文档库 最新最全的文档下载
当前位置:文档库 › 滤波器设计

滤波器设计

滤波器设计
滤波器设计

引 言

滤波器是一种二端口网络。它具有选择频率的特性,即可以让某些频率顺利通过,而对其它频率则加以阻拦,目前由于在雷达、微波、通讯等部门,多频率工作越来越普遍,对分隔频率的要求也相应提高;所以需用大量的滤波器。再则,微波固体器件的应用对滤波器的发展也有推动作用,像参数放大器、微波固体倍频器、微波固体混频器等一类器件都是多频率工作的,都需用相应的滤波器。更何况,随着集成电路的迅速发展,近几年来,电子电路的构成完全改变了,电子设备日趋小型化。原来为处理模拟信号所不可缺少的LC型滤波器,在低频部分,将逐渐为有源滤波器和陶瓷滤波器所替代。在高频部分也出现了许多新型的滤波器,例如:螺旋振子滤波器、微带滤波器、交指型滤波器等等。虽然它们的设计方法各有自己的特殊之点,但是这些设计方法仍是以低频“综合法滤波器设计”为基础,再从中演变而成,我们要讲的波导滤波器就是一例。

通过这部分内容的学习,希望大家对复变函数在滤波器综合中的应用有所了解。同时也向大家说明:即使初看起来一件简单事情或一个简单的器件,当你深入地去研究它时,就会有许多意想不到的问题出现,解决这些问题并把它用数学形式来表示,这就是我们的任务。谁对事物研究得越深,谁能提出的问题就越多,或者也可以说谁能解决的问题就越多,微波滤波器的实例就能很好的说明这个情况。我们把整个问题不断地“化整为零”,然后逐个地加以解决,最后再把它们合在一起,也就解决了大问题。这讲义还没有对各个问题都进行详细分析,由此可知提出问题的重要性。希望大家都来试试。

第一部分 滤波器设计

§1-1 滤波器的基本概念

图 1

图1 的虚线方框里面是一个由电抗元件L 和C 组成的两端口。它的输入端1-1'与电源相接,其电动势为E g,内 阻为R1。二端口网络的输出端2-2' 与负载R2相接,当电源的频率为零(直流) 或较低时,感抗jωL很小,负载R2两端的电压降E2比较大(当然这也就是说负载R2可以得到比较大的功率)。

但是,当电流的频率很高时,一方面感抗jωL变得很大,另一方面容抗-j/ωC却很小,电感L 上有一个很大的压降,电容C又几乎把R2短路,所以,纵然电源的电动势E g保持不变,负载R2两端的压降E2也接近于零。换句话说,R2不能从电源取得多少功率。网络会让低频信号顺利通过,到达

R2,但阻拦了高频信号,使R2不受它们的作用,那些被网络 A(或其他滤波器)顺利通过的频率构成一个“通带”,而那些受网络A 阻拦的频率构成一个“止带”,通带和止带相接频率称为截止频率。

什么机理使网络A 具有阻止高频功率通过的能力呢?网络A 是由电抗元件组成的,而电抗元件是不消耗功率的,所以,高频功率并没有被网络A 吸收,在图一所示的具体情况中,它有时贮存于电感L 的周围,作为磁能;在另一些时间,它又由电感L 交还给电源。如果L 和C 都是无损元件(即

它们的电阻等于零),那么,高频功率就是这样在电感与电源之间来回交换,丝毫不受损耗,这就是电抗滤波器阻止一些频率通过的物理基础。从这个意义来说,我们可以认为滤波器将止带频率的功率发射回电源去,同时也是因为这个关系,在止带内滤波器的输入阻抗是纯电抗性的。

图一的网络A 是一个很简单的滤波电路,它的滤波效能是比较低的,在许多场合下,往往不能满足技术上的要求,而不得不采取更复杂的电路结构。然而,不管电路结构如何复杂,滤波作用的物理根源还是和前面所说的完全一样。

滤波作用是滤波网络所具有的内在特性,但滤波网络所能起到的作用还受外界因素(电源内阻

R1和负载电阻R2)的影响。滤波效能首先决定于滤波器的内在特性(这是主要的),同时还决定于滤波器的外加阻抗(这也是不可忽略的)。那么,滤波器效能是用什么来衡量的呢?图二(a) 表示一个电源,它的电动势为Eg,内阻为R1。设负载为R2,则当负载直接与电源相接时,它所能吸收的功率P02 为:

现在我们将滤波器A接于电源与负载之间,如图二(b) 所示,由于滤波器的特性,当电源频率

变化时,出现于R2两端的压降E2是不同的,即R2从电源所取得的功率在不同频率上是不等的。用分贝来表示的P02 与P2的比值称为插入损耗L i:

(1)

(a) (b)

图 2

插入损耗L i是衡量滤波器效能的一个参数。根据上面的讨论,显然可见,一个良好的滤波器的插入损耗在通带内应该比较低,而在止带内应该比较高。理想的滤波器的插入损耗在通带内应该等于零,而在止带内应该是无穷大。

插入损耗是普通滤波器常用的参数。滤波网络具有的阻抗变换特性不难使负载R2在整个通带内与电源达成匹配。这时,负荷所吸收的功率将超过P02,而使L i取得负值。根据R1和R2的比值不同,L i的这个负值也不一样。因此,插入损耗L i并不是一个很方便的比较基准。为了避免这种困难,人们还提出另外一个参数,它以电源所能供给的最大功率P0为基准。从电工基础我们知道:

P1与P0的比值,如以分贝来表示,称为变换器损耗L A(Transducter Loss):

根据以上给出的种种关系,可以算出:

(2)

从上式显然可见,当R2=R1时,变换器损耗就是插入损耗。有些参考书上,这两者是混为一谈的。

必须注意,在(2) 式中,当频率变化时,P2 是跟着变化的。在理想的情况下,滤波器的变换器损耗L A 在通带内应该是零,而在止带内则应该具有比较大的数值。根据滤波器的具体电路结构,变换器损耗与频率保持有各种不同的关系。图三给出四种典型关系,在这些图中,横坐标表示频率ω,纵坐标表示变换器损耗L A。(a)表示有关器件顺利通过低于ω1的频率,而阻碍高于ω1的频率通过;这样的器件称为低通滤波器(LP-Low Pass)。(b)的情况正好相反,称为高通滤波器(HP-High Pass)。

(c) 表示有关器件顺利通过ω1至ω2之间的频率,对于低于ω1或高于ω2的频率都阻碍它们通过;这样的器件称为带通滤波器(BP-Band Pass)。(d)是(c)的对立面,它阻止ω1至ω2之间的频率通过,称为带阻滤波器(BS-Band Suppress)。这些不同的频率特性取决于电路的具体结构,图四给出以上四种滤波器的基本结构形式,各个元件的数值是和变换器衰减的频率特性以及所接负载密切联系着的。

骤然看来,这四种电路结构是很不相同的,似乎各自应有各自的设计方法。其实不然,通过一些数学方法,人们可以把这四种滤波器电路结构完全统一起来,这里用到的数学方法叫作“频率变换”。应用频率变换法,其它三种滤波器都可以看作低通滤波器;在设计时,先从它对应的低通滤波器着手(因为这样简单得多),在获得低通滤波器的设计数据以后,再用频率变换法,求得所要设计的滤波器的数据。因为这个关系,满足设计技术要求的低通滤波器称为“母型滤波器”或“原型滤波器”(prototype)。

图 3

图 4

上面提出了衡量滤波器效能的参数--变换器损耗L A,但是,效能好坏的准则又是什么呢?在实际滤波器中,变换器损耗的频率特性往往不像图三那样理想。首先,从通带过渡到止带,L A是慢慢增加的,所以,衡量滤波器效能好坏的有关标准是:从通带过渡到止带时,L A曲线的上升要陡峭。其次在通带内,变换器损耗不是完全不存在的,一方面因为构成滤波器的元件多少总带有一点损耗,如电感中的电阻,电容中的漏阻等。另一方面,由于设计上的考虑,有时故意要L A在通带内不能完全为

