文档库 最新最全的文档下载
当前位置:文档库 › 抛物线的概念B组训练题

抛物线的概念B组训练题

抛物线的概念B组训练题
抛物线的概念B组训练题

12 抛物线的概念B 组

一、选择题

1.已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点M (2,y 0).若点M 到该抛

物线焦点的距离为3,则|OM |=

( )

A .2 2

B .2 3

C .4

D .2 5

【答案】 B

【解析】由题意设抛物线方程为y 2=2px (p >0),则M 到焦点的距离为x M +p 2=2+p

2=3,

∴p =2,∴y 2=4x .∴y 20=4×2=8, ∴|OM |=4+y 20=4+8=2 3.

2.将两个顶点在抛物线y 2=2px (p >0)上,另一个顶点是此抛物线焦点的正三角形个数记为n ,

则( )

A .n =0

B .n =1

C .n =2

D .n ≥3 【答案】C

【解析】如图所示,A ,B 两点关于x 轴对称,F 点坐标为(p

2

,0),设A (m ,2pm )(m >0),

则由抛物线定义,

|AF |=|AA 1|,

即m +p

2

=|AF |.

又|AF |=|AB |=22pm ,

∴m +p 2=22pm ,整理,得m 2

-7pm +p 24

=0,①

∴Δ=(-7p )2-4×p

24

=48p 2>0,

∴方程①有两相异实根,记为m 1,m 2,且m 1+m 2=7p >0,m 1·m 2=p 2

4

>0,

∴m 1>0,m 2>0,∴n =2.

3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →

=-4,则点A 的坐标为( )

A .(2,±2)

B .(1,±2)

C .(1,2)

D .(2,2) 【答案】B 二、填空题

1. 设抛物线y 2=2px (p >0)的焦点为F ,准线为l ,点A (0,2),连接F A 交抛物线于点B ,过

B 作l 的垂线,垂足为M ,若AM ⊥MF ,则p 的值为________. 【答案】

2

【解析】 由抛物线定义可知|BM |=|BF |,又由平面几何知识得|BM |=|BA |,所以点B

为AF 的中点,又B ????p 4,1在抛物线上,所以12=2p ×p

4,即p 2=2,又p >0,故p = 2. 2. 设O 是坐标原点,F 是抛物线y 2=2px (p >0)的焦点,A 是抛物线上的一点,F A →

与x 轴正

向的夹角为60°,则|OA →

|=________. 【答案】

21

2

p 【解析】 过A 作AD 垂直于x 轴于点D ,令|FD |=m , 则|F A |=2m ,p +m =2m ,m =p . ∴|OA →|=

????p 2+p 2+(3p )2=212

p . 3.设圆C 位于抛物线y 2=2x 与直线x =3所围成的封闭区域(包含边界)内,则圆C 的半径

能取到的最大值为________.

【答案】6-1

【解析】 如图所示,若圆C 的半径取到最大值,需圆与抛物线及直线x =3同时相切,设圆心的坐标为(a,0)(a <3),

则圆的方程为(x -a )2+y 2

=(3-a )2,与抛物线方程y 2=2x 联立得x 2+(2-2a )x +6a -9=0,由判别式Δ=(2-2a )2-4(6a -9)=0,得a =4-6,故此时半径为3-(4-6)=6-1.

三、解答题

1.如图,已知抛物线y 2=2px (p >0)有一个内接直角三角形,直角顶点在原点,两直角边OA 与OB 的长分别为1和8,求抛物线的方程.

解 设直线OA 的方程为y =kx ,k ≠0,则直线OB 的方程为 y =-1k

x ,

由?????

y =kx ,y 2=2px ,

得x =0或x =2p k 2.

∴A 点坐标为????2p k 2,2p k ,B 点坐标为(2pk 2

,-2pk ), 由|OA |=1,|OB |=8,

可得?????

4p 2k 2

+1k 4=1, ①4p 2k 2(k 2+1)=64, ② ②÷①解方程组得k 6=64,即k 2=4. 则p 2=16k 2(k 2+1)=45

.

又p >0,则p =255,故所求抛物线方程为y 2=45

5x .

2. 已知定点A (1,0)和直线x =-1上的两个动点E ,F ,且AE →⊥AF →,动点P 满足EP →∥OA →,FO

∥OP →

(其中O 为坐标原点). (1)求动点P 的轨迹C 的方程;

(2)过点B (0,2)的直线l 与(1)中的轨迹C 相交于两个不同的点M ,N ,若AM →·AN →

<0,求直线l 的斜率的取值范围.

解 (1)设P (x ,y ),E (-1,y E ),F (-1,y F ). ∵AE →·AF →=(-2,y E )·(-2,y F )=y E ·y F +4=0, ∴y E ·y F =-4,①

又EP →=(x +1,y -y E ),FO →=(1,-y F ),且EP →∥OA →,FO →∥OP →

,∴y -y E =0且x (-y F )-y =0,

∴y E =y ,y F =-y

x ,代入①得y 2=4x (x ≠0),

∴动点P 的轨迹C 的方程为y 2=4x (x ≠0).

