY=67*= Nm3/min 厂用标态耗气量统计值K NC= Nm3/min 标态耗气量设计值K N=K NY+K NC=(+)*==*= Nm3/min 气压气温修正后的实态耗气量K=*(273+8)/273*870=9.81 m3/min (即在空气压缩机进口气体状态下) 结论:选定的空气压缩机额定容量为C=*2==20 m3/min 3台 二.储气罐容积选择计算 1. EBASCO建议数据: A.储气罐的最小容纳时间,取为2分钟(min.) B.储气罐容纳时间期内气压变动为:厂用气(p2)至MPa(p1);仪用气EBASCO 要求在MPa 压力下运行,未明确(p2) (p1)的具体数值.。qcx 建议仪用气厂用气均可按(p2)至MPa(p1), 中小机组及气管路不长大机组可为MPa(p1)。

石油化工自动化仪表选型设计规范

石油化工自动化仪表选型设计规范 SH 3005-1999 3 温度仪表 3.1单位和量程 3.1.1温度仪表的标度(刻度)单位,应采用摄氏度(C)。 3.1.2 温度标度(刻度)应采用直读式。 3.1.3 温度仪表正常使用温度应为量程的50%一70%,最高测量值不应超过量程的90%。多个测量元件共用一台显示表时,正常使甩温度应为量程的20%一90%,个别点可低到量程的10%。 3.2 就地温度仪表 3.2.1就地温度仪表应根据工艺要求的测温范围、精确度等级,检测点的环境、工作压力等因素选用。 3.2.2一般情况下,就地温度仪表宜选用带外保护套管双金属温度计,温度范围为-80一5OOC。刻度盘直径宜为1OOmm;在照明条件较差、安装位置较高或观察距离较远的场合,可选用15Omm。需要位式控制和报警的,可选用耐气候型或防爆型电接点双金属温度计。仪表外壳与保护管连接方式,宜按便于观察的原则选用轴向式或径向式,也可选用万向式。 3.2.3 在精确度要求较高、振动较小、观察方便的场合,可选用玻璃液体温度计,其温度范围:有机液体的为-80一1OO℃。需要位式控制及报警,且为恒温控制时,可选用电接点温度计。 3.2.4 被测温度在-200一50℃或-80一500℃范围内,在无法近距离读数、有振动、低温且精确度要求不高的场合,可选用压力式温度计。压力式温度计的毛细管应有保护措施,长度应小于2Om。 3.2.5 就地测量、调节,宜选用基地式温度仪表。 3.2.6关键的温度联锁、报警系统,需接点信号输出的场合,宜选用温度开关。 3.2.7 安装在爆炸危险场所的就地带电接点的温度仪表、温度开关,应选用隔爆型或本安型。 3.3集中检测温度仪表

压缩机选型计算

压缩机的选型计算 ① -33℃系统(冻结间),取10℃温差,蒸发温度为z t =-33℃。用立式冷凝器,312+=t t ℃、 t t t t ?++= 2 2 11 取(=?t 6℃)冷凝温度为1t =32℃,采用配组双级压缩机,取§=1/3.机械负荷j Q =124845.49w. 解:⑴根据z t =-33℃ 1t =32℃和§=1/3 查图2-1得中间冷却 zj t =-3.5℃ ⑵根据中间冷却温度确定过冷温度g t =(-3.5+4)℃=0.5℃ ⑶根据蒸发温度z t =-33℃和中间冷却温度zj t =-3.5℃,查图2-5得低压级压缩机的输气系数 λ=0.775 ⑷根据蒸发温度z t =-33℃和过冷温度g t =0.5℃,查表2-4得低压级压缩机单位容积制冷量r q =1007kj/3m ⑸计算低压级压缩机的理论输气量: r j d q Q V λ6.3= = 39.5751007 *775.049 .124845*6.3m =/h. ⑹选择低级压缩机。根据计算出的低级压缩机理论输气量,从压缩机产品样本中选两台8AS10和一台4AV10型压缩机作为低压级压缩机,其理论输气量3634m V d =/h ,可以满足要求。 ⑺选择高压级压缩机。根据选定的高、低级压缩机理论输气量之比§=1/3、39.575m V d =/h 得3 d g V V = =(575.9/3)3m /h=191.973m /h 。 从压缩的产品样本中选出两台4AV10型压缩机作为高级压缩机,其理

