文档库 最新最全的文档下载
当前位置:文档库 › 第十七章 气相色谱法

第十七章 气相色谱法

第十七章 气相色谱法
第十七章 气相色谱法

1、名词解释

相对极性:Px色谱中的相对极性与化学上的极性不同,它指固定液与被测组分之间相互作用力的强弱。因此,固定液相对极性不仅与固定液本身有关,而且与被测组分有关。

麦氏常数:某组分在被测固定液和角鲨烷柱上的保留指数之差,用于表示固定液与某类化合物相互作用力的大小。色谱手册上列出的麦氏常数有5个数据,分别表示与苯、正丁醇、戊彤-2、硝基苯烷、吡啶的作用力大小。各麦氏常数的总和可作为固定液的相对极性,小于300的为非极性固定液。

检测限:某组分的峰高恰为噪声2倍时,单位时间内由载气引入检测器中该组分的质量或单位体积载气中所含该组分的量。

浓度型检测器:响应值与载气中组分的浓度成正比。

质量型检测器:响应值与单位时间内进入检测器的组分质量成正比。

灵敏度(S):浓度型检测器时Sc为1ml载气携带一毫克的某组分通过检测器时产生的电压。质量型检测器时Sm为每秒钟有1g的某组分被载气携带通过检测器时产生的电压。

分流比:进入毛细管柱的物质量与被分流的物质量之比,通常为进入色谱柱的流量与分流流量之比。

漂移:基线在单位时间内单方向缓慢变化的幅值。

噪声:由于仪器本身和工作条件等的偶然因素引起的基线起伏。

相对校正因子:被测物质与标准物质的绝对校正因子之比。

程序升温:在一个分析周期中,按照既定程序改变色谱柱温度,以使沸点差距较大的各组分均得到良好分离。

涂壁毛细管柱:这种毛细管柱把固定液涂在毛细管内壁上。

2、TCD热导检测器

FID氢焰离子化检测器

ECD电子捕获检测器

NPD氮磷检测器

TID热离子化检测器

FPD火焰光度检测器

WCOT柱涂壁毛细管柱

PLOT柱多孔层毛细管柱

SCOT柱载体涂层毛细管柱

FSOT柱融融石英毛细管柱

3、见16章第2题

4、简述范式方程中各项的含义,他们的改变将如何影响柱效?

5、范式方程对选择色谱分离条件有何指导意义?

H = A + B/u + Cu

dp和填充物的填充不规则因子有关。

填充柱色谱中,A=2λdp 所以,采用均匀、较细粒径的载体,并且填充均匀可减小涡流扩散项,提高柱效。

空心毛细管柱只有一个流路,无涡流扩散,A=0。

B成正比,与载气的平均线速度u成反比。分子扩散系数B与组分在载气中的扩散系数Dg和弯曲因子γ成正比。B=2γDg

填充柱色谱中,由于填料的存在是扩散有障碍,γ<1,空心毛细管柱因扩散无障碍,

γ=1。

Dg除了与组分的性质有关外,还与载气的种类、柱温、柱压等因素有关。Dg与载气相对分子质量的平方根成反比,随柱温升高而增大,随柱压增高而减小。因此,采用相对分子质量较大的载气、控制较低的柱温、采用较高的载气流速,可以减小分子扩散,有利于提高柱效。

由于组分在气相中的分子扩散系数比其在液相中大104~105倍,因而在气液色谱中,组分在液相中的分子扩散可以忽略不计。

Cu = ( Cg + C l ) u Cg为试样组分在气相和气液界面之间进行质量交换时的气相传质阻抗系数,C l为试样组分在液相和气液界面之间进行质量交换时的液相传质阻抗系数。在填充柱气相色谱中,Cg很小,可忽略不计。(17-6)

可以看出固定相的液膜涂渍得越薄,组分的液相传质阻力就越小。载气流速对传质阻抗项的影响也很大,当载气流速增大时,传质阻抗项就增大,柱效降低。

6、某色谱柱理论板数很大,是否任何两种难分离的组分一定能在该柱上分离?为什么。

不一定。17-7。当分离因子为1,无论柱效有多高,k有多大,R都为0,两组分不可能分离。

7、气相色谱柱主要包括哪几个部分?简述各部分的作用。

气路系统:包括载气和检测器所需气体的气源、气体净化、气体流速控制装置。气体从气瓶或气体发生器经减压阀、流量控制器和压力调节阀,然后通过色谱柱,由检测器排出。整个系统保持密封,不得有气体泄漏。

进样系统:包括进样器、气化室,另有加热系统,以保证试样气化。其作用是将样品气化并有效的导入色谱柱。

色谱柱系统:包括色谱柱和柱温箱,是色谱仪的心脏部分,组分在此分离,其中色谱柱时分离成败的关键。

检测和记录系统:包括检测器、放大器、数据处理装置。检测器的作用是将柱后载气中各组分浓度或质量的变化转变成可测量的电信号。经放大器放大,然后处理。

控制系统:控制整台仪器的运行,包括进样器、柱温箱、检测器的温度控制,进样控制,气体流速控制和各种信号控制等。

8、在气相色谱中,如何选择固定液、柱温和载气?

固定液的选择:

对固定液的要求:①在操作温度下蒸气压低于10Pa,否则固定液易流失。每一固定液都有一“最高使用温度”,实际使用时以不超过最高使用温度以下20℃为宜。②热稳定性好,在高柱温下不分解,不与试样组分发生反应。③对被分离组分的选择性要高,即分配系数有较大差别。④对试样中各组分有足够的溶解能力。

固定液的选择:一般可以根据“相似性原则”,即按被分离组分的极性或基团与固定液相似的原则来选择。由于被分离组分和固定液的极性相似,他们之间的相互作用力较强,组分在固定液中的溶解度大,在柱上的保留强,待测组分被分开的可能性也就越大。①非极性物质:一般选用非极性固定液。各组分按沸点顺序流出色谱柱,沸点低的组分先出峰。若试样中有极性组分,相同沸点的极性组分先出峰。②中等极性物质:选用中等极性固定液。出峰顺序与沸点和极性有关,若组分之间极性差异小而沸点有较大差异则按沸点顺序出峰,若组分沸点相近,而极性有较大差异,则极性小的组分先出峰。③极性物质:选用

极性固定液。组分按极性顺序流出色谱柱,非极性组分先流出色谱柱。④能形成氢键的物质:可选择氢键型固定液,如聚乙二醇(PEG-20M),他们之间的作用力是氢键力。各组分按与固定液分子形成氢键的能力大小先后流出,形成氢键能力弱的化合物先流出色谱柱。

柱温的选择:

柱温直接影响分离效能和分析速度。提高柱温使组分的挥发加快,分配系数减小,不利于分离。降低柱温,使传质阻力增大,峰形扩张,严重时会引起拖尾,并延长分析时间。因此在选择柱温时应综合考虑,选择原则是:在使难分离物质对能得到良好的分离,分析时间适宜,且峰形不拖尾是前提下,尽可能选择低柱温。

载气的选择:

气相色谱中载气的种类并不多,主要有氦、氢、氮、氩等,应用最多的是氢气和氮气。载气的选择主要取决于选用的检测器、色谱柱以及分析要求等。①氮气:安全,价廉,所以最为常用。但其热导系数与大多数有机化合物相近,故使用热导检测器时灵敏度低,而很少使用。②氢气:由于相对分子质量小,热导系数大,粘度小等特点,因此在使用热导检测器时,常用它作载气。在氢焰离子化检测器中它是必用的燃气。③氦气:相对分子质量小,热导系数大,黏度小,使用时线速度大,比氢气安全,常用于气相色谱-质谱联用分析。

9、麦氏常数有何用处?