(2)设l :y -2=kx (易知k 存在),联立y 2=4x 消去x , 得ky 2-4y +8=0,令M (x 1,y 1),N (x 2,y 2), 则y 1+y 2=4k ,y 1·y 2=8

k

AM →·AN →=(x 1-1,y 1)·(x 2-1,y 2) =x 1x 2-(x 1+x 2)+1+y 1y 2

=y 21·y 2216-y 21+y 224+1+y 1y 2 =????y 1y 242-(y 1+y 2)24+32y 1y 2

+1 =12

k +1<0,∴-12

(完整)高二文科数学——抛物线练习题

高二文科数学——抛物线练习题 【知识回顾】 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线。 定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。 (1)设00(,)P x y 是抛物线上的一点,则当焦点F 在x 轴上时,02 p PF x = +;当焦点F 在y 轴上时,02 p PF y = +。此公式叫做焦半径公式。 (2)设AB 是过抛物线2 2y px =的焦点F 的一条弦,则12||AB x x p =++。 一、选择题(每小题4分,共40分。答案填在答题表里) 1.经过(1,2)点的抛物线的标准方程是( ) A .y 2=4x B .x 2= 21y C . y 2=4x 或x 2=2 1 y D . y 2=4x 或x 2=4y 2.抛物线y = -2x 2的准线方程是( ) A .x = - 21 B .x =21 C . y =81 D . y = -8 1 3.动圆M 经过点A (3,0)且与直线l :x = -3相切,则动圆圆心M 的轨迹方程是 A . x y 122= B . x y 62= C . x y 32= D .x y 242= 4.动点M 到定点(4,0)F 的距离比它到定直线x +5=0的距离小1,则点M 的轨迹是( ) A .y 2=4x B .y 2=16x C .x 2=4y D .x 2=16y 5.已知抛物线的焦点在直线240x y --=上,则此抛物线的标准方程是 A .x y 162= B .y x 82-= C . x y 162=或y x 82-= D . x y 162=或y x 82= 6.抛物线y 2+4x =0关于直线x +y =0对称的曲线的方程为( ) A .x 2= -4y B .x 2=4y C .y 2=4x D .y 2= -4x 7.已知抛物线的顶点为原点,焦点在y 轴上,抛物线上的点(,2)M m -到焦点P 的距离为4,则m 的值为 ( ) A .4± B .2- C . 2-或4- D .2± 8.设AB 是抛物线py x 22 =的焦点弦,B A 、在准线上的射影分别为11B A 、,则11FB A ∠等于( ) A . ?45 B . ?60 C . ?90 D .?120 9.抛物线y =x 2上的点到直线2x -y =4的距离最短的点的坐标是( ) A .(41, 21) B .(1,1) C .(4 9 ,23) D .(2,4) 10.设F 为抛物线y x 42 =的焦点,点P 在抛物线上运动,点)3,2(A 为定点,使||||PA PF +为最小值时点P 的坐标是 ( ) A .?? ? ??41,1 B .)1,2(- C .)1,2( D .)0,0( 二、填空题(每小题4分,共16分。答案填在试卷指定的横线上) 11.抛物线y 2= -8x 的焦点到准线的距离是 12.抛物线)0(12 <=m x m y 的焦点坐标是 13.过抛物线x y 42 =的焦点作直线交抛物线于),(),,(2211y x B y x A 两点,若621=+x x ,则 ||AB 的值是 14.设AB 是抛物线x y 22 -=的过焦点的弦,4=AB ,则线段AB 中点C 到直线1x =的距离为 【附加题】 (12广东文)(12分)在平面直角坐标系xoy 中,已知椭圆22 122:1(0)x y C a b a b +=>>的左焦 点1(10)F -,,且在(01)P ,在1C 上。 (1)求1C 的方程; (2)设直线l 同时与椭圆1C 和抛物线2 2:4C y x =相切,求直线l 的方程

(整理)抛物线的概念性质几何意义

抛物线的概念、性质、几何意义 【教学内容】 抛物线的概念、性质、几何意义及其直线与抛物线的位置关系、抛物线的应用等。 【教学目标】 1、掌握抛物线的定义,动点到定点的距离等于动点到定直线的距离,则动点的轨迹是抛物线。熟练掌握顶点在原点,对称轴为坐标轴的抛物线的四种标准形式:y 2=2px 、y 2=-2px 、x 2=2py 、x 2=-2py (p >0)及其它们的焦点坐标、对称轴方程。 2、焦参数p (p >0)的几何意义为抛物线的焦点到其准线的距离。若已知了抛物线顶点在顶点,焦点在x 轴上,则可设抛物线的方程为y 2=2ax (a ≠0);若抛物线的顶点在原点,焦点在y 轴上,则可设抛物线的方程为x 2=2ay (a ≠0),再由另外一个条件就可以求出抛物线标准方程了。若顶点在原点,焦点在坐标上,则就要分焦点在x 轴上和焦点在y 轴上两种情况来设抛物线的方程。 3、抛物线标准方程中,判别焦点在哪个轴上的方法是看方程的一次项,若一次项的变量为x ,则焦点在x 轴上;若一次项的变量为y ,则焦点在y 轴 上。另外,对于抛物线y 2=2ax (a ≠0),焦点坐标为(2a ,0),准线方程为2a x -=; 对于抛物线x 2=2ay (a ≠0)焦点坐标为(0,2a ),准线方程为2 a y -=。这一 结论对a >0及a <0均成立。 4、在抛物线中,抛物线上的动点到焦点的距离我们常常转化为动点到准线的距离来处理,这一思想方法在抛物线中有着广泛的应用。我们在学习时要引起重视。 【知识讲解】 例1、求经过定点A (-3,2)的抛物线的坐标准方程。 解:抛物线过第二象限内的点A (-3,2),应考虑开口向上及向左两种情形。 (1)若开口向左,设抛物线方程为y 2=-2px ,因为抛物线过点A (-3, 2),∴22=-2p(-3)即342=p ,则抛物线方程为x y 3 4 2-=。 (2)若开口向上,设其方程为x 2=2py ,因为抛物线过点A (-3,2), ∴22)3(2?=-p ,即292=p 综上所述,抛物线的方程为x y 342-=

