文档库 最新最全的文档下载
当前位置:文档库 › 悬置系统

悬置系统

悬置系统
悬置系统

悬置系统

发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。引起零部件的损坏和乘坐的不舒适等。所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。一般来讲对发动机悬置系统有如下要求。

①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。同时在发动机大修前,不出现零部件损坏。

②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。

③能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。

④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。

悬置系统的激振源

作用于发动机悬置系统的激振源主要如下:

①发动机起动及熄火停转时的摇动;

②怠速运转时的抖动;

③发动机高速运转时的振动;

④路面冲击所引起的车体振动;

⑤大转矩时的摇动;

⑥汽车起步或变速时转矩变化所引起的冲击;

⑦过大错位所引起的干涉和破损。

作用在发动机悬置上的振动频率十分广泛。按着振动频率可以把振动分为高频振动和低频振动。频率低于30Hz的低频振动源如下:

①发动机低速运转时的转矩波动;

②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振功;

③轮胎旋转时由于轮胎动平衡不好使车身产生的振动;

④路面不平使车身产生的振动;

⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。

频率高于30Hz的高频振动源如下:

①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动;

②变速时产生的振动;

③燃烧压力脉动使机体产生的振动;

④发动机配气机构产生的振动;

⑤曲轴的弯曲振动和扭振;

⑥动力总成的弯曲振动和扭振;

⑦传动轴不平衡产生的振动。

总之,使发动机总成产生振动的主要振源概括起来有两类:一为内振源,主要是由于燃烧脉动、活塞和连杆的运动产生的不平衡力和力矩。二为外振源,主要来源于不平的道路或传动系。这两种振源几乎总是同时作用,使发动机处于复杂的振动状态。

(1) 燃烧激振频率

这是由发动机气缸内混合气燃烧,曲轴输出脉冲转矩,由于转矩周期性地发生变化,导致发动机上反作用转矩(又称倾覆力矩)的波动。这种波动使发动机产生周期性的扭转振动,其振动频率实际上就是发动机的发火频率,计算公式为:

f1=2×i×n/60/τ

式中:f1-点火干扰频率;Hz

τ-发动机冲程数;(2或4)

i-发动机气缸数;

n-曲轴转速,r/min

(2) 惯性力激振频率

由不平衡的旋转质量和往复运动的质量所引起的惯性激振力和力矩的激振频率为:

f2=Q×n/60

式中:f2-惯性力激振频率;

Q-比例系数(一级不平衡力或力矩Q=1,二级不平衡力或力矩Q=2)。

不平衡惯性力的激振频率与发动机的缸数无关,但惯性力的不平衡量与发动机缸数和结构特征有着密切的关系。

关于外振源,归根结底是路面的激励,通过车轮、驱动系统、转向系统及车架等而传递到动力总成,所以在选择悬置系统的固有频率时,需要考虑到车辆与发动机连接部分的共振频率。

因此,悬置系统特性的选择首先要隔离发动机自身的振动,即不让发动机不平衡力造成的振动过分地传向车体。这就要求悬置系统的固有频率低于发动机怠速工况下激振频率的0.7倍。车体结构振动的降低,十分有利于降低结构振动造成的噪声。目前汽车发动机的悬置软垫都相当软,发动机的固有频率大多处在6-20Hz的范围内。如此低的频率,当汽车以正常车速行驶时,刚好处于不平道路的低频激励阶段,这就带来了路面激励下发动机的晃动问题。在低频段内,发动机的固有频率与整车特性匹配不当时,路面激励所造成的发动机晃动可能引起汽车乘坐舒适性下降,也可能影响到汽车的操作性。

悬置系统的布置

1) 悬置点的数量

悬置点的数量根据动力总成的长度、质量、用途和安装方式等决定。悬置系统可以有3、4、5点悬置,典型的布置见图3-16-1。

一般在汽车上采用三点及四点悬置系统。因为在振动比较大时,如果悬置点的数目增多,当车架变形时,有的悬置点会发生错位,使发动机或悬置支架受力过大而造成损坏。

三点式悬置与车架的顺从性最好,因为三点决定一个平面,不受车架变形的影响,而且固有频率低,抗扭转振动的效果好。值得推荐的是前悬置采用两点左、右斜置、后端一点紧靠主惯性轴的布置方案,这种布置具有较好的隔振功能。在四缸机上得到广泛应用。而前一点、后两点的三点式多用于六缸机。

四点式悬置的稳定性好、能克服较大的转矩反作用力,不过扭转刚度较大,不利于隔离低频振动。但经过合理设计,仍可满足四缸机、更能满足六缸机的要求。四点式悬置在六缸机上的使用最为普遍。图3-16-2是典型的三点式和四点式悬置。

在重型汽车上,因为其动力总成质量和长度大,为了避免发动机机体后端面与飞轮壳接合面上产生过大的弯矩,一般在变速器上增加一个辅助支点,从而形成五点式悬置。由于该支点距动力总成的质心最远,又是过定位点,因此辅助支点刚度不能太大,以避免因车架变形而损坏变速器或悬置支架。

2) 悬置系统的解耦

(1) 悬置系统的解耦目的

当弹性支承的刚体在一个自由度上的自由振动独立于另一个自由度上的自由振动时,我们说这两个自由度的振动是解耦的。发动机悬置系统实际上具有六个自由度,并且是互为耦合的。耦合的作用使发动机振动互相激励而加大,振动频率范围变宽。这样要想达到同解耦时相同的隔振效果,就需要更软的悬置软垫,这就使得动力总成与周围零件之间有较大的相对位移,造成风扇与护风罩相碰或其他部件之间产生振动干扰,给整车布置造成困难。由于软垫的较大位移,使橡胶内应变增大而影响其使用寿命。