论输气量36.253m V d =/h 。 实际选配两台8AS10和一台4AV10型压缩机一台作为低压级压缩机,两台4AV10型压缩机一台作为高级压缩机,形成一组配组双级机。 ② -28℃系统(冻结物冷藏间),取10℃温差,蒸发温度为z t =-28℃。用立式冷凝器,312+=t t ℃、 t t t t ?++= 2 2 11 取(=?t 6℃)冷凝温度为1t =32℃,采用配组双级压缩机,取§=1/3.机械负荷j Q = 47347。99w 解:⑴根据z t =-28℃ 1t =32℃和§=1/3 查图2-1得中间冷却 zj t =2.3℃ ⑵根据中间冷却温度确定过冷温度g t =(2.3+4)℃=6.3℃ ⑶根据蒸发温度z t =-28℃和中间冷却温度zj t =2.3℃,查图2-5得低压级压缩机的输气系数 λ=0.78 ⑷根据蒸发温度z t =-28℃和过冷温度g t =6.3℃,查表2-4得低压级压缩机单位容积制冷量r q =1039kj/3m ⑸计算低压级压缩机的理论输气量: r j d q Q V λ6.3= = 332.2101039 *78.099 .47347*6.3m =/h. ⑹选择低级压缩机。根据计算出的低级压缩机理论输气量,从压缩机产品样本中选8AW10压缩机一台作为低压级压缩机,其理论输气量 36.253m V d =/h ,可以满足要求。

制冷设计规范

制冷设计规范 第一节一般规定 第6.1.1条空气调节用人工冷源制冷方式的选择,根据建筑物用途、所需制冷及冷水温度以及电源、水源和热源等情况,通过技术经济比较确定,并应符合下列要求: 一、民用建筑应采用氟利昂压缩式或溴化锂吸收式制冷。 二、生产厂房及辅助建筑物,宜采用氟利昂或氨压约定缩式制冷。 注:采用溴化锂吸收式和蒸汽喷式制冷时,尚应分别符合本规范第6.3.3和 6.3.4条的规定。 第6.1.2条选择制冷机时,台数不宜过多,一般不考虑备用,并应与空气调节负荷变化情况及运行调节要求相适应。 注:工艺有特殊要求必须连续运行的系统,可设置备用的制冷机。 第6.1.3条制冷量这580~1750KW(50*10~150*104kcal/h) 的制冷机房,当选用活塞式或螺杆式制冷机时,其台数不宜少于两台。 第6.1.4条大型制冷机房,当选用制冷量大于或等于1160KW(100*104kcal/h) 的一台或多台离凡式制冷机时,宜同时设置一台或两台制冷量较小的离心式,活塞式或螺杆式等压缩式制冷机。 第6.1.5条技术经济比较合理时,制冷机可按热泵特环工况应用。 第6.1.6条制冷装置和冷水系统的冷量损失,应根据计算确定。概略计算时,可按下列数值选用:氟利昂直接蒸发式系统5%~10% 间接式系统10%~15%。 第6.1.7条冷却水的水温和水质,应符合下列要求: 一、制冷装置的冷却水进口温度,不宜高于表6.1.7所规定的数值; 二、冷却水的水质,应符合国家现行《工业循环冷却水处理设计规范》及有关产品对水质的要求。 冷却水进口温度表6.1.7 设备名称进口温度 制冷剂为氟利昂或氨的制冷压缩机的气缸水套32 卧式壳管式、套管式和组合式冷凝器32 立式壳管式和淋激式冷凝器33 溴化锂吸收式制冷机的吸收器32 溴化锂吸收式制冷机的冷凝器37 蒸汽喷射式制冷机的混合式冷凝器33 注:当制冷剂为氟利昂时,冷凝器冷却水的进口温度,可适当提高。

常用空气压缩机选型参考.