抛物线基础训练题经典(含答案)

抛物线基础训练题 1.动点P 到点A (0,2)的距离比到直线l :y =-4的距离小2,则动点P 的轨迹方程为 D A. x y 42= B. x y 82= C.y x 42= D.y x 82= 2.已知直线l 与抛物线x y 82=交于A 、B 两点,且l 经过抛物线的焦点F ,A 点的坐标为(8,8),则线段AB 的中点到准线的距离是 A A.4 25 B. 2 25 C. 8 25 D.25 3.已知抛物线的焦点在直线y x 2--4=0上,则此抛物线的标准方程是C A.x y 162= B.y x 82-= C. x y 162=或y x 82-= D. x y 162=或y x 82= 4.直线y =kx -2与抛物线x y 82=交于A 、B 两点,且AB 的中点横坐标为2,则k 的值是 B A.-1 B.2 C.-1或2 D.以上都不是 5.动圆M 经过点A (3,0)且与直线l :x =-3相切,则动圆圆心M 的轨迹方程是 A A. x y 122= B. x y 62= C. x y 32= D.x y 242= 6.θ是任意实数,则方程x2+y2sinθ=4的曲线不可能是(C ) A.椭圆 B.双曲线 C.抛物线 D.圆

7.双曲线k y x 2 24+=1的离心率e∈(1,2),则k 的取值范围是(B ) A.(-∞,0) B.(-12,0) C.(-3,0) D.(-60,-12) 8.以12 42 2y x -=1的焦点为顶点,顶点为焦点的椭圆方程为(D ) A. 112162 2=+y x B. 116122 2=+y x C. 14 162 2=+y x D. 116 42 2=+y x 9.抛物线y =x 2上到直线2x -y =4距离最近的点的坐标是( B ) A.(45,23) B.(1,1) C.( 49 ,23) D.(2,4) 10.1122 222222=-=-a y b x b y a x 与(a>b>0)的渐近线(D ) A.重合 B.不重合,但关于x 轴对应对称 C.不重合,但关于y 轴对应对称 D.不重合,但关于直线y =x 对应对称 11.抛物线2 2x y =的焦点坐标是 ( C ) A .)0,1( B .)0,4 1( C .)8 1,0( D . )4 1,0( 12 已知抛物线的顶点在原点,焦点在y 轴上,其上的点)3,(-m P 到焦点的距离为5,则抛物线方程为

抛物线基础训练题2015.10.19

抛物线基础训练题 一.选择题训练部分 1.抛物线y 2=ax(a≠0)的焦点到其准线的距离是( ) A . |a|4 B .|a|2 C .|a| D .-a 2 2.抛物线y =2ax 2 (a ≠0)的焦点是( ) A.(2 a ,0) B.(2 a ,0)或(-2 a ,0) C.(0,18a ) D.(0,18a )或(0,-18a ) 3.抛物线y 2=2px(p>0)上一点M 到焦点的距离是a(a>p 2 ),则点M 的横坐标是( ) A .a +p 2 B .a -p 2 C .a +p D .a -p 42[ x+3 2+ y-1 2]=|x -y +3|表示的曲线是( ) A .圆 B .椭圆 C .直线 D .抛物线 5.已知点P 是抛物线y 2=2x 上的一个动点,则点P 到点(0,2)的距离与点P 到该抛物线准线的距离之和的最小值为( ) A . 172 B .3 C . 5 D .92 6.若抛物线y 2 =2px (p>0)上三个点的纵坐标的平方成等差数列,那么这三个点到抛物 线焦点F 的距离的关系是( ) A .成等差数列 B .既成等差数列又成等比数列 C .成等比数列 D .既不成等比数列也不成等差数列 7.设斜率为2的直线l 过抛物线y 2 =ax(a≠0)的焦点F ,且和y 轴交于点A ,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2=±4x B .y 2=±8x C .y 2=4x D .y 2=8x 8.设直线l 1:y =2x ,直线l 2经过点P(2,1),抛物线C :y 2=4x ,已知l 1、l 2与C 共有 三个交点,则满足条件的直线l 2的条数为( ) A .1 B .2 C .3 D .4 9.已知x 轴上一点(),0,M m 抛物线216y x =上任意一点,N 满足,MN m ≥则m 的取值范 围是( ) A .(),0-∞ B .(],8-∞ C .[]0,8 D .()0,8 10.设F 为抛物线y 2=4x 的焦点,A 、B 、C 为该抛物线上三点,若FA →+FB →+FC →=0,则|FA →|+|FB →|+|FC →|等于( ) A .9 B .6 C .4 D .3 11.已知抛物线y 2=4x 上的点P 到抛物线的准线的距离为d 1,到直线3x -4y +9=0的 距离为d 2,则d 1+d 2的最小值是( ) A. 125 B.65 C .2 D.55 12.从抛物线y 2=8x 上一点P 引抛物线准线的垂线,垂足为M ,且|PM |=5,设抛物线的焦点为F ,则△PFM 的面积为( ) A .5 6 B .6 5 C .10 2 D .5 2 13.若直线y =kx -2与抛物线y 2=8x 交于A ,B 两个不同的点,且AB 的中点的横坐标为2,则k 等于( ) A .2或-1 B .-1 C .2 D .1± 5 14.过抛物线y 2=ax (a>0)的焦点F 作一直线交抛物线于P 、Q 两点,若PF 与FQ 的长 分别为p 、q ,则1p +1 q 等于( ) A .2a B .12a C .4a D .4a 15.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA⊥l ,A 为垂足,如果直线AF 的斜率为-3,那么|PF|等于( ) A .4 3 B .8 C .8 3 D .16 16.F 为抛物线24y x =的焦点,,,A B C 为抛物线上三点.O 为坐标原点,若F 是ABC ?的重心,,,OFA OFB OFC ???的面积分别为123,,S S S 3 ,则21S +2 2S +23S 的值为: ( ) A. 3 B. 4 C. 6 D. 9 17. 在平面直角坐标系xoy 中,抛物线2:2(0)C y px p =>的焦点为F ,M 为抛物线C 上一点,若△OFM 的外接圆与抛物线C 的准线相切,且外接圆的面积为π9,则=p ( ) A.2 B.4 C.6 D.8