另外,由于各自由度振动的互为耦合,很难对某个产生共振的自由度上的频率进行个别改进而不影响其他自由度上的隔振性能。

(2) 悬置系统弹性中心

作用于被支承物体上的一个任意方向的外力,如果通过弹性支承系统的弹性中心,则被支承物只会发生平移运动,而不会产生转动。反之,被支承物体在产生平移运功的同时,还会产生转功,即两个自由度上产生运动耦合。

同样,如果一个外力矩绕弹性中心主轴线作用于被支承物体上,该物体只会产生转动而不会产生平移运动。反之,物体在产生转动的同时,还会产生平移运动,同样出现两个自由度上的运动耦合。

弹性中心是由弹性元件的刚度和几何布置决定的,与被支承物体的质量无关。它对弹性系统而言,犹如质心之于刚体。如果刚体质心与支承系统的弹性中心重合,则振动将大为简化。理论上,如果使发动机悬置系统的弹性中心同发动机总成的质心重合(图3-16-3),就可获得所有六个自由度上的振动解隅。实际上完全解耦在悬置设计中是难以实现的,因为发动机的主要激振力只有垂直和扭转两种,而悬置设计中存在较多的约束。因此只要在几个主要方向上获得近似解耦就行了。

3) 悬置系统的布置

动力总成一般有三个弯曲模态,如果把前悬置点布置在节点上,使得弯曲模态在节点上不能被激发,则可将车架与发功机引起的弯曲振动激振力相隔离,发动机的垂直振动不致传到车架上。通常应尽可能将前悬置点布置在动力总成一弯模态的一个节点上,以减小振动传递。出于解耦的考虑,应根据撞击中心理论将后悬置布置在前悬置点的共轭点上,使前、后悬置点的冲击不至于相互影响,从而达到良好的隔振效果。

Lf ?LR=Jy/m

式中:Lf-前悬置点离动力总成质心G的纵向距离;

LR-后悬置点离动力总成质心G的纵向距离;

JY-动力总成绕Y轴的转动惯量;

M-发动机-变速器动力总成的质量。

前、后悬置的刚度还要根据承载量及到质心的距离合理地匹配,达到垂直及俯仰方向上的解耦。

KFV?LF=KRV?LR

式中:KFV、KRV-分别为前后悬置的垂直刚度N/cm。

悬置点如为一点,则尽可能靠近动力总成的最小惯性轴。如为两点,出于解耦的目的,最好是呈V形布置,一般倾斜角度θ:40o~45o,如图3-16-4所示。

V型布置的悬置系统的弹性中心较低,在设计中通过倾角及位置的调整容易使其弹性中心落在或接近动力总成的主惯性型轴上。如果假设悬置软垫在两个剪切方向上的刚度近似相等,有下列公式。

垂直刚度:KV=2(kpsin2θ+kscos2θ)

侧向刚度:KL=2(kpcos2θ+kssin2θ)

扭转刚度:Kθ=2B2kpks/(kpcos2θ+kssin2θ)

θ-α=arctan(tanθ/k0)

式中k0—悬置软垫的压缩刚度与剪切刚度之比,即k0=kp/ks;

A—弹性中心高度;

B—软垫支点到半水平距;

α—弹性中心到支点的连线的仰角;

θ—悬置软垫的安装倾斜角;

在实际设计中还有许多其他的布置形式。如非对称的V形布置、平置、吊挂式等。

4)轿车发功机的悬置布置特点

轿车发动机一般采用四缸四冲程发动机.发动机前置、横置、前轮驱动,即FF式布置。FF 驱动方式下驱功反力矩直接作用于动力总成上,使发动机悬置受到较大的力。因此,为限制发动机及排气系统等的位移,发动机悬置要有必要的刚度。另一方面,为了减小怠速及中高速区域的振动噪声,要求发动悬置具有具有较好的柔件,达到良好的隔振性能。作用于发动机悬置上的驱动反力矩,在FR式场合,就是动力总成输出最人转矩时所产生的最大反作用力矩,即倾覆力矩,它等于发动机最大转矩乘变速器最大减速比。这—倾覆力矩主要由后悬置来承担,力矩方向与发动机旋转方向相反。因此在后悬置一侧的软垫上将产牛很大的额外压缩负荷。但在FF式的车辆上,则为差速器(驱动轴)的输出转矩。因此FF式的驱动反力矩为阳式的3~4倍。

此外,在主要采用横置发动机的轿车上,差速器的驱动反力矩与发动机转矩波功的激振方向一致,并和车身弯曲的方向相同,因此在横置发动机的悬置布置中,有以下特点:

①因降低发动机的扭转刚度应有一定的难度,很难确保对发动机转矩波动激振的隔离。

②因为车身弯曲共振频率接近于发动机扭转振动频率域,且振动方向一致,所以容易发生低速时的振动。

③发动机、变速器及差速器成为—体,所以瞬态变化剧烈。

根据上述特点,在悬置设计上大体分为低速区域的转短波动激振及中高速区的惯性激振两部分。悬置系统一般采用四点支承,其中一点为辅助点。在设计上尽时能减小振动的耦合度。采用非线性、变刚度的悬置软垫,提高低转矩时的隔振效率、减小大转矩时的振动位移。图3—16—5,给出的前置发动机前轮驱动汽车发动机的悬置布置方案中,利用A、B、C三个悬置支承发动机装置的质量。其中驱动转矩反力主要被C、D两个悬置所承受,这二个悬置的弹性和距离,也决定了动力装置的横滚共扼频率。在这种汽车上,由于最终减速机构布置在变速器内,驱动转矩的反力较大,为了限制动力装置的位移,必须把动力装置的横滚共振频率设定的较低。为此,C、D俩点大都采用非线性刚度系数的悬置软垫。

