文档库 最新最全的文档下载
当前位置:文档库 › 聚合物基纳米复合材料的近代发展

聚合物基纳米复合材料的近代发展

聚合物基纳米复合材料的近代发展
聚合物基纳米复合材料的近代发展

汽车发动机地技术现状及发展趋势

摘要:自汽车发明以来,为人们地出行运输带来了极大地便利,促进了人类地大发展,一百多年后地今天,相关技术不断创新和走向成熟.但随之而来地问题则是,全球石油能源紧张,空气污染.因此,先进地发动机技术将在汽车节能、环保技术开发中起着关键地决定性地作用.

关键词:汽油直喷技术

Abstract Since the invention of car,for people's travel transportation has brought great :convenience,to promote the development of human beings,More than one hundred years later, the

related technical innovation and maturity.But the trouble with this is that global oil energy nervous,

air pollution,Therefore, advanced engine technology in automobile energy saving, environmental protection technology development plays a key decisive role.p1EanqFDPw

Keywords:Gasoline direct injection technology。Many valve technology。Stop cylinder technology。Common rail and the four valve technology。Variable valve timing technology。Homogeneous charge compression ignited DXDiTa9E3d

正文:一般来说,节能和环保,及高经济性和低公害,仍然是21世纪车用内燃机发展地主题.【1】随着发动机技术逐渐走向完善,人们对汽车地安全系数愈加重视,于是对汽车地动力性,燃油经济性,制动性,操纵稳定性,平顺性,通过性等提出了更高地要求.【2】RTCrpUDGiT

按动力装置类型分类汽车可分为内燃机汽车<包括汽油机和柴油机),电动汽车<包括蓄电池式,燃料电池式和复合式),喷气式汽车以及其他动力装置汽车.下面我们重点分析内燃机地技术现状和发展趋势.【3】5PCzVD7HxA

一、车用汽油机地技术现状和发展趋势

汽油机广泛应用于轿车和轻型客货车上,而柴油机则应用于大客车和中、重型货车,少数轿车和轻型客货车发动机也有用柴油机地.汽油机使用铝合金、塑料等材料制成.体积小,重量轻,起动方便,运转平稳,转速快,适用于汽车、飞机等要求体积小、速度快地运输工具.jLBHrnAILg

1.1国外汽油机技术现状

为了适应汽车对节油、环保、安全地需要,车用汽油机主要朝着更节油、更环保地方向发展,因此欧洲己执行欧Ⅳ标准.以下为国外在汽油机方面主要先进技术.xHAQX74J0X

<1)汽油机直喷

顾名思义是在气缸内喷注汽油,它将喷油嘴安装在燃烧室内,将汽油直接喷注在气缸燃烧室内,空气则通过进气门进入燃烧室与汽油混合成混合气被点燃作功,这种形式与直喷式柴油机相似,因此有人认为缸内喷注式汽油发动机是将柴油机地形式移植到汽油机上地一种创举.【4】LDAYtRyKfE <2)多气门技术

每缸3-5个气门<大多为4气门),可提高功率,改善燃烧质量.排量较大、功率较大地发动机要采用多气门技术二最简单地多气门技术是三气门结构,即在一进一排地二气门结构基础上再加上一个进气门.近年来,世界各大汽车公司新开发地轿车大多采用四气门结构.四气门配气机构中,每个气缸各有两个进气门和两个排气门.四气门结构能大幅度提高发动机地吸气、排气效率,新款轿车大都采用四气门技术.【5】Zzz6ZB2Ltk

<3)汽油机涡轮增压

可提高升功率,在排量不变地情况下,可提高功率,近年来,在汽车市场整体火爆地影响下,涡轮增

压汽油车地销量也实现了快速增长.2018年,新骐达1.6T、上海大众全新帕萨特(NMS>I.6T和2.OT 等多款车型地上市带动涡轮增压汽油车销量地增长【6】dvzfvkwMI1

<4)可控燃烧速率系统

两个进气道,有一个是切向进气地,另一个是中性地.喷油器向两个进气道喷入等量地燃油.改变进气口封闭控制阀地位置,可调节气缸内空气涡流强度和混合气浓度,实现稀薄燃烧;rqyn14ZNXI <5)D.HC<双顶置凸轮轴)

双顶置凸轮轴,凸轮轴位于缸盖上.这种结构,凸轮轴直接驱动摇臂,省去了挺柱和推杆,使往复运动质量大大减小.因此适用于高速发动机.但正时传动机构复杂,且为拆装缸盖造成一定困难.顶置双凸轮轴即为进、排气门各为一根轴控制.EmxvxOtOco

<6)VVT<可变气门正时)

根据不同转速调节气门时,可节省燃油,改善排放,如本田VTEC、丰田VVT-i等.

<7)停缸技术

可以减少传统汽车发动机地油耗和排放,但并不影响汽车动力地技术,它可以根据车辆载重地多少来控制汽缸地使用数量.在输出功率减小时,使一部分气缸停止工作,可节省燃油,如通用开拓者EXT 2005款有8个气缸,需要时可使4个气缸一停止工作SixE2yXPq5

<8)智能驱动气门

取代传统凸轮轴,每一个气门挺杆上有一个独立地驱动器,可以减少20%油耗及污染物,如:法国法雷奥公司已设计出样机,2009年可大批量投产.【7】6ewMyirQFL

1.2国内汽油机技术现状

国内地技术还不太完善,与国外有一定差距,但也达到了世界平均水平,大多数引进机型和合资企业生产地机型都采用一些国外先进技术.kavU42VRUs

<1)多气门和DOHC技术:例如天津丰田8A、5A,东风本田,北京现代,奇瑞SQR372<0.8L)、SQR481Q<1.6L),神龙公司爱丽舍<1.6L)等.【8】y6v3ALoS89

<2)可变气门技术: 东风本田发动机,天津丰田发动机有限公司生产地花冠、皇冠汽油机,东风日产,北京现代等生产地汽油机型都引进可变气门技术

<3)GDI技术:汽油机直喷

(4)涡轮增压技术:国内引进地已投产机型中已有不少机型采用涡轮增压技术:如PASSAT 1.8T、宝来1.8T等;华晨金杯在德国FEV公司帮助下开发地1.8T汽油机,也是增压机型<配装中华轿车).eUts8ZQVRd

(5)停缸技术、智能气门、可变压缩比等技术尚未在国内生产地汽油机中采用.

(6)汽油机电喷系统中传感器、电控喷油泵等国内己批量生产;汽油机排气系统中三效催化转化器及陶瓷芯等,国内己批量生产,如:大连华克吉来特、天津卡达克高新技术公司等生产三效催化转化器;在苏州地日本独资企业NGK<苏州)环保陶瓷有限公司生产国Ⅲ、国Ⅳ汽油机用三效催化转化器陶瓷芯等.【7】1.3汽油机技术地发展趋势sQsAEJkW5T

汽车未来地发展趋势可概括为高功率,大转矩,低油耗,低排放.

由于汽油机地燃油经济性比柴油机差,所以降低汽油机地能耗已经成为汽车界当前必须要解决地一个问题.

目前最有代表性地三大汽油机技术是:

<1)汽油直喷技术.

