文档库 最新最全的文档下载
当前位置:文档库 › zigbee LQI、RSSI、丢包率等关系实验1

zigbee LQI、RSSI、丢包率等关系实验1

zigbee LQI、RSSI、丢包率等关系实验1
zigbee LQI、RSSI、丢包率等关系实验1

4.6 zigbee LQI、RSSI、丢包率等关系实验

无线传感器网络环境的复杂多变对ZigBee网络的自组织性提出了挑战,在实际的网络部署中,链路质量指示(LQI)、信号强度(RSSI)、丢包率等都对网络的调度分配与优化具有重要意义,LQI、RSSI在ZigBee标准中已经有了良好的定义,而且在ZigBee芯片上都提供了直接的支持,通过Z-Stack协议栈能够方便的获得。

4.6.1 实验目的与器材

1)实验目的

本实验将利用Z-Stack2007协议栈提供的API获取LQI、RSSI等数据信息,通过多组测试进行统计分析。由于无法模拟复杂的网络环境,主要在实验5.6的基础上,通过修改节点的发射功率以及增加干扰节点来影响统计的终端节点与协调器节点之间的通信,并由此分析发射功率对LQI、RSSI、丢包率等的影响,给实际的网络部署提供具有参考意义的数据信息,同时也可以利用现有代码将节点直接部署在需要建网的地方进行测试分析。

2)实验器材

3个CC2530开发模块(1个协调器节点,1个终端节点,1个干扰节点);

4.6.2 实验原理与步骤

1)LQI、RSSI介绍

1 链路质量指示(LQI)

LQI即链路质量指示,在ZigBee标准中规定的链路质量指示用于指示接收数据包的质量,为网络层或应用层提供接收数据帧时无线信号的强度和质量信息,它要对信号进行解码,生成的是一个信噪比指标。LQI的取值是0x00~0xff,分别表示接收到的信号最差质量(0x00)到最好质量(0xff)。

2 接收信号强度(RSSI)

RSSI(Received Signal Strength Indicator)是接收信号的强度指示,它的实现是在反向通道基带接收滤波器之后进行的。同时可以利用RSSI来进行统计信息进而实现定位功能。RSSI 一般可从芯片直接获取:

RSSI与LQI的关系:RSSI =-(81-(LQI*91)/255)

RSSI与d(距离)的关系:

2)程序流程

1协议栈中,RSSI、LQI获取:

在测试代码中主要通过sendReport()函数完成周期性的代码发送SampleApp_MessageM SGCB()完成在接收到数据包后进行的处理,而获得的数据包中本身就包含了RSSI和LQI 值,通过osal_msg_receive()函数进行获取解析,并形成afIncomingMSGPacket_t结构

体类型:

typedef struct

{

osal_event_hdr_t hdr; /* OSAL Message header */

uint16 groupId; /* Message's group ID - 0 if not set */

uint16 clusterId; /* Message's cluster ID */

afAddrType_t srcAddr; /* Source Address, if endpoint is STUBAPS_INTER _PAN_EP,

it's an InterPAN message */

uint16 macDestAddr; /* MAC header destination short address */

uint8 endPoint; /* destination endpoint */

uint8 wasBroadcast; /* TRUE if network destination was a broadcast address */

uint8 LinkQuality; /* The link quality of the received data frame */

uint8 correlation; /* The raw correlation value of the received da ta frame */

int8 rssi; /* The received RF power in units dBm */

uint8 SecurityUse; /* deprecated */

uint32 timestamp; /* receipt timestamp from MAC */

afMSGCommandFormat_t cmd; /* Application Data */

} afIncomingMSGPacket_t;

因此在SampleApp_MessageMSGCB()函数中,通过调用传入的参数afIncomingMSGPac ket_t *pkt即接收到的数据包,调用即可获得。

为了方便的将RSSI、LQI数据获取并统计丢包率,将数据信息重新组织在从串口输出的包中,从协调器串口输出的数据格式为5个字节,其形式如表4.6.1所示:

2丢包率和修改发射功率

在处理按键事件中加入发送数据包数,通过一个统计发送的数据包数的变量即可。而发射功率的修改,同时通过LCD显示,可参照实验5.6。

3干扰节点

在终端节点与协调器节点的通信测试统计中,加入干扰节点进行对比分析,在终端节点不同的发射功率下,调整干扰节点的发射功率,统计在干扰影响下LQI、RSSI、丢包率等值得变化情况。其中干扰节点只需不断发送数据包,而动态的调整发射功率可参照实验 5.6来进行修改。

3)实验步骤

第一步,下载cc2530测试代码

①在实验源码中,使用EnddeviceEB和CoordinatorEB;测试代码在“实验代码”文

件夹下的“正常实验节点”中,覆盖到工程SampleApp的Source目录下。

②通过仿真器链接ZigBee节点与PC机,根据EnddeviceEB和CoordinatorEB选择下

载代码至ZigBee对应节点。

第二步,启动设备调整发射功率,无干扰发送数据包

①按下协调器的重启键,在lcd显示网络号,led3(黄灯)长亮时说明网络建立;

②使用USB转串口线与协调器节点相连,打开串口助手,调整波特率为38400;

③按下终端节点的重启键,等到led3(黄灯)长亮时说明已与协调器节点建立连接,

通过按键sw3调整发射功率,通过按键sw4调整发送包数

④终端节点选择好功率及发送包数后,按下节点的sw1,从协调器节点连接的串口助

手上可观察到数据

第三步,加入干扰节点测试

⑤按照第一步中的步骤下载干扰节点代码,代码在“实验代码”文件夹下的“干扰节

点”中。

⑥下载EndDeviceEB到干扰节点,通过按键sw3调整发射功率,通过按键sw4调整发

送包数

⑦按下sw1发送数据包给协调器节点

第四步,保存记录数据并分析

①在无干扰情况下,发送功率为3,0,-1,-22对应0xF5,0xD5,0xC5,0x05情况下,发

送数据包,通过串口助手保存显示文件

有干扰情况下,发送功率为3,0,-1,-22情况下,发送数据包并记录。

4)程序清单

清单1 正常测试终端节点

static uint8 sendDataIndex = 1;

static uint8 sendDataNumber = 10; //发送序号

static int txIndex = 3; //最大发射功率 3

(1)在按键中添加自定义事件:

if ( keys & HAL_KEY_SW_1 )

{

/* This key sends the Flash Command is sent to Group 1.

* This device will not receive the Flash Command from this

* device (even if it belongs to group 1).

*/

//设置周期发送事件

osal_set_event(SampleApp_TaskID,MY_DATA_SEND);

}

(2)设置发送功率

if ( keys & HAL_KEY_SW_3 )

{

//发射功率从3 ~~ -22,这里只测试 3 0 -1 -22

switch(txIndex)

{

case 3:

txIndex = 0;

break;

case 0:

txIndex = -1;

break;

case -1:

txIndex = -22;

break;

case -22:

txIndex = 3;

break;

}

macPhyTxPower = txIndex;

macRadioSetTxPower(macPhyTxPower);

#if defined( LCD_SUPPORTED )

HalLcdWriteScreen( "Change RF Poewr", "Test" );

HalLcdWriteValue(macPhyTxPower,16,HAL_LCD_LINE_2);

#endif

}

(3)//更改发送数量

if ( keys & HAL_KEY_SW_4 )

{

switch(sendDataNumber)

{

case 10:

sendDataNumber = 100;

break;

case 100:

sendDataNumber = 250;

break;

case 250:

sendDataNumber = 10;

break;

}

#if defined( LCD_SUPPORTED )

HalLcdWriteScreen( "Change Data Numbers", "Test" );

HalLcdWriteValue(sendDataNumber,10,HAL_LCD_LINE_3);

#endif

}

}清单2 终端节点数据发送

/****************************************************************************** * 事件名 MY_DATA_SEND