悬置软垫的设计

1)悬置软垫的负荷

通常前悬置位于发功饥机体前端或机体前部两侧,与后悬置相比、远离动力总成的质心,因此动力总成的垂直静负荷主要由后悬置承担,而前悬货主要承受扭转负荷。对后悬置来说.距离动力总成的主惯性轴较近,承受较小的扭转负荷及振幅。同时,由于它处于发动机动力输出端,受传动系不平衡力的严重干扰和外部轴向推力的冲击,当发动机输出最大转矩时.支承点出现的最大反作用力也应由后悬挂来承担。所以后悬置的垂直刚度较大,也起着限制动力总成前后位移的作用。悬置系统同样还承受了汽车行驶在平平道路上的颠簸、冲击、汽车

制动及转向时所产生的动负荷(表3-6-1)。

2)悬置软垫的机构形式

在设计发动机悬置时。必须充分的考虑悬置的使用日的,例如支承的质量和限制的位移等,选择合理的形状。悬置的基本形式有三中,即压缩式、剪切式和倾斜式,见图3-16-6。表3-16-2,给出了这二种悬置的基本特性及用途。通常采用倾斜式的悬置结构,利用这种悬置的弹性特性,支点设定可以获得较大的自由度。

表3-16-1 不同使用工况下可能出现的冲击加速度值

应用形式垂直加速度(g)

公路用车辆±4

越野车辆±6

发电机组±6

船用(包括辅助设备)±6

叉车±3

表3-16-2 悬置软垫的基本特性及用途

悬置形式压缩式倾斜式剪切式

弹性

特性压缩刚度大

剪切刚度小压缩、剪切

特性均好压缩刚度小

剪切刚度大

主要

用途用于振动输入小、支承质量大的场合用于振动输入大、支承质量大的场合用于振动输入小、支承质量小的场合

3)悬置软垫的限位、

如果动力总成的位移过大,使动力总成本身,或它进排气系、操纵机构管路、接线等和周围的机件相碰,产生损伤。同时悬置软垫也容易损坏。为此,必须从悬置结构上限制过大位移。

①增加位移较大的方向上的悬置刚度。例如,在汽车加速行驶或转弯行驶时,动力装置产生的惯性力,可能使动力装置产生较大的位移。为了限制动力装置的位移,应该在前后、左右方向上设置较硬的悬置.防止动力装置出现过大的位移。

②采用非线形、变刚度的悬置结构,以同时减小小激振力引发的振动和限制大激振力时大的振动位移。例如.在汽车停驶发动机怠速运转,或汽车等速行驶时,发功机的输出转矩较小。这时,悬置软垫的刚度较低,能有效地隔离振动。在快速起步时,驱动转矩的反力十分大,可能使动力装置产生左右横滚的振动。此外,汽车在不平整路面上行驶时,随着整车的大幅度上下颠动,动力总成也产业很大的上下惯性力。由于这时悬置软垫的刚度变大,也能有效地限制动力装置的振动和位移。悬置软垫限位结构的实例如图3-16-7所示。

4)悬置软垫的可靠性

(1)疲劳破坏

橡胶材料的循环变应力的作用下可能出现疲劳破坏,设计时应注意橡胶的许用应力和许用变形,表3-16-6,给出了一般悬置橡胶材料的许用应力和许用变形。

(2)老化

悬置软垫在使用中,不可避免的会受到热、臭氧和紫外线等的作用、造成悬置软垫的抗拉强度、力学性能下降,并产生裂纹。因此在悬置设计中应使悬置软垫远离热源或加以隔离。表3-16-3悬置软垫许用应力和变形

变形形式允许应力允许变形

压缩1~1.5 15~20

剪切0.1~0.2 20~30

(3)永久变形

悬置软垫在使用中反复地变形,或受热等因素影响下,橡胶将产生永久变形,使橡胶的尺寸发生变化。

(4)粘接面的剥离

一般设计中要求橡胶与金属骨架的粘接强度高于3MPa,但由于产品质量问题或软垫在高温环境下长期使用后,粘接面的粘接强度下降并引起剥离而导致损坏。

5)悬置软垫橡胶的材料

在设计中应根据使用要求选择符合要求的橡胶材料。目前主要采用混合橡胶,它以天然橡胶为主料,添加了部分丁苯橡胶.有的悬置也采用了丁腈橡胶。目前采用的减振橡胶材料有一般的加硫橡胶,如NR (天然橡胶),SBR(丁苯橡胶) ,BR (丁二烯橡胶),IR(异戊橡胶);特殊的耐油加硫橡胶,如NBR(丁腈橡胶);特殊耐候(轻度耐油)橡胶,如CR(氯丁二烯橡胶);阻尼力教大的橡胶,如IIR(丁基橡胶);特别耐热的加硫橡胶,如EPDM(乙丙烯橡胶)。6)悬置软垫的阻尼