面对市场上各式各样不同功效的压缩机, 很多用户对压缩机的选型上无法有一个确切的认识, 有时候是因为对不同压缩机的功效和性能不能完全了解, 而导致无法合理选型,无法选择可靠、高效、节能的压缩机型。 根据用户的具体情况和实际工艺要求, 选用适合生产需要的空气压缩机。既不宜贪大求洋盲目选择优质高价的机型而多花费不必要的支出, 也不能为了节省开支而一味选取故障频发的劣质机型充数, 毕竟空气压缩机是工业生产中的重要动力设备。 现将常用的几种压缩机型的优缺点和其适用范围做一个简单的介绍, 希望能为用户在选择压缩机的时候做一个参考。 若按照压缩机气体方式的不同, 通常将压缩机分为两大类, 即容积式和动力式(又名速度式压缩机。容积式和动力式压缩机由于其结构形式的不同, 又做了以下分类: 螺杆压缩机 螺杆空压机是回转容积式压缩机的一种,在其中两个带有螺旋型齿轮的转子相互啮合,从而将气体压缩并排出。 螺杆空气压缩机按照数目分,分为单螺杆和双螺杆;按压缩过程中是否有润滑油参与分为喷油和无油螺杆空压机,无油压缩机又分为干式和喷水两种。螺杆空压机总的来说结构简单,易损件少,排气温度低,压比大,尤其不怕气体中带液、带尘压缩, 喷油螺杆式压缩机的出现, 使动力工艺和制冷用的螺杆式压缩机(包括螺杆式空压机、螺杆式制冷机等在国内外得到了飞速的发展。工作原理 螺杆式空气压缩机是利用阴阳螺杆转子的相互啮合使齿间容积不断减小、气体的压力不断提高, 从而连续地产生压缩空气。螺杆式空气压缩机也属于容积式压缩机, 但由于螺杆机型的工作原理, 决定了相对于活塞式空气压缩机而言, 螺杆式空气压缩机供气稳定,一般不需要配备储气罐。工作过程如下图所示。主要优点

空压机的选型计算

第十四章 空压机的选型计算 一 、学习目的和要求 通过本章学习,了解空压机的选型计算方法。 二、重点与难点 (1)空压机的选型计算; (2)空压机的选型计算。 三、课程内容 一、设备选择的原则与要求 选择矿山压缩设备设备的原则是,必须保证能在整个矿井服务期限内,在用气量最多、输送距离最远的情况下,供给足够数量和压力的压缩空气,同时应该经济合理。 1.选型设计时必须的资料 (1)风动工具的台数、型号、使用地点和距离; (2)巷道开拓系统图和地面工业广场布置图; (3)井口及各开采水平标高,最远采区的距离; (4)矿井年产量和服务年限。 2.选型设计的主要任务 (1)选择空压机的型式和确定所需的台数; (2)选择电动机、电控设备和附属装置; (3)确定压气管道; (4)提出主要技术经济指标; (5)绘制空压机站的布置图和管道布置图。 二、选型设计的步骤和方法 1.确定空压机站必须的供气量 空压机站必须的供气量由风动工具的耗气量决定的。常用风动工具的耗气量如表1所列,但在风动工具日久磨损后,耗气量将会有所增加,同时风动工具一般都是间歇性工作,因此在确定风动工具的总耗气量时,必须考虑到各种风动工具的间歇工作使总耗气量减少以及沿途泄漏使总耗气量增加等因素。 表1 煤矿常用风动工具型号规格表 空压机站必须的供气量可按下式计算 i i i K q n a a a Q ∑=321 公式1

式中:Q ——空压机站的供气量,/min m 3。 1a ——沿管路全长的漏风系数。它与管路的连接方法、接头数量、衬垫种类、 管道直径和管内压力大小有关。在设计时,一般依管路的长度进行估算。1a 的值可按表2选取; 2a ——机械磨损使压气消耗量增加的系数。对于风钻或风镐,2a =1.15;对于其它风动 机械,2a =1.1 ; 3a ——海拔高度修正系数,其值见表3; n i q i ——每台风动工具的耗气量, k i ——同型号风动工具的同时使用系数,其值见表4。 2.估算空压机必须的出口压力 空压机的出口压力,除了应保证工作地点的压力比风动工具的工作压力大9.81×105Pa 外,尚需考虑管路的最大压力损失i p ∑?。因此,空压机必须的出口压力应按下式计 算 510981.0?+∑?+=i g p p p 公式2 式中:p ——空压机的出口压力,Pa ; p g ——风动工具的工作压力,Pa ; i p ∑?——压气管路中,最远一趟管路的压力损失之和,可按每公里管路损失(0.3