零。故衡量滤波器效能的另一准则是:在L A曲线从通带过渡到止带的上升程度相同的情况下,L A在通带内的大小究竟怎样。

对以上两点的要求越高,滤波器所需用的元件越多,这将带来生产工作和造价的增加。所以,对于实际设计,应根据具体情况进行全面的考虑,只要滤波性能能够满足所提出的要求,那便没有追求

L A曲线上升过分陡峭的必要。问题在于能够完成任务,这也就是我国老话“杀鸡用不着牛刀”的意思。

第一部分 滤波器设计

§1-2 滤波器设计的两种出发点

滤波器的设计当前有两种不同的出发点。

一种称为镜象参数法。它以滤波网络的内在特性为根据。是人们一向用来设计滤波器的老办法。这种方法的特点是: 根据滤波网络的具体电路, 用分析的方法推算出变换器损耗的特性。然后再将这些具体电路拼凑起来, 使总的LA特性满足所需要的技术要求。用这种方法设计出来的滤波器一般为

K 式滤波器和m 式滤波器等。这种方法的优点是理论根据简单。它的缺点是在分析过程中没有考虑

外接负载的影响, 故在具体的设计要求提出后, 需要反复试探, 才能得到设计结果; 这对于缺乏经

验的工作人员来说, 是颇费时间的。

另一种方法从插入损耗入手, 它是近年来应用的很多的设计方法。这种方法的特点是: 根据所提出的技术要求, 决定插入损耗Li(在R2=R1时也就是娈换器损耗L A)与频率ω的函数关系, 然后根据

这个函数关系, 应用网络理论综合出具体的电路结构。所以这种方法和前面的一种方法正好是相反的; 这种方法根据要求推求电路, 而镜象参数法则是应用已知的特性电路拼凑出满足要求的结构。这种方法的优点是设计准确, 而且设计是已经考虑到外接负载的影响, 无需经过多次试探的手续。它的缺点是需要用到比较难深的网络理论。但是, 这个缺点是可以弥补的, 因为只要一当把满足各种要求的母型滤波器设计出来以后, 后来的设计手续变成了简单的查表读图和应用浅近数学方法换算数据, 从

实用角度来说比镜象参数法还要简单得多。

第一部分 滤波器设计

§1-3 综合法滤波器

引言--恩格斯说过:“没有分析就没有综合”。要讨论综合法滤波器就需要从 分析滤波器入手。综合法滤波器设计又名插入损耗法。这就是说插入损耗是该设计法的核心。现在需要弄清楚什么是网络分析和什么是网络综合?

① 网络分析--给出一个具体网络, 要我们求出这个网络的传递函数。

② 网络综合--它是网络分析的逆过程。给出一个具体的传递函数, 要我们求出这个网络的电路形式和各种元件的数值。

网络综合的确比分析一个具体电路要复杂得多。而且涉及的数学公式又多又难。但是它又是一个把数学用于工程问题的一个极好例子。所以我们还是决定详细地讲一讲。我们相信这会对同学们有好处的。

(一) 二端对网络的电压传递函数

工程设计中遇到的实际电路, 大多可以用图五所示的二端对网络来表示。图五的左方代表一个实际的电压源, E g是它的电动势, R1是它的内阻。右边的R2代表负载。根据问题的不同R1和R2可以取得种种不同的数值, 因为人们需要解决的实际问题是多种多样的。

图 5

这样的两端对网络主要是用作传输系统。既然如此, 人们首先注意的问题是: 它在外力作用下, 输出端会产生什么效果。譬如说, 当输入端1-1'加上激励电压E g,或送进激励电流I1 时, 接于网络输出端2-2'的端载R2上的电压E2或流过R2上的电流I2都是很重要的响应, 我们把E g/E2之比称为传递函数。

学过两端对网络理论, 我们当然就希望用网络理论来推导这个电压传递函数。考虑到网络内元件的复杂性, 我们就用通用矩阵[a]来推导这个传递函数。

图五所示结构用[a]矩阵的参数来表示: 根据[a]矩阵的定义:

先求2-2'端接上负载R2时, 1-1'端的输入阻抗Z in:

这样图五所示的网络就转化为图6那样。该电路的电压和电流的关系式是很容易求得的。

图 6

当R1=R2=1Ω时,

(3)

因为, 对于纯电抗网络, 当频率jω时, 只有B和C是纯虚数, 而A和D是实数。所以, 就

是一复数。于是又可以把它表示为:

这个公式(3)是极其重要的一个关系式, 它所要满足的条件在我们一般要讨论的问题中, 很容

易达到R1 = R2 。这是因为: 作为一个传输系统总是希望把大部分功 率传到负载上去的, 所以总是想尽办法使电流和负载匹配。

这里要提的另一个问题是: 为什么在公式的推导中, 用的是R1 = R2 =1Ω, 而不是具体值。R1 = R2 = 300Ω,25Ω,75Ω呢? 回答是: 这样可以简化我们的讨论。这也 是网络分析的一个极重要的结论----阻抗归一化。

(二) 电压传递函数的阻抗归一化

人们对大量的具体电压传递函数进行分析后, 总结出一个重要的特性。如果网络中的每个独立的阻抗乘上一个常数因子A后, 那么, 这个网络的电压传递函数保持不变。

考虑到以后的实际情况, 我们用带撇“'”的R'、C'和L' 来表示已归一化的元件值, 单位分别是欧姆、法拉和亨利, 而用不带撇的R、C和L 表示实际电路的元件值。具体来说:

这个结论可以用实际例子来说明:

给我们两个如图7(a)(b)所示的网络, 要我们分别求出其各自的电压传递函数, 按照电工原理, 我们可以求出它们的电压传递函数:

对于图7(a)所示的网络, 我们先求出其回路电流I1:

图 7

对于图7(b)所示的网络, 由于其R1=R2=1Ω, 数简单, 所以计算起来更加简洁:

由此可见这两个电路的电压传递函数是一样的。图7(b)的电路的各元件值只 是图7(a)的电中各元件的阻抗值扩大了50倍的反映。所以, 这两个电路只有绝对 阻抗大小的差别, 而对电压分配比是一样的。这样, 我们就可以把阻抗之间的相对比例一样的网络归为一类。仅仅研究它的归一化后的电路的特性, 别的阻抗值的电路, 都可以从它导出。

(二) 电压传递函数的频率归一化

受到上述的好处以后, 我们很自然地会想到不同的频率工作的电路, 其电压传递函数是否也能归类, 研究的结果是可行的。其结论如下:

如果把工作频率从ω=1弧度/秒升高到ω=B弧度/秒, 让该网络的所有电阻保持不变, 而把网络中的所有电感L和电容C都除以B, 那么, 变换后的电路的电压传递函数没有变化。

这是很自然的, 它好像物理量的单位换算, 其基本的道理仍然是使网络各元件的阻抗之比保持不变。

对于电阻,因为它和工作频率无关, 所以工作频率变化, 不影响它的值。

对于电容的电感, 则有:

这个结论也可以用实际例子来说明:

让我们仍以图7(b)为例: 设ω=1弧度/秒 , 则有

接着我们来看看, 若把ω=2弧度/秒代入, 又要保持其电压传递函数不变, 只有改变电路中的电感值, 它该是多少呢? 图7(b)的电压传递函数为 于是, 满足保

持电路的电压传递函数不变的可能, 只是, 这正好就是从原来电感L除以频率提高的倍数2, 其最后的具体结构如图8所示。

图 8

阻抗归一化和频率归一化的概念在网络理论中极为重要。因为, 今后列表中的各种元件值都是以阻抗归一化和频率归一化后的元件值。各种具体阻抗和工作频率时的具体都由它们导出。

人们能把这两个法则合在一起, 从而能一下子同时去掉这两个归一化。因此, 对于一个已归一化的电路, 要让它们阻抗提高A倍, 频率提高B倍, 那么人们就有:

每个网络中的电阻乘上A

每个网络中的电感乘上A/B

每个网络中的电容乘上1/AB

如果一个设计有大量的元件, 这个最后式是有用的。但是, 我们推荐大家研究这两个基本概念。如果大家理解了这个原理, 从这两个基本法则是很容易推论出像上式那样的公式。因为, 上列的特定的结构是很容易忘记或记错的。

(三) 各种频率特性的滤波器的归一化

在引言中, 我们曾谈到有各种不同衰减特性的滤波器: 低通、高通、带通和带阻, 而且通过数学上的变量代换, 可以把它们归并为一个低通归一化原型滤波器。若从数学变换的角度看, 上述的电压传递函数的频率归一化也属频率变换。这里要讲的实际就是从母型滤波器的数据推求实际滤波器网络的具体结构。

(1) 频率扩展(频率归一化)母型低通滤波器的截止频率ω'c=1。假如需要设计的低通滤波器的截止频率不等于1, 而是ωc, 则从数学角度说相当于将原来的频率轴ω'倍乘了ωc。故ω=ωcω',即ω'=ω/ωc。 图9(a)表示两个频率轴之间的关系, (b)表示母型低通滤波器的L A~ω'关系, (c) 表示换算后L A~ω之间的关系。在(b)和(c)的图形上, 我们还把负频率部分画上。负频率实际上当然不是客观存在的, 但从数学的观点来说, 它还是可以和L A保持一定的函数关系。这两个图形表明L A和频率保持有偶函数的关系, 这是由上面所提到的可实现性决定的。进行这种频率变换时, 设计电路的元件也跟着改变, 其变化规律前小节已经说过了。

图 9

(2) 低通转高通----如需要设计一个高通滤波器(参看图10), 它的截止频率是

ωc, 人们使新的频率变量ω与原来的ω'保持下列关系:

图10在频率轴上表明这种转换关系。应用数学上的手法人们设计高通滤波器时, 实是利用了母性低通滤波器的负频率部分。所以要用这一部分也可实现性决定的数学方法的运用必须切合实际, 绝不能脱离实际进行数学游戏。由母型低通滤波器换算到高通滤波器时, 电路元件当然要改变: 母型滤波器电感应改为电容, 其数值

母型滤波器的电容应改为电感, 其数值

以后可以知道, L'k和C'k+1都是表上查得的母型低通滤波器的元件参数。

(3) 低通转带通--如果要根据低通滤波器设计一个带通滤波器(参看图11), 的截止频率是ω1和ω2, 人们需要进行更复杂些的频率变换, 使母型滤波器的频变量ω'与带通滤波器的频率变量ω保持以下关系:

(4)

式中ω2为带通滤波器的高端截止频率, ω1为低端截止频率, ω0称为中央频率;通常

令 ,ω2-ω1为带通滤波器的通频带, 称为滤波器的相对通频带

W:

W 通常以百分比表示, 故(4)式可以改写成

(5)

由式(5)求ω, 经过演算和分析, 人们可以得到母型滤波器的频率轴与新频率轴的关系(见图11)。

根据母型低通滤波器换算带通滤波器, 电路元件变得更加复杂。母型滤波器的电感应改为LC串联电路, 它的电感L k和电容C k与母型的电感L'k保持以下关系:

母型滤波器的电容应改为LC并联电路, 它的电容C k+1和电感L k+1与母型的电容C'k+1保持以下关系:

L'k和C'k+1都可以从母型低通滤波器的元件表上查得。低通带止的问题, 这里不再赘述了。我们把以上各种转换关系综合在表1上, 表内还列出了低通转带止所用到 的关系。

第一部分 滤波器设计

§ 1-4 低通滤波器的定量分析

经过上一节的学习, 我们已经了解到对于某些具体电路的分析。可以通过它们的归一化低通滤波器来进行。下面, 我们来分析一到三节归一化低通滤波器。

(一) 一节低通滤波器

图12示出了它的结构, 用电路分析, 很快就可以求出:回路电流I1为:

图 12

若用通用矩阵[a]来求, 此电路的通用矩阵为

和电路分析求出的结果完全一样。不过, 从过程中可以看出: 后一种方法简洁很多。而且, 当元件数目越多就越显出矩阵法的优越。我们在这里还要定义一个归一化幅度函数A(ω):

这主要是因为传递到负载的功率, 不是指电源总的输出功率, 而是指最大输出功率, 而不是, 这样就差了一个系数。所以一节低通滤波器的幅度函数A(ω):

(二) 二节低通滤波器

图 13

图13示出了它的结构, 用电路分析解, 就比较复杂了, 如何解, 留给同学们作练习, 我们下面用通用矩阵来解它:

(四) 三节低通滤波器

图14示出了它的结构, 我们仍用用矩阵[a]来求它的电压传递函数, 而把电路法求解留给同学来完成。

图 14

这时网络可以看成三个小两端对网络的节联, 则有

(4) 对偶电路

上述一列三节低通滤波电路都有其对偶电路。我们把它们都画在图15上。它们各自的电压传递函数、幅度平方函数也可以求出如下:

一节对偶低通滤波器:

二节对偶低通滤波器 :

三节对偶低通滤波器 :

从上面分析可以看出对偶电路各自电压传递函数是不变的, 它们在传递能量的频率特性上是一样的。

图 15

像这样一节一节地推下去最终就能导出像图16所示的梯形结构的低能滤波器。其幅度平方函

数 A2(ω)的一般表示式为:

其中n是滤波器的元件个数。

图 16

通过对低通滤波器进行定量分析以后, 得出两个极为重要的结论: (一) 一个特定的电压传递

函数, 对应着两个具体电路, 这两个电路就是电工中的对偶电路。(二)对于梯形结构的低通滤波器, 它的幅度平方函数可以表示为频率ω作参量的一个2n阶的多项式。又因为 A2(ω)和插入损耗Li有直

接关系, 滤波器的综合又和多项式直接联系在一起, 所以也有人把综合法滤波器叫做多项式滤波器。

这两个结论的第二个更为重要, 因为它告诉我们梯形结构低通滤波器的电压传递函数, 和幅度

平方函数是有规律的, 解析的。这就为我们提供了运用数学来解决问题的可能性。网络分析达到这一步就完成了它的使命。下一步就属网络综合的范畴。根据给出的衰减特性, 或衰减曲线来找具体的电路。

第一部分 滤波器设计

§ 1-5 低通滤波器的综合

(一) 引言

低通滤波器根据定义应该是: 在通带内滤波器的变换器损耗LA为零, 而在止带内LA应该无穷大。这是不可能实现的。一般来说, 工程问题多大只有一个折衷解。照顾一方面, 另一方面就得牺牲点, 没有什么都好的。滤波器的综合也是这样, 主要的指标有插入损耗, 带外衰减, 信号的时间迟延, 信号的群迟延等。根据不同要求, 给出不同的结果。这里就是一个近似问题。即用什么方法去尽量地近似理想的情况。同时也有一个是以哪种方式去近似。只有解决了这些问题, 才能继续讨论具体的综合。加上近似理论对于以后的工作和学习都很有用。所以我们打算比较详细讲一讲这个问题。

(二) 近似问题

在讨论用一个函数近似地表达另一个给定函数(图形)之前, 我们用自变量X代替无线电技术中

的频率ω。这样做的目的是使讨论更有普遍意义。而且, 近似常常是在经频率变换后进行的, 故变量常不再是ω。假定g(x)为x的函数, 给定在x轴的(a,b)范围内, 并令f(x)为我们所需要求的近似(实现)函数。函数g(x)作为一个期望的幅度函数或者相位函数。它可能是以解析式给出, 不过经常是以图形给出。f(x)则是可实现的网络函数。假定g(x)和f(x)在区间(a,b)内具有同样的性质。这样, 它们在某一点x0均可用台劳级数来展开。并设两个级数在区间(a,b)内均为收敛, 则:

近似的误差将为两者之差, 即

如果两个级数的前K次系数逐项彼此相等, 则f(x)与g(x)为K阶台劳型近似。在此情况下, 误差函数将由x的第(K+1)幂次项开始, 即

上式就是x=x0处展开的台劳级数的误差函数。而且, 可以看出: 在x=x0处的误差函数的前K阶导

数为零。这是台劳近似法的一个性质。其实我们可以得出如下定义: 如果g(x)-f(x)的前K阶导数在x=x0处为零, 则f(x)为g(x)在x=x0处的K阶台劳近似式。

台劳型近似法中, 在x=x0处误差为零; 而随着x-x0的增大, 误差增加。因而, 这一近似法有利于接近x0的所有x值, 而不利于接近区域两端的点。其实这个近似仅在x0点十分好, 在这一点不仅两个

函数完全相同, 而且, 它们的若干导数也完全相同。

如果, 近似函数f(X)沿给定函数g(x)来回摆动, 则两者的差将有峰值和谷值, 某些峰值将是很大, 而某些峰值则很小。f(x)越复杂, 即f(x)的可调整参数越多,得到的近似就越好。假设, 我们规定f(x)有n

个参数[例如: 为具有n个可调整系数的多项式]最

佳近似的一种方法是这样。它使得误差函数的最大值降到最小。我们称此近似法为“切比雪夫近似法”。

由上可知, 对一个函数g(x)或图形进行近似, 方法是多种的, 上述的台劳级数近似法和切比雪夫近似法都是最常用的, 此外还有一些近似法, 如椭园函数近似法。不过, 不同的近似法有它各自的特点。所以就有选择的余地。

(三) 最大平滑近似

图17示出了一个理想低通滤波器, 其幅度和截止角频率ωc都标称为1。这个理想低通滤波器

传递函数为

图 17

这样的理想特性是无法实现的, 因为网络函数是一个有理函数, 其幅度必须是ω的连续平滑函数, 而图17的特性则不然, 它在ω=1处要折转一个直角。因此, 在综合过程中, 需用近似方法求出一个有理函数来近似图17的特性。

一种简单的近似称为最平幅度特性近似。这一近似函数必须是有理函数, 在通带内, 即

的范围内, 幅度平方要近似于1。而在通带之外, 即 的范围, 幅度的平方逐渐趋于无穷大。首先, 假定传递函数的无穷大点产生在频率等于∞处, 则有:

其中指数n和系数b是待定的常数, 它们的数值与所求的近似程度有关。在上式分母中的第一项的系数取为1是为了保证近似函数与给定函数在ω=0时重合, 在通带内误差函数为:

用代入上式得

(6)

系数B的求法随所采用的近似类型而定。如果采用台劳型近似, 则要求误差函数的前n阶导数在

x=0时等于零。更确切地说, K阶台劳型近似需要误差函数的第K阶导数之前的各阶导数等于零。

式(6)的第K阶导数之前的各导数当x=0时分别为:

这样, 我们可以推断定: R(x)的第n阶导数在x=0时, 可以表示成Bn乘以n!。又因为我们采用台劳型近似, 则误差函数R(x)的第K阶以前导数在x=0时都必须是零,才可以称为第K阶台劳近似。所以, B1=0, B2=0, B3=0一直到B n-1=0, 于是, 函数

就是对于幅度为1的K阶台劳近似。

对于给定n值的最高阶台劳近似函数为:

上式称为最平幅度特性近似函数。在截止频率处(ω=1), 上式化为:

系数Bn取决于截止频率处, 人们规定是什么样的幅度, 当Bn=1时, G(12)=2, 于是截止频率

ω=1处对应着输出功率下降3 db, 输出幅度下降0.707倍。这种最平幅度近似还有一个名字叫做勃

脱瓦兹(Butterworth)响应。多项式也叫做n阶勃脱瓦兹多项式。

绝对经典的低通滤波器设计报告

经典 无源低通滤波器的设计

团队:梦知队 团结奋进,求知创新,追求卓越,放飞梦想 队员: 日期:2010.12.10 目录 第一章一阶无源RC低通滤波电路的构建 (3) 1.1 理论分析 (3) 1.2 电路组成 (4) 1.3 一阶无源RC低通滤波电路性能测试 (5) 1.3.1 正弦信号源仿真与实测 (5) 1.3.2 三角信号源仿真与实测 (10) 1.3.3 方波信号源仿真与实测 (15) 第二章二阶无源LC低通滤波电路的构建 (21) 2.1理论分析 (21) 2.2 电路组成 (22) 2.3 二阶无源LC带通滤波电路性能测试 (23) 2.3.1 正弦信号源仿真与实测 (23) 2.3.2 三角信号源仿真与实测 (28)

2.3.3 方波信号源仿真与实测 (33) 第三章结论与误差分析 (39) 3.1 结论 (39) 3.2 误差分析 (40) 第一章一阶无源RC低通滤波电路的构建1.1理论分析 滤波器是频率选择电路,只允许输入信号中的某些频率成分通过,而阻止其他频率成分到达输出端。也就是所有的频率成分中,只是选中的部分经过滤波器到达输出端。 低通滤波器是允许输入信号中较低频率的分量通过而阻止较高频率的分量。 图1 RC低通滤波器基本原理图 当输入是直流时,输出电压等于输入电压,因为Xc无限大。当输入

频率增加时,Xc减小,也导致Vout逐渐减小,直到Xc=R。此时的频率为滤波器的特征频率fc。 解出,得: 在任何频率下,应用分压公式可得输出电压大小为: 因为在=时,Xc=R,特征频率下的输出电压用分压公式可以表述为: 这些计算说明当Xc=R时,输出为输入的70.7%。按照定义,此时的频率称为特征频率。 1.2电路组成

滤波器设计步骤及实现程序

数字滤波器的设计步骤及程序实现 湖南理工学院信息与通信工程学院 一、IIR 脉冲响应不变法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=pi, T /ω=Ω 3、求原型模拟滤波器的c N Ω,,其中:??? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/)()( 6、将)(s H a 化为部分分式展开形式∑-=k k a s s A s H )( 7、写出)(z H 的极点T s k k e z =,并写出)(z H 的部分分式展开形式∑--?= 11)(z z A T z H k k 8、将)(z H 化为分子分母形式,验证设计结果。 二、IIR 双线性变换法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=2, 2 tan 2ω?= ΩT 3、求原型模拟滤波器的c N Ω,,其中:?? ? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/) ()( 6、用11 112--+-?=Z Z T s 代入原型系统函数)(s H a 得1 1 112)()(--+-? ==Z Z T s a s H z H 8、将)(z H 整理成分子分母形式,验证设计结果。

简单低通滤波器设计及matlab仿真

东北大学 研究生考试试卷 考试科目: 课程编号: 阅卷人: 考试日期: 姓名:xl 学号: 注意事项 1.考前研究生将上述项目填写清楚. 2.字迹要清楚,保持卷面清洁. 3.交卷时请将本试卷和题签一起上交. 4.课程考试后二周内授课教师完成评卷工作,公共课成绩单与试卷交研究生院培养办公室, 专业课成绩单与试卷交各学院,各学院把成绩单交研究生院培养办公室. 东北大学研究生院培养办公室

数字滤波器设计 技术指标: 通带最大衰减: =3dB , 通带边界频率: =100Hz 阻带最小衰减: =20dB 阻带边界频率: =200Hz 采样频率:Fs=200Hz 目标: 1、根据性能指标设计一个巴特沃斯低通模拟滤波器。 2、通过双线性变换将该模拟滤波器转变为数字滤波器。 原理: 一、模拟滤波器设计 每一个滤波器的频率范围将直接取决于应用目的,因此必然是千差万别。为了使设计规范化,需要将滤波器的频率参数作归一化处理。设所给的实际频 率为Ω(或f ),归一化后的频率为λ,对低通模拟滤波器令λ=p ΩΩ/,则1 =p λ, p s s ΩΩ=/λ。令归一化复数变量为p ,λj p =,则p p s j j p Ω=ΩΩ==//λ。所以巴 特沃思模拟低通滤波器的设计可按以下三个步骤来进行。 (1)将实际频率Ω规一化 (2)求Ωc 和N 11010/2-=P C α s p s N λααlg 1 10 110lg 10 /10/--= 这样Ωc 和N 可求。 p x fp s x s f