麦氏常数是某组分在被测固定液和角鲨烷柱上的保留指数之差,用于表示固定液与某类化合物相互作用力的大小。色谱手册上列出的麦氏常数有5个数据,分别表示与苯、正丁醇、戊彤-2、硝基苯烷、吡啶的作用力大小。各麦氏常数的总和可作为固定液的相对极性,小于300的为非极性固定液。

10

检测原理:检测时,被测组分被载气携带,与氢气混合进入离子化室,在氢气燃烧所产生的高温(约2100℃)火焰中电离成正离子和电子。产生的离子和电子在收集极和发射极的外电场作用下定向运动而形成电流。产生的电流很微弱,需经放大器放大后,才能得到色谱峰。产生的微电流大小与进入离子室的被测组分含量有关,含量愈大,产生的微电流就愈大。

适用范围:含碳化合物。氢焰离子化检测器对大多数有机化合物有很高的灵敏度,故适宜痕量有机物的分析。(会破坏样品)

注意事项:①氢焰检测器要使用三种气体,载气常用氮气,燃气用氢气,空气作为助燃气。三者流量关系一般为1:1~1.5:10。②氢焰检测器为质量型检测器,峰高取决于单位时间引入检测器的组分质量,在进样量一定时,峰高与载气流速成正比,而对峰面积影响较小。因此一般采用峰面积定量,在用峰高定量时,需保持载气流速恒定。

检测原理:当柱后载气携带样品组分进入测量臂时,若组分与载气的热导率不等,钨丝温度即变化,此时电阻也变化,检流计指针会发生偏转,就有信号产生。

适用范围:通用型检测器。(亦是优点之一,还有就是结构简单,不破坏样品。但灵敏度要低一些)。

注意事项:①热导检测器为浓度型检测器,当进样量一定时,峰面积与载气流速成反比,而峰高受流速影响较小。因此在用峰面积定量时需严格保持流速恒定。②为避

免热丝被烧断,在没有通载气的情况下不能加桥电流,在关仪器时应先切断桥电流在关载气。③在其他条件一定时,热导检测器的灵敏度跟载气与组分之间热导率的差值有关,差值越大灵敏度越高。氢气和氦气的热导率比有机物的热导率大很多,因此灵敏度高,且不会出现倒峰。④热导检测器响应值与桥流的三次方成正比,增加桥流可以提高灵敏度,但桥流增加热丝易被氧化,噪音也会变大,还易将热敏元件烧坏。所以在灵敏度足够的情况下,应尽量采取低桥流以保护热敏元件。⑤检测器温度不得低于柱温,以防样品组分在检测器中冷凝引起基线不稳,通常检测室温度应高于柱温20~50℃。检测室温度过高会降低灵敏度。

检测原理:当载气进入检测室时,在β射线的作用下发生电离,产生正离子和低能量的电子。生成的正离子和电子在电场作用下分别向两极运动,形成恒定电流,称为基流。当含强电负性元素的物质进入检测器时,就会捕获这些低能电子,产生带负电荷的离子并释放出能量。带负电荷的离子和载气电离产生的正离子碰撞生成中性化合物,结果使基流降低,产生负信号,形成倒峰。组分浓度越高,倒峰越强。

适用范围:含有强电负性元素的物质,如含卤素、硝基、羰基、氰基等的化合物。

注意事项:①应使用高纯度载气,一般是高纯度氮,载气中若含有少量的氧气和水等电负性组分对检测器的基流和响应值会有很大的影响,长期使用将严重污染检测器。因此还需使用脱氧管等净化装置除去其中的微量杂质。②载气流速对基流和响应信号也有影响,可根据实验条件选择最佳载气流速,通常为40~100ml/min。③检测器中含有放射源,应注意安全,不可随意拆卸。

11、毛细管气相色谱有什么特点?毛细管柱为什么比填充柱有更高的柱效?

特点:①分离效能高。毛细管色谱可用比填充柱长得多的色谱柱,长至上百米,每米板数2000~5000,总柱效可达104~106。另外毛细管柱的液膜薄,传质阻抗小,

开管柱没有涡流扩散的影响,也使柱效提高。

②柱渗透性好。毛细管柱一般为开管柱,阻力小,可在较高的载气流速下分析,

分析速度较快。

③柱容量小。由于毛细管柱柱体积小。一般采用分流进样。

④易实现气相色谱—质谱联用。由于毛细管柱的载气流速小,较易于维持质谱

仪离子源的高真空度。

⑤应用范围广。

原因:毛细管色谱可用比填充柱长得多的色谱柱,长至上百米,每米板数2000~5000,总柱效可达104~106。另外毛细管柱的液膜薄,传质阻抗小,开管柱没有涡流扩

散的影响,也使柱效提高。(也正是由于柱效高,毛细管色谱对固定液选择性的

要求么那么严格。)

12、气相色谱法定量分析的依据是什么,为什么要引入定量校正因子,常用的定量方法有哪几种,各在何种情况下应用?

①依据:被测物质的量与其峰面积(或峰高)成正比。

②由于同一检测器对不同物质具有不同的响应值,因此不能用峰面积来直接计算物质

的量,需要引入校正因子。

③定量方法:

归一化法:所有组分在一个分析周期内都能流出色谱柱,而且检测器对它们都产生信号。该法不能用于微量杂质的含量测定。

外标法:380页

内标法:381页

13、内标法中如何选择内标物?

①内标物应该是试样中不存在的组分。②内标物色谱峰位于被测组分色谱峰附近,或几个被测组分色谱法中间,并与这些组分完全分离。③内标物必须是纯度合乎要求的纯物质。

14、有机物中微量水分测定时一般选择什么固定相?此时用什么检测器?

高分子多孔微球(GDX)。其具有很强的疏水性,对水的保留能力比绝大多数有机化合物小,适于测定微量水。用热导检测器。

15、简述硅藻土载体钝化的目的与方法。

目的:所谓载体的钝化就是减弱或消除载体表面的吸附活性。硅藻土载体表面存在的硅醇基会与易形成氢键的化合物作用,产生拖尾;载体中所含的少量金属氧化物可能使待测组分发生吸附和催化降解,故需除去这些活性中心。

方法:酸洗法、碱洗法、硅烷化法(366页)

16、GC分析宽沸程样品时为什么要用程序升温,如用恒温,结果如何。

对于宽沸程化合物,恒定柱温常不能兼顾两头。由于低沸点组分因柱温太高使色谱峰窄,互相重叠,而高沸点组分又因柱温太低,洗出峰很慢,峰形宽且平,有些甚至不出峰。所以要用程序升温。