抛物线基础题(含答案)

抛物线(A ) 一.选择题: 1. 准线为x=2的抛物线的标准方程是 A.2 4y x =- B. 2 8y x =- C. 2 4y x = D. 2 8y x = (答:B) 2. 焦点是(-5,0)的抛物线的标准方程是 A.2 5y x = B. 2 10y x =- C. 2 20y x =- D. 2 20x y =- (答:C) 3. 抛物线F 是焦点,则p 表示 A. F 到准线的距离 到准线距离的14 B. C. F 到准线距离的 1 8 D. F 到y 轴距离的 (答:B ) 4. 动点M (x,y )到点F(4,0)的距离比它到直线x+5=0的距离小1,则点M 的轨迹方程是 A.40x += B. 40x -= C. 2 8y x = D. 2 16y x = (答:D) 5. 若抛物线2 (1)y a x =+的准线方程是x=-3,那么抛物线的焦点坐标是 A.(3,0) B.(2,0) ,0) D.(-1,0) (答:C ) 6. 2 4 x y =点于直线0x y -=对称的抛物线的焦点坐标为 A 10, 16?? ??? B 10,16??- ??? C 1,016?? ??? D 1,016??- ??? (答:A ) 7. 动点P 到直线40x +=的距离减去它到()2,0M 的距离之差等于2,则点P 的轨迹是 A 直线 B 椭圆 C 双曲线 D 抛物线 (答:D ) 8. 抛物线的顶点在原点,焦点在y 轴上,抛物线上一点(),3P m -到焦点的距离为5,则抛 物线的准线方程是 A 4y = B 4y =- C 2y = D 2y =- (答:C ) 9. 抛物线()2 0y ax a =<的焦点坐标和准线方程分别为 A 11,044x a a ??= ??? B 11,044x a a ??-=- ??? C 110,44y a a ??=- ??? D 110,44y a a ? ?-=- ? ? ? (答:C ) 10. 在2 8y x =上有一点P ,它到焦点的距离是20,则P 点的坐标是 A ()8,12 B ()18,12- C ()18,12或()18,12- D ()12,18或()12,18- (答:C ) 11. 物线2 10y x =的焦点到准线的距离是

高中数学《抛物线及其标准方程》教学设计

拋物线及其标准方程 一、教学内容分析 《抛物线及其标准方程》是全日制普通高级中学教科书(必修)数学第二册(上)第八章《圆锥曲线》第三节第一课时内容。本节在教材中的地位和作用:在初中阶段,抛物线为学生学习二次函数2 =++提供直观的图象感觉;在 y ax bx c 高中阶段,它在一元二次不等式的解法、求最大(小)值等方面有着重要的作用。但学生并不清楚这种曲线的本质,随着学生数学知识的逐渐完备,尤其是学习了椭圆、双曲线的第二定义之后,已具备了探讨这个问题的能力。从本章来讲,这一节放在椭圆和双曲线之后,一方面是三种圆锥曲线统一定义的需要,e=的特例;另一方面也是解析几何“用方程研究曲线”这一拋物线是离心率1 基本思想的再次强化。本节对拋物线定义的研究,与初中阶段二次函数的图象遥相呼应,体现了数学的和谐之美。教材的这种安排,是为了分散难点,符合认知的渐进性原则。 二、学生学习情况分析 我校是省一级达标学校,有优越的多媒体设备,学生的数学基础较好, 有强烈的求知欲,具备一定的分析、观察等能力。在此之前,学生已经熟练掌握二次函数图象、椭圆、双曲线的第二定义与求轨迹方程等内容,迫切想了解抛物线的本质特征。但是在动手操作与合作学习等方面,发展不均衡,有待加强。三、设计思想 为了培养不仅能“学会”知识,而且能“会学”知识的人才以及根据我校提出的“创设情景、激发情感、主动发现、主动发展”的教学模式,在课堂设计上,教师应学会如何创设情景,激发学生学习的兴趣;围绕教材的重难点,比如本节的“拋物线的标准方程及其推导”和“拋物线概念的形成”,教师应学会如何设计不同的活动环节,设置由浅入深、环环相扣的问题,通过教师适时的引导,通过生生间、师生间的交流互动,通过学生自己的发现、分析、探究、反思,使学生真正成为学习的主人,不断完善自己的知识体系,提高获取知识的能力,尝试合作学习的快乐,体验成功的喜悦。 四、教学目标 1.理解拋物线的定义,掌握拋物线的标准方程及其推导。明确拋物线标准方程中p的几何意义,能解决简单的求拋物线标准方程问题。 2、通过对拋物线和椭圆、双曲线离心率的比较,体会三种圆锥曲线内在的区