根据滤波器设计要求=3dB ,则C =1,这样巴特沃思滤波器的设计就只剩一个参数N ,这时 N p N j G 222 )/(11 11)(ΩΩ+= += λλ (3)确定)(s G 因为λj p =,根据上面公式有 N N N p j p p G p G 22)1(11 )/(11)()(-+= += - 由 0)1(12=-+N N p 解得 )221 2exp(πN N k j p k -+=,k =1,2, (2) 这样可得 1 )21 2cos(21 ) )((1 )(21+-+-= --= -+πN N k p p p p p p p G k N k k 求得)(p G 后,用p s Ω/代替变量p ,即得实际需要得)(s G 。 二、双线性变换法 双线性变换法是将s 平面压缩变换到某一中介1s 平面的一条横带里,再通过标准变换关系)*1exp(T s z =将此带变换到整个z 平面上去,这样就使s 平面与z 平面之间建立一一对应的单值关系,消除了多值变换性。 为了将s 平面的Ωj 轴压缩到1s 平面的1Ωj 轴上的pi -到pi 一段上,可以通过以下的正切变换来实现: )21 tan(21T T Ω= Ω 这样当1Ω由T pi -经0变化到T pi 时,Ω由∞-经过0变化到∞+,也映射到了整个Ωj 轴。将这个关系延拓到整个s 平面和1s 平面,则可以得到

基于MATLAB的数字滤波器的设计程序

IIR 低通滤波器的设计程序为: Ft=8000; Fp=1000; Fs=1200; As=100 ; Ap=1; wp=2*pi*Fp/Ft; ws=2*pi*Fs/Ft; fp=2*Fp*tan(wp/2); fs=2*Fs*tan(ws/2); [n11,wn11]=buttord(wp,ws,1,50,'s'); [b11,a11]=butter(n11,wn11,'s'); [num11,den11]=bilinear(b11,a11,0.5); [h,w]=freqz(num11,den11); axes(handles.axes1); plot(w*8000*0.5/pi,abs(h)); xlabel('Frequency/Hz'); ylabel('Magnitude'); title('巴特沃斯数字低通滤波器'); 巴特沃斯带通滤波器设计程序为: Ft=8000; Fp1=1200; Fp2=3000; Fs1=1000; Fs2=3200; As=100; Ap=1; wp1=tan(pi*Fp1/Ft); wp2=tan(pi*Fp2/Ft); ws1=tan(pi*Fs1/Ft); ws2=tan(pi*Fs2/Ft); w=wp1*wp2/ws2;

bw=wp2-wp1; wp=1; ws=(wp1*wp2-w.^2)/(bw*w); [n12,wn12]=buttord(wp,ws,1,50,'s'); [b12,a12]=butter(n12,wn12,'s'); [num2,den2]=lp2bp(b12,a12,sqrt(wp1*wp2),bw); [num12,den12]=bilinear(num2,den2,0.5); [h,w]=freqz(num12,den12); plot(w*8000*0.5/pi,abs(h)); axis([0 4000 0 1.5]); xlabel('Frequency/Hz'); ylabel('Magnitude'); title('巴特沃斯数字带通滤波器'); IIR 高通滤波器的设计程序为: Ft=8000; Fp=4000; Fs=3500; wp1=tan(pi*Fp/Ft); ws1=tan(pi*Fs/Ft); wp=1; ws=wp1*wp/ws1; [n13,wn13]=cheb1ord(wp,ws,1,50,'s'); [b13,a13]=cheby1(n13,1,wn13,'s'); [num,den]=lp2hp(b13,a13,wn13); [num13,den13]=bilinear(num,den,0.5); [h,w]=freqz(num13,den13); axes(handles.axes1); plot(w*21000*0.5/pi,abs(h)); xlabel('Frequency/Hz'); ylabel('Magnitude'); title('切比雪夫Ⅰ型数字高通滤波器');

数字梳状滤波器讲解

数字梳状滤波器 梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。 那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite Video Signal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(Comb Filtering)。 梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。对活动图像,梳状滤波在帧内进行,即二维梳状滤波。高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C分离方案就可获得满意的图像质量。使用梳状滤波器能使图像质量明显提高。解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。 梳状滤波器原理及发展历史: 梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。 第一阶段:采用频率分离法将Y/C信号分开。这种方法是利用色度信号以副载波方式传输这一特点(PAL制副载波为4.43MHz,NTSC制副载波为3.58MHz),用选频电路将Y/C 信号分开。 内部由LC带通滤波器和陷波器组成,将视频信号通过一个中心频率(fsc)为色度信号窄带(比如PAL制式4.43MHz频率副载波)带通滤波器,取出色度信号。再将亮度信号经过一个中心频率为色度信号副载波4.43MHZ的色度陷波器,吸收色度信号,从而得到亮度信号。这种方法简单易行,采用元器件少且成本低,所以在早期彩电中应用得比较广泛。

有源低通滤波器设计报告要点

课程设计(论文)说明书 题目:有源低通滤波器 院(系):信息与通信学院 专业:通信工程 学生姓名: 学号: 指导教师: 职称: 2010年 12 月 19 日

摘要 低通滤波器是一个通过低频信号而衰减或抑制高频信号的部件。理想滤波器电路的频响在通带内应具有一定幅值和线性相移,而在阻带内其幅值应为零。有源滤波器是指由放大电路及RC网络构成的滤波器电路,它实际上是一种具有特定频率响应的放大器。滤波器的阶数越高,幅频特性衰减的速率越快,但RC网络节数越多,元件参数计算越繁琐,电路的调试越困难。根据指标,本次设计选用二阶有源低通滤波器。 关键词:低通滤波器;集成运放UA741;RC网络 Abstract Low-pass filter is a component which can only pass the low frequency signal and attenuation or inhibit the high frequency signal . Ideal frequency response of the filter circuit in the pass band should have a certain amplitude and linear phase shift, and amplitude of the resistance band to be zero. Active filter is composed of the RC network and the amplifier, it actually has a specific frequency response of the amplifier. Higher the order of the filter, the rate of amplitude-frequency characteristic decay faster, but more the number of RC network section, the more complicated calculation of device parameters, circuit debugging more difficult. According to indicators ,second-order active low-pass filter is used in this design . Key words:Low-pass filter;Integrated operational amplifier UA741;RC network,

数字滤波器设计步骤

数字信号处理 数字滤波器的设计 学院计算机与电子信息学院 专业电子信息科学与技术班级电子15-2 班姓名学号 指导教师刘利民

数字滤波器的设计 一、模拟低通滤波器的设计方法 1、B utterw orth 滤波器设计步骤: ⑴。确定阶次N ① 已知Ωc 、Ωs 和As 求Bu tt er worth DF 阶数N ② 已知Ωc 、Ωs 和Ω=Ωp (3dB p Ω≠-)的衰减A p 求Bu tterwort h DF 阶数N ③ 已知Ωp、Ωs和Ω=Ωp 的衰减A p 和As 求B utte rwo rth DF 阶数N /10 /1022(/)101,(/)101p s A A N N p c s c ΩΩ=-ΩΩ=-则:

⑵.用阶次N 确定 ()a H s 根据公式: 1,2,2N ()()a a H s H s -在左半平面的极点即为()a H s 的极点,因而 2,,N 2、切比雪夫低通滤波器设计步骤: ⑴.确定技术指标p Ω p α s Ω s α 归一化: /1p p p λ=ΩΩ= /s s p λ=ΩΩ ⑵.根据技术指标求出滤波器阶数N 及ε: 0.12 10 1δε=- p δα= ⑶.求出归一化系统函数 其中极点由下式求出:

或者由N 和S直接查表得()a H p 二、数字低通滤波器的设计步骤: 1、 确定数字低通滤波器的技术指标:通带截止频率p ω、通带最大衰减系数 p α、 阻带截止频率ω、阻带最小衰减系数s α。 2、 将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。 巴特沃斯: 切比雪夫:/s s p λ=ΩΩ 0.1210 1δ ε=- p δα=

fir低通滤波器设计(完整版)

电子科技大学信息与软件工程学院学院标准实验报告 (实验)课程名称数字信号处理 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 学生姓名: 学 号: 指导教师: 实验地点: 实验时间:14-18 一、实验室名称:计算机学院机房 二、实验项目名称:fir 低通滤波器的设计 三、实验学时: 四、实验原理: 1. FIR 滤波器 FIR 滤波器是指在有限范围内系统的单位脉冲响应h[k]仅有非零值的滤波器。M 阶FIR 滤波器的系统函数H(z)为 ()[]M k k H z h k z -==∑ 其中H(z)是k z -的M 阶多项式,在有限的z 平面内H(z)有M 个零点,在z 平面原点z=0有M 个极点. FIR 滤波器的频率响应 ()j H e Ω 为 0 ()[]M j jk k H e h k e Ω -Ω ==∑ 它的另外一种表示方法为 () ()()j j j H e H e e φΩΩΩ=

其中 () j H e Ω和()φΩ分别为系统的幅度响应和相位响应。 若系统的相位响应()φΩ满足下面的条件 ()φαΩ=-Ω 即系统的群延迟是一个与Ω没有关系的常数α,称为系统H(z)具有严格线性相位。由于严格线性相位条件在数学层面上处理起来较为困难,因此在FIR 滤波器设计中一般使用广义线性相位。 如果一个离散系统的频率响应 ()j H e Ω 可以表示为 ()()()j j H e A e αβΩ-Ω+=Ω 其中α和β是与Ω无关联的常数,()A Ω是可正可负的实函数,则称系统是广义线性相位的。 如果M 阶FIR 滤波器的单位脉冲响应h[k]是实数,则可以证明系统是线性相位的充要条件为 [][]h k h M k =±- 当h[k]满足h[k]=h[M-k],称h[k]偶对称。当h[k]满足h[k]=-h[M-k],称h[k]奇对称。按阶数h[k]又可分为M 奇数和M 偶数,所以线性相位的FIR 滤波器可以有四种类型。 2. 窗函数法设计FIR 滤波器 窗函数设计法又称为傅里叶级数法。这种方法首先给出()j d H e Ω, ()j d H e Ω 表示要逼近的理想滤波器的频率响应,则由IDTFT 可得出滤波器的单位脉冲响应为 1 []()2j jk d d h k H e e d π π π ΩΩ-= Ω ? 由于是理想滤波器,故 []d h k 是无限长序列。但是我们所要设计的FIR 滤波 器,其h[k]是有限长的。为了能用FIR 滤波器近似理想滤波器,需将理想滤波器的无线长单位脉冲响应 []d h k 分别从左右进行截断。 当截断后的单位脉冲响应 []d h k 不是因果系统的时候,可将其右移从而获得因果的FIR 滤波器。

带通滤波器设计步骤

带通滤波器设计步骤 1、根据需求选择合适的低通滤波器原型 2、把带通滤波器带宽作为低通滤波器的截止频率,根据抑制点的频率距离带通滤波器中心频点距离的两倍作为需要抑制的频率,换算抑制频率与截止频率的比值,得出m 的值,然后根据m 值选择低通滤波器的原型参数值。 滤波器的时域特性 任何信号通过滤波器都会产生时延。Bessel filter 是特殊的滤波器在于对于通带内的所有频率而言,引入的时延都是恒定的。这就意味着相对于输入,输出信号的相位变化与工作的频率是成比例的。而其他类型的滤波器(如Butterworth, Chebyshev,inverse Chebyshev,and Causer )在输出信号中引入的相位变化与频率不成比例。相位随频率变化的速率称之为群延迟(group delay )。群延迟随滤波器级数的增加而增加。 模拟滤波器的归一化 归一化的滤波器是通带截止频率为w=1radian/s, 也就是1/2πHz 或约0.159Hz 。这主要是因为电抗元件在1弧度的时候,描述比较简单,XL=L, XC=1/C ,计算也可以大大简化。归一化的无源滤波器的特征阻抗为1欧姆。归一化的理由就是简化计算。 Bessel filter 特征:通带平坦,阻带具有微小的起伏。阻带的衰减相对缓慢,直到原理截止频率高次谐波点的地方。原理截止频率点的衰减具有的经验公式为n*6dB/octave ,其中,n 表示滤波器的阶数,octave 表示是频率的加倍。例如,3阶滤波器,将有18dB/octave 的衰减变化。正是由于在截止频率的缓慢变化,使得它有较好的时域响应。 Bessel 响应的本质截止频率是在与能够给出1s 延迟的点,这个点依赖于滤波器的阶数。 逆切比雪夫LPF 原型参数计算公式(Inverse Chebyshev filter parameters calculate equiations ) ) (cosh )(cosh 11Ω=--Cn n 其中 1101.0-=A Cn , A 为抑制频率点的衰减值,以dB 为单位;Ω为抑制频率与截止频率的比值 例:假设LPF 的3dB 截止频率为10Hz,在15Hz 的频点需要抑制20dB,则有: 95.91020*1.0==Cn ;Ω=15/10=1.5 1.39624.0988.2) 5.1(cosh )95.9(cosh 11===--n ,因此,滤波器的阶数至少应该为4

梳状滤波器的设计

NANHUA University 课程设计(论文) 题目梳状滤波器 学院名称电气工程学院 指导教师陈忠泽 班级电子091班 学号 20094470128 学生姓名周后景 2013年 1 月

摘要 现如今随着电子设备工作频率范围的不断扩大,电磁干扰也越来也严重,接收机接收到的信号也越来越复杂。为了得到所需要频率的信号,就需要对接收到的信号进行过滤,从而得到所需频率段的信号,这就是滤波器的工作原理。对于传统的滤波器而言,如果滤波器的输入,输出都是离散时间信号,则该滤波器的冲激响应也必然是离散的,这样的滤波器定义为数字滤波器。它通过对采样数据信号进行数学运算来达到频域滤波的目的。滤波器在功能上可分为四类,即低通(LP)、高通(HP)、带通(BP)、带阻(BS)滤波器等,每种又有模拟滤波器(AF)和数字滤波器(DF)两种形式。对数字滤波器,从实现方法上,由有限长冲激响应所表示的数字滤波器被称为FIR滤波器,具有无限冲激响应的数字滤波器增称为IIR滤波器。在MATLAB工具箱中提供了几种模拟滤波器的原型产生函数,即Bessel低通模拟滤波器原型,Butterworth滤波器原型,Chebyshev(I型、II型)滤波器原型,椭圆滤波器原型等不同的滤波器原型。本实验需要产生滤除特定频率的梳状滤波器 关键字: MATLAB,,梳状滤波器

引言 随着社会的发展,各种频率的波都在被不断的开发以及利用,这 就导致了不同频率的波相互之间的干扰越来越严重,因此滤波器的市 场是庞大的。所以各种不同功能滤波器的设计就越来越重要,在此要 求上实现了用各种不同方式来实现滤波器的设计。本设计通过MATLAB 软件对IIR 型滤波器进行理论上的实现。 设计要求 设计一个梳状滤波器,其性能指标如下,要求阻带最小衰减为 dB As 40=,N=8..0=ω?8rad π 手工计算 因为梳状滤波器的转移函数公式为H(Z)=b N N eZ Z ----11 ,现已知N=8,As=40dB, 2498.0=ω?rad π, H(jw e )=b jwN jwN e e ---- 11,b=21 +因为As=60Db,故)(jw e H =0.01 H(jw e )=b jwN e e --- 11 = 21 +)sin (cos 1)sin (cos 1wN j wN wN j wN ---- =