* 描述根据MY_SEND_DATA_DELAY定义的时间间隔,利用osal_start_timerEx函数* 定时的发送数据

*****************************************************************************/

if( events & MY_DATA_SEND )

{

sendReport();

if(sendDataIndex > sendDataNumber)

{

osal_stop_timerEx(SampleApp_TaskID,MY_DATA_SEND);

sendDataIndex=1;

}

else

osal_start_timerEx( SampleApp_TaskID, MY_DATA_SEND, MY_SEND_DATA_DELAY ); }

调用的自定义函数sendReport:

void sendReport(void)

{

uint8 buffer[5];

//send data

buffer[0] = (uint8)(SampleAppFlashCounter++);

buffer[1] = LO_UINT16( SAMPLEAPP_FLASH_DURATION );

buffer[2] = HI_UINT16( SAMPLEAPP_FLASH_DURATION );

buffer[3] = sendDataIndex++;

buffer[4] = (uint8)txIndex;

if ( AF_DataRequest( &SampleApp_Flash_DstAddr, &SampleApp_epDesc,

SAMPLEAPP_FLASH_CLUSTERID,

5,

buffer,

&SampleApp_TransID,

AF_DISCV_ROUTE,

AF_DEFAULT_RADIUS ) == afStatus_SUCCESS )

{

}

}

4.6.3 实验结果

测试说明:测试环境为实验室东北角到西南角桌子之间(约5m),终端发送,协调器接收,终端发送时间间隔为400ms,每次发送100个包,有效载荷为20个字节。(功率单位为dBm)

1. 不同发射功率情况下,丢包率的变化,如图4-6-1所示。

图4-6-1 丢包率随功率变化趋势

结果说明:

(1)在无干扰情况下,终端发送间隔400ms时,在不同的发射功率下,基本无丢包;

(2)在干扰节点的发射功率为3dBm时,终端的发射功率越小,丢包越严重;如图,即使终端的发射功率为3dBm时,也有丢包的情况;

(3)在干扰节点的发射功率为-22dBm时,终端的发射功率越小,丢包越严重;如图,但是在终端的发射功率为3和0dBm时,基本没有丢包。

2. 在无干扰的情况下,不同发送功率下LQI比较,如图4-6-2所示。

图4-6-2无干扰情形下, LQI随功率变化趋势

结果说明:

(1)LQI的计算:LQI值越大,一般表明接收包的信号品质越好;

(2)在终端采用3dBm这样大的发射功率时,能获得大的LQI值,而功率为-1dBm时,部分LQI值为0;

(3)发射功率为0dBm时,LQI值波动相对小,而其他的波动则较大。

3.在无干扰的情况下,不同发送功率下RSSI变化,如图4-6-3所示。

图4-6-3无干扰情形下,RSSI随功率变化趋势

结果说明:

(1)RSSI值计算:这里显示的RSSI绝对值,该值越小,表示接收到的信号越强。

(2)终端发射的功率越大,RSSI绝对值越小,发射功率越小,RSSI绝对值越大

(3)当发射功率为0dBm时,RSSI波动最小

4.在有干扰的情况下,终端不同发送功率下LQI变化

实验说明:LQI值为每组(100个数据包)的平均值,终端发射功率选为3 、0 、-22dBm,干扰节点的发射功率为3、-22时,LQI值变化的对比如图4-6-4所示。

图4-6-4有干扰情形下,LQI随功率变化趋势

结果说明:

(1)在发射功率与干扰功率同为3dBm时,干扰功率大,接收端的LQI值减小幅度大于干扰功率小时;

(2)在发射功率为0dBm时,干扰节点不同的发射功率对接收端的LQI影响不大

5.在有干扰的情况下,终端不同发送功率下RSSI变化

测试说明:这里显示的RSSI绝对值,该值越小,表示接收到的信号越强。具体数据如图4-6-5所示。

4-6-5有干扰情形下,RSSI随功率变化趋势

结果说明:

终端发射功率越大,干扰节点对接收端的RSSI影响的越小

问题:

1.实验测试一下RSSI与距离的关系,计算一下在现有实验设备环境下的误差是多少?