椭圆、双曲线抛物线综合练习题及答案

一、选择题(每小题只有一个正确答案,每题6分共36分) 1. 椭圆22 1259 x y +=的焦距为。 ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A . 221412x y -= B. 221124x y -= C. 221106x y -= D 22 1610x y -= 3.双曲线22 134 x y -=的两条准线间的距离等于 ( ) A C. 185 D 165 4.椭圆22 143 x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 4 5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。 ( ) A . 22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ? ∠=且 123AF AF =,则双曲线的离心率为 ( ) A . 2 B. 2 C. 2 7.设斜率为2的直线l 过抛物线y 2 =ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2 =±4 B .y 2 =±8x C .y 2 =4x D .y 2 =8x 8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线 l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线

抛物线的定义与标准方程

抛物线的定义与标准方程 教学目标 1.掌握抛物线的定义及其标准方程; 2.掌握抛物线的焦点、准线及方程与焦点坐标的关系; 3.认识抛物线的变化规律. 教学重点 抛物线的定义及标准方程 教学难点 区分标准方程的四种形式 教学过程 Ⅰ.复习回顾: 与一个定点的距离和一条定直线的距离的比是常数e的点的轨迹,当0<e<1时是椭圆,当e>1时是双曲线,那么,当e=1时,它是什么曲线呢? Ⅱ.讲授新课: 1.抛物线的定义: 平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫抛物线.点F叫抛物线的焦点,直线l叫做抛物线的准线. 2.抛物线的标准方程: ⑴推导过程: (先由学生自己建立坐标系,然后在确定以下方法方程最简) 如图,建立直角坐标系xOy,使x轴经过点F且垂直于直线l,垂足为K,并使原点与线段KF的中点重合.

设|KF |=p (p >0),那么焦点F 的坐标为()0,2p ,准线l 的方程为.2 p x -= 设点M (x ,y )是抛物线上任意一点,点M 到l 的距离为d .由抛物线的定义,抛物线就是集合}|||{d MF M P == |2p x |y )2p x (|2 p x |d ,y )2p x (|MF |2222+=+-∴+=+-=Θ 将上式两边平方并化简,得y 2=2px ① 方程①叫抛物线的标准方程,它表示的抛物线的焦点在x 轴的正半轴上,坐标是).0,2(p 它的准线方程是.2 p x -= ⑵抛物线标准方程的四种形式: 一条抛物线,由于它在坐标平面内的位置不同,方程也不同,所以抛物线的标准方程还有其他几种形式:y 2=-2px ,x 2=2py ,x 2=-2py .这四种抛物线的图形,标准方程,焦点坐标以及标准方程列表如下:

抛物线练习题(新)

抛物线练习题 一、选择题 1. (2014·重庆高考文科·T8)设12,F F 分别为双曲线22 221(0,0)x y a b a b -=>>的左、右焦点,双曲线 上存在一点P 使得() 2 212 3,PF PF b ab -=- 则该双曲线的离心率为 () 4 【解题提示】直接根据双曲线的定义得到关于,a b 的等式,进而求出离心率的值. 【解析】选D.由双曲线的定义知,() 2 2124,PF PF a -=又() 2 2123,PF PF b ab -=- 所以2 2 43a b ab =- 等号两边同除2 a ,化简得2 340b b a a ??-?-= ??? ,解得4,b a =或1b a =-(舍去) 故离心率c e a ===== 2. (2014·天津高考文科·T6同2014·天津高考理科·T5))已知双曲线)0,0(122 22>>=-b a b y a x 的 一条渐近线平行于直线,102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A. 120522=-y x B.152022=-y x C.1100325322=-y x D.125 310032 2=-y x 【解析】选 A.因为双曲线的一个焦点在直线l 上,所以0210,c =+即5,c =又因为渐近线平行于直线 ,102:+=x y l 故有2,b a =结合222,c a b =+得22 5,20,a b ==所以双曲线的标准方程为120 522=-y x 3. (2014·湖北高考理科·T9)已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123 F PF π ∠= ,则椭圆和双曲线的离心率的倒数之和的最大值为( )