离心式压缩机技术规定

编号:SM-ZD-97966 离心式压缩机技术规定Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

离心式压缩机技术规定 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 1. 总则 1.1 范围 本规定连同订货合同书/询价书和数据表一起提出对离心式压缩机及辅助设备等在设计、制造、检验、试验等方面的基本要求。 1.2 工程特殊要求 “工程特殊要求”是根据用户特殊要求或现场的特殊要求以及特定工程设计基础数据对本通用规定有关条款所作的修改,作为本通用规定的附件。当“工程特殊要求”与本规定发生矛盾时,以“工程特殊要求”为准。 1.3 准和规范 1.3.1 下列标准和规范及附件A列出的标准和规范的最新版应构成本规定的一部分: · API 617 一般炼油厂用离心式压缩机 ·或JB/T6443 离心压缩机(根据具体工程的要求选用)

· API 613 炼油厂用特殊用途齿轮箱 · API 614 特殊用途的润滑油,密封油及调节油系统 · API 670 振动、轴位移和轴承温度监控系统 · API 671 炼油厂特殊用途联轴器 1.3.2 卖方必须使其设计、制造、检验和试验等符合规定的标准和规范以及有关的法规要求。 1.3.3 当买方的数据表/工程规定与规定的标准和规范或法规要求有偏离时,卖方应及时将偏离内容提交买方供确认。 1.4 数据表及相关规定 1.4.1 买方数据表给出基本的工艺数据和特殊要求。 1.4.2 装置通用工程规定与离心式压缩机组的设计、制造、检验、试验等有关的相关专业工程技术规定,在工程设计中必须遵守执行。 1.4.3 当卖方不能接受买方数据表或工程技术规定的某些条款时,卖方应及时通知买方,列出偏差表并推荐可选的设计以征求买方意见。 1.5 卖方图纸和资料要求

空气压缩机选型主要计算公式

1.波义目定律:假设温度不变则某一定量气体的体积与绝对压力成反比。 V1/V2=P2/P1 2.查理定律:假设压力不变,则气体体积与绝对温度成正比。V1/V2=T1/T2 3.博伊尔-查理定律 (P1V1)/T1=(T2V2)/T2 P:气体绝对压力 V:气体体积 T:气体绝对温度 4.排气温度计算公式 T2=T1×r(K-1/K) T1=进气绝对温度 T2=排气绝对温度 r=压缩比(P2/P)P1=进气绝对压力 P2=排气绝对压力 K=Cp/Cv 值空气时K 为1.4(热容比/空气之断热指数) 5.吸入状态风量的计算(即Nm3/min 换算为m3/min) Nm3/min:是在0℃,1.033kg/c ㎡ absg 状态下之干燥空气量 V1=P0/(P1-Φ1·PD) (T1/T0)×V0 (Nm3/hr dry)

V0=0℃,1.033kg/c ㎡ abs,标准状态之干燥机空气量(Nm3/min dry) Φa=大气相对湿度 ta=大气空气温度(℃) T0=273(°K) P0=1.033(kg/c ㎡ abs) T1=吸入温度=273+t(°K) V1=装机所在地吸入状态所需之风量(m3/hr) P1:吸入压力=大气压力Pa-吸入管道压降P1 △=1.033kg/c ㎡ abs-0.033kg/c ㎡=1.000kg/c ㎡ abs φ1=吸入状态空气相对湿度=φa×(P1/P0)=0.968φa PD=吸入温度的饱和蒸气压kg/c ㎡ Gabs(查表)=查表为mmHg 换算为kg/c ㎡ abs 1kg/c ㎡=0.7355mHg 例题: V0=2000Nm3/hr ta=20 φa=80% ℃ 则V1=1.033/(1-0.968×0.8×0.024)×﹝(273+20)/273﹞ ×2000=2220 6.理论马力计算 A 单段式HP/Qm3/min=﹝(P/0.45625)×K/(K-1)﹞× ﹝(P2/P1)(K-1)/K-1﹞ B 双段式以上HP/Qm3/min=﹝(P/0.45625)×nK/(K-1)﹞×﹝(P2/P1)(K-1)/nK-1﹞ P1=吸入绝对压力(kg/c ㎡ Gabs)