低通滤波器的设计

低通滤波器的设计 模拟滤波器在各种预处理电路中几乎是必不可少的,已成为生物医学仪器中的基本单元电路。有源滤波器实质上是有源选频电路,它的功能是允许指定频段的信号通过,而将其余频段上的信号加以抑制或使其急剧衰减。各种生物信号的低噪声放大,都是首先严格限定在所包含的频谱范围之内。 最常用的全极点滤波器有巴特沃斯滤波器和切比雪夫滤波器。就靠近ω=0处的幅频特性而言,巴特沃斯滤波器比切比雪夫滤波器平直,即在频率的低端巴特沃斯滤波器幅频特性更接近理想情况。但在接近截止频率和在阻带内,巴特沃斯滤波器则较切比雪夫滤波器差得多。本设计中要保证低频信号不被衰减,而对高频要求不高,因此选择了巴特沃斯滤波器。巴特沃思滤波电路(又叫最平幅度滤波电路)是最简单也是最常用的滤波电路,这种滤波电路对幅频响应的要求是:在小于截止频率ωc。的范围内,具有最平幅度响应,而在ω>ωc。后,幅频响应迅速下降。 因为本设计中要保证低频信号不被衰减,而对高频要求不高,所以选择 二阶滤波器即可。本系统采用二阶Butterworth低通滤波器,截止频率f H=100HZ,其电路原理图如1: 图1 低通滤波器图 根据matlab软件算得该设计适合二阶低通滤波器,FSF=628选Z=10000,则

Z R R FSF Z ?=?=的归一值的归一值 C C 3.2脉象信号的的前置放大 由于人体信号的频率和幅度都比较低,很容易受到空间电磁波以及人体其它生理信号的干扰,因此在对其进行变换、分析、存储、记录之前,应该进行一些预处理,以保证测量结果的准确性。因此需要对信号进行放大,“放大”在信号预处理中是第一位的。根据所测参数和所用传感器的不同,放大电路也不同。用于测量生物电位的放大器称为生物电放大器,生物电放大器比一般放大器有更严格的要求。 在本研究中放在传感器后面的电路就是前置放大电路,由于从传感器取得的信号很微弱,且混杂了一些其他的干扰信号。因此前置放大电路的主要功能是,滤除一些共模干扰信号,同时进行一定的放大。该电路由4部分构成:并联型双运放仪器放大器,阻容耦合电路,由集成仪用放大器构成的后继放大器和共模信号取样电路。并联型双运放仪器放大器的优点是不需要精密的匹配电阻,理论上它的共模抑制比为无穷大,且与其外围电阻的匹配程度无关。集成仪用放大器将由并联型双运放仪器放大器输出的双端差动信号转变为单端输出信号,并采用阻容耦合电路隔离直流信号,可以使集成仪用放大器取得较高的差模增益,从而得到很高的共模抑制比。共模取样驱动电路由两个等值电阻和一只由运放构成的跟随器构成,能够使共模信号不经阻容耦合电路的分压直接加在集成放大器的输入端,避免了由于阻容耦合电路的不匹配而降低电路整体的共模抑制比。此电路中也采用了右腿驱动电路来抑制位移电流的影响。前置放大电路参数选择:此部分总的增益取为1000,其中并联型双运放仪器放大器的增益为5,集成仪用放大器的增益为200。具体设计电路如图2所示

matlab数字滤波器设计程序

%要求设计一butterworth低通数字滤波器,wp=30hz,ws=40hz,rp=0.5,rs=40,fs=100hz。>>wp=30;ws=40;rp=0.5;rs=40;fs=100; >>wp=30*2*pi;ws=40*2*pi; >> [n,wn]=buttord(wp,ws,rp,rs,'s'); >> [z,p,k]=buttap(n); >> [num,den]=zp2tf(z,p,k); >> [num1,den1]=impinvar(num,den); Warning: The output is not correct/robust. Coeffs of B(s)/A(s) are real, but B(z)/A(z) has complex coeffs. Probable cause is rooting of high-order repeated poles in A(s). > In impinvar at 124 >> [num2,den2]=bilinear(num,den,100); >> [h,w]=freqz(num1,den1); >> [h1,w1]=freqz(num2,den2); >>subplot(1,2,1); >>plot(w*fs/(2*pi),abs(h)); >>subplot(1,2,2); >>plot(w1*fs/(2*pi),abs(h1)); >>figure(1); >>subplot(1,2,1); >>zplane(num1,den1); >>subplot(1,2,2); >>zplane(num2,den2);

梳状滤波器工作原理

梳状滤波器工作原理 梳状滤波器对于画面质量是非常重要的一个技术。一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite VideoSignal,即混合视频信号(也称复合信号)。因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器。 图2-6-1 梳状滤波器框图 梳状滤波器主要由延迟线和相加电路、相减电路构成的,用以分离FU 和±FV。一个实际的梳状滤波器电路如图2-6-1所示。其中V1为延时激励放大器,DL为延迟线,T1为裂相变压器、L1为调谐电感,C2为耦合电容。 色度信号F经电容C1耦合加于V1基极,经放大后由集极输出,再经延迟线由A点加至裂相变压器T1上端,取自Rw的直通信号经C2耦合加至T1中点,这样可在输出端分别得到相加和相减输出。将直通信号和延迟信号分别以un和un-1表示,其输出电压的合成原理图如图4-32等效电路所示。调节Rw可保证两信号幅度严格相等,输出分离更彻底。 延迟线DL多为超声延迟线,它由输入、输出压电换能器和延迟介质组成。压电换能器由多晶压电陶瓷薄片制成,当信号加到输入压电换能器两端面的电极上时,输入信号在延迟介质中激起机械振动,形成超声波。延

迟介质多为熔融石英或玻璃,超声波在玻璃中传播速度较低,再将其制作 成如图4-33形式,经多次反射超声波方到达输出换能器还原为电信号,这 样使可大大地缩小延迟线体积。为使超声波按规定的路径传播,减少不规 则反射引起的干扰杂波,在延迟线表面涂有若干吸声点,吸声点所涂吸声 材料为橡胶、环氧树脂和钨粉配制而成。最后用塑料外壳封装,以减小外 界的影响。 2.6.2 PAL 解码器的梳状滤波器 PAL 的特殊电路是梳状滤波器.为使它 能够有效的分离两个色度分量,延时线的 延时时间要有准确的数值. 延时线延迟时 间τd 应选择得既非常接近行周期(64μ s),以便相加、减时是相邻行相应像素间 的加或减;而又必须为副载波半周期的整 数倍,以保证延时前、后色度信号副载波相位相同(0°)或相反(180°)。由 fSC=283.75fH+25Hz 的关系,则行周期TH 与副载波TSC 之间的关系为: τd 可选为副载波半周期TSC/2的567倍或568倍。通常为567, τd 略小于行周期,若为568则略大于行周期 梳状滤波器:作用是将色度信号分离出两个色差分量FU 、FV ,组成包 括一行延时线、加法器和减法器。 传统的色度延时电路采用64μs 超声波玻璃延时线,其原理是利用输 入、输出换能器实现电—超声波—电信号间的转换。 在梳状滤波器中,延时线的精确延时时间为63.943μs ,延时后的信号 与直通信号在加法器和减法器中运算,完成色度分量的分离任务。 设输入到梳状滤波器的第n 行色度信号为 F(n)=Usin ωSCt+Vcos ωSCt=FU+FV (2―35) 则第n+1行色度信号必然为