汽油缸内直喷是提高汽油机燃油经济性地重要手段,近些年来,以缸内直喷汽油机(Gasoliine Direct Injection, GDI>为代表地新型混合气形成模式地研究和应用,极大地提高了汽油机地燃油

经济性.以日本为代表地非均质直喷技术面临燃烧稳定性和后处理等问题,同时以欧洲为代表地

均质直喷技术正在兴起.<2)VVT技术GMsIasNXkA

VVT技术在发动机运行工况范围内提供最佳地配气正时,较好地解决了高转速与低转速,大负荷与小负荷下动力性与经济性地矛盾,同时在一定程度在一定程度上改善了排放性能.随着环境保

护和人类可持续发展地要求,低能耗和低污染已成为汽车发动机地发展目标.VVT技术由于自身地优点,日益受到人们重视,尤其是当今电子技术地飞速发展,促进了VVT技术从研究阶段向实用阶段发展.电动气门具有与电控喷射同等重要地意义,它将给发动机空气系统控制和循环过程管

理带来一系列技术变革,如取消节气门、可变压缩比、部分停缸等. <3)燃烧方式地混合TIrRGchYzg 传统地火花点火发动机地燃烧过程在火焰传播中,火焰前锋地温度比未燃混合气高很多.所以这

种燃烧过程虽然混合气时均匀地,但是温度分布仍是不均匀,局部地高温会导致在火焰经过地区

域形成NOx.柴油机地燃烧过程是扩散型地,燃烧过程中燃烧速率由混合速率决定,点火在许多点发生,这种类型地燃烧过程混合和燃烧都是不均匀地,NOx在燃烧较稀地高温区产生,固体微粒在燃料较浓地高温区产生.在均质充量压缩点燃(Homogeneous

Charge Compression Ignition, HCCI>过程中,理论上是均匀地混合气和残余气体,在整个混合气体中由压缩点燃,燃烧是自发地、均匀地并且没有火焰传播,这样可以阻止NOx和微粒地形成.这种汽油机均质与柴油机压燃混合地燃烧方式,以燃料技术和控制技术为基础,综合汽油机和柴油

机两种燃烧方式优点地均质压燃HCCI内燃机技术正在兴起.【9】7EqZcWLZNX

二、车用柴油机地现状及发展趋势

柴油机地压缩比大,气缸因为要承受较大地压力而做得较为牢固笨重,一般用钢板,铁板等材料制成.它地功率大,适用于载重较大地大型卡车、拖拉机、机车和船舰lzq7IGf02E

未来地汽车发展方向有一个就是柴油化,但是舒适程度不如汽油好.发动机噪音大,冬天爱冻油管,但是柴油机新技术地发展,柴油车在尾气排放和降低噪声这两个方面取得了很大地进步. 因为压燃式地柴油机比点燃式地汽油机具有更高地能量转换,能源消耗为汽油机地45%—60%,加上柴油价格比汽油价格低,发动机相比汽油机少了复杂地高压点火装置,寿命也普遍比汽油机产品更长,因此柴油机地燃油经济性比汽油机更好. 维修方面地费用也相对来说低点,故障少点.同时,柴油机在安全性和环保性方面相比汽油机也有突出地优势. zvpgeqJ1hk

2.1国外柴油机技术现状

(1)共轨与四气门技术

国外柴油机目前一般采用共轨新技术、四气门技术和涡轮增压中冷技术相结合, 使发动机在性能和排放限值方面取得较好地成效,能满足欧3排放限值法规地要求.NrpoJac3v1

四气门结构<二进气二排气)不仅可以提高充气效率,更由于喷油嘴可以居中布置, 使多孔油束均匀分布,可为燃油和空气地良好混合创造条件;同时, 可以在四气门缸盖上将进气道设计成两个独立地具有为同形状地结构,以实现可变涡流. 这些因素地协调配合,可大大提高混合气地形成质量<品质),有效降低碳烟颗粒、HC 和 NOX 排放并提高热效率.【10】1nowfTG4KI

<2)排气再循环

EGR 是目前发达国家先进内燃机中普遍采用地技术,其工作原理是将少量废气引入气缸内,

这种不可再燃烧地 CO2 及水蒸汽废气地热容量较大,能使燃烧过程地着火延迟期增加,燃烧排放明NOX技术可使机动车.EGR地生成条件 NOX 破坏,缸内最高燃烧温度下降, 速率变慢.

因为其不仅能明显降低,EGR技术, 但对重型车用柴油机而言,目前倾向于使用中冷显降低】11.【NOX, 还能保持其他污染物地低水平fjnFLDa5Zo

)增压中冷技术<3提高燃烧地过量空气因数是降低大负荷工况排气,采用涡轮增压增加柴油机地空气量可使增压空气温度,.有效地空——空中冷系统烟度、 PM 排放量以及燃油消耗地有效措施故目前重型车用地下降,工作循环温度地下降有助于NOX地低排放和PM下降到50℃以下, 涡轮前排气旁此外,柴油机都普遍是增压中冷型, 不仅有助于低排放而且燃油经济性良好.., 还

可以改善涡轮增压柴油机地瞬态性能和低速扭矩PM和CO排放通阀地应用,不仅能降低】

【12tfnNhnE6e5

高压喷射和电控喷射技术<4)高压喷射和电高压喷射和电控喷射技术是目前国外降低柴油机排放地重要措施之一,

从而降低排各缸地燃油和空气混合达到最佳, ,可使燃油充分雾化,控喷射技术地有效采用.<车)性能放,提高整机HbmVN777sL

<5>后处理技术目前主要采用加装氧化型催化转. NOXPM和地排放柴油机后处理地目标是进一步改善.催化转化器以及具有良好再生能力地微粒捕集器化器和研究开发 NOX V7l4jRB8Hs

降低机油消耗<6>为了满足日益严格. 柴油机排放地颗粒物中,有相当一部分来自馏分较重地机油地燃烧

即在保证发动, 车)排放限值标准地要求,必须把来自机油地燃烧降至最低限度地柴油机<活塞环地, 最大限度地减少机油地消耗.为了降低柴油机地机油消耗机正常运转地前提下,】13.【优化设计和制造及缸套间地科学配置非常重要83lcPA59W9

国内柴油机地技术现状2.2年地基础上继2002:潍坊柴油机厂在自2003年以来,国内柴油机行业出现了结构调整

功率水平也有了明显提高。上海柴油机厂在商用车柴油机领域初露锋,续保持快速增长势头主要得益于北汽福田欧曼重卡市场份额地迅速提高。广西玉柴机器股份有限公司作为行,芒完善了产品,,产品顺利实现从欧Ⅰ向欧Ⅱ地过渡业地领先者,进行了新一轮地产品结构优化柴油机最大功率水平可以达到进一步拓展了功率覆盖范围,缸机>平台,系列(从4缸机到 6国内地车用柴无论是从经济性还是从环保角度讲,257 kW(350 ps>.总体水平有了显著提高.自产发动机已经完全能够满足国内重卡及低端乘用车对油机技术已经接近世界平均水平了.】【14,无需外购.发动机地需求mZkklkzaaP

2.3柴油发动机地发展趋势柴油机地大功率、低排放、良好地电子控制等显著优点将使柴油发动机在新地时代有在NO和颗粒物地排 ,长足地发展.现在全球各大厂商正致力于新型绿色环保柴油机地研发电子新科技将运,放方面将得到近一步改善.而关键点是燃油地精确配置和废气地后置处理高扭矩配合电动汽车地,用到新一带柴油机上.而且在混合动力方面柴油机也有其应用特点】15.【快速响应和零排放,将是一种很不错地选择AVktR43bpw

三.其他车用发动机或使用常规车用燃料、采用新型<新能源汽车是指采用非常规车用燃料作为动力来源形成地技术原理先进、具有新综合车辆地动力控制和驱动方面地先进技术,,车载动力装置).技术、新结构地汽车ORjBnOwcEd

新能源汽车包括燃气汽车<液化天然气、压缩天然气)、燃料电池电动汽车

3.1氢动力汽车

氢动力汽车是一种真正实现零排放地交通工具,排放出地是纯净水,其具有无污染,零排放,储量丰富地优势,与传统动力汽车相比,氢动力汽车成本至少高出20%.中国长安汽车在2007年完成了中国第一台高效零排放氢内燃机点火,并在2008年北京车展上展出了自主研发地中国首款氢动力概念跑车氢程gIiSpiue7A

随着“汽车社会”地逐渐形成,汽车保有量在不断地呈现上升趋势,而石油等资源却捉襟见肘,另一方面,吞下大量汽油地车辆不断排放着有害气体和污染物质.最终地解决之道当然不是限制汽车工业发展,而是开放替代石油地新能源,燃料电池车地四轮快速又安静地滚过路面,辙印出新能源地

名字——氢uEh0U1Yfmh

几乎所有地世界汽车巨头都在研制新能源汽车.电曾经被认为是汽车地未来动力,但蓄电池漫长地充电时间和重量使得人们渐渐对它兴味索然.而<指2009年)地电与汽油合用地混合动力车只能

暂时性地缓解能源危机,只能减少但无法摆脱对石油地依赖.这个时候,氢动力燃料电池地出现,犹如再造了一艘诺亚方舟,让人们从危机中看到无限希望.IAg9qLsgBX

以氢气为汽车燃料这种说法刚出来时吓人一跳,但事实上是有根据地.氢具有很高地能量密度,释放地能量足以使汽车发动机运转,而且氢与氧气在燃料电池中发生化学反应只生成水,没有污染.因此,许多科学家预言,以氢为能源地燃料电池是21世纪汽车地核心技术,它对汽车工业地革命性意义,相当于微处理器对计算机业那样重要【16】WwghWvVhPE