根据悬置系统的幅频响应特性,当动力总成在低频振动时,为了减小振动的振幅,应采用阻尼因数较大的软垫,此时阻尼越大,振动响应越小。其中,最典型的例子是冲击。而当动力总成作30Hz以上的高频振动时,由于激振力的频率较高,可以不必考虑动力总成悬置系统的共振问题。为了降低动力总成的振动对整车的影响,切断高频振动的传递。应该使振动系的阻尼越小越好,此时阻尼越小,振动响应越小。

液压悬置

只使用橡胶软垫,很难产生很大的振功阻尼。为了改善冲击等过大的振动,悬置必须具有很大的阻尼力,这就是液压式悬置,它同样可降低高频时的悬置刚废,提高减振、降噪效果。

1)液压悬置的构造

液压悬置的基本结构见图3-16-8。用一个中心螺栓将一个普通的锥形橡胶悬置垫固定在顶部,与隔板一起构成上腔,下腔由一个弹性皱皮膜和隔板构成,皱皮膜由—个固定盖保护,固定盖与皱皮膜构成与大气相通的气室,隔板上开有一个活动板。同时隔板上开有小孔,阻尼缓冲液可由隔板上的小孔经上腔流到下腔。

2)液压悬置的工作原理

当发动机高频小幅振动时,上腔内压没有上升,这样可得到较小的悬置刚度以减小振动(图3-16-8a)。当发动机低频大幅振动时,活动板的动作爱到限制、上腔压力升高,流体通过阻尼孔流人下腔,利用流体的流动阻力,产生很大的阻尼力,从而使振功得到很大的衰减(图3-6-8b)。在设计液压式悬置时,可以改变某些参数,自由地设定共振频率,例如改变液压悬置的动态参数,节流孔的口径和孔长等,这样,利用液体的共振现象,就能实现任意的动态弹性特性。有的液压式悬置还设有高频节流孔等附加机件,能改善240Hz以下的动态弹

性特性。液压悬置的动态特性见图3-16-9。

悬置系统的设计程序

①确定动力总成的总质量,包括内部注满的机油和冷却液。

②确定动力总成的质心位置。

③确定动力总成主惯性轴的位置。

④测出或估算出动力总成绕三个主惯性轴的转动惯量。

⑤设定动力总成前、后悬置支承点的数目,布置形式,各支承点离质心和主惯性轴的位置及相应的几何尺寸,并结合解耦原理作必要的分析计算。

⑥分别计算前、后悬置支承点上承受的静态负荷。

⑦计算发动机机体后端面与飞轮壳接合面上的静态弯矩,该弯短值必须在发动机制造商规定的范围内;否则,应调整前、后悬置支承点的位置或增加尾部辅助支承点,使该处的弯矩值控制在限值内。

⑧计算发动机、变速器总成在悬置软垫上可能引起的最大转矩反作用力。可用两种计算标准,一是发动机输出最大转矩时,另一是发动机在额定功率点时(包括最大变速比)。然后根据软垫制造商提供的软垫“负荷——变形”曲线,核对所选样的软垫是否能承受这一作用力及软垫的最大变形量是否在合理的范围内。

⑨按实际应用情况,确定动态负荷冲击加速度的数值。

⑩设计悬置支架,按动态负荷计算进行强度校核。若发动机制造商没有提出机体后端面与飞轮壳接合部位的静念弯矩限值,则应按动态负荷计算该部位的弯矩和工作应力,保证该薄弱环节安全可靠。

⑾选择合适的悬置软垫,应能承受上述动态负荷,并满足隔振要求,确定软垫的刚度。

⑿根据所选择的软垫的压缩和剪切刚度及系统布置形式,分别计算前、后悬置的垂直综合刚度,侧向综合刚度和扭转综合刚度及相应的固有频率(如果是平置式布置,则系统的垂直方向固有频率和隔振效率可从软垫制造商提供的坐标图上根据静态变形量确定)。