17、简述分离度与理论塔板数的关系。17-7

分析化学第14章练习题

复习提纲:第十四章气相色谱法 色谱法的基本原理 1.色谱法的起源(了解)、基本原理(掌握)、仪器基本框图(掌握)、分类、特点及应用(了解) 2.色谱流出曲线及相关术语:基线:可用于判断仪器稳定性及计算检出限(掌握)峰面积(峰高):定量基础(掌握) 保留值:定性基础(掌握);死时间、保留时间、调整保留时间;死体积、保留体积、调整保留体积;相对保留值(选择性因子)等(掌握) 峰宽的各种表示及换算(掌握) 3.色谱基本原理: 热力学(掌握):分配系数K ,仅与两相和温度有关,温度增加K 减小 分配比k,k 除与两相和温度有关外(温度增加k 减小)还与相比有关(相比的概念)k=t r /t0;k=K/ ;=K2/K 1=k2/k1 分离对热力学的基本要求:两组份的>1 或K 、k 不相等;越大或K 、k 相差越大越容易实现分离 动力学:塔板理论:理论(或有效)塔板数(柱效)及理论(有效板高)的计算公式及有关说明(掌握);塔板理论的贡献及不足(了解) 速率理论:H=A+B/u+Cu 中H、A、B、C、u的含义(掌握);减小A 、B、C的手段(掌握);u 对H 的影响及最佳流速和最低板高的计算公式(掌握);填充物粒径对板高的影响(掌握) 4.分离度分离度的计算公式;R=1.5 时,完全分离;R=1 时基本分离(掌握) 5.基本色谱分离方程两种表达形式要熟练掌握;改善分离度的手段:增加柱效n(适当增加柱长的前提下减小板高)、增加选择性因子(GC:改变固定相和柱温)和控制适当的容量因子k (GC:改变温度及固定相用量)(掌握) 分离度与柱效、柱长、分析时间(即保留时间)之间的关系(掌握);柱温对分离度的影响(了解);相关例题(熟练掌握) 6. 定性分析常规检测器用保留时间(相对保留值也可以)定性,但该法存在的不足要知道,双柱或多柱可提高保留时间定性的可靠性;质谱或红外等检测器有很强的定性能力(了解) 7. 定量分析 相对校正因子和绝对校正因子的概念(掌握);归一化法各组分含量的计算公式(掌握);内标法定 量的计算公式(掌握相关作业)归一化法和内标法不受进样量和仪器条件变化的影响,外标法受进样量和仪器条件变化的影响较大 (了解) 气相色谱法 1.气相色谱法流程和适用对象;气固和气液色谱的适用对象(掌握) 2.气相色谱法的仪器: 气路系统:通常采用N2、H2、Ar、He 等惰性气体做载气(高压钢瓶提供),载气纯度、流速的大小及稳定性对色谱柱柱效、仪器灵敏度及整机稳定影响很大,因此载气纯度要高、流速要适当而且稳定。

17 气相色谱法

第十七章气相色谱法 思考题和习题 1.名词解释:噪音检测限死体积分离度程序升温保留温度分流进样分流比线性分流相对重量校正因子麦氏常数 2.简述范氏方程在气相色谱中的表达式以及在分离条件选择中的应用。 3.气相色谱仪主要包括哪几部分?简述各部分的作用。 4.说明氢焰、热导以及电子捕获检测器各属于哪种类型的检测器,它们的优缺点以及应用范围。 5.在气相色谱分析中,应如何选择载气流速与柱温? 6.气相色谱定量分析的依据是什么?为什么要引入定量校正因子?常用的定量方法有哪几种?各在何种情况下应用? 7.毛细管柱气相色谱有什么特点?毛细管柱为什么比填充柱有更高的柱效? 8.用气相色谱法分离某二元混合物时,当分别改变下列操作条件之一时,推测一下对t R、H、R的影响(忽略检测器、气化室、连接管道等柱外死体积)。(a)流速加倍,(b)柱长加倍,(c)固定液液膜厚度加倍,(d)色谱柱柱温增加。 9.在某色谱分析中得到如下数据:保留时间t R=5.0min,死时间t0=1.0min,固定液体积V s=2.0ml,载气流速F=50ml/min。计算:(1)容量因子;(2)分配系数;(3)死体积;(4)保留体积。 (4.0,100,50ml,250ml)10.用一色谱柱分离A、B两组分,此柱的理论塔板数为4200,测得A、B 的保留时间分别为15.05min及14.82min。(1)求分离度;(2)若分离度为1.0时,理论塔板数为多少? (0.25,67200)11.用气相色谱法测定正丙醇中的微量水分,精密称取正丙醇50.00g及无水甲醇(内标物)0.4000g,混合均匀,进样5μl,在401有机担体柱上进行测量,测得水:h=5.00cm,W1/2=0.15cm,甲醇h=4.00cm,W1/2=0.10cm,求正丙醇中微

程序升温气相色谱法_

2014-2-284 火焰光度检测器: 利用富氢火焰使含硫、磷杂原子的有 机物分解,形成激发态分子,当它们回到基态时,发射出 一定波长的光。此光强度与被测组分量成正比,所以,它是 以物质与光的相互关系为机理的检测方法,属光度法。非 常有利于痕量磷、硫的分析,是检测有机磷农药和含硫污 染物的主要工具。对含磷、硫的化合物有高选择性和高灵 敏度的一种检测器。 以S为例 ,然后被氢还原成硫原 有机硫化物在氢焰离子室中先被氧化成SO 2 子,硫原子在高温下被激发。当其由激发态跃迁至基态时,便发射出 2014-2-288

2014-2-282014-2-282014-2-28 概 ?通常的气相色谱分析,采用恒温( )At higher temperatures, these components spend more time in the mobile (gas) phase, helping them elute faster and minimizing band-broadening; the faster peaks also elute faster however, pressing

2014-2-28 19不同碳原子的同系物在色谱图上的分布呈现等距离分布。 T R =T 0+r t R ,p 柱温与溶质移动速度的关系 exp(/g H RT =Δ2014-2-28 27 R ,p 观察峰间距随r 的变化?

高沸点溶质在起始温度下处于初期冻结阶段,对 选择 适当,就能得到满意结果。 2014-2-2828 恒温—线性升温—恒温 当样品兼具有前两种情况 若在某一区间内的色谱峰间距离太小,甚至不能完

第16章高效液相色谱法#(精选.)

第16章高效液相色谱法 【16-1】从分类原理、仪器构造及应用范围,简述气相色谱及液相色谱的异同点。 答:二者都是根据样品组分与流动相和固定相相互作用力的差别进行分离的。 从仪器构造上看,液相色谱需要增加高压泵以提高流动相的流动速度,克服阻力。同时液相色谱所采用的固定相种类要比气相色谱丰富的多,分离方式也比较多样。气相色谱的检测器主要采用热导检测器、氢焰检测器和火焰光度检测器等。而液相色谱则多使用紫外检测器、荧光检测器及电化学检测器等。但是二者均可与MS等联用。 二者均具分离能力高、灵敏度高、分析速度快,操作方便等优点,但沸点太高的物质或热稳定性差的物质难以用气相色谱进行分析。而只要试样能够制成溶液,既可用于HPLC分析,而不受沸点高、热稳定性差、相对分子量大的限制。 【16-2】高效液相色谱仪由几大部分构成?各部分的主要功能是什么? 答:高效液相色谱仪由高压输液系统,进样系统,分离系统,检测系统和记录系统五大部分组成。高压输液系统:主要是通过高压输液泵将溶剂储存器中的流动相以高压形式连续不断地送入液路系统,使试样在色谱柱中完成分离过程。 进样系统:把分析试样有效地送入色谱柱中进行分离。 分离系统:将试样各组分分离开来。 检测系统:对被分离组分的物理或物化特性有响应;对试样和洗脱液总的物理或化学性质有响应。记录系统:记录被分离组分随时间变化的信号。 【16-3】液相色谱中影响色谱峰展宽的因素有哪些? 与气相色谱相比其主要区别何在? 答:液相色谱中引起色谱峰扩展的主要因素为涡流扩散、流动的流动相传质、滞留的流动相传质以及柱外效应。在气相色谱中径向扩散往往比较显著,而液相色谱中径向扩散的影响较弱,往往可以忽略。另外,在液相色谱中还存在比较显著的滞留流动相传质及柱外效应。 【16-4】何谓化学键合相色谱、正相色谱和反相色谱? 答:化学键合相色谱是指在化学键合固定相上进行物质分离的一种液相色谱法。 正相色谱是采用极性键和固定相流的相用比键合相极性小的非极性或弱极性有机溶剂。 反相色谱采用非极性键和固定相流的相为强极性的溶剂。 【16-5】何谓化学键合固定相?它的突出优点是什么? 答:利用化学反应将固定液的官能团键合在载体表面形成的固定相称为化学键合固定相。 优点: 固定相表面没有液坑,比一般液体固定相传质快的多;无固定相流失,增加了色谱柱的稳定性及寿命;可以键合不同的官能团,能灵活地改变选择性,可应用与多种色谱类型及样品的分析;有利