抛物线题型归纳

抛物线题型归纳 一 基本知识归纳: 1 抛物线定义: 到 F 的距离和到 L 距离相等的点的轨迹即为抛物线。其中,定点F 叫做抛物线的 ,定直线叫做抛物线的 。 2 抛物线的标准方程: (1)焦点在x 轴正半轴上时: 焦点F ;准线L (2)焦点在y 轴正半轴上时: 焦点F ;准线L (3)焦点在x 轴负半轴上时: 焦点F ;准线L (4)焦点在y 轴负半轴上时: 焦点F ;准线L 3 相关概念:抛物线上一点与焦点F 的连线叫做 ,过焦点的直线与抛物线相交所得弦叫做 。设抛物线上任意一点P (x 0,y o ),焦点弦端点A (x 1,y 1),B (x 2,y 2), 过y 2=2px(p>0)焦点交抛物线于P (x 1, y 1),Q(x 2, y 2),则x 1 x 2= , y 1 y 2= 4 以焦点弦为直径的圆一定与 相切。 以焦半径为直径的圆一定与 相切。 5 在所有的焦点弦中,长度最短的是 ,其长度为 。 证明: 二 题型分类 (一) 最值问题 1 P 是y 2=10x 上的动点,M (3,0),求|PM|最小值及此时点P 坐标。 2 P 是y 2=4x 上的动点,F 为焦点,A(6,3),求|PA|+|PF|最小值,并指出此时点P 坐标。 (若A (3,6)呢?) 3 直线:y=2x-5,抛物线y=x 2, P 为抛物线上一点,求P 到直线距离最小值。 4 点P 在y 2=2x 上,P 到点(0,2)距离和P 到准线距离和最小值是 。 5 点A (x,y )在y 2=4x 上运动,求z=x 2+ 2 1y 2+3最小值。

(二)定义应用: 1 抛物线焦点在x 轴上,抛物线上的点M (-3,m )到焦点距离是5, (1) 求抛物线方程及m 的值。 (2)求抛物线焦点和准线方程。 (三) 焦点弦长公式的应用 1 若x 1 +x 2=3p,则|PQ|=( ) A 4p B 5p C 6p D 8p 2 y 2=2x 上两点A,B 两点到焦点距离之和是5,则线段AB 中点横坐标是 4 线段AB 是抛物线焦点弦,F 是焦点,若A,B 在准线上的射影分别为A 1,B 1, 则∠A 1FB 1= 5 已知抛物线y 2=2px (p>0),过其焦点且斜率为1的直线交抛物线于A,B 两点,若线段A,B 的中点的纵坐标为2,求该抛物线的准线方程。 6 (四) 其它: 1 正三角形一个顶点在原点,另外两顶点在抛物线y 2=2px(p>0)上,求 这个正三角形边长。 2 边长为1的等边三角形AOB ,O 为原点,A B ⊥X 轴,以O 为顶点,且过A , B 的抛物线方程是 3 双曲线116322 2=-p y x ,左焦点在y 2=2px 准线上,求p. 4 y 2=2px(p>0)上有一点M ,其横坐标为-9,它到焦点的距离为10,求抛物线 方程和M 坐标。 5 已知抛物线顶点在原点,焦点在y 轴上,抛物线上的点M (m,-2)到焦点的 距离为4,则m 的值为( ) A 4 B -2 C 4或-4 D 2或-2 6 已知抛物线y 2=6x 的弦AB 经过点P (4,2)且O A ⊥OB(O 为坐标原点),求 弦AB 的长。

抛物线基础习题训练

抛物线基础训练(解析版) 1.抛物线218 y x =-的焦点是________,准线方程是__________. 【答案】(0,-2); 2y =, 【解析】218 y x =-可化为2=8x y -, 所以其焦点坐标为(0,-2),准线为2y =. 2.已知抛物线过点(1,1),则该抛物线的标准方程是______.( ) A. x 2=y B. y 2=x C. y 2=4x D. y 2=x 或x 2=y 【答案】D ; 【解析】设抛物线为y 2=2px (p >0)或x 2=2My (M >0),把(1,1)代入得1=2p 或1=2M ,∴p =12或M =12 , ∴抛物线方程为y 2=x 或x 2=y . 3.抛物线2 2y px =过点(2,4)A ,F 是其焦点,又定点(8,8)B -,那么||:||AF BF =( ) A.1:4 B.1:2 C.2:5 D .3:8 【答案】C ; 【解析】将点(2,4)A 的坐标代入22y px =,得4p =, ∴抛物线方程为28y x =, 焦点(2,0)F ,已知(8,8)B -, ∴2222)08()28()04()22(||||--+--+-=BF AF =5 2104=. 4. 抛物线21(0)y x m m = <的焦点坐标是( ) A.(0,)4m B. (0,)4m - C. 1(0,)4m D. 1(0,)4m - 【答案】 A ; 【解析】∵x 2=My (M <0),∴2p =-M ,p =2 m -,焦点坐标为(0,)2p -,即(0,)4m . 5. 已知抛物线y 2=2px (p >0)的准线与圆(x -3)2+y 2=16相切,则p 的值为( ) A.12 B .1 C .2 D .4 【答案】 C ; 【解析】本题考查抛物线的准线方程,直线与圆的位置关系. 抛物线y 2=2px (p >0)的准线方程是x =2p - ,由题意知,3+2 p =4,p =2. 6.抛物线y 2=x 上一点P 到焦点的距离是2,则P 点坐标为