⒀确定发功机的外激振频率。

⒁通过软垫制造商提供的坐标图,按照软垫的静态压缩量以及外激振额率,确定悬置系统的隔振效率。

⒂检查悬置系统是否具备克服其他外力和惯性力的能力,必要时应设置限位装置。

⒃选择能满足工作环境条件的需要的悬置软垫的材料。

⒄校核悬置系统的结构布置能否适应整车提供的空间,确保不与周围零部件发生干涉。

⒅试验。

动力总成悬置系统运动包络及工况载荷计算方法

动力总成悬置系统运动包络及工况载荷计算方法 吕兆平吴川永 上汽通用五菱汽车股份有限公司技术中心 【摘要】本文论述了动力总成位移控制设计的一般原理,以一微车动力总成悬置系统为研究对象,结合通用汽车公司全球标准的28种载荷工况,介绍了求解各悬置点反力以及发动机质心位移和转角的方法,该计算数据为悬置支架的强度校核以及发动机仓零件设计及布置提供了理论依据。 [关键词]动力总成悬置系统,运动包络,工况载荷 The calculation method for the motion envelop and loadcase force of the powertrain mount system Lv Zhaoping Wu chuanyong (Technical Development Center,SAIC GM Wuling Automobile Co.,Ltd..,Liuzhou 545007 ) [Abstract]The general principle for the design of motion control for powertrain mounting system is presented。Take a mini van powertrain mounting system as the object of study. with the 28 loadcase of the GM global standards. Introduces the method to solve the reaction force at the mounting points and the displacement and rotation of the COG of the powertrain.the calculated data provides a theoretical basis for the mounting bracket strength check and the parts of engine warehouse design and layout. [Keywords] powertrain mount system,motion envelop,Loadcase force 前言 [1]动力总成悬置系统的主要功能有两个,一是减振,二是限位。从悬置元件的刚度曲线来看,一般可以分为线性段和非线性段。其中,线性段可以看作悬置元件减振功能的体现。悬置系统设计工程师在设计悬置刚度线性段时,需要用悬置元件动刚度对动力总成的模态及解耦率进行计算。当动力总成的模态及解耦率满足要求时,悬置动刚度就确定了。而动刚度和静刚度成一定的比例关系(一般动刚度为静刚度的1.3~1.5倍),这样即可确定悬置元件线性段的刚度。刚度曲线的拐点则是动力总成的限位点,限位要求通常是主机厂提供的。如主机厂要求在三挡80%油门开度下动力总成需要良好的解耦,即要求动力总成各悬置点的位移量均在线性段内,供应商根据这个要求即可设计刚度曲线的拐点。在拐点之后,悬置刚度曲线可以看作是大刚度的线性段。这个大刚度的设计,则要满足主机厂对动力总成总体位移的设计目标值。因此,整个非线性段是为了实现悬置系统的限位功能。 [2]本文通过Adams/View软件建立动力总成模型及考虑了悬置在其三个弹性主轴方向力——位移特性的非线性关系,设计了悬置非线性刚度曲线,对某车型的动力总成进行28种工况的模拟计算,对动力总成悬置系统运动包络进行了校核并获得了28工况下各悬置点的工况载荷,为悬置支架、车身结构甚至变速器壳体强度校核都提供了输入条件。 1 工况计算前期准备 1.1 坐标系定义 一般我们在发动机大总成测试时,获得的质心坐标是在发动机坐标系下的坐标,转动惯量则是在质心坐标系下的转动惯量。因此在此先介绍一下坐标系的定义问题。 1.1.1 发动机坐标系 OeXeYeZe 以曲轴中心线与发动机后端面(RFB)的交点为坐标原点Oe; Xe轴平行于曲轴中心线,指向发动机前端; Ze轴平行与气缸线,指向缸盖; Ye根据右手定则确定,应与气缸中心线所在的中心面垂直,指向发动机左侧(从变速箱端向皮带轮端看).

某轻卡发动机悬置系统的设计

摘要 发动机动力总成悬置系统是发动机应用工程重要部分,它的好坏直接影响着汽车的NVH性能,进而影响该车的市场份额。本论文主要阐述了动力总成悬置系统设计的基本理论,对悬置系统的各项参数的收集作了简单介绍,并利用MATLAB完成了悬置系统的初步设计计算,得到悬置系统的6阶固有频率在6个自由度方向的解耦率未达到要求,悬置系统需要进行参数优化。在本论文动力总成悬置系统优化设计中,其优化设计目标是6个自由度方向的解耦率达到一定水平,设计变量是前后悬置三个方向的刚度值,约束条件是6个固有频率的范围,优化得到的结果在固有频率分配和解耦率方面都有了明显的改善。最后对悬置系统其中的一个托架基于hypermesh软件进行了三种工况下的强度校核和约束模态第一阶频率的校核,校核结果均满足设计要求。 关键词:悬置系统;设计计算;MATLAB;优化;托架;CAE

Abstract The engine mounting system is an important part of the engine application engineering, which directly affects the NVH performance of the vehicle and the market share of the vehicle. This paper mainly expounds the powertrain mounting system design of the basic theory, and briefly introduced collection of suspension system parameters. Then it has completed the preliminary design of the suspension system by using the MATLAB, the result is that six order natural frequency of the mounting system and each order modal in the rirection of six degree of decoupling ratedoes not meet the requirements and the mounting system parameters need to be optimized. In the power assembly mounting system optimization design, the design goal of this paper is the six degree of freedom decoupling rate reached a certain level, the design variables are three direction stiffness values of front and rear suspension and constraint conditions is six order natural frequency constraints.The optimized results in frequency assignment and the decoupling rate are significantly improved. Finally, the intensity in three cases and the first order frequency of a bracket of the suspension system is checked based on Hypermesh. The checked results meet the design requirements. Keywords:mounting system; Design calculation; MATLAB; optimization; bracket; CAE

汽车悬置系统设计指南

悬置系统设计指南 编制: 审核: 批准: 发动机工程研究二院 动力总成开发部

主题与适用范围 1、主题 本指南介绍了动力总成悬置系统开发的基本知识和基本过程,以及所涉及到的基本流程文件核技术文件。 2、适用范围 本指南适用于奇瑞所有装汽油或柴油发动机的M1类车动力总成悬置系统的设计。

目录 一、悬置系统中的基本概念 (4) 1.1 悬置系统设计时的基本概念 (4) 1.2动力总成振动激励简介 (7) 二、悬置系统的作用 (9) 2.1 悬置系统的设计意义及目标简介 (9) 2.2 动力总成悬置系统对整车NVH性能的影响 (9) 三、悬置系统的概念设计 (12) 3.1 悬置系统的布置方式选择 (12) 3.2 悬置点的数目及其位置选择 (13) 3.3 悬置系统设计的频率参数 (16) 四、悬置系统相关设计参数 (17) 4.1动力总成参数 (17) 4.2 制约条件 (18) 五、悬置系统设计过程中的相关技术文件 (20) 5.1 悬置系统VTS (20) 5.2 悬置系统DFMEA (20) 5.3 悬置系统DVP&R (21) 5.4 其它技术及流程文件 (21)