华中师范大学等六校合编《分析化学》(下册)笔记和课后习题(含考研真题)详解-第十七章至第二十章【圣才

第十七章高效液相色谱法 17.1复习笔记 一、概述 1.分离原理 (1)物质在固定相和流动相两相中吸附或分配系数有微小差异; (2)被测物质在两相之间进行反复多次的分配,差异放大,从而分离。 2.高效液相色谱法与经典液相色谱法相比 (1)分析速度快 (2)分离效率高 (3)灵敏度高 (4)操作自动化 3.高效液相色谱法与气相色谱法相比 (1)广泛应用于有机化合物的分离分析,尤其是低挥发性、热稳定性差或相对质量大的物质; (2)分离效果与流动相的性质密切相关,流动相种类较多; (3)高效液相色谱法不破坏试样,可方便地制备纯样。 4.影响柱效的因素 液相色谱速率方程 H=H e+H d+H s+H m+H sm (1)涡流扩散项H e

采用小粒径填料、提高固定相的装填均匀性。 (2)纵向扩散项H d 当流动相的线速率大于1cm·s-1时,H d的影响可以忽略。(3)传质阻力项 ①固定相传质阻力项H s a.液-液分配色谱:使用薄的固定液层; b.吸附、排阻和离子交换色谱法:使用小粒径的填料;c.化学键合相色谱:此项可忽略。 ②流动相传质阻力项H m 采用小粒径填料,减小柱空间。 ③滞留流动相传质阻力项H sm 采用颗粒小、微孔浅、孔径大的载体可减小H sm的影响。(4)提高色谱分析效能的办法 ①缩短进样时间; ②使用细粒径填料; ③改善传质过程; ④减小检测器的死体积。 二、高效液相色谱仪

图17-1高效液相色谱仪器结构示意图 1.高压输液系统 (1)高压输液系统的作用 提供足够恒定的高压,迫使流动相以稳定的流量快速渗透通过固定相。 (2)高压输液系统发的组成 流动相储液器、高压泵、脱气器和梯度洗脱。 (3)梯度洗脱装置的作用 按一定的程序连续改变流动相中多种不同性质溶剂的配比,以改变流动相的极性、离子强度或酸度等。 2.进样系统 一般采用旋转式高压六通阀进样。 图17-2六通进样阀工作示意图 3.分离系统

色谱分析-第七章 程序升温气相色谱法

第七章程序升温气相色谱法 第一节方法概述 对于沸点范围宽的多组分混合物可以采用程序升温方法。即在一个分析周期内,柱温随时间不断升高,在程序开始时,柱温较低,低沸点的组分得到分离,中等沸点的组分移动很慢,高沸点的组分还停留在柱口附近;随着柱温的不断升高,组分由低沸点到高沸点依次得到分离。 一、方法特点 恒温时最佳柱温的选择:组分沸点范围不宽时用恒温分析。填充柱选择组分的平均沸点左右;毛细管柱选择比组分的平均沸点低30℃左右。如果样品是宽沸程、多组分混合物(例如香料、酒类等),常采用程序升温毛细管柱气相色谱法。 图7-1是恒温分析(IGC)和程序升温(PTGC)的色谱图比较,(a)(b)是恒温分析,(a)柱温较低,恒温45℃时低沸点的组分得到分离,高沸点组分的峰出不来。(b)柱温较高,恒温120℃时,低沸点的组分分离不好。(C)采用了程序升温方法(30-180)℃,所有组分得到很好分离。 图7-1恒温分析和程序升温比较 二、升温方式 升温方式有单阶程序升温(恒温--线性--恒温)和多阶程序升温。如图7-2所示,单阶程序升温在低温时分离低沸点的组分,再升温,高温时分离高沸点的组分。

图7-2单阶程序升温和多阶程序升温三、程序升温与恒温气相色谱法的比较: 表7-1和图7-3、图7-4是恒温分析和程序升温的比较。

图7-3正构烷烃的恒温分析和程序升温的比较 图7-4 醇类的恒温分析和程序升温的比较 第二节 基本原理

一、保留温度 在程序升温中,组分极大点浓度流出色谱柱时的柱温叫保留温度,其重要性相当于恒温中的t R,V R。对每一个组分在一定的固定液体系中,T R是一个特征数据,即定性数据,不受加热速度、载气流速、柱长和起始温度影响。 1.保留温度及其它保留值 线性升温时保留温度T R: T R= T0+ rt R (7-1) 式中,T0为起始柱温;t为升温时间;r为升温速率。 程序升温中某组分的保留时间和保留体积: t R = ( T R–T0 ) / r (7-2) V P = t R F (7-3) 程序升温中某组分的保留温度,相当于恒温色谱中保留值的对数,因此,在恒温色谱中保留值的对数遵守的规律,在程序升温中也成立。 2.保留温度与碳数关系 T R = aN + b (7-4) (7-4)式中,N是碳数 3.保留温度与沸点关系 T R= cT b+ dT b (7-5) (7-5)式中,N是沸点 例7-1:在程序升温色谱分析中,已知组分A的保留温度为155.20C,正十二烷为1410C,正十六烷为1620C,问组分A是否正构烷烃?保留指数是多少? 解:T R = an + b 141 = 12 a + b 162 = 16 a + b a = 5.25 b = 78 155.2 = 5.25n + 78 n = 14.7 所以,不是正构烷烃。 I A = 100n = 100×14.7 = 1470 二、初期冻结 在程序升温色谱分析中,当一多组分宽沸程混合物进样后,由于起始温度很低,因此,对少数低沸点组分,为最佳柱温,能得到良好的分离。对于大多数组分,这个起始温度是太低了,因为k值很大,蒸气压很低,大都溶解在固定液里,所以,这些组分的蒸气带(色谱带)的移动速度非常慢,几乎停在柱入口不动,这种现象是程序升温色谱中所特有的,叫初期冻结。随着柱温的升高,某些组分的蒸气带便开始以可观的速度移动,柱温越接近保留温度,即越接近出口处,色谱带速度增加的越快。 一般来说,从(T R–30o C)到T R色谱带通过柱的后半段,T R-300C时,恰好位于柱子的中央。 T R-300C 时色谱带在1/2 L处;T R-900C时色谱带在1/8 L处。 三、有效柱温