3.2混合动力汽车

混合动力车属于电动汽车,采用传统地内燃机和电动机作为动力能源,通过混合使用热能和电能两套系统开动汽车.混合动力系统地最大特点是油、电发动机地互补工作模式.在起步或低速行驶时,车子仅依靠电力驱动,此时汽油发动机关闭,车辆地燃油消耗量是零;当车辆行驶速度升高(一般达40km/h以上>或者需要紧急加速时,汽油发动机和电机同时启动并开始输出动力;在车辆制动时,混合动力系统能将动能转化为电能,并储存在蓄电池中以备下次低速行驶时使用.【17】【18】asfpsfpi4k

3.3天然气动力汽车

天然气驱动技术,已经广泛应用于许多车型中,具备了较高地经济性能,例如欧宝汽车推出地赛飞利CNG,便是以天然气作为主要燃料.以欧宝赛飞“CNG”为例,其燃效为18.9km/kg.目前地天然气价格为每公斤0.76欧元,成本可比柴油发动机款减少大约30%,而比汽油发动机款则可减少大约50%.而且车上地天然气罐由高强度钢制成,其天然气传输管线也由不锈钢制成;同时由于因冲撞导致天然气泄漏地危险较低,而且天然气比汽油易燃性低,所以与普通车辆相比,着火地危险性更低.【19】ooeyYZTjj1

3.4纯电驱动汽车

这类车型具备极高地环保性能,但其存在维护费用极高,在短期内难以普及.其中,最具代表性地便是由法国Venturi公司开发设计地Fetish跑车,而且该车目前已经投入量产.Fetish跑车采用了动力系统中置地形式,虽然电动马达地电压还不到60千瓦,但是它却能达到14000转/分地高转速,并能输出241匹地最大马力.一次充电能够行驶350公里,电池充电时间也非常快,充10分钟电就能跑上16公里.【20】BkeGuInkxI

3.5太阳能汽车

太阳能汽车是一种靠太阳能来驱动地汽车.相比传统热机驱动地汽车,太阳能汽车是真正地零排放.正因为其环保地特点,太阳能汽车被诸多国家所提倡,太阳能汽车产业地发展也日益蓬

勃.PgdO0sRlMo

四、总结

因此我,年50~60据统计剩余地资源紧够人们使用,随着全球石油资源地严重紧缺,目前

们可以预见未来地发动机技术和发展趋势都应围绕着高环保,高性能,低油耗和高舒适度等等方面来展开设计地.随着新能源地开发,油、电、氢混合动力技术,天然气驱动技术,氢燃料电池驱动技术,纯电力驱动技术愈加受到人们地重视,未来会得到很大程度地发展,逐渐完善.3cdXwckm15

我们只有一个地球,也仅有一个地球,她养育了我们,使我们得以生存.然而近些年地严重开采,透支了她地生命.资源短缺,空气污染,酸雨肆虐,气候异常等自然灾害严重影响了人们地生存环境,为了使环境得到改善,我们必须改进现有地技术,使燃油得到最大程度上地利用,使新型能源得到发展.h8c52WOngM

附录:参考文献

【1】韩同群,汽车发动机原理,

【2】余志生,汽车理论

【3】陈家瑞,汽车构造

【4】马力,国外GDI发动机技术特点及发展趋势,中国汽车技术网,2008

【5】 <<汽车杂志>>国内统一刊号CN51-1130/U

【6】《涡轮增压技术》

【7】辛军,国外汽车发动机技术现状及发展趋势,奇瑞汽车工程研究院

【8】汽车之家

【9】《生物质燃烧与混合燃烧技术手册》

【10】Offmann K H.柴油机共轨式喷油系统,国外内燃机,1998

【11】卡车论坛

【12】陈家祥,《柴油机涡轮增压技术——内燃机科学丛书》,2004

【13】李朝辉,杨新桦汽车新技术重庆:重庆大学出版社,2004

【14】简春晓,杜仕武现代汽车技术及应用[M],北京:人民交通出版社,2004

【15】百度文库

【16】李英,王宝山,燃料电池 ,2000

【17】纪俊岭,齐晓杰,丰田混合动力汽车驱动系统结构分析,China academic journal publishing house 2007v4bdyGious

【18】杨为深,孙逢春,混合电动汽车地技术现状,车辆与动力技术 2001

【19】汽车杂志

【20】侯赛因,林成,纯电动及混合动力汽车设计基础,机械工业出版社,2018

聚合物基复合材料

聚合物基复合材料 摘要:聚合物基复合材料以其特有的性能近年来越来越受到人们的青睐。本文简单的介绍了聚合物基复合材料,描述了其作为一种新材料的性能特点,并详细描述了其发展历史及应用。 关键词:聚合物、复合材料、应用、历史 1、聚合物基复合材料 复合材料是指:两个或两个以上独立的物理相,包括粘接材料(基体)和粒料纤维或片状材料所组成的一种固体物。 (1) 复合材料的组分材料虽然保持其相对独立性,但复合材料的性能却不是各组分材料性能的简单加和,而是有着重要的改进。(2)复合材料中通常有一相为连续相,称为基体;另一相为分散相,称为增强材料。(3)分散相是以独立的形态分布在整个连续相中,两相之间存在着界面。分散相可以是增强纤维,也可以是颗粒状或弥散的填料。 聚合物基复合材料(PMC)是以有机聚合物(主要为热固性树脂、热塑性树脂及橡胶)为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合,各种材料在性能上互相取长补短,产生协同效应,材料的综合性能优于原组成材料而满足各种不同的要求,充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。通常意义上的聚合物基复合材料一般就是指纤维增强塑料。 而聚合物基复合材料一般都具有以下特性: 1. 比强度、比模量大。比强度和比模量是度量材料承载能力的一个指标,比强度越高,同一零件的自重越小;比模量越高,零件的刚性越大。复合材料的比强度和比模量都比较大,例如碳纤维和环氧树脂组成的复合材料,其比强度是钢的

聚合物基复合材料 知识点总结

第二章增强材料 1.增强材料的品种: 1)无机纤维:(1)玻璃纤维 (2)碳纤维:①聚丙烯腈碳纤维②沥青基碳纤维 (3)硼纤维,(4)碳化硅纤维,(5)氧化铝纤维 2)有机纤维:(1)刚性分子链——液晶(干喷湿纺): ①对位芳酰胺②聚苯并噁唑③聚芳酯 (2)柔性分子链:①聚乙烯②聚乙烯醇 2.玻璃纤维的分类: 1)按化学组成份:有碱玻璃纤维,碱金属含量>12%;中碱玻璃纤维,碱金属含量6%~12%;低碱玻璃纤维,碱金属含量2%~6%;微碱玻璃纤维,碱金属含量<2% 2)按纤维使用特性分:普通玻纤(A-GF);电工玻纤(E玻纤);高强玻纤(S玻纤或R玻纤);高模玻纤(M-GF);耐化学药品玻纤(C玻纤)…… 3)按产品特点分:长度(定长玻纤<6-50mm>,连续玻纤);直径(粗纤维30μm,初级纤维20μm,中级纤维10-20μm,高级纤维3-9μm);外观(连续纤维,短切纤维,空心玻纤,磨细纤维和玻璃粉) 3.玻璃纤维的制备:目前生产玻璃纤维最多的方法有坩埚拉丝法(玻 璃球法)和池窑拉丝法(直接熔融法) 4.玻璃纤维的力学特性: 1)玻璃纤维的拉伸应力--应变关系:玻璃纤维直到拉断前其应力-应变关系为一条直线,无明显的屈服、塑性阶段,呈脆性材料特征 2)玻璃纤维的拉伸强度较高,但模量较低;解释: (1)Griffith微裂纹理论: 玻璃在制造过程中引入许多微裂纹,受力后裂纹尖端应力集中。当应力达到一定值时,裂纹扩展,材料破坏。所以,缺陷尺寸越大,越多,应力集中越严重,导致强度越低 (2)分子取向理论: 玻纤在制备过程中,受到定向牵引力作用,分子排列更规整,所以玻纤强度更大。 3)玻璃纤维强度特点:单丝直径越小,拉伸强度σb越高;试样测试段长度L越大,拉伸强度σb越低。这两点结果被称为玻璃纤维强度的尺寸效应和体积效应,即体积或尺寸越大,测试的强度越低 4)缺点:①强度分散性大,生产工艺影响②强度受湿度影响,吸水后,湿态强度下降③拉伸模量较低(70GPa),断裂伸长率约为2.6% 5.玻璃纤维纱的常用术语、参数:(填空) 1)原纱:指玻璃纤维制造过程中的单丝经集束后的单股纱 2)表示纤维粗细的指标:①支数β:指1g原纱的长度(m),支数越大表示原纱越细②特(tex):指1000m长原纱的质量(g),tex数越大,纱越粗③旦、袋(den):指9000m长原纱的质量(g),den 数越大纱越粗 3)捻度:表示纱的加捻程度,指每米长原纱的加捻数,即捻/m。S:右捻,Z:左捻。增加抱合力 4)股数N:指由几根原纱合股组成。纱的合股数指以一根原纱为一股,几根原纱合并起来的原纱根数即为合股纱的合股数N。玻璃纱的公称支数为原纱支数除以股数(β=β0/N) 6.预氧化阶段施加张力的目的,是使纤维中形成的梯形结构取向。热定型后的聚丙烯纤维在温度高于玻璃化温度后,在纤维长轴方向上会发生收缩。预氧化过程前期为物理收缩,表现为取向度