制冷系统设计规范

系统设计规范 1范围 本设计规范规定了空调性能总体设计规范、整机功能设计规范和压缩机选型规范三部分 本设计规范适用于内销和外销的空调器产品,其他产品可参考使用 2相关标准 QJ/MK02.001-2001a 房间空气调节器 3空调性能总体设计规范 3.1性能设计是空调器设计的核心 空调器作为一个在市场销售的产品,其设计主要包括结构设计、性能(制冷系统设计)、平面设计、电控、电器设计,但就其基本功能来讲,空调器的作用就是实现制冷或制热的温度调节,制冷系统的性能是否发挥良好是空调器品质的最重要指标;另一方面,就空调器材料成本的构成来讲,普通空调器中,制冷系统的材料成本占总成本的50%左右,因此性能设计的重要性是不言而喻的,可以说性能设计是空调器设计的核心。 正因如此,性能设计是否规范,对整个空调器设计的成本、质量、开发速度均有很大影响。3.2性能设计要立足本厂实际 设计过程中,要敢于创新,应用新的技术,设计的产品才有竞争力。但同时也要注意工厂毕竟不同于科研单位,设计时要充分考虑工厂目前的生产设备情况、工艺水平、实验条件、计划进度等实际情况。特别是换热器的设计,就要考虑换热器的设备情况。 3.3性能设计要符合相关标准 性能设计执行的标准有:内销机型执行国家标准GB/T 7725-2004《房间空气调节器》,外销机型执行相应出口国家或地区的标准,以及执行美的企业标准中相关机型的内控标准。主要控制指标有:制冷量、制热量、功率消耗、能效比(EER)、性能系数(COP)、噪音;各项型式实验必须通过相应国家标准:最大运行制冷、最小运行制冷、凝露、最大运行制热、最小运行制热、自动除霜、运输跌落等。 试验之外必须追加如下实验:20047725GB——除(1)长配管试验 分体机15m,柜机20m,天花机30m,定制机另算,在此试验下,做7725—2004要求的可靠性试验,主要观察压缩机在各种工况下面的油位、温度、压力等参数,确保压缩机运行在压缩机厂允许范围内。 (2)高落差试验 落差:分体机5m,柜机10m,天花机15m 有试验资源的情况下,在长配管下做落差可靠性试验。长期运行时,需作此试验观察压缩机油位。 极限温度试验)3(. 确保机器柜机天花机—15℃~50℃,部分机型要在格栅中作高温试验,℃,分体机—15℃~50 正常运转。(4)任何一个新产品都要用视液镜压缩机,在厂家的指导下作初步试验和确认试验。任何一个产品都必须有下列数据:能力A 10个关键温度点:温度和蒸发器,冷凝器出口各分流管温度。B 10个关键点指,排气,回气,蒸入、中、出,冷入、口、出,压机底部,壳体中部。同时必须记录排回气压力数据。压缩机油面变化图,在压机视液镜上标上刻度。记录此刻度,尤其在低温除霜时记录油面。C D个小时后启动观察油面变化状况,并记下缺油时间。启动试验,—15℃冻8 室外机的转速和风量。E 实验报告必须装订成册,并注明日期和更改出。 3.4性能设计必须重视实验验证结果制性能设计的理论计算目前还没有哪种方法可以满足实际要求,只能作为

压缩机招标技术文件

压缩机招标技术文件 1.适用规范 1.1适用于本项目的国家、地方或行业规范 1.1.1除非合同文件另有约定,本项目适用国家现行规范、规程和标准,以及本市或行业规范、规程和标准。包括设计图纸和其他设计文件中的有关文字说明,新技术、新工艺和新材料相应使用说明或操作说明等内容,以及国外同类标准的内容等。 1.1.2适用本招标项目的技术规范

1.1.3构成技术文件的任何内容与国家现行规范、规程和标准之间出现矛盾,都按国家现行规范、规程和标准的最新版本执行。 2、技术要求和技术参数说明 2.1对投标人要求 2.1.1 投标人应具有圆满履约合同的能力,具有独立法人资格和订立合同的权利。 2.1.2 在专业技术、设备设施、人员组织、业绩经验等方面具有设计、制造、质量控制,经营管理的相应的资格和能力。 2.1.3 投标人应是符合如下资质的设备(材料)制造厂商: (1)经国家有关部门审查并认可具有设计、制造该招标设备(材料)资格和能力;