化验员读本第十六章重点【VIP专享】

色谱分析法是利用物质的物理及物理化学性质的差异,将多组分混合物进行分离和测定的方法。 第一节色谱分析法的原理及分类 色谱分析法是一种物理的分离方法,其分离原理是将被分离的组分在两相间进行分布,其中一相是具有大表面积的固定相,另一相是推动被分离的组分流过固定相的惰性流体,叫流动相。当流动相载带被分离的组分经过固定相时,利用固定相与被分离的各组分产生的吸附或分配作用的差别,被分离的各组分在固定相中的滞留时间不同,使不同的组分按一定的先后顺序从固定相中被流动相洗脱出来,从而实现不同组分的分离。 实现色谱分离的先决条件是必须具备(固定相)和(流动相)。固定相可以是一种固体吸附剂或为涂渍于惰性载体表面上的液态薄膜,此液膜可称作固定液。流动相可以是具有惰性的气体、液体或超临界流体,其应与固定相和被分离的组分无特殊的相互作用。 第二节气相色谱法简介 气相色谱法主要用于低分子量、易挥发有机化合物的分析。 一、方法特点及应用范围 气相色谱法的主要特点:是选择性高、分离效率高、灵敏度高、分析速度快。 二、气相色谱流出曲线的特征 被分析的样品经气相色谱分离、鉴定后,由记录仪绘出样品中各个组分的流出曲线,即色谱图。色谱图是以组分的流出时间(t)为横坐标,以检测器对各组分的电讯号响应值(mV)为纵坐标。色谱图上可得到一组色谱峰,每个峰代表样品中的一个组分。 (一)色谱峰的位置 从进样开始至每个组分流出曲线达极大值所需的时间,可作为色谱峰位置的标志,此时间称为保留时间,用tR表示。气相色谱流出曲线图中与横坐标保持平行的直线,叫做基线,它表示在实验条件下,纯载气流经检测器时(无组分流出时)的流出曲线。基线反映了检测器的电噪声随时间的变化。 从进样开始到惰性组分(指不被固定相吸附或溶解的空气或甲烷)从柱中流出呈现浓度极大值的时间,称为死时间。它反映了色谱柱中未被固定相填充的柱内死体积和检测器死体积的大小,与被测组分的性质无关。 从保留时间中扣除死时间后的剩余时间,称为调整保留时间,反映了被分析的组分因与色谱柱中固定相发生相互作用,而在色谱柱中滞留的时间,其由被测组分和固定相的热力学性质所决定,因此调整保留时间从本质上更准确的表达了被分析组分的保留特性,它已成为气相色谱定性分析的基本参数,比保留时间更为重要。 (二)色谱峰的峰高或峰面积 色谱峰的峰高是指由基线至峰顶间的距离。色谱峰的峰面积,是指每个组分的流出曲线和基线间所包含的面积,对于峰形对称的色谱峰,可看成是一个近似等腰三角形的面积,可由峰高乘以半峰宽(即峰高一半处的峰宽)来计算:峰高或峰面积的大小和每个组分在样品中的含量相关,因此色谱峰的峰高或峰面积是气相色谱进行定量分析的重要依据。 (三)色谱蜂的宽窄 在气相色谱分析中,通常进样量很小,可以获得对称的色谱峰形 (四)色谱峰间的距离 在色谱图上,两个色谱峰之间的距离大,表明色谱柱对各组分的选择性好;两个色谱蜂之间的距离小,表明色谱柱对各组分的选择性差。

第16章 气相色谱法

第16章Gas chromatography 16. 1 内容提要 16.1.1 基本概念 气相色谱法(GC)──是以气体为流动相的色谱分析法。 气液色谱法(GLC)──以气体为流动相,液体为固定相的色谱法。 气固色谱法(GSC)──以气体为流动相,固体为固定相(一般指吸附剂)的色谱法。 填充柱气相色谱法──使用填充色谱柱的气相色谱法。 毛细管柱气相色谱法──使用毛细管柱的气相色谱法。 程序升温气相色谱法──将色谱柱按照预定的程序连续地或分阶段地进行升温的气相色谱法。 多维气相色谱法──将两个或更多个色谱柱组合,通过切换,可对组分进行正吹、反吹或切割等操作的气相色谱法。 全二维气相色谱法(GC×GC)──把两个分离机理不同又互相独立的色谱柱串联结合,两柱间装有调制毛细管接口,由第一根色谱柱分离后的每一个馏分,经调制毛细管聚焦后在以脉冲方式送入第二根色谱柱进行进一步分离,最后得到以柱1的保留时间为x轴,柱2的保留时间为y轴,信号强度为z轴的三维立体色谱图,这种色谱法称为全二维气相色谱法。 气相色谱仪──以气体为流动相而设计的色谱分析仪。主要有气路系统、进样系统、分离系统、检测系统、数据处理记录系统、温度控制系统等组成。 载气──用作流动相的气体。常用的载气有N2,H2,He,Ar等。 载体──承载固定液的惰性固体,又称担体。 固定液──指涂渍在载体或色谱柱内壁表面上起分离作用的物质。 填充柱──填充了固定相的色谱柱。 毛细管柱──内径为0.1~0.5mm 的色谱柱,一般指管内壁附有固定相的空心柱,又称开管柱(open tubular column)。 壁涂毛细管柱(WCOT)──内壁上直接涂渍固定液的毛细管柱。

药物分析题第十七到二十一章

第十七章合成抗菌药物的分析 (一)最佳选择题 1.下列能作为测定左氧氟沙星中光学异构体的HPLC流动相添加剂使用的金属离子是()A. Cu2+ B. Fe3+ C. Co2+ D. Na+ E. Au3+ 2.《中国药典》(2010年版)鉴别诺氟沙星采用的方法是() A.紫外分光光度法B.气相色谱法C.高效液相色谱法 D.化学反应鉴别法E.红外分光光度法 3.具有丙二酸呈色反应的药物是() A.诺氟沙垦B.磺胺嘧啶C.磺胺甲嗯唑D.司可巴比妥E.盐酸氯丙嗪 4.《中国药典》(2010年版)氧氟沙星中“有关物质”检查采用的方法是() A.紫外分光光度法B.薄层色谱法C.高效液相色谱法D.气相色谱法E.毛细管电泳法5.《中国药典》(2010年版)对于盐酸洛美沙星片的含量测定采用的方法是() A.紫外分光光度法B.非水溶液滴定法C.离子对高效液相色谱法 D.气相色谱法E.荧光分光光度法 6.左氧氟沙星原料药的含量测定,《中国药典》(2010年版)采用的是离子对高效液相色谱法,其中所用的离子对试剂是() A.高氯酸钠B.乙二胺C.磷酸二氢钠D.庚烷磺酸钠盐E.氢氧化四丁基铵 7.复方磺胺甲嗯唑中所包含的有效成分是() A.磺胺甲嗯唑和磺胺嘧啶B.磺胺嘧啶和对氨基苯磺酸C.磺胺异嗯唑和磺胺甲嗯唑D.磺胺甲嗯唑和甲氧苄啶E.磺胺和对氨基苯磺酸 8.下列含量测定方法中,磺胺类药物未采用的方法是() A.沉淀滴定法B.溴酸钾法C.紫外分光光度法D.非水溶液滴定洼E.亚硝酸钠滴定法9.用亚硝酸钠滴定法测定磺胺甲噁唑含量时,ChP2010选用的指示剂或指示终点的方法是() A.永停法B.外指示剂法C.内指示剂法D.淀粉E.碘化钾-淀粉 10.复方磺胺甲嚼唑注射液中磺胺、对氨基苯磺酸以及甲氧苄啶降解产物的检查.ChP2010采用的方法是() A.薄层色谱法B.紫外分光光度法C.高效液相色谱法D.比色法E.高效毛细管电泳法(二)配伍选择题 [11—12] A.吸光度B.甲醇与乙醇C.光学异构体D.乙醚、乙醇与丙酮E.防腐剂 11.除去吸光度外,诺氟沙星滴眼液应检查的是() 12.左氧氟沙星应检查的是() [13—15] A.重氮化反应B.与生物碱沉淀剂反应C.铜盐反应 D.A与B两项均有E.以上各项均没有 13.利用磺胺类药物结构中的磺酰胺基进行鉴别的反应有() 14.利用磺胺类药物结构中N1上具有嘧啶类取代基的分解产物,而进行鉴剔的反应有() 15.利用磺胺类药物结构中N1上的含氮杂环取代基进行鉴别的反应有() [16—19] A.紫外分光光度法B.双波长分光光度法C.非水酸量法 D.两步滴定法E.高效液相色谱法 16. ChP2010复方磺胺嘧啶片中的甲氧苄啶含量测定采用() 17. ChP2005复方磺胺甲嚼唑片中的甲氧苄啶含量测定采用()