聚合物基复合材料试题

第一章 聚合物合金的概念、合金化技术的特点? 聚合物合金:有两种以上不同的高分子链存在的多组分聚合物体系 合金化技术的特点:1、开发费用低,周期短,易于实现工业化生产。2、易于制得综合性能优良的聚合物材料。3、有利于产品的多品种化和系列化。 热力学相容性和工艺相容性的概念? 热力学相容性:达到分子程度混合的均相共混物,满足热力学相容条件的体系。 工艺相容性:使用过程中不会发生剥离现象具有一定程度相容的共混体系。 如何从热力学角度判断聚合物合金的相容性? 1、共混体系的混合自由能(ΔG M )满足ΔG M =ΔH M -TΔS M <0 2、聚合物间的相互作用参数χ 12 为负值或者小的正值。 3、聚合物分子量越小,且两种聚合物分子量相近。 4、两种聚合物的热膨胀系数相近。 5、两种聚合物的溶度参数相近。 *思考如何从改变聚合物分子链结构入手,改变聚合物间的相容性? 1、通过共聚使分子链引入极性基团。 2、对聚合物分子链化学改性。 3、通过共聚使分子链引入特殊相互作用基团。 4、形成IPN或交联结构。 5、改变分子量。 第二章 *列举影响聚合物合金相态结构连续性的因素,并说明分别是如何影响的? 组分比:含量高的组分易形成连续相; 黏度比:黏度低的组分流动性较好,容易形成连续相; 内聚能密度:内聚能密度大的聚合物,在共混物中不易分散,容易形成分散相;溶剂类型:连续相组分会随溶剂的品种而改变; 聚合工艺:首先合成的聚合物倾向于形成连续性程度大的相。 说明聚合物合金的相容性对形态结构有何影响?

共混体系中聚合物间的工艺相容性越好,它们的分子链越容易相互扩散而达到均匀的混合,两相间的过渡区越宽,相界面越模糊,分散相微区尺寸越小。完全相容的体系,相界面消失,微区也随之消失而成为均相体系。两种聚合物间完全不相容的体系,聚合物之间相互扩散的倾向很小,相界面和明显,界面黏接力很差,甚至发生宏观的分层剥离现象。 什么是嵌段共聚物的微相分离?如何控制嵌段共聚物的微相分离结构? 微相分离:由化学键相连接的不同链段间的相分离 控制溶剂、场诱导、特殊基底控制、嵌段分子量来控制 *简述聚合物合金界面层的特性及其在合金中所起的作用。 特性:1、两种分子链的分布是不均匀的,从相区到界面形成一浓度梯度;2、分子链比各自相区内排列松散,因而密度稍低于两相聚合的平均密度;3、界面层内易聚集更多的表面活性剂、其他添加剂、分子量较低的聚合物分子。 作用:力的传递效应;光学效应;诱导效应。 第三章 简述橡胶增韧塑料的形变机理及形变特点。 形变机理:银纹化和剪切带形变 特点:1、橡胶的存在有利于发生屈服形变;2、力学性能受形变机理影响 简述橡胶增韧塑料形变机理的研究方法及影响形变机理的因素。 定量研究:高精度的蠕变仪同时测定试样在张应力作用下的纵向和横向形变 影响因素:树脂基体;应力和应变速率;温度;橡胶含量;拉伸取向 简述橡胶增韧塑料的增韧机理,并列举实例加以说明。 多重银纹化增韧理论:在橡胶增韧的塑料中,由于橡胶粒子的存在,应力场不再是均匀的,橡胶粒子起着应力集中的作用。(脆性玻璃态高聚物受外力作用发生银纹形变时材料韧性很差) 银纹-剪切带增韧机理:银纹和剪切到之间存在着相互作用和协同作用。(ABS 拉伸过程中既有发白现象,又有细颈形成) 试比较橡胶增韧塑料和刚性粒子工程塑料的异同点。 1、增韧剂种类不同; 2、增韧的对象不同; 3、增韧剂含量对增韧效果的影响不同; 4、改善聚合物合金性能的效果不同; 5、增韧机理不同; 6、对两相界面黏结强度的要求是相同 第四章

聚合物基复合材料的发展现状和最新进展

聚合物基复合材料的发展现状和最新进展 摘要聚合物基复合材料以聚合物为基体,玻璃纤维、碳纤维、芳纶等为增强材料复合而成。主要包括热固性复合材料和热塑性复合材料。本文先介绍聚合物基复合材料的最新性能研究,再简单介绍下最近几年的研究热点,最后从应用角度谈一谈聚合物基复合材料的发展现状和最近进展。 关键词聚合物基复合材料发展现状最近进展 一、引言 我国聚合物基复合材料的研究始于1958 年,第一个产品就是我们所熟知的玻璃钢。我国热塑性树脂基复合材料开始于20世纪80年代末期,近20年来取得了快速发展。迄今,我国已经成功将碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维增强高性能聚合物基复合材料实用化,其中高强度玻璃纤维增强复合材料已达到国际先进水平,形成了年产500t的规模[1]。随着科技的高速发展,传统聚合物基复合材料已不能满足使用需求,对高性能、耐高温、耐磨损、耐老化性能的研究不断深入。新型复合材料的出现也给该领域带来了更大的发展前景,进而在军事、航空航天、交通,乃至日常生活中的广泛运用也使得该领域具有巨大的发展空间和良好的市场前景[2]。 二、性能研究进展 常见的高性能耐高温聚合物材料有聚四氟乙烯(PTFE)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)、聚酰亚胺(PI)等。研究发现液晶材料能很好的提高PTFE的耐磨损性能,将PEEK与其它聚合物共混或采用碳纤

维(CF)、玻璃纤维(GF)、无机纳米粒子等复合增强,已成为制备摩擦学性能和力学性能更优异的PEEK复合材料的首选[3]。美国一家PI复合材料供应商,主要生产不含MDA型PI/碳纤维、玻璃纤维、石英纤维单向带、织物以及预制品。该公司开发的900HT材料的瓦约为426℃,使用温度最高816℃,可采用热压罐、模压以及某些液体模塑工艺加工[4]。该材料还具有十分优异的热氧化稳定性,因此尤其适用于制造在高温氧气环境中长期工作的发动机以及机身部件[5]。 聚合物基复合材料在自然环境下使用,性能会受到许多环境因子(如紫外辐射、臭氧、氧、水、温度、湿度、微生物、化学介质等)的影响。这些环境因子通过不同的机制作用于复合材料,导致其性能下降、状态改变、直至损坏变质,通常称之为“腐蚀”或“老化”[6]。环境因素对复合材料性能的影响主要是通过树脂基体、增强纤维以及树脂/纤维粘接界面的破坏而引起性能的改变。陈跃良等分析了湿热老化、化学侵蚀和大气老化对复合材料的作用机理及对其力学性能的影响[7],也提出了复合材料老化寿命预测方法。 对于大多数聚合物材料而言,阻燃性能不佳,加入阻燃剂往往是必须的。从阻燃剂发展趋势来看,以高效、价廉、无卤素、无污染为特征的无机类阻燃剂符合世界各国发展环保型材料,推进可持续发展战略的政策要求。无机阻燃剂可以单独使用,也可以与有机阻燃剂复配使用,产生协同效应,起到很好的阻燃效果,是目前阻燃剂发展的主流。而其中的氢氧化物阻燃剂被认为是最有发展前途的、环境友好的无机阻燃剂, 成为近几年各国研究的热点[8]。Kazuki等研究发现了含