2.实验观察在相同的距离上,空旷的环境和室内走廊环境下,LQI、RSSI值的变化,为什么有这样的变化?

3.在2的基础上,加入干扰节点,观察LQI、RSSI值变化,分析变化的原因?

4.在2的基础上,增加实验的节点数目,观察网络规模的扩大,对测试结果的影响。

5.在2的基础上,尝试着打开手机或电脑Wi-Fi,观察其对实验有无直接的影响,并分析原因。

心理语言学(桂诗春)—新编心理语言学

桂诗春:新编心理语言学,上海:上海外语教育出版社,2000年6月第1版。 1 绪论 1·1 心理语言学的对象 心理语言学是研究语言和心理的。 我们可以归纳出心理语言学的几个特点: 1.它是研究语言的习得和使用的心理过程的。 2.这个过程是以认真为基础的。 3.它主要采用实验方法(包括心理测量的方法和统计的方法)来进行研究;在一些领域(如语言习得)还需要采用自然观察方法和语料库方法。 1·4 心理语言学的诞生和发展 1·5 心理语言学的研究方法 (1)自然观察 心理语言学所采用的第一种研究方法是自然观察。有些自然产生的行为(如语言习得和失言)是很难任意操纵的,只好在它出现时便进行观察;还有些行为一经操纵,就会收到影响,乃至失真,在实验室里的电话通话和日常的电话通话显然不同。 自然观察具有以下特点: 第一个特点是:不干预性。即不掺杂观察者的任何主观因素,如实地记录客观现象,但这有时不容易做到。因为语言活动既是心理活动,又是社会活动,所以有的观察又强调观察者参与语言活动。既要参与但又不干预,就要求观察者灵活掌握。 第二个特点是:强调事物的型式性。这是观察的根本目的,即从个别的、随机的行为中找出规律性的东西进行分析。 第三个特点是:直观性。这是自然观察的有点,直观的东西比臆断的东西要可靠,但是问题在于心理活动不能直观,必须根据表面观察到的行为去推断其心理过程,要推断就难以避免主观性。 第四个特点是:长时性。自然观察要花很多精力和时间才能找到事物的型式。 (2)实验法 心理语言学所采用的第二种研究方法是实验法。实验法是自然科学所采用的方法,这是一种有控制的观察。任何一种行为都是很多因素起作用的结果。为了

实验12 信号强度实验(RSSI)

实验三信号强度实验(RSSI) 一实验目的 通过改变两个802.15.4/Zigbee通讯模块之间的距离,观察信号强度随距离变化的情况,了解RSSI 二实验设备 ●PC机一台 ●802.15.4/Zigbee模块两个 ●仿真器一个 ●串口延长线一根 ●IDC10仿真排线一根 三实验说明 RSSI(receive signal strength indicator):即为信号强度指示,是真实的接收信号强度与最优接收功率等级间的差值。 LQI [2-4](link quality indicator):是链路质量指示,表征接收数据帧的能量与质量。其大小基于信号强度以及检测到的信噪比(SNR),由MAC(media access control)层计算得到并提供给上一层,一般与正确接收到数据帧的概率有关口[3]。 RSSI值和LQI值在802.15.4/ZigBee收发模块每接收一个数据帧时都可以得到,及时反映信号强度的变化和受到的干扰的变化。LQI的动态范围比RSSI大,有更高的分辨率。 四实验步骤 1.连接实验设备 首先把仿真器和2430 学习板连接好,再用USB 线把仿真器和电脑连接起来 2.下载程序 按照实验二中的方法,将“实验三信号强度实验(RSSI)\spptest\App_Ex\cc2430\IAR_files \appEx_cc2430.ewp添加到IAR工程中,然后分别将RX和TX下载到两个模块中 3. 模块加电测试 给两个802.15.4/Zigbee模块加电,如果两个模块组网成功,则模块上的两个LED灯交替闪烁 4. 打开协议分析软件Packet sniffer for CC2430 IEEE 802.1 5.4,然后改变两个 802.15.4/Zigbee模块之间的距离,观察RSSI/LQI值的变化情况,如图15:

局部解剖学实验方案

局部解剖学实验总结周振东 经过一个学期的局解实验课学习,以下是我对每次实验课的总结 第一次实验课主要是腋窝的解剖。 1. 解剖浅层找到肋间臂神经 剔除浅筋膜和腋筋膜后。 。 从喙突向下修洁肱二头肌短头和喙肱肌;2)在喙肱肌内部剖出肌皮神经、正中神经;3)再循正中神经向上找出位于其二根之间的腋动脉;4)剖出位于腋动静脉之间较粗的尺神经和前臂内侧皮神经及位于腋静脉内侧的臂内侧皮神经;5)观察腋动脉的分段,剖出各段的分支;6)在腋动脉的后方,找出桡神经。 (5)解剖腋窝后壁穿三边空、四边孔的结构:剖出穿三边空的旋肩胛动脉和传四边孔的腋神经、旋肱后动脉。 (6)解剖胸背神经,肩胛下神经上支和下支,位于腋中线附近的胸长神经。 (二)臂、肘、前臂前区,肩胛区,臂、肘、前臂后区 Ⅰ臂、肘、前臂前区. 1.解剖浅层结构: (1)寻认头静脉及前臂外侧皮神经,贵要静脉及前臂内侧皮神经。 (2)寻找臂内侧皮神经、肘正中静脉、肘淋巴结。 2.臂部剔除浅筋膜和深筋膜: 3观察肱二头肌内、外侧沟及有关的血管神经:正中神经、尺神经、肱动脉及桡神经,观察它们的走行、分布范围。 4解剖肘窝: (1)清理肘窝的边界:观察肘窝的境界,显露肘窝的内容。 (2)解剖肘窝内的结构:修洁肱二头肌腱,在其内侧剖出和修洁肱动脉的末端至分为桡、尺动脉,在肱动脉的内侧修洁正中神经。 5解剖前臂前肌群、血管和神经: (1)观察前臂肌前群浅层。 (2)剖查桡血管神经束:将肱桡肌拉向外侧,修洁桡动脉和桡神经前支,并寻找其分支。 (3)剖查尺血管神经束:将尺侧腕屈肌拉向外侧,找出尺神经和尺动脉,并寻找其分支。 (4)剖查正中神经:在旋前圆肌两头之间找出已剖出的正中神经,观察其分支分布。 (5)剖查前臂肌前群深层。 6 剖出骨间总动脉、骨间前动脉、骨间后动脉和前臂屈肌后间隙。 Ⅱ肩胛区,臂、肘、前臂后区 1. 解剖浅筋膜及浅筋膜内的结构:找出臂外侧皮神经、臂后皮神经、贵要静脉、头静