第十七章 气相色谱法

1、名词解释 相对极性:Px色谱中的相对极性与化学上的极性不同,它指固定液与被测组分之间相互作用力的强弱。因此,固定液相对极性不仅与固定液本身有关,而且与被测组分有关。 麦氏常数:某组分在被测固定液和角鲨烷柱上的保留指数之差,用于表示固定液与某类化合物相互作用力的大小。色谱手册上列出的麦氏常数有5个数据,分别表示与苯、正丁醇、戊彤-2、硝基苯烷、吡啶的作用力大小。各麦氏常数的总和可作为固定液的相对极性,小于300的为非极性固定液。 检测限:某组分的峰高恰为噪声2倍时,单位时间内由载气引入检测器中该组分的质量或单位体积载气中所含该组分的量。 浓度型检测器:响应值与载气中组分的浓度成正比。 质量型检测器:响应值与单位时间内进入检测器的组分质量成正比。 灵敏度(S):浓度型检测器时Sc为1ml载气携带一毫克的某组分通过检测器时产生的电压。质量型检测器时Sm为每秒钟有1g的某组分被载气携带通过检测器时产生的电压。 分流比:进入毛细管柱的物质量与被分流的物质量之比,通常为进入色谱柱的流量与分流流量之比。 漂移:基线在单位时间内单方向缓慢变化的幅值。 噪声:由于仪器本身和工作条件等的偶然因素引起的基线起伏。 相对校正因子:被测物质与标准物质的绝对校正因子之比。 程序升温:在一个分析周期中,按照既定程序改变色谱柱温度,以使沸点差距较大的各组分均得到良好分离。 涂壁毛细管柱:这种毛细管柱把固定液涂在毛细管内壁上。 2、TCD热导检测器 FID氢焰离子化检测器 ECD电子捕获检测器 NPD氮磷检测器 TID热离子化检测器 FPD火焰光度检测器 WCOT柱涂壁毛细管柱 PLOT柱多孔层毛细管柱 SCOT柱载体涂层毛细管柱 FSOT柱融融石英毛细管柱 3、见16章第2题 4、简述范式方程中各项的含义,他们的改变将如何影响柱效? 5、范式方程对选择色谱分离条件有何指导意义? H = A + B/u + Cu dp和填充物的填充不规则因子有关。 填充柱色谱中,A=2λdp 所以,采用均匀、较细粒径的载体,并且填充均匀可减小涡流扩散项,提高柱效。 空心毛细管柱只有一个流路,无涡流扩散,A=0。 B成正比,与载气的平均线速度u成反比。分子扩散系数B与组分在载气中的扩散系数Dg和弯曲因子γ成正比。B=2γDg 填充柱色谱中,由于填料的存在是扩散有障碍,γ<1,空心毛细管柱因扩散无障碍,

第十七章 气相色谱法 - 章节小结

1. 基本概念 固定液相对极性,麦氏常数,程序升温,噪声,漂移,分流比,检测器灵敏度,检测限等。 2.基本理论 (1)差速迁移:在色谱分析中,分配系数不同是组分分离的前提条件。气相色谱法中,载气种类少,可选余地小,要改变组分之间分配系数的或大小或比例,主要通过选择合适的固定液。 (2)GC中的速率理论:速率理论是从色谱动力学的角度阐述影响柱效的因素,以Van Deemter方程式表示,在填充柱中,速率方程为: H=A+B/u+Cu =2λdp+ 2gDg/u+ 在开管柱中,A=0,此时速率方程为: H=B/u+Cgu+Clu =u + 最小板高对应的载气线速度称为最佳线速度,为了减少分析时间,常用的最佳实用线速度大于最佳线速度。在学习速率理论时,应熟悉速率方程式中各项和各符号的含义,即这些因素是如何影响柱效的,从而理解分离条件的选择。 (3)色谱柱分填充柱及毛细管柱两类,填充柱又分气-固色谱柱及气-液色谱柱。固定液按极性分类可分成非极性、中等极性、极性以及氢键型固定液。固定液的选择按相似性原则。常用硅藻土载体分为红色载体和白色载体,红色载体常用于涂渍非极性固定液,白色载体常用于涂渍极性固定液。硅藻土载体常需进行钝化,其目的是为了减小载体表面的活性。载体钝化的方法有酸洗(AW)、碱洗(BW)和硅烷化,这些钝化方法分别除去碱性氧化物(主要是氧化铁)、酸性氧化物(氧化铝)和覆盖硅羟基。 毛细管柱可分为涂壁毛细管柱(WCOT)、载体涂层毛细管柱(SCOT)、多孔层毛细管柱(PLOT)和填充毛细管柱。 检测器分浓度型及质量型两类。氢焰检测器是质量型检测器,具有灵敏度高,检测限小,死体积小等优点。热导检测器是浓度型检测器,组分与载气的热导率有差别即能检测。电子捕获检测器也是一种浓度型检测器,检测含有强电负性基团的物质,具有高选择性和高灵敏度。 为保护检测器和色谱柱,开气相色谱仪时,必须先开载气,后开电源,加热。关机时,先关电源,最后关载气。 (4)柱温的选择原则为:在使最难分离的组分有尽可能好的分离度的前提下,要尽可能采用较低的柱温,但以保留时间适宜及不拖尾为度。对宽沸程样品,采用程序升温方式。 (5)定性与定量:定性方法有已知物对照法,相对保留值,保留指数,利用化学方法配合,两谱联用定性。定量方法常用归一化法和内标法,在没有校正因子情况下,使用内标对比法较好。 3.基本计算 固定液的相对极性 分离方程式 R= 相对重量校正因子=

气相色谱实验(3)—程序升温

气相色谱实验 程序升温色谱法测定石油醚中各组分含量 实验目的: 1.学习气相色谱程序升温分析方法; 2. 学习归一化法测定组分含量; 预习要点: 1.色谱程序升温分析的特点; 2.归一化法; 实验原理: 气相色谱分析中,色谱柱的温度控制方式分为恒温和程序升温两种。程序升温具有改进分离、使峰变窄、检测限下降及省时等优点。因此,对于沸点范围很宽的混合物,往往采用程序升温法进行分析。 现代气相色谱仪都装有程序升温控制系统,是解决复杂样品分离的重要技术。恒温气相色谱的柱温通常恒定在各组分的平均沸点附近。如果一个混合样品中各组分的沸点相差很大,采用恒温气相色谱就会出现低沸点组分出峰太快,相互重叠,而高沸点组分则出峰太晚,使峰形展宽和分析 时间过长。程序升温气相色谱就是在分离过程中逐渐增加柱温,使所有组分都能在各自的最佳温度下洗脱。 程序升温方式可根据样品组分的沸点采用线性升温或非线性升温,图1是几种不同的程序升温方式。 很多石油化工样品分析,可采用归一化法定量,用归一化法测定时,试样应符合下列条件:

1、样品中所有物质从色谱柱中流出; 2、样品中所有物质在检测器上有响应; 特点及要求: 归一化法简便、准确;计算用公式 (1) *进样量的准确性和操作条件的变动对测定结果影响不大; *仅适用于试样中所有组分全出峰的情况。 仪器与试剂: 1.SP —2000型气相色谱仪及色谱工作站;(鲁南瑞虹化工仪器厂) 2.弹性石英毛细管柱(PONA ); 3.氢气、氮气钢瓶,空气泵等; 4.1μl 微量进样器; 5.正己烷(色谱纯或分析纯); 实验步骤: 1. 准备实验样品。(已由实验室做好) 2. 熟悉气相色谱仪及色谱工作站,搞清气路上各调节选钮的作用,注意不得随意转动旋钮。 3. 温度条件:进样口:200℃;检测器:220℃;程序升温:初温50℃,保持10分钟,升温速率 2℃/分,终温160℃ 4. 气相色谱仪通载气(N 2)30分钟,充分赶净色谱柱中的氧气后,检查氢焰检测器灵敏度、衰 减,柱箱、检测器、汽化室(进样器)等温度参数设置是否正确,然后按恒温运行键。 5. 打开色谱工作站,确定数据处理方法中的各项指标后,使色谱工作站处于查看基线工作状态。 6. 氢火焰离子化检测器(FID )温度达220℃后,调节空气及氢气旋钮,先使空气流量小于 300ml/min,氢气流量大于30ml/min ,以易于点火,点火后观察基线是否有波动,有波动一般说明点火成功。将空气流量调准为300ml/min,氢气流量为30ml/min (以压力表的相应值为准)。 7. 待基线稳定后,将色谱工作站处于等待采集数据状态,注意取样时间范围应与方法设定中一 致。取试样0.2μl,注入进样器(注意正确操作,防止损坏进样器及被检测器烫伤),同时按动遥控按钮,数据采集结束后打印报告或记录实验数据。 数据处理: 1.利用(1)式计算石油醚中各组分含量的含量。 各物质校正因子为 1。 2. 记录色谱操作条件,包括色谱柱的固定相、柱长、内径、;柱温(升温程序)、检测器温度、汽化室温度、流速、灵敏度等。 100 100 1 2 1 ? ? ? = ? + + + = ∑ = n i i i i i n i i A f A f m m m m c ) ( % ' '

第十七章 习题答案

第十七章习题答案 17.1 改变流动相或固定相的种类. 17.2 需采用液相色谱法(指定离子色谱或反相色谱) 17.3 减小填料粒度 17.4 反相色谱——流动相的极性大于固定相的极性 正相色谱——流动相的极性小于固定相的极性 17.5 梯度淋洗适用于分离一些组分复杂及分配比变化范围宽的复杂试样。 17.6 分子扩散项。 17.7 示差折光检测器——长链饱和烷烃 荧光检测器——水源中的多环芳烃化合物 17.8 空间排阻色谱 17.9 叙述从略。 17.10 梯度洗脱是指将两种或两种以上不同极性但可互溶的溶剂,随着时间的改变而按一定比例混合,以连续改变色谱柱中冲洗液的极性,离子酸度或PH等,从而改变被测组份的相对保留值,提高分离效率,加快分离速度的一种洗脱方式。 液相中梯度洗脱和气相色谱中程序升温作用相同。不同的是在气相色谱中通过改变温度条件,达到高效快速分离目的;而液相色谱是通过改变流动相组成来达到目的。 17.11 下列色谱法中最适宜分离物质: (a)气液色谱——适宜分离气体或易挥发性液体和固体。(或可转化为易挥发性液体和固体。) (b)正相色谱——适宜分离极性化合物。 (c)反相色谱——适宜分离多环芳烃等低极性化合物。 (d)离子交换色谱——适宜分离离子型和可离解化合物。 (e)凝胶色谱——适宜分离大分子化合物,(分子量>2000) 例蛋白质、氨基酸、核酸等生物大分子。 (f)气固色谱——适宜分离永久性气体及烃类化合物。 (g)液固色谱——适宜分离不同极性的化合物,或不同类型的化合物,特别适合分离异构体。 17.12 分离下列物质宜用(几种液相色谱方法) (a)宜用液固色谱或液液分配色谱 (b)宜用反相色谱 (c)宜用离子交换色谱 (d)宜用正相色谱或反相离子对色谱(需控制pH) (e)宜用凝胶色谱 17.13 解:在硅胶柱上,用甲苯为流动相,推断此为正相色谱,故分离物为极性物质,若 改用极性物三氯甲烷(极性大于甲苯流动相),势必减小该溶质的保留时间。 17.14 指出在正相色谱中以下物质顺序:(先→后) (a)正己烷、苯、正己醇。 (b)乙醚、硝基丁烷、乙酸乙酯 在反相色谱中以下物质说明顺序(先→后) (a)正己醇、苯、正己烷

第十六章 色谱分析法概论 - 章节小结

一、主要内容 1.基本概念 保留时间t R:从进样到某组分在柱后出现浓度极大时的时间间隔。 死时间t0:分配系数为零的组分即不被固定相吸附或溶解的组分的保留时间。 调整保留时间t R':某组分由于溶解(或被吸附)于固定相,比不溶解(或不被吸附)的组分在柱中多停留的时间。 相对保留值r2,1:两组分的调整保留值之比。 分配系数K:在一定温度和压力下,达到分配平衡时,组分在固定相与流动相中的浓度之比。 保留因子k:在一定温度和压力下,达到分配平衡时,组分在固定相和流动相中的质量之比。 分离度R:相邻两组分色谱峰保留时间之差与两色谱峰峰宽均值之比。 分配色谱法:利用被分离组分在固定相或流动相中的溶解度差别或分配系数的差别而实现分离的色谱法。 吸附色谱法:利用被分离组分对固定相表面吸附中心吸附能力的差别或吸附系数的差别而实现分离的色谱法。 离子交换色谱法:利用被分离组分离子交换能力的差别或选择性系数的差别而实现分离的色谱法。 分子排阻色谱法:根据被分离组分分子的线团尺寸或渗透系数的差别而进行分离的色谱法。 涡流扩散:在填充色谱柱中,由于填料粒径大小不等,填充不均匀,使同一个组分的分子经过多个不同长度的途径流出色谱柱,使色谱峰展宽的现象。 纵向扩散:由于浓度梯度的存在,组分将向区带前、后扩散,造成区带展宽的现象。 传质阻抗:组分在溶解、扩散、转移的传质过程中所受到的阻力称为传质阻抗。 保留指数I:在气相色谱法中,常把组分的保留行为换算成相当于正构烷烃的保留行为,也就是以正构烷烃系列为组分相对保留值的标准,即用两个保留时间紧邻待测组分的基准物质来标定组分的保留,这个相对值称为保留指数,又称Kovats指数。 保留体积V R:是从进样开始到某组分在柱后出现浓度极大时,所需通过色谱柱的流动相体积。 调整保留体积V R':是由保留体积扣除死体积后的体积。 保留比R':设流动相的线速度为u,组分的移行速度为v,将二者之比称为保留比。 2.基本理论 (1)色谱分离的原理:组分在固定相和流动相间进行反复多次 的“分配”,由于分配系数K(或容量因子k)的不同而实现分离。各种色谱

气相色谱法习题解答

第十七章 气相色谱法习题解答(P382~P384) 6.答:不一定,因为组分能否分离除与理论塔板数有关外,主要还与分配系数比α有关,即主要与固定液的选择有关。 15.答: 注:根据H-u 曲线及色谱分离方程式来判断。 16.解:2 2 /154.5??? ? ??=W t n R n L H = 642)13140(54.554.5222/1=?=??? ? ??=W t n R A ,cm H A 16.0642100== 594)17176(54.554.5222/1=?=??? ? ??=W t n R B ,cm H B 17.0594100== 516)20193(54.554.5222 /1=?=??? ? ??=W t n R C ,cm H C 19.0516100== 17.解:①'0 5.0 1.0 4.01.0 R t k t -=== ②0 1.0504.0 4.01002.0 2.0 s m m s V V V k K K k V V ?=?==?=?= ③00 1.0 5.050c V t F mL =?=?= ④ 5.0 5.0250R R c V t F mL =?=?=