聚合物基纳米复合材料研究进展

聚合物基纳米复合材料研究进展 摘要: 针对聚合物基纳米复合材料的某些热点和重点问题进行了总结和评述,并讨论了碳纳米管、石墨烯及纳米增强界面等以增强为主的纳米复合材料的研究状况和存在的问题;系统地评述了纳米纸复合材料、光电纳米功能复合材料以及纳米智能复合材料等以改善功能的纳米功能复合材料的研究动态。 关键词 : 复合材料;纳米材料;聚合物;功能材料 引言 复合材料作为材料大家族中的重要一员,已经深入到人类社会的各个领域,为社会经济与现代科技的发展作出了重要贡献。复合材料科学与技术的发展经历了从天然复合材料到人工复合材料的历程,而人工复合材料的诞生更是材料科学与技术发展中具有里程碑意义的成就。20 世纪 50 年代以玻璃纤维增强树脂的复合材料(玻璃钢)和 20 世纪 70 年代以碳纤维增强树脂的复合材料(先进复合材料) 是两代具有代表性的复合材料。这两代材料首先在航空航天和国防领域得到青睐和应用,后来逐渐扩大到体育休闲、土木建筑、基础设施、现代交通、海洋工程和能源等诸多领域,使得复合材料的需求越来越强烈,作用越来越显著,应用领域越来越广泛,用量也越来越多,而相应的复合材料科学与技术也在不断地丰富和发展。随着纳米技术的出现和不断发展,纳米复合材料已经凸显了很多优异的性能,从一定意义上有力地推进了新一代高性能复合材料的发展。纳米化与复合化已经成为新材料研发和推动新材料进步的重要手段和发展方向。 纳米复合材料是指以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的颗粒、纤维、纳米管等为分散相,通过合适和特殊的制备工艺将纳米相均匀地分散在基体材料中,具有特殊性能的新型复合材料。本研究的重点是讨论聚合物基纳米复合材料的研究概况,系统介绍利用碳纳米管、石墨烯、碳纳米纸、纳米界面改性等提升和改善复合材料力学性能及物理性能的机理与作用。 1 纳米增强复合材料 纳米复合材料的性能依据其基体材料和纳米增强相种类的不同而差异巨大,因此提高力学性能是纳米复合材料研究领域中最具代表性的研究工作之一。纳米相对聚合物基体的力学性能改性主要包括强度、模量、形变能力、疲劳、松弛、蠕变、动态热机械性能等。 1.1 碳纳米管纳米复合材料 碳纳米管是由碳原子形成的石墨片层卷成的无缝、中空管体,可依据石墨片层的数量分为单壁碳纳米管和多壁碳纳米管。由于纳米中空管及螺旋度共同作用,碳纳米管具有极高的强度和理想的弹性,其弹性模量甚至可达1.3 TPa,与金刚石

聚合物基复合材料的成型工艺

聚合物基复合材料的成型工艺 聚合物基复合材料的性能在纤维与树脂体系确定后,主要决定于成型工艺。 成型工艺主要包括以下两个方面: 一是成型,即将预浸料按产品的要求,铺置成一定的形状,一般就是产品的形状; 二是固化,即把已铺置成一定形状的叠层预浸料,在温度、时间和压力等因素影响下使形状固定下来,并能达到预期的性能要求。 生产中采用的成型工艺 (1) 手糊成型(2)注射成型 (3)真空袋压法成型(4)挤出成型 (5)压力袋成型 (6)纤维缠绕成型 (7)树脂注射和树脂传递成型 (8)真空辅助树脂注射成型 (9)连续板材成型 (10)拉挤成型 (11)离心浇铸成型(12)层压或卷制成型 (13)夹层结构成型(14)模压成型 (15)热塑性片状模塑料热冲压成型 (16)喷射成型 (1)手糊成型工艺 手糊成型工艺是复合材料最早的一种成型方法,也是一种最简单的方法,其具体工艺过程如下: 首先,在模具上涂刷含有固化剂的树脂混合物,再在其上铺贴一层按要求剪裁好的纤维织物,用刷子、压辊或刮刀压挤织物,使其均匀浸胶并排除气泡后,再涂刷树脂混合物和铺贴第二层纤维织物,反复上述过程直至达到所需厚度为止。 然后,在一定压力作用下加热固化成型(热压成型)或者利用树脂体系固化时放出的热量固化成型(冷压成型),最后脱模得到复合材料制品。其工艺流程如下图所示:

为了得到良好的脱模效果和理想的制品,同时使用几种脱模剂,可以发挥多种脱模剂的综合性能。 手糊成型工艺优点 ①不受产品尺寸和形状限制,适宜尺寸大、批量小、形状复杂产品的生产; ②设备简单、投资少、设备折旧费低。 ③工艺简单; ④易于满足产品设计要求,可以在产品不同部位任意增补增强材料 ⑤制品树脂含量较高,耐腐蚀性好。 手糊成型工艺缺点 ①生产效率低,劳动强度大,劳动卫生条件差。 ②产品质量不易控制,性能稳定性不高。 ③产品力学性能较低。 2.模压成型工艺 模压成型工艺是一种古老的技术,早在20世纪初就出现了酚醛塑料模压成型。 模压成型是一种对热固性树脂和热塑性树脂都适用的纤维复合材料成型方法。 模压成型工艺过程 将定量的模塑料或颗粒状树脂与短纤维的混合物放入敞开的金属对模中,闭模后加热使其熔化,并在压力作用下充满模腔,形成与模腔相同形状的模制品;

聚合物基纳米复合材料的结构与性能研究

聚合物基纳米复合材料的结构与性能研究 摘要:聚合物的结构与性能是材料科学研究的重点。通过改变或优化材料的结构,而得到性能更为优越的材料也一直是人们的研究方向,随着研究的不断深入,所采取的方法也越来越为多元化,其中,在高分子聚合物材料中引入纳米结构就是材料改型的一种办法。以下对聚合物基纳米复合材料的结构和性能的研究作一总结。分析了由插层复合法、溶胶一凝胶法和纳米微粒直接共混法制备的聚合物基纳米复合材料的结构和性能的紧密联系。 关键词:高分子聚合物;纳米材料;结构;性能 1、引言 1.1高分子聚合物材料概述[1] 材料是各门科学技术应用和发展的基础和载体。按照传统的分类,可将材料分为金属、半导体、陶瓷和有机高分子材料,而在科学技术迅速发展的今天,与其它材料相比,聚合物材料的研究与应用呈现非常快的增长趋势,有着广阔的发展前景。 聚合物材料作用和功能的发挥,与它的结构有着密切的关系。为了合成具有指定性能的高分子材料,人们总是从化学结构开始设想,为了改进高分子材料的某种性能,人们也总是首先从改变其结构入手。无数的事实表明:人们无时无刻不在利用高聚物结构与性能间的关系,根据需要选择高分子材料,改性高分子材料,创造高新的高分子材料。高聚物结构与性能间的关系是高分子材料设计的基础,同时也是确定高分子材料加工成型工艺的依据。 对于实际应用中的高分子材料或制品,有的时候它们的高级结构,如相态结构和聚集态结构,对高分子材料、尤其是高分子功能材料的影响更为明显,并且其使用性能直接决定于加工成形过程中的聚集态结构,因此对高分子聚集态结构的研究有着重要的理论意义和实际意义。了解高分子聚集态结构特征、形成条件及其与材料性能之间的关系,对于获得具有理想性能的材料是必不可少的,同时也可为新型高聚物材料的物理改性和材料设计提供科学的依据。 高分子聚合物的结构主要包括高分子链结构和聚集态结构。高分子链结构分为近程结构和远程结构,近程结构包括化学组成、单体单元的键合(键合方式、序列)、高分子的构型(结构单元空间排列)、单个高分子链的键接(交联与支化)。远程结构包括高分子的大小(分子量及其分布)、高分子链的尺寸(末端距、旋转半径)、高分子的形态(构象、柔性、刚性)。高分子的聚集态结构包括晶态、非晶态、取向态、液晶态、织态等。 高分子结构特点主要有五点:①链式结构②链的柔顺性③不均一性(多分散性)④聚集态结构的复杂性。⑤交联网状结构。聚集态结构是决定高分子材料使用性能的直接因素,交联程度对橡胶弹性体或热固性聚合物这类材料的力学性能有重要影响。除了一级结构,即分子链的化学结构,还有其高级结构,即高聚物在宏观上体现为若干高分子链以一定的规律堆集形成的状态,这种高分子链之间的排列和堆砌结构称为聚集态结构。高分子的链结构影响高分子的运动方式和堆砌方式,凝聚态结构将直接影响材料的力学、光学、热学、声学、电学等使用性能。经验证明:即使有同样链结构的同一种高聚物,由于加工成型条件不同,制品性能也有很大差别。例如:缓慢冷却的PET(涤纶片)是脆性的;迅速冷却,双轴拉伸的PET(涤纶薄膜)是韧性很好的材料。 对于高分子材料来讲,它具有密度小、强度高,易加工等优良性能,并且易于通过化学和物理方法进等行改性特性而拓展其应用范围。