一、悬置系统中的基本概念 1.1 悬置系统设计时的基本概念 1:整车坐标系:原点在车身前方,正X方向从前到后,正Y方向指向右侧(从驾驶员到副驾驶),正Z方向朝上如图(1-1)。 (图1-1)整车坐标系 2:发动机坐标系:原点在曲轴中心线与发动机和变速箱结合面的交点处;正X方向从变速箱到发动机,沿着曲轴中心线,正Y方向指向右侧如果沿着正X方向看,正Z方向朝下如图(1-2)。 (图1-2)发动机坐标系 3:主惯性矩坐标系:原点在动力总成的质心位置,正X方向从变速箱到发动机,沿着最小主惯性矩轴线,正Y方向通常沿着最大主惯性矩轴线,正Z方向朝下并且沿着中等主惯性矩轴线如图(1-3)。

红岩金刚车全浮式驾驶室悬置设计分析

北京汽车 图3 驾驶室前悬置装配位置 文章编号:1002-4581(2010)04-0012-05 红岩金刚车全浮式驾驶室悬置设计分析 张 兰1,曾佳2 Zhang Lan 1,Zeng Jia 2 (1.重庆交通大学,重庆400074;2.上汽依维柯红岩商用车有限公司,重庆401122) 摘 要: 针对红岩金刚车全浮式驾驶室悬置系统的损坏和隔振差情况,对该车型进行道路试验,测试驾驶室的平顺性,并分析驾驶室悬置的隔振性能,最后通过对悬置的力学计算分析提出整改方案,建立三维模型进行装配可行性分析,并最终在整车上试装成功。此测试、分析、计算方法可供重型车驾驶室悬置工程师参考。 关键词:驾驶室悬置;平顺性;隔振;计算分析 中图分类号:U463.83:U469.2 文献标识码:A 引 言 汽车平顺性的问题日益受到重视,驾驶室乘坐舒适性是汽车的一个重要性能指标。其中,载货汽车驾驶室悬置系统的结构和参数是决定乘坐舒适性的主要因素。目前,国内外对驾驶室悬置的研究主要集中在以下3个方面:驾驶室的安全性、驾驶室的疲劳可靠性、驾驶室的振动与噪声问题。 车辆在路面上行驶时,乘客振动舒适性主要受以下两方面因素的影响:一方面由发动机传动系统的振动引起,其振动频率较高,对人体舒适性影响较小;另一方面由于路面的不平整等因素引起的振动,其频率大多集中在l ~20Hz 。上述两种激励最终均是通过驾驶室地板传递至人体。 而驾驶室悬置是振动传递到驾驶室内人体上的主要路径,所以驾驶室悬置的结构和相关参数的设计对驾驶室的舒适性起着至关重要的作用。 1 驾驶室悬置隔振性能测试 1.1 测试说明 (1)试验是在上汽依维柯红岩商用车有限公 司江北厂区外面的试车公路进行的,测量了30km/h 、40km/h 、50km/h 、60km/h 车速下的振动; (2)测试车速以汽车车速表为准,尽量保持匀速,但是试验路段干扰较大,车速一致性不是很好; (3)测量了驾驶室前后悬置左侧上下连接处 图1 红岩金刚车驾驶室后悬 图2 红岩金刚车

汽车动力总成悬置系统位移控制设计计算方法_上官文斌

2006年(第28卷)第8期 汽 车 工 程A uto m otive Eng i neer i ng 2006(V o.l 28)N o .8 2006165 汽车动力总成悬置系统位移控制设计计算方法 * *广东省自然科学基金博士启动项目(04300111)和宁波拓普集团2005年度研发基金资助。 原稿收到日期为2005年9月15日,修改稿收到日期为2005年11月4日。 上官文斌1,3 ,徐 驰1 ,黄振磊1 ,李 岐2 ,李 涛 2 (11宁波拓普减震系统有限公司,宁波 315800; 21泛亚汽车技术中心有限公司,上海 201201; 31华南理工大学汽车工程学院,广州 510641) [摘要] 论述了动力总成位移控制设计的一般原理。以一轿车动力总成4点悬置系统为例,针对汽车的一特殊行驶工况,对动力总成的质心位移、悬置位移和支承点反力进行了计算。文中论述的动力总成位移控制的设计思想和计算方法对汽车动力总成的设计具有指导意义。 关键词:汽车动力总成悬置系统,力位移非线性关系,位移控制 D esi gn ofM oti on Control f or A uto m oti ve Po w ertrai n M ounti ng Syste m s Shangguan W enbin 1,3 ,X u Chi 1 ,Huang Zhenlei 1 ,L iQ i 2 &Li Tao 2 11N i ngbo Tuopu Vibra tion Isol a tion C o .L t d.,N i ng bo 315800; 21P an Asi a T ec hn i ca lAu t omotive Cen t er Co.,L t d.,S hangha i 201201; 31C olle ge of Au to m oti ve Eng i n ee ring,Sou t h Ch i na Universit y of Tec hn ology,Guang zhou 510641 [Abstrac t ] The general pri n ciple for the desi g n o fm otion contro l for auto m otive po w ertrain m ounti n g syste m is presented .A i m i n g at a spec ific driving m ode of a car engine w ith a 4-po i n tsm oun,t the disp lace m ents of cen ter of grav ity of po w ertrai n and the d isp lace m ents and reaction forces at mounting points are calcu lated . K eyw ords :Auto m otive pow er t rai n m ounting syste m,N onlinear relation bet w een force and displace -m ent ,M otion control 1 前言 在汽车动力总成悬置系统振动控制设计中,以下2点为基本设计内容。(1)设计动力总成悬置系统的6阶固有频率,以避免悬置系统与汽车的其它零部件系统(如车身、悬架系统)共振;尽可能使悬置系统在6个方向的振动互不耦合(解耦),尤其是动力总成在垂直方向的振动和沿曲轴方向的扭转振动应和其它方向的振动解耦[1-8] 。(2)在汽车的各种行驶工况下(通用汽车公司规定为29种工况),动力总成质心的位移应控制在指定的范围内,悬置在各弹性主轴方向的变形应处于指定的工作点。作者考虑了悬置在其3个弹性主轴方向力位移特性的非线性关系,推导了动力总成位移计算公式,给出了动力总成质心的位移计算的迭代算法和 悬置位移、支承点力计算方法。 2 悬置系统的静态特性 进行动力总成的振动控制设计时,将动力总成视为刚体,由n 个(n \3)悬置支承在车架、副车架或车身上,悬置简化为沿3个垂直的弹性主轴方向(u i 、v i 和w i 方向)具有刚度和阻尼的元件(见图1)。 图1 汽车动力总成悬置系统