18.解:由 5.12/)(1 22112≥-=+-=W t t W W t t R R R R R 则 s t t W R R 205.1320 3505.112=-=-= 由 n L H = ,2)(16W t n R = 则 mm H W t H n L R 53911.0)20 350(16)( 1622=?==?==0.54 m 另解: 由 22 114k k n R +? -?= αα , 则有 2 2 114/k k H L R +? -?=αα H k k R L ?+?-=2 2 222)1()1( 16αα 而 10.125 32025 350''1212=--=== R R t t k k α,132525350'022=-= =t t k R m mm H k k R L 56.055611.013 131110.110.15.116 )1()1( 16 2 222 2 222==?+?-??=?+?-=∴)()(αα 故 色谱柱至少0.54米。 19.解:① 由 2 16( )R t n W =,得: 22 2 1615.05160.9289min 4200RA A A t W W n ?==?= 22 2 1614.82160.9147min 4200RB B B t W W n ?==?= 211215.0514.82 0.25()/2(0.92890.9147)/2 R R t t R W W --= ==++ ②H 不变 2211222 0.254200( )()1.0R n R n n =?= 267200n ∴=

第十四章色谱法分离原理

第十四章色谱法分离原理 一.教学内容 1.色谱分离的基本原理和基本概念 2.色谱分离的理论基础 3.色谱定性和定量分析的方法 二.重点与难点 1.塔板理论,包括流出曲线方程、理论塔板数(n)及有效理论塔板数 (n e f f)和塔板高度(H)及有效塔板高度(H e f f)的计算 2.速率理论方程 3.分离度和基本分离方程 三.教学要求 1.熟练掌握色谱分离方法的原理 2.掌握色谱流出曲线(色谱峰)所代表的各种技术参数的准确含义 3.能够利用塔板理论和速率理论方程判断影响色谱分离各种实验因素 4.学会各种定性和定量的分析方法 四.学时安排4学时 第一节概述 色谱法早在1903年由俄国植物学家茨维特分离植物色素时采用。他在研究植物叶的色素成分时,将植物叶子的萃取物倒入填有碳酸钙的直立玻璃管内,然后加入石油醚使其自由流下,结果色素

中各组分互相分离形成各种不同颜色的谱带。这种方法因此得名为色谱法。以后此法逐渐应用于无色物质的分离,“色谱”二字虽已失去原来的含义.但仍被人们沿用至今。 在色谱法中,将填入玻璃管或不锈钢管内静止不动的一相(固体或液体)称为固定相;自上而下运动的一相(一般是气体或液体)称为流动相;装有固定相的管子(玻璃管或不锈钢管)称为色谱柱。当流动相中样品混合物经过固定相时,就会与固定相发生作用,由于各组分在性质和结构上的差异,与固定相相互作用的类型、强弱也有差异,因此在同一推动力的作用下,不同组分在固定相滞留时间长短不同,从而按先后不同的次序从固定相中流出。 从不同角度,可将色谱法分类如下: 1.按两相状态分类 气体为流动相的色谱称为气相色谱(G C) 根据固定相是固体吸附剂还是固定液(附着在惰性载体上的 一薄层有机化合物液体),又可分为气固色谱(G S C)和气液色谱(GL C)。液体为流动相的色谱称液相色谱(LC) 同理液相色谱亦可分为液固色谱(L SC)和液液色谱(L LC)。超临界流体为流动相的色谱为超临界流体色谱(SF C)。随着色谱工作的发展,通过化学反应将固定液键合到载体表面,这种化学键合固定相的色谱又称化学键合相色谱(CB PC). 2.按分离机理分类 利用组分在吸附剂(固定相)上的吸附能力强弱不同而得以分离的方法,称为吸附色谱法。 利用组分在固定液(固定相)中溶解度不同而达到分离的方法称为分配色谱法。 利用组分在离子交换剂(固定相)上的亲和力大小不同而达到分离的方法,称为离子交换色谱法。 利用大小不同的分子在多孔固定相中的选择渗透而达到分离

气相色谱法

气相色谱法 《中国药典》2015年版 气相色谱法系采用气体为流动相(载气)流经装有填充剂的色谱柱进行分离测定的色谱方法。物质或其衍生物气化后,被载气带入色谱柱进行分离,各组分先后进入检测器,用数据处理系统记录色谱信号。 1.对仪器的一般要求 所用的仪器为气相色谱仪,由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统等组成。进样部分、色谱柱和检测器的温度均应根据分析要求适当设定。 (1)载气源气相色谱法的流动相为气体,称为载气,氦、氮和氢可用作载气,可由高压钢瓶或高纯度气体发生器提供,经过适当的减压装置,以一定的流速经过进样器和色谱柱;根据供试品的性质和检测器种类选择载气,除另有规定外,常用载气为氮气。 (2)进样部分进样方式一般可采用溶液直接进样、自动进样或顶空进样。 溶液直接进样采用微量注射器、微量进样阀或有分流装置的气化室进样;采用溶液直接进样或自动进样时,进样口温度应高于柱温30~50℃;进样量一般不超过数微升;柱径越细,进样量应越少,采用毛细管柱时,一般应分流以免过载。 顶空进样适用于固体和液体供试品中挥发性组分的分离和测定。将固态或液态的供试品制成供试液后,置于密闭小瓶中,在恒温控制的加热室中加热至供试品中挥发性组分在液态和气态达到平衡后,由进样器自动吸取一定体积的顶空气注入色谱柱中。

(3)色谱柱色谱柱为填充柱或毛细管柱。填充柱的材质为不诱钢或玻璃,内径为2~4mm,柱长为2~4m,内装吸附剂、高分子多孔小球或涂渍固定液的载体,粒径为0.18~0.25mm、0.15~0.18mm或 0.125~0.15mm。常用载体为经酸洗并硅烷化处理的硅藻土或高分子多孔小球,常用固定液有甲基聚硅氧烷、聚乙二醇等。毛细管柱的材质为玻璃或石英,内壁或载体经涂溃或交联固定液,内径一般为0.25mm、0.32mm或 0.53mm,柱长5~60m,固定液膜厚0.1~5.0μm,常用的固定液有甲基聚硅氧烷、不同比例组成的苯基甲基聚硅氧烷、聚乙二醇等。 新填充柱和毛细管柱在使用前需老化处理,以除去残留溶剂及易流失的物质,色谱柱如长期未用,使用前应老化处理,使基线稳定。 (4)柱温箱由于柱温箱温度的波动会影响色谱分析结果的重现性,因此柱温箱控温精度应在±1℃,且温度波动小于每小时0.1℃。温度控制系统分为恒温和程序升温两种。 (5)检测器适合气相色谱法的检测器有火焰离子化检测器(FID))、热导检测器(TCD))、氮磷检测器(NPD))、火焰光度检测器(FPD))、电子捕获检测器(ECD))、质谱检测器(MS))等。火焰离子化检测器对碳氢化合物响应良好,适合检测大多数的药物;氮磷检测器对含氮、磷元素的化合物灵敏度;火焰光度检测器对含磷、硫元素的化合物灵敏度高;电子捕获检测器适于含卤素的化合物;质谱检测器还能给出供试品某个成分相应的结构信息,可用于结构确证除另有规定外,一般用火焰离子化检测器,用氢气作为燃气,空气作为助燃气。在使用火焰离子化检测器时,检测器温度一般应高于柱温,并不得低于150℃,以免水汽凝结,通常为250~350℃。 (6)数据处理系统可分为记录仪、积分仪以及计算机工作站等。 各品种项下规定的色谱条件,除检测器种类、固定液品种及特殊指定的色谱柱材料不得改变外,其余如色谱柱内径、长度、载体牌号、粒度、固定液涂布浓度、载气流速、柱温、进样量、检测器的灵敏度等,均可适

相关文档
相关文档 最新文档