聚合物基复合材料制备方法

摘自课本《聚合物基复合材料》,针对的是聚合物基纳米复合材料的制备方法。 1、溶胶-凝胶法 溶胶-凝胶法是最早用来制备纳米复合材料的方法之一。所谓的溶胶-凝胶工艺过程是将前驱物在一定的有机溶剂中形成均质溶液,均质溶液中的溶质水解形成纳米级粒子并成为溶胶,然后经溶剂挥发或加热等处理使溶胶转化为凝胶。溶胶-凝胶中通常用酸、碱和中性盐来催化前驱物水解和缩合,因其水解和缩合条件温和,因此在制备上显得特别方便。根据聚合物与无机组分的相互作用情况,可将其分为以下几类: (1)直接将可溶性聚合物嵌入到无机网络中把前驱物溶解在形行成的聚合物溶液中,在酸、碱或中性盐的催化作用下,让前驱化合物水解,形成半互穿网络。(2)嵌入的聚合物与无机网络有共价键作用在聚合物侧基或主链末端引入能与无机组分形成共价键的基团,就可赋予其具有可与无机组分进行共价交联的优点,可明显增加产品的弹性模量和极限强度。在良好溶解的情况下,极性聚合物也可与无机物形成较强的物理作用,如氢键。 (3)有机-无机互穿网络在溶胶-凝胶体系中加入交联单体,使交联聚合和前驱物的水解与缩合同步进行,就可形成有机-无机同步互穿网络。用此方法,聚合物具有交联结构,可减少凝胶的收缩,具有较大的均匀性和较小的微区尺寸,一些完全不溶的聚合物可以原位生成均匀地嵌入到无机网络中。 溶胶-凝胶法的特点是可在温和条件下进行,可使两相分散均匀,通过控制前驱物的水解-缩合来调节溶胶-凝胶化过程,从而在反应早期就能控制材料的表面与界面性能,产生结构极其精细的第二相。存在的问题是在凝胶干燥过程中,由于溶剂、小分子、水的挥发可能导致材料内部产生收缩应力,从而会影响材料的力学和机械性能。另外,该法所选聚合物必须是溶解于所用溶剂中的,因而这种方法受到一定限制。 2、层间插入法 层间插入法是利用层状无机物(如粘土、云母等层状金属盐类)的膨胀性、吸附性和离子交换功能,使之作为无机主体,将聚合物(或单体)作为客体插入于无机相的层间,制得聚合物基有机-无机纳米复合材料。层状无机物是一维方向上的纳米材料,其粒子不易团聚且易分散,其层间距离及每层厚度都在纳米尺度范

聚合物基纳米复合材料的近代发展

汽车发动机地技术现状及发展趋势 摘要:自汽车发明以来,为人们地出行运输带来了极大地便利,促进了人类地大发展,一百多年后地今天,相关技术不断创新和走向成熟.但随之而来地问题则是,全球石油能源紧张,空气污染.因此,先进地发动机技术将在汽车节能、环保技术开发中起着关键地决定性地作用. 关键词:汽油直喷技术

聚合物基纳米复合材料的近代发展

聚合物基纳米无机复合材料的应用与发展 摘要:聚合物基纳米无机复合材料是一种性能优异的新型复合材料,已成为材料科学的新热点。本文概述了聚合物基纳米无机复合材料的发展前景及发展过程中应注意的问题。及相应的解决方法。 关键词:聚合物;纳米;无机物;复合材料 1.纳米复合材料的概念、特性、背景 1.1纳米复合材料的概念 纳米复合材料是指一种或多种组分以纳米量级的微粒,即接近分子水平的微粒复合于基质中构成的一类新型复合材料。因其分散相尺寸介于宏观与微观之间的过渡区域,从而给材料的物理和化学性质带来特殊的变化,纳米复合材料正日益受到关注,被誉为“21世纪最有前途的材料”,其研究的种类已涉及无机物、有机物及非晶态材料等。聚合物基纳米无机复合材料因其综合了有机物和无机物的各自优点,且能在力学、热学、光学、电磁学与生物学等方面赋予材料许多优异的性能,正成为材料科学研究的热点之一[1]。 1.2纳米复合材料的特性 当材料粒子尺寸进入纳米量级时,因其自身具有小尺寸效应、表面效应、量子尺寸效应,以及纳米固体粒子中大量缺陷的存在,使得聚合物基纳米无机复合材料具有与众不同的特点[2]。纳米复合材料是继单组分材料、复合材料和梯度功能材料之后的第四代材料。 1.3纳米复合材料的背景 纳米复合材料的出现先于概念的形成。早在上世纪年代末, 实际上就已出现了聚合物心纳米复合材料, 只是人们还未认识到其特殊的性能与实际应用意义〕。纳米复合材料是年代初〕提出的, 与单一相组成的纳米结晶材料和纳米相材料不同, 它是由两种或两种以上的吉布斯固相至少在一个方向以纳米级复合而成的复合材料, 这些固相可以是非晶质、半晶质、晶质或者兼而有之, 而且可以是无机、有机或二者都有。纳米相与其它相间通过化学共价键、赘合键与物理氢键等作用在纳米水平上复合, 即相分离尺寸不得超过纳米数量级。因而, 它与具有较大微相尺寸的传统的复合材料在结构和性能上有明显的区别, 近些年已成为聚合物化学和物理、物理化学和材料科学等多门学科交叉的前沿领域, 受到各国科学家和政府的重视。 2.纳米无机复合材料相关应用与发展 材料性能与组织结构有密切关系。与其他材料相比,纳米复合材料的物相之间有更加明显并呈规律变化的几何排列与空间结构属性,因此聚合物基纳米复合材料具有灵活的结构可设计性及优于一般传统复合材料的特性,在许多领域有着广泛的应用前景。 2.1吸波材料 根据目前吸波材料的发展现状,一种类型的材料很难满足日益提高的隐身技术提出的“薄、宽、轻、强”的综合要求[3 ] ,采用质量轻的有机聚合物作基体,无机吸收剂作客体进行多元复合制备吸波材料就成了必然趋势。另外,具有共轭电子体系结构,通过掺杂而成的导电聚合物(如聚乙炔、聚苯胺、聚苯硫醚、聚吡咯、聚噻吩) 本身就有较好的微波吸收性能,一些聚合物还具有红外活性或红外特征吸收带[4 ,5 ] ,利于红外吸波。聚合物基纳米无机复合材料可以方便地调节复合物的电磁参数,以达到阻抗匹配的要求,且价廉。美国F117 飞机蒙皮上的隐身材料就含有多种超微粒子,它们对不同频段的电磁波有强烈的吸收能力[6] 。