抛物线练习题

抛物线练习题

抛物线练习题 一、选择题 1. (2014·重庆高考文科·T8)设1 2 ,F F 分别为双曲线 22 221(0,0)x y a b a b -=>>的左、右焦点,双曲线上存在一点P 使得() 2 21 2 3, PF PF b ab -=- 则该双曲线的离心率为 () 215 417 【解题提示】直接根据双曲线的定义得到关于,a b 的等式,进而求出离心率的值. 【解析】选 D.由双曲线的定义知,() 2 21 2 4, PF PF a -=又 ()2 2 1 2 3,PF PF b ab -=- 所以2 243a b ab =- 等号两边同除2 a ,化简得2 340b b a a ?? -?-= ??? ,解得4,b a =或1b a =-(舍去) 故离心率 2 22222 117.c c a b b e a a a a +?? ====+= ??? 2. (2014·天津高考文科·T6同2014·天津高考理科·T5))已知双曲线 )0,0(12 2 22>>=-b a b y a x 的一条渐近线平行于直线 , 102:+=x y l 双曲线的一个焦点在直线l 上,则双曲线的方程为( ) A. 120 52 2=-y x B. 15 202 2=-y x C. 1100 32532 2=-y x D. 125 310032 2=-y x

【解析】选 A.因为双曲线的一个焦点在直线l 上,所以 0210, c =+即5,c =又因为渐近线平行于直线,102:+=x y l 故有 2,b a =结合2 2 2 , c a b =+得2 2 5,20, a b ==所以双曲线的标准方程为 120 52 2=-y x 3. (2014·湖北高考理科·T9)已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123 F PF π ∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) A. 433 B.23 3 C.3 D.2 【解题提示】 椭圆、双曲线的定义与性质,余弦定理及用基本不等式求最值 【解析】选A. 设椭圆的长半轴长为a ,双曲线的实半轴长为1a (1a a >),半焦距为c ,由椭圆、双曲线的定义得a PF PF 2||||21=+,121||||2PF PF a -=,所以11||a a PF +=, 12||a a PF -=, 因为 123F PF π ∠= ,由余弦定理得 22211114()()2()()cos 3c a a a a a a a a π =++--+-, 所以2 1 2 2 34a a c +=,即2 122122221)(2124c a c a c a c a c a +≥+=-, 所以21 214 8)11(e e e -≤+, 利用基本不等式可求得椭圆和双曲线的离心率的倒数之和的最大值为 43 . 4.(2014·广东高考理科)若实数k 满足0

抛物线及其性质知识点大全教学内容

抛物线及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2 p x =- 2p x = 2 p y =- 2 p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

(完整版)抛物线的性质归纳及证明

抛物线的常见性质及证明 概念 焦半径:抛物线上一点与其焦点的连线段; 焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦. 性质及证明 过抛物线y 2=2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-= + =p p x AF ;②焦半径α cos 12||2+=+=p p x BF ; ③1| AF |+1| BF |=2p ; ④弦长| AB |=x 1+x 2+p =α 2sin 2p ;特别地,当x 1=x 2(α=90?)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB =α sin 22 p . 证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p 2 , | AB |=| AF |+| BF |=x 1+x 2+p 如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos θ, ∴| AF |= | RF |1-cos θ=p 1-cos θ 同理,| BF |=| RF |1+cos θ=p 1+cos θ ∴| AB |=| AF |+| BF |= p 1-cos θ+p 1+cos θ=2p sin 2θ . S △OAB =S △OAF +S △OBF =12| OF || y 1 |+12| OF || y 1 |=12·p 2·(| y 1 |+| y 1 |) ∵y 1y 2=-p 2,则y 1、y 2异号,因此,| y 1 |+| y 1 |=| y 1-y 2 | ∴S △OAB =p 4| y 1-y 2 |=p 4(y 1+y 2)2-4y 1y 2=p 44m 2p 2+4p 2=p 221+m 2 =p 2 2sin θ .

抛物线的定义及相关概念、抛物线的标准方程、抛物线的几何性质

高三数学第一轮复习:抛物线的定义、性质及标准方程 辽河油田第三高级中学杨闯 【本讲主要内容】 抛物线的定义及相关概念、抛物线的标准方程、抛物线的几何性质 【知识掌握】 【知识点精析】 1. 抛物线定义: 平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。它与椭圆、双曲线的第二定义 相仿,仅比值(离心率e)不同,当e=1时为抛物线,当01时为双曲线。 2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表): 其中为抛物线上任一点。 3. 对于抛物线上的点的坐标可设为,以简化运算。

4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于 ,直线与的斜率分别为,直线的倾斜角为,则 有,,,,, ,。 说明: 1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。 2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。 3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。【解题方法指导】 例1. 已知抛物线的顶点在坐标原点,对称轴为轴,且与圆相交的公共弦长等于,求此抛物线的方程。 解析:设所求抛物线的方程为或 设交点(y1>0) 则,∴,代入得 ∴点在上,在上 ∴或,∴ 故所求抛物线方程为或。 例2. 设抛物线的焦点为,经过的直线交抛物线于两点,点在抛物线的准线上,且∥轴,证明直线经过原点。 解析:证法一:由题意知抛物线的焦点