悬置系统设计计算

悬置系统设计计算

悬置系统 发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。引起零部件的损坏和乘坐的不舒适等。因此设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。一般来讲对 发动机悬置系统有如下要求。 ①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其它零部件发生干涉。同时在发动机大修前,不出现零部件损坏。 ②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。 ③能充分地隔离由于路面不平产生的经过悬置而传向发动机的振动,降低振动噪声。 ④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。 悬置系统的激振源

作用于发动机悬置系统的激振源主要如下: ①发动机起动及熄火停转时的摇动; ②怠速运转时的抖动; ③发动机高速运转时的振动; ④路面冲击所引起的车体振动; ⑤大转矩时的摇动; ⑥汽车起步或变速时转矩变化所引起的冲击; ⑦过大错位所引起的干涉和破损。作用在发动机悬置上的振动频率十分广泛。按着振动频率能够把振动分为高频振动和低频振动。频率低于30Hz的低频振动源如下: ①发动机低速运转时的转矩波动; ②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振功; ③轮胎旋转时由于轮胎动平衡不好使车身产生的振动; ④路面不平使车身产生的振动; ⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。 频率高于30Hz的高频振动源如下:①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动;

动力总成悬置设计流程

动力总成悬置系统设计流程 5.1 悬置系统的设计输入: 一般需要输入以下参数:动力总成的激振源,动力总成的惯性参数,隔振性能的要求,频率的匹配,模态的解耦,动力总成的位移控制,动力总成和整车的匹配,悬置元件的设计约束,发动机舱空间等。 5.2 悬置系统的主要设计参数: 悬置位置及数量的选择,悬置安装位置角度的选择,静刚度曲线的确定,动刚度的确定,阻尼参数的确定等。 5.2.1悬置位置及数量 根据动力总成的长度、质量、用途、安装方式和机舱空间等决定。悬置系统可以有3、4、5点悬置,一般在汽车上采用三点及四点悬置系统。因为在振动比较大时,如果悬置点的数目增多,当车架变形时,有的悬置点会发生错位,使发动机或悬置支架受力过大而造成损坏。 三点式悬置与车架的顺从性最好,因为三点决定一个平面,不受车架变形的影响,而且固有频率低,抗扭转振动的效果好。 四点式悬置的稳定性好、能克服较大的转矩反作用力,不过扭转刚度较大,不利于隔离低频振动。较常见的三点及四点悬置布置形式如下图: 三点悬置布置示意图四点悬置布置示意图 5.2.2悬置安装位置角度的选择 在传统的纵置式发动机中,V 型布置是经常采用的方式, 一般倾斜角度θ:40o~45o, V型布置的悬置系统的弹性中心较低,在设计中通过倾角及位置的调整容易使其弹性中心落在或接近动力总成的主惯性型轴上。 对于横置动力总成而言,一般采用的是左右悬置支撑动力总成,另配置下拉杆悬置或前后抗扭悬置来承担扭矩载荷,此类布局的优势是从功能配置上来说就区分了承载悬置和抗扭悬置,易于实现悬置系统的刚体模态解耦。 5.2.3悬置的静动刚度确定 受几何空间布置的影响,要想达到悬置系统的解藕,另外一个重要的可调参数即悬置本身的静动刚度。通过调整悬置的刚度及几何位置,使悬置系统的弹性中心与动力总成的质心重合,则振动将大为简化。 理论上,如果使发动机悬置系统的弹性中心同发动机总成的质心重合,就可获得所有六个自由度上