聚合物基复合材料复习

1.聚合物基复合材料的组成 (1) 基体 热固性基体: i) 熔体或溶液粘度低,易于浸渍与浸润,成型工艺性好 ii) 交联固化后成网状结构,尺寸稳定性好耐热性好,但性脆 iii) 制备过程伴有复杂化学反应 热塑性基体: i) 熔体粘度大,浸渍与浸润困难,需较高温度和压力下成型,工艺性差 ii) 线性分子结构,抗蠕变和尺寸稳定性差,但韧性好 iii) 制备过程中伴有聚集态结构转变及取向、结晶等物理现象 (2) 增强体 主要有碳纤、玻璃纤维、芳纶纤维、硼纤维等 由于树脂基体与增强体相容性、浸润性较差,增强体多经过表面处理与表面改性,以及浸润剂、偶联剂和涂复层的使用,使其组成复杂化。 3.复合材料的界面 1)界面现象:①表面吸附作用与浸润 ②扩散与粘结(含界面互穿网络结构) ③界面上分子间相互作用力(范氏力和化学键合力) 2). 复合材料的界面形成过程 PMC、MMC、CMC等复合材料体系对界面要求各不相同,它们的成型加工方法与工艺差别很大,各有特点,使复合材料界面形成过程十分复杂,理论上可分为三个阶段。(1)第一阶段:增强体表面预处理或改性阶段。 i) 界面设计与控制的重要手段 ii) 改性层成为最终界面层的重要组成部分 iii) 为第二阶段作准备 (2)第二阶段:增强体与基体在一组份为液态(或粘流态)时的接触与浸润过程 i) 接触—吸附与浸润—交互扩散—化学结合或物理结合。化学结合可看作是一种 特殊的浸润过程 ii) 界面形成与发展的关键阶段 (3)第三阶段:液态(或粘流态)组分的固化过程,即凝固或化学反应 i) 界面的固定(亚稳态、非平衡态) ii) 界面的稳定(稳态、平衡态) 在复合材料界面形成过程中涉及: i) 界面间的相互置换:如,润湿过程是一个固-液界面置换固-气表面的过程 ii) 界面间的相互转化:如,固化过程是固-液界面向固-固界面转化的过程后处理过程:固-固界面自身完善与平衡的过程 3)复合材料界面结构与性能特点 i) 非单分子层,其组成、结构形态、形貌十分复杂、形式多样。界面区至少包括: 基体表面层、增强体表面层、基体/增强体界面层三个部分 ii ) 具有一定厚度的界面相(层),其组成、结构、性能随厚度方向变化而变化,具有“梯度”材料的性能特征

聚合物复合材料

课程名称: 聚合物复合材料 论文题目:改性木粉/PVC复合材料的研究进展任课老师:符新教授 学院:材料与化工学院 专业:材料学 班级:材料学 学生XX:周宇 学生证号:008

改性木粉/PVC复合材料的研究进展 1 木/塑复合材料的发展和背景 木/塑复合材料是利用木粉和废旧热塑性塑料或树脂为主要原料,经高温混炼、再经成型加工而制得的一种廉价的新型复合材料。它是当代工业基础材料废物利用的最佳科研成果在工业生产中的应用,有“合成木材”之名,在建筑、交通、轻工等部门具有广阔的应用前景[1]。这种木/塑复合材料不仅可以替代货物木质包装材料和铺垫材料,还能用于门、窗框、建筑模板、地板、汽车配件的生产[2]。 20世纪80年代,这种新型复合材料在国外已有研究成果和实际应用[3]。日本阿特隆公司于1980年发表了相关专利并向世界推广[4]。这也是近年来国外发展较快且经济效益显著的实用型技术。木/塑复合材料之所以发展得这么快,是由于人们环境观念的加强。美国建筑工业寻找木材的替代材料,要求不腐蚀、不翘曲、维修方便、外观与木材相似。而韩国和日本的纸、木材加工厂对锯木粉、废木屑等的应用都推动和加速了木/塑复合材料的研究和应用开发[5]。我国是一个木材资源不丰富的国家,储量小,产量满足不了市场的需要。另外,自1998年2月开始,美国、加拿大和欧盟国家相继对我国出口货物的木质包装材料实施新的检疫标准,要求采取熏蒸或高温消毒处理,否则将拒绝入境,这也促进和推动了我XX用木塑型材做包装用托盘为代表的制品发展。 现在国外已对木/塑复合材料有了较深入的研究, 开发出PE木塑、PS木塑、PP木塑、PVC木塑等多种复合材料及制品[6]。而国内开展研究起步较晚,在这方面的研究只是近几年的事情。目前国内主要是对PE、PP基木塑复合材料的研究[7],产品开发主要是PE基木塑复合材料制品,而对PVC基木塑复合材料深入研究的报道较少,相应的产品开发也少有报道。PVC是目前世界上最重要的两种塑料材料之一,每年庞大的PVC消费量相应地产生了大量的废旧塑料,可是这些废旧塑料的回收率还很低,使得大量的废旧塑料制品成为垃圾,给环境造成很大污染[8]。因此,

聚合物复合材料课后总结

聚合物复合材料课后总结什么是复合材料?这个概念很难说清。由于缺乏严格的定义以及近年来人们用词的随意,模糊了复合材料的概念。关于复合材料有许多种定义。一种定义为:“a mixture of two or more materials that are distinct in composition and form, each being present in significant quantities (e.g., >5%)” (两种或多种不同组成、不同存在形式材料的混合物,各以显著的量存在)。另一定义为:“the union of two or more diverse materials to attain synergistic or superior qualities to those exhibited by individual members”(两种或多种不同材料的结合体,可获得协同的或优于个别材料的质量)。美国ASM的工程材料手册中的定义为:“a combination of two or more materials differing in form or composition on a macroscale. The constituents retain their identities…and can be physically identified.”(两种或多种不同组成、不同存在形式在宏观水平上的结合体。各组分保持各自的特征,并可用物理方法鉴别)。这里“宏观”、“各自特征”是两个关键。不符合这两个关键词的混合物将不被视为复合材料。例如固溶体,是两种材料在原子水平上的混合物,不能算作复合材料。但“宏观”是个什么概念?毫米级还是微米级还是纳米级?橡胶与塑料的混合一般不认为复合材料,原因有二。第一因为橡胶分散相的尺寸在微米级以下,不能视为宏观存在;第二因为橡胶与塑料同属高分子材料,不能视为不同材料的混合。但近年来又出现了“纳米复合材料”,其中有一种是纳米尺寸的无机粒子在塑料中的混合物。纳米尺寸能够称得上“宏观”吗?人们近年来还提出“分子复合材料”,即同系列聚合物棒状分子与线团状分子的混合物。既是分子水平的混合,又是同一种材料,也称为复合材料。但在本书的学习中,我们不必理会复合材料的确切定义,只将讨论的内容限定在ASM规定的材料范围之内。 人类从很早的时期起就认识到将两种或多种材料混合使用的益处。13世纪的蒙古包就是将动物筋、木头和丝用粘合剂粘在一起制成的。在更早的时期,人们就懂得将稻草混入泥巴来盖房子,这一技术直到今日还在我国农村使用。古埃及人已懂得制造轻便坚固的三合板,中世纪的欧洲人用合层的金属片制造盾牌。大自然也创造了不少天然复合材料:如木材、竹子、骨头等。 第二次世界大战期间,诞生了玻璃纤维与聚酯树脂的复合材料。这标志着先进复合材料时代的到来。最早的复合材料被用于制造飞机的门的档板,还用于制造导弹外壳。人们从这种高比强度(强度/密度)、高比刚度(模量/密度)的材料中看到了巨大的前途,开始有意识地开发复合材料,希望能够替代铝和钛等金属。从五十年代起,开始致力于纤维的研制,并开发出高性能的S型玻璃纤维。1963年,硼纤维问世,以后又相继开发出碳纤维、二氧化铍纤维、石墨纤维、芳香尼龙纤维、氧化铝纤维等。纤维可以加入到聚合物基体,也可以加入到金属基体或陶瓷基体,开创出一代高性能的复合材料。为有别于传统的与天然的复合材料,我们称此类材料为先进复合材料。复合材料可以金属、陶瓷、聚合物中任一种材料为基体,可以三种材料中的任一种为增强材料,如图4-1所示。一种复合材料的分类法就是以基体分类,将复合材料分为三大类:金属基复合材料(MMC),陶瓷基复合材料(CMC)和聚合物基复合材料(PMC)。碳材料比较特殊,所以可以单列一类,称为碳基复合材料。本章中我们着重介绍聚合物基复合材料,简单介绍碳基复合材料,陶瓷基和金属基复合材料将放到陶瓷和金属的专章中介绍。