(2)具有制造(包括分包)与招标设备(材料)相同或相近设备(材料)业绩。 2.1.4 具有完善的质量保证体系。 2.1.5 具有良好的银行资信和商业信誉,没有处于被责令停业或破产状况,且资产未被重组、接管和冻结。 2.1.6投标人承担所有与编写和提交投标书有关的费用,不论投标的结果如何,招标人在任何情况下均无义务和责任承担这些费用。 2.1.7招标人所作的一切有效的书面通知、会议纪要、澄清、修改及补充,都是招标文件的组成部分,对投标人起约束作用。 2.1.8 投标人购取招标文件后,应仔细检查招标文件的所有内容,如有残缺应在领到招标文件后三日内向招标人提出,否则,由此引起的投标损失自负。投标人同时应认真审阅招标文件所有的事项、格式、条款和规范要求等。如果投标人的投标文件没有按照招标文件要求提交全部资料或者投标文件没有对招标文件做出实质性响应,其风险应由投标人自行承担。并依据规定其投标有可能被拒绝。 2.1.9任何要求对招标文件进行澄清的投标人,均应在投标截止期五天以前按投标须知中的通讯地址以书面形式如电传、传真、电子邮件等通知招标人,招标人对投标截止期五天以前收到的任何澄清要求将以书面形式予以答复,同时将书面答复分发给每个购买招标文件的投标人,答复中包括所有问题,但不包括问题的来源。 2.2适合本项目的一般要求 2.2.1在下列环境条件下,设备能够正常运行且耐腐蚀和抗潮湿: 基本风压 550Pa 基本雪压 200Pa 多年最大风速 28.3m/s 年平均气温 4.7℃

压缩机的选型方法

压缩机的选型方法 ①确定热泵的工质,冷凝温度,蒸发温度,容积制热量,制热量,压缩机功率。 表2-30 典型制热温度时的可选工质(部分) 表2-31 典型工质的饱和气线特性

GB/T 23137-2008 家用和类似用途热泵热水器 表1 空气源热泵热水器的试验工况 表2-1 纯工质的热物性常数(部分) 表2-4 工质的环境特性数据和安全性分类(部分)

综合考虑制热温度与环境友好的因素,选择R134a为工质。 ②先考虑有无该工质的专用压缩机,如R22,R134a,R717,R744等均有专用压缩机系列。 表2-43 典型工质及压缩机的可选润滑油

R134a作为使用最广泛的中低温环保制冷剂,由于R134a良好的综合性能,使其成为一种非常有效和安全的R12的替代品,主要应用于在使用R12制冷剂的多数领域,包括:冰箱,冷柜,饮水机,汽车空调,中央空调,除湿机,冷库,商业制冷,冰水机,冰淇淋机,冷冻冷凝机组等制冷设备中,同时还可应用于气雾推进剂,医用气雾剂,杀虫药抛射剂,聚合物(塑料)物理发泡剂,以及镁合金保护气体等. R134a是目前国际公认的R12最佳的环保替代品.R134a不含氯原子,对臭氧层不起破坏作用,具有良好的安全性能(不易燃,不爆炸,无毒,无刺激性,无腐蚀性):其制冷量与效率与R12非常接近,所以视为优秀的长期替代制冷剂.R134a可广泛用做汽车空调,冰箱,中央空调,商业制冷等行业的制冷剂,并可用于医药,农药,化妆品,清洗行业. 因离心式压缩机与螺杆式压缩机用于150kw以上的制冷量,不适合家用热泵热水器用。又R134a与R12性质相近。为此,选择滚动转子式压缩机进行实验。 ③如有专用压缩机,根据热泵的制热量、功率范围及当地能源情况,确定压缩机的形式。 如制热量较大时可考虑采用离心式压缩机,制热量中等时可采用时考虑螺杆式压缩机,制热量不大时可考虑活塞式、旋转式、涡旋式压缩机。如用电方便时,宜首选封闭式压缩机;用电较紧张时,可考虑采用内燃机或燃气轮机驱动的开启式压缩机。 ④压缩机形式确定后,选择生产该形式压缩机的制造商,查询压缩机的样本资料,根据制 热量确定压缩机型号。

相关文档