悬置系统设计计算

悬置系统 发动机本身是一个内在的振动源,同时也受到来自外部的各种振动干扰。引起零部件的损坏和乘坐的不舒适等。所以设置悬置系统,把发动机传递到支承系统的振动减小到最低限度。成功地控制振动,主要取决于悬置系统的结构型式、几何位置及悬置软垫的结构、刚度和阻尼等特性。确定—个合理的悬置系统是一件相当复杂的工作,它要满足—系列静态及动态的性能要求,同时又受到各种条件的约束,这些大大增加了设计的难度。一般来讲对发动机悬 置系统有如下要求。 ①能在所有工况下承受动、静载荷,并使发功机总成在所有方向上的位移处于可接受的范围内,不与底盘上的其他零部件发生干涉。同时在发动机大修前,不出现零部件损坏。 ②能充分地隔离由发动机产生的振动向车架及驾驶室的传递,降低振动噪声。 ③能充分地隔离由于路面不平产生的通过悬置而传向发动机的振动,降低振动噪声。 ④保证发动机机体与飞轮壳的连接面弯矩不超过发动机厂家的允许值。 悬置系统的激振源 作用于发动机悬置系统的激振源主要如下: ①发动机起动及熄火停转时的摇动; ②怠速运转时的抖动; ③发动机高速运转时的振动; ④路面冲击所引起的车体振动; ⑤大转矩时的摇动; ⑥汽车起步或变速时转矩变化所引起的冲击; ⑦过大错位所引起的干涉和破损。 作用在发动机悬置上的振动频率十分广泛。按着振动频率可以把振动分为高频振动和低频振动。频率低于30Hz的低频振动源如下: ①发动机低速运转时的转矩波动; ②在发动机低速运转时由于惯性力及其力偶使动力总成产生的振功; ③轮胎旋转时由于轮胎动平衡不好使车身产生的振动; ④路面不平使车身产生的振动; ⑤由于传动系的联轴器工作不佳产生附加力偶和推力,使动力装置产生的振动。 频率高于30Hz的高频振动源如下: ①在发动机高速运转时,由于惯性力及其力偶使动力总成产生的振动; ②变速时产生的振动; ③燃烧压力脉动使机体产生的振动; ④发动机配气机构产生的振动; ⑤曲轴的弯曲振动和扭振; ⑥动力总成的弯曲振动和扭振; ⑦传动轴不平衡产生的振动。 总之,使发动机总成产生振动的主要振源概括起来有两类:一为内振源,主要是由于燃烧脉动、活塞和连杆的运动产生的不平衡力和力矩。二为外振源,主要来源于不平的道路或传动系。这两种振源几乎总是同时作用,使发动机处于复杂的振动状态。

动力总成悬置系统匹配设计

动力总成悬置系统匹配设计方法

一、动力总成设计参数的输入 1、动力总成的惯性参数 动力总成的惯性参数包括动力总成的质量、质心位置以及动力总成的转动惯量10个数据。 质心位置的描述采用发动机坐标系,发动机坐标系的定义:坐标原点O 为发动机缸体后端面和发动机曲轴中心线的交点,x轴正向为过O点平行与曲轴中心线指向发动机端,z轴正向为过质心点平行于气缸中心线垂直向上,y轴正向根据右手定则确定,如下图示: 转动惯量的描述采用动力总成质心坐标系下。质心坐标系定义如下:坐标原点O为动力总成的质心,坐标方向和发动机坐标系相同,如下图所示: 动力总成的惯性参数如表1所示: 表1动力总成的惯性参数 动力总成惯性参数的测定可采用三线摆法测定,误差要求在5%以内。

2、动力总成悬置系统的位置数据 动力总成的位置数据包括所有悬置弹性中心的位置、发动机坐标原点位置、变速箱输出轴位置。所有坐标均采用整车坐标系。其中位置参数表如表2所示: 表2动力总成悬置系统的位置数据 3、动力总成悬置系统的刚度数据 动力总成悬置系统的刚度参数为各个悬置的三向刚度,刚度参数采用悬置自身的坐标系。坐标原点为悬置的弹性中心,三个方向为悬置的弹性主轴方向(p、q、r)。参数表如下所示: 表2动力总成悬置系统的位置数据 4、变速器的各挡速比和主减速比 表3变速箱各档速比和主减速比 5、发动机的其他参数 这些参数包括发动机的额定功率、最大扭矩、气缸数、发动机的怠速转速、最高转速、扭矩随转速的关系曲线。参数表如下: 表4 发动机的其他参数

6、动力总成悬置系统及周边的相关数模 二、动力总成悬置系统的解耦设计及固有频率的合理配置 1、悬置系统的主要作用 动力总成悬置系统的基本功用为: 固定并支承汽车动力总成; 承受和衰减动力总成内部因发动机不平衡旋转和平移质量产生的往复惯性力、力矩和不平衡扭矩; 承受和衰减汽车行驶过程中,例如在换档、加速、启动等工况下作用于动力总成上的一切动态力和对车身造成的冲击; 隔离由于发动机激励而引起的车架或车身的振动; 隔离由于路面不平度以及车轮所受路面冲击而引起的车身振动向动力总成的传递。 2、解耦设计的原因 进行动力总成悬置系统设计时一般要求尽量做到解耦布置,我们希望动力总成悬置系统在动力总成质心坐标系下是完全解耦的,即系统沿某一广义坐标的激励只会引起系统一个模态的振动。通常发动机悬置系统的六个自由度的振动是耦合的,沿悬置系统广义坐标的任意一个激励都将激起系统的多个模态,这样导致发动机的振幅加大,且易与周围零件发生干涉,并且振动频带过宽,为了约束动力总成的位移,避免与其它零部件干涉,则需使用刚度更高的悬置元件,这会导致动力总成的激励传递到车身上的激励过大,影响整车的NVH特性。因此在设计时将悬置的空间位置尽量按解耦布置。举例说明如下:当动力总成悬置系统存在转动和上下移动的运动耦合时(如图1所示),如果系统受到垂直方向的激励时将引起动力总成的垂直运动以及旋转运动,这样将造成变速箱末端运动位移较大。例如在前后方向完全解耦(如图2所示),则系统前后方向的振动不会引起其它方向上的运动,这样动力总成在受到外界激励时其运动位移向对较小。因此系统按照解耦布置时有利于控制动力总成的振动。 图1动力总成悬置系统垂直振动和转动耦合

相关文档
相关文档 最新文档