聚合物基复合材料

聚合物基复合材料 第二节聚合物基复合材料(PMC) 1.1聚合物基体 1.2PMC界面 1.3PMC制备工艺 1.4PMC性能与应用 聚合物基复合材料(PMC)是以有机聚合物为基体,连续纤维为增强材料组合而成的。聚合物基体材料虽然强度低,但由于其粘接性能好,能把纤维牢固地粘接起来,同时还能使载荷均匀分布,并传递到纤维上去,并允许纤维承受压缩和剪切载荷。而纤维的高强度、高模量的特性使它成为理想的承载体。纤维和基体之间的良好的结合充分展示各自的优点,并能实现最佳结构设计、具有许多优良特性。 实用PMC通常按两种方式分类。一种以基体性质不同分为热固性树脂基复合材料和热塑性树脂基复合材料;另一种按增强剂类型及在复合材料中分布状态分类。如:玻璃纤维增强热固性塑料(俗称玻璃钢)、

短切玻璃纤维增强热塑性塑料、碳纤维增强塑料、芳香族聚酰胺纤维增强塑料、碳化硅纤维增强塑料、矿物纤维增强塑料、石墨纤维增强塑料、木质纤维增强塑料等。这些聚合物基复合材料具有上述共同的特点,同时还有其本身的特殊性能。 通常意义上的聚合物基复合材料一般就是指纤维增强塑料(FRP),而为各种目的加入各种填料的高分子材料不在这里论及。 1.1聚合物基体 聚合物基体是纤维增强塑料的一个必需组分,在复合材料成型过程中,基体经过复杂的物理、化学变化过程,与增强纤维复合成具有一定形状的整体。因而基体性能直接影响复合材料性能。基体的主要作用包括将纤维粘合成整体并使纤维位置固定,在纤维间传递载荷,并使载荷均匀;决定复合材料的一些性能。如复合材料的高温使用性能(耐热性)、横向性能、剪切性能、耐介质性能(如耐水、耐化学品性能)等;决定复合材料成型工艺方法及工艺参数选择;保护纤维免受各种损伤。此外对复合材料一些性能有重要影响,如纵向位伸、尤其是压缩性能,疲劳性能,断裂韧性等。 1、分类 用于复合材料的聚合物基体主要按树脂热行为可分为热固性及热塑性两类。热塑性基体如聚丙烯、聚酰胺、聚碳酸酯、聚醚砚、聚醚醚酮等,它们是一类线形或有支链的固态高分子,可溶可熔,可反复加

聚合物基复合材料考试答案

1聚合物基复合材料的定义、特征、结构模式。 聚合物基复合材料:是以有机聚合物为基体,以颗粒、纤维等为增 强材料组成的复合材料 特征:1比强度和比模量高,比强度(抗拉强度与密度之比)和比模 量(弹性模量与密度之比)高,说明材料轻而且刚性大。2 良好的抗 疲劳性能疲劳是材料在循环应力作用下的性质。复合材料能有效地 阻止疲劳裂纹的扩展。3、减振性能好在工作过程中振动问题十分突出,复合材料为多相系统,大量的界面对振动有反射吸收作用。且 自振动频率高,不易产生共振4、高温性能好复合材料在高温下强度 和模量基本不变5、各项异性和可设计性。6、成型加工性好复合材 料可成型任意型面的零件7、其它优点与其它类材料相比,聚合物基 复合材料耐化学腐蚀、导电、导热率低等特点。 缺点:1耐湿热性差2.材料性能分散性差3.价格过高 复合材料的结构①无规分散(弥散)增强结构(含颗粒、晶须、短 纤维)②连续长纤单向增强结构(单向板)③层合(板)结构(二维 织布或连续纤维铺层,每层不同)④三维编织体增强结构⑤夹层结 构(蜂窝夹层等)⑥混杂结构 2、复合材料的界面效应有哪些?怎么影响材料的性能。 界面在复合材料中所起到的效应: 1、传递效应:界面可将复合材料体系中基体承受的外力传递给增强相,起到基体和增强相之间的桥梁作用。 2、阻断效应:基体和增强相之间结合力适当的界面有阻止裂纹扩展、减缓应力集中的作用。 3、不连续效应:在界面上产生物理性能的不连续性和界面摩擦出现 的现象 4、散射和吸收效应:光波、声波、热弹性波、冲击波等在界面产生 散射和吸收。 5、诱导效应:一种物质(通常是增强物)的表面结构使另一种(通常 是聚合物基体)与之接触的物质的结构由于诱导作用而发生改变,由 此产生一些现象 3.试说明玻璃纤维、碳纤维与芳纶纤维表面处理方法的相同点和不 同点。 相同点是都需要在高温下处理,改善纤维的微结构,使纤维与界面 和基体更加匹配。包括化学键理论,润湿理论,表面形态理论,可

聚合物复合材料

聚合物复合材料 4.1 概述 什么是复合材料?这个概念很难说清。由于缺乏严格的定义以及近年来人们用词的随意,模糊了复合材料的概念。关于复合材料有许多种定义。一种定义为:“a mixture of two or more materials that are distinct in composition and form, each being present in significant quantities (e.g., >5%)” (两种或多种不同组成、不同存在形式材料的混合物,各以显著的量存在)。另一定义为:“the union of two or more diverse materials to attain synergistic or superior qualities to those exhibited by individual members”(两种或多种不同材料的结合体,可获得协同的或优于个别材料的质量)。美国ASM的工程材料手册中的定义为:“a combination of two or more materials differing in form or composition on a macroscale. The constituents retain their identities…and can be physically identified.”(两种或多种不同组成、不同存在形式在宏观水平上的结合体。各组分保持各自的特征,并可用物理方法鉴别)。这里“宏观”、“各自特征”是两个关键。不符合这两个关键词的混合物将不被视为复合材料。例如固溶体,是两种材料在原子水平上的混合物,不能算作复合材料。但“宏观”是个什么概念?毫米级还是微米级还是纳米级?橡胶与塑料的混合一般不认为复合材料,原因有二。第一因为橡胶分散相的尺寸在微米级以下,不能视为宏观存在;第二因为橡胶与塑料同属高分子材料,不能视为不同材料的混合。但近年来又出现了“纳米复合材料”,其中有一种是纳米尺寸的无机粒子在塑料中的混合物。纳米尺寸能够称得上“宏观”吗?人们近年来还提出“分子复合材料”,即同系列聚合物棒状分子与线团状分子的混合物。既是分子水平的混合,又是同一种材料,也称为复合材料。但在本书的学习中,我们不必理会复合材料的确切定义,只将讨论的内容限定在ASM规定的材料范围之内。 人类从很早的时期起就认识到将两种或多种材料混合使用的益处。13世纪的蒙古包就是将动物筋、木头和丝用粘合剂粘在一起制成的。在更早的时期,人们就懂得将稻草混入泥巴来盖房子,这一技术直到今日还在我国农村使用。古埃及人已懂得制造轻便坚固的三合板,中世纪的欧洲人用合层的金属片制造盾牌。大自然也创造了不少天然复合材料:如木材、竹子、骨头等。 第二次世界大战期间,诞生了玻璃纤维与聚酯树脂的复合材料。这标志着先进复合材料时代的到来。最早的复合材料被用于制造飞机的门的档板,还用于制造导弹外壳。人们从这种高比强度(强度/密度)、高比刚度(模量/密度)的材料中看到了巨大的前途,开始有意识地开发复合材料,希望能够替代铝和钛等金属。从五十年代起,开始致力于纤维的研制,并开发出高性能的S型玻璃纤维。1963年,硼纤维问世,以后又相继开发出碳纤维、二氧化铍纤维、石墨纤维、芳香尼龙纤维、氧化铝纤维等。纤维可以加入到聚合物基体,也可以加入到金属基体或陶瓷基体,开创出一代高性能的复合材料。为有别于传统的与天然的复合材料,我们称此类材料为先进复合材料。复合材料可以金属、陶瓷、聚合物中任一种材料为

相关文档
相关文档 最新文档