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告 姓名:张胜男 班级:07级电信(1)班 学号:078319120 一·低通滤波器的设计 (一)实验目的:掌握IIR 数字低通滤波器的设计方法。 (二)实验原理: 1、滤波器的分类 滤波器分两大类:经典滤波器和现代滤波器。 经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。 现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。 经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。 IIR DF 的转移函数是: ∑∑=-=-+==N k k k M r r r z a z b z X z Y z H 10 1)()()( FIR DF 的转移函数是: ∑-=-=10)()(N n n z n h z H FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求 低通滤波器: p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω 3、IIR 数字滤波器的设计步骤:

梳状滤波器的设计与应用

梳状滤波器的设计与应用 梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。 那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF 射频接口和AV接口),它所能接收的信号叫CompositeVideoSignal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite (混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(CombFiltering)。 梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。对活动图像,梳状滤波在帧内进行,即二维梳状滤波。高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C分离方案就可获得满意的图像质量。使用梳状滤波器能使图像质量明显提高。解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因

有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。 梳状滤波器原理及发展历史:梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。 第一阶段:采用频率分离法将Y/C信号分开。这种方法是利用色度信号以副载波方式传输这一特点(PAL制副载波为4.43MHz,NTS C制副载波为3.58MHz),用选频电路将Y/C信号分开。内部由LC 带通滤波器和陷波器组成,将视频信号通过一个中心频率(fsc)为色度信号窄带(比如PAL制式4.43MHz频率副载波)带通滤波器,取出色度信号。再将亮度信号经过一个中心频率为色度信号副载波4. 43MHZ的色度陷波器,吸收色度信号,从而得到亮度信号。这种方法简单易行,采用元器件少且成本低,所以在早期彩电中应用得比较广泛。

数字梳状滤波器

视听研究所 主页:https://www.wendangku.net/doc/3113682916.html, 论坛:https://www.wendangku.net/doc/3113682916.html,/forum 所有资料均收集于各网站。 若您认为有关资料不适合公开,请联系newvideo@https://www.wendangku.net/doc/3113682916.html, 我们会第一时间删除。 感谢各位网友的无私奉献和支持! 加密时间:2008-2-1

视听研究所 主页:https://www.wendangku.net/doc/3113682916.html, 论坛:https://www.wendangku.net/doc/3113682916.html,/forum 所有资料均收集于各网站。 若您认为有关资料不适合公开,请联系newvideo@https://www.wendangku.net/doc/3113682916.html, 我们会第一时间删除。 感谢各位网友的无私奉献和支持! 加密时间:2008-2-1

数字梳状滤波器 梳状滤波对于画面质量是非常重要的一个技术,因此我们有必要对其进行详细刨析。 那么具体什么是梳状滤波器呢?这就要从源头(信号源)开始讲起了,一开始,接收视频的Video端子是Composite端子(比如RF射频接口和AV接口),它所能接收的信号叫Composite Video Signal,即混合视频信号(也称复合信号),什么意思呢?因为这个Composite(混合)信号包括了亮度(Luminance,用字母Y表示)和色度/彩度(Chrominace)两方面的信号,视频电路要做的工作就是Y/C进行分离处理,目前的梳状滤波器是在保证图像细节的情况下解决视频信号亮色互窜的唯一方法,其内部有许多按一定频率间隔相同排列的通带和阻带,只让某些特定频率范围的信号通过,因为其特性曲线象梳子一样,故人们称之为梳状滤波器(Comb Filtering)。 梳状滤波器一般由延时、加法器、减法器、带通滤波器组成。对于静止图像,梳状滤波在帧间进行,即三维梳状滤波。对活动图像,梳状滤波在帧内进行,即二维梳状滤波。高档数字电视机采用行延迟的梳状滤波器与带通滤波器级联,构成Y/C分离方案就可获得满意的图像质量。使用梳状滤波器能使图像质量明显提高。解决了色串亮及亮串色造成的干扰光点、干扰花纹;消除了色度正交分量U、V色差信号混迭造成的彩色边缘蠕动;消除了亮、色镶边,消除了高频信号的色彩错误和灰度值表示错误。有一段时期国内很多工厂(为了节省成本)使用模拟的方式实现梳状滤波器,实际上效果很不好,原因有两个,一是延迟器件的带宽很难保证,二是解决行相关性差问题的自适应电路很复杂。而在数字电路里,只要有足够的存储器,就可以保证足够的延迟时间与信号带宽,且复杂的自适应电路很容易集成在芯片中硬件固化。 梳状滤波器原理及发展历史: 梳状滤波器采用频谱间置技术,理论上可以保证亮度和色度的无失真分离。如果我们好好回顾一下梳状滤波器的发展历程,将对其有个清醒的认识。 第一阶段:采用频率分离法将Y/C信号分开。这种方法是利用色度信号以副载波方式传输这一特点(PAL制副载波为4.43MHz,NTSC制副载波为3.58MHz),用选频电路将Y/C 信号分开。 内部由LC带通滤波器和陷波器组成,将视频信号通过一个中心频率(fsc)为色度信号窄带(比如PAL制式4.43MHz频率副载波)带通滤波器,取出色度信号。再将亮度信号经过一个中心频率为色度信号副载波4.43MHZ的色度陷波器,吸收色度信号,从而得到亮度信号。这种方法简单易行,采用元器件少且成本低,所以在早期彩电中应用得比较广泛。

等波纹低通滤波器的设计及与其他滤波器的比较

燕山大学 课程设计说明书题目:等波纹低通滤波器的设计 学院(系):里仁学院 年级专业:仪表10-2 学号: 学生姓名: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书 院(系):电气工程学院基层教学单位:自动化仪表系 2013年7月5日

摘要 等波纹最佳逼近法是一种优化设计法,它克服了窗函数设计法和频率采样法的缺点,使最大误差(即波纹的峰值)最小化,并在整个逼近频段上均匀分布。用等波纹最佳逼近法设计的FIR数字滤波器的幅频响应在通带和阻带都是等波纹的,而且可以分别控制通带和阻带波纹幅度。这就是等波纹的含义。最佳逼近是指在滤波器长度给定的条件下,使加权误差波纹幅度最小化。与窗函数设计法和频率采样法比较,由于这种设计法使滤波器的最大逼近误差均匀分布,所以设计的滤波器性能价格比最高。阶数相同时,这种设计法使滤波器的最大逼近误差最小,即通带最大衰减最小,阻带最小衰减最大;指标相同时,这种设计法使滤波器阶数最低。实现FIR数字滤波器的等波纹最佳逼近法的MATLAB信号处理工具函数为remez和remezord。Remez函数采用数值分析中的remez多重交换迭代算法求解等波纹最佳逼近问题,求的满足等波纹最佳逼近准则的FIR数字滤波器的单位脉冲响应h(n)。由于切比雪夫和雷米兹对解决该问题做出了贡献,所以又称之为切比雪夫逼近法和雷米兹逼近法。 关键词:FIR数字滤波器 MATLAB remez函数 remezord函数等波纹

目录 摘要---------------------------- ----------------------------------------------------------------2 关键字------------------------------------------------------------------------------------------2 第一章第一章数字滤波器的基本概-------------------------------------------------4 1.1滤波的涵义----------------------------------------------------------------------4 1.2数字滤波器的概述-------------------------------------------------------------4 1.3数字滤波器的实现方法-------------------------------------------------------4 1.4 .数字滤波器的可实现性------------------------------------------------------5 1.5数字滤波器的分类-------------------------------------------------------------5 1.6 FIR滤波器简介及其优点----------------------------------------------------5- 第二章等波纹最佳逼近法的原理-------------------------------------------------------5 2.1等波纹最佳逼近法概述-------------------------------------------------------9 2.2.等波纹最佳逼近法基本思想-------------------------------------------------9 2.3等波纹滤波器的技术指标及其描述参数介绍---------------------------10 2.3.1滤波器的描述参数-----------------------------------------------------10 2.3.2设计要求-----------------------------------------------------------------10 第三章matlab程序------------------------------------------------------------------------11 第四章该型滤波器较其他低通滤波器的优势及特点--------------------12 第五章课程设计总结---------------------------------------------------------------------15 参考文献资料-------------------------------------------------------------------------------15

相关文档