(完整版)高中抛物线知识点归纳总结与练习题及答案

焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α,则2 2cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 一. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) 二. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: ???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 o x ()22,B x y F y ()11,A x y

b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 1. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点),(00y x M 是弦AB 的中点,则有p x p x p x x k AB 0 021222==+= (注意能用这个公式的条件:1)直线与抛物线有两个不同的交点,2)直线的斜率存 在,且不等于零)

抛物线的定义及标准方程教案

<<抛物线的定义及标准方程>>教案 西乡二中陶小健 一.教学媒体的选择和设计 本课件需在多媒体教室完成,借助powerpoint、几何画板课件,从动态演示和实物模型入手,使学生对抛物线有一个初步的认识。 二.教学目标分析 1.知识目标 掌握抛物线定义,明确焦点和准线的意义;掌握抛物线标准方程;会推导抛物线标准方程,掌握P的几何意义,掌握开口向右的抛物线的标准方程的数形特点,并会简单的应用。 2.能力目标 通过抛物线概念和标准方程的学习,培养学生分析、抽象和概括等逻辑思维能力,提高适当建立坐标系的能力,提高数形结合和转换能力。 3.情感目标 通过学生们寻找生活中与抛物线有关的物体和形象,加强知识与实际的联系,增强学生的学习兴趣。 三.教材的重点和难点 掌握抛物线的定义及标准方程,进一步熟悉解析法的应用,会根据抛物线的标准方程、准线方程、焦点坐标、图象四个条件中一个求其余条件是本节课的教学重点。 教学难点是用解析法求抛物线的标准方程,及坐标系的选取。 四.教学过程 1、设置情境,引出课题 (借助多媒体)先给出一段悉尼海港大桥的视频和中国一古一今两张抛物线形大桥图片,让学生体会世界的古代文明和现代化建设成就。 再给出一幅抛球画面。

学生在学习了圆锥曲线中的椭圆后自然想到抛物线。借此教师点明并板书课题:今天我们就来学习抛物线,研究一下《抛物线的定义和标准方程》。 2.实验探索,归纳定义 为了加深对抛物线直观形象的认识,教师操纵微机,展示多媒体课件,顺序显示下列图形: 1)一条直尺和沿直尺一侧的一定直线L; 2)一个直角三角板并把其一直角边紧靠在直尺的一侧(即定直线L上); 3)取一段细线一段固定在直角三角板另一条直角边上,把细线紧靠在直尺直角三角板一条直角边上,截取一段使其恰好等于到直尺一侧(即定直线L)的距离; 4)再取定直线L 外一个定点F ,把细线的另一端固定在这个定点F 上,取一支铅笔P 靠在三角板的直角边上并使细线扯紧; 5)让直角三角板一条直角边紧靠在直尺的一侧(即定直线L上) ,上下移动时铅笔P 就画出一段曲线-------抛物线。 教师展示完成多媒体课件后,找一至两个同学再一次来操作课件展示抛物线的形成过程,并提出问题让同学思考。 课堂上要充分发挥学生的主体作用,引导学生合作探究得出定义,这是本节课的第一个探究点。学生在此问题中,认为简单,其实很容易出错,并且在探究错因时,难于理解。我给提供平台、激发学生兴趣,首先要求学生独立思考、自主探究,然后引导学生小组交流讨论,最后让小组代表总结。这里学生容易忽视定义的两个前提—(1)在平面内,(2)点F 不能取在定直线L 上.教师要根据学生探究的情况恰当引导学生去发现这些问题,得出抛物线的定义后,要及时给于探究全面、分析问题到位的小组同学表扬,对定义描述尚有不足的同学也要及时鼓励,期待他们在下一个探究点能做的更好。得出抛物线的正确定义后,教师板书抛物线的定义。

高中数学《抛物线》练习题

高中数学《抛物线》练习题 一、选择题: 1. (浙江)函数y =ax 2+1的图象与直线y =x 相切,则a =( ) (A) 18 (B)41 (C) 2 1 (D)1 2. (上海)过抛物线x y 42 =的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线( ) A .有且仅有一条 B .有且仅有两条 C .有无穷多条 D .不存在 3. 抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为( ) (A) 2 (B) 3 (C) 4 (D) 5 4. (辽宁卷)已知双曲线的中心在原点,离心率为3.若它的一条准线与抛物线x y 42 =的准线重合,则该双曲线与抛物线x y 42 =的交点到原点的距离是 ( ) A .23+6 B .21 C .21218+ D .21 5 .(江苏卷)抛物线y=42x 上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) ( A ) 1617 ( B ) 1615 ( C ) 8 7 ( D ) 0 6. (湖北卷)双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为 ( ) A . 163 B . 8 3 C . 3 16 D . 3 8 二、填空题: 7.顶点在原点,焦点在x 轴上且通径长为6的抛物线方程是 . 8.若抛物线m x x y +-= 22 12 的焦点在x 轴上,则m 的值是 . 9.过(-1,2)作直线与抛物线x y 42 =只有一个公共点,则该直线的斜率为 . 10.抛物线2 2x y =为一组斜率为2的平行弦的中点的轨迹方程是 . 三、解答题: 11. (江西卷)如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA=MB. (1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹 12. (上海)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分.

相关文档
相关文档 最新文档