二十个著名的心理学实验

01 斯坦福监狱实验 斯坦福监狱实验(Stanford prison experiment)是1971年由美国心理学家菲利普·津巴多领导的研究小组,在设在斯坦福大学心理学系大楼地下室的模拟监狱内,进行的一项关于人类对囚禁的反应以及囚禁对监狱中的权威和被监管者行为影响的心理学研究,充当看守和囚犯的都是斯坦福大学的在校大学生志愿者。 囚犯和看守很快适应了自己的角色,一步步地超过了预设的界限,通向危险和造成心理伤害的情形。三分之一的看守被评价为显示出“真正的”虐待狂倾向,而许多囚犯在情感上受到创伤,有2人不得不提前退出实验。最后,津巴多因为这个课题中日益泛滥的反社会行为受到警告,提前终止了整个实验。 斯坦福监狱实验经常被拿来与米尔格拉姆实验进行比较,米尔格拉姆实验是于1961年在耶鲁大学,由津巴多中学时代的好友斯坦利·米尔格拉姆进行的。津巴多作为监狱长。 死亡实验是一套故事基于斯坦福大学监狱实验的电影。 津巴多模拟监狱实验 斯坦福大学(Stanford)的心理学家菲利普·津巴多(Philip Zimbardo)和他的同事在斯坦福大学的心理学系办公大楼地下室里建立了一个“监狱”,他们以每天15美元的价格雇用了24名学生来参加实验。这些学生情感稳定,身体健康,遵纪守法,在普通人格测验中,得分属正常水平。实验者对这些学生随意地进行了角色分配,一部分人为“看守”,另一部分人为“罪犯”,并制定了一些基本规则。然后,实验者就躲在幕后,看事情会怎样发展。 两个礼拜的模拟实验刚刚开始时,被分配做“看守”的学生与被分配做“罪犯”的学生之间,没有多大差别。而且,做“看守”的人也没有受过专门训练如何做监狱看守员。实验者只告诉他们“维持监狱法律和秩序”,不要把“罪犯”的胡言乱语(如“罪犯”说,禁止使用暴力)当回事。为了更真实地模拟监狱生活,“罪犯”可以像真正的监狱中的罪犯一样,接受亲戚和朋友的探视。但模拟看守8小时换一次班,而模拟罪犯除了出来吃饭、锻炼、去厕所、办些必要的其他事情之外,要日日夜夜地呆在他们的牢房里。 “罪犯”没用多长时间,就承认了“看守”的权威地位,或者说,模拟看守调整自己,进入了新的权威角色之中。特别是在实验的第二天“看守”粉碎了“罪犯”进行反抗的企图之后,“罪犯”们的反应就更加消极了。不管“看守”吩咐什么,“罪犯”都唯命是从。事实上,“罪犯”们开始相信,正如“看守”所经常对他们说的,他们真的低人一等、无法改变现状。而且每一位“看守”在模拟实验过程中,都作出过虐待“罪犯”的事情。例如,一位“看守”说,“我觉得自己不可思议……我让他们互相喊对方的名字,还让他们用手去擦洗厕所。我真的把…罪犯?看作是牲畜,而且我一直在想,…我必须看住他们,以免他们做坏事。”?另一位“看守”补充说,“我一到…罪犯?所在的牢房就烦,他们穿着破衣服,牢房里满是难闻的气味。在我们的命令面前,他们相对而泣。他们没有把这些只是当作一次实验,一切好像是真的,尽管他们还在尽力保持自己原来的身份,但我们总是向他们表明我们才是上司,这使他们的努力收效甚微。” 这次模拟实验相当成功地证明了个体学习一种新角色是多么迅速。由于参加实验的学生在实验中表现出病态反应,在实验进行了6天之后,研究人员就不得不终止了实验。

WiFi信号及手机信号检测方法及标准

店家WiFi信号及手机信号检测方法及标准 一、技术参数说明: 1、信号功率绝对值dBm:仔细看的时候会发现这个值是负的,也就是说手机会显示比如-67(dBm),那就说明信号很强。科普一个小知识:中国移动的手机接收电平≥(城市取-90dBm;乡村取-94dBm)、(中国联通的手机接收电平≥-95dBm)时,则满足覆盖要求,也就是说此处无线信号强度满足覆盖要求。-67dBm 要比-90dBm 信号要强20多个dB,那么它在打电话接通成功率和通话过程中的话音质量都会强很多(当然也包括EDGE/GPRS上网的速度那些),所以dBm值越大信号就越好,因为是个负值,而且在你手里的时候它永远是负值。如果感兴趣且附近有无线基站的天线的话,可以把你的手机尽量接近天线面板,那么值就越来越大,如果手机跟天线面板挨到一起,那么它可能十分接近于0。(0是达不到的,这里0的意思不代表手机没信号)。 2、移动设备信号发射功率概念:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站近时发射功率小。手机中的数据存储器存放有功率级别表,当手机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实

际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。也就是说,手机信号强度不是越强越好,也不是起弱越好,它是在一定标准范围内的。 3、Kbps、KBps:又称比特率,指的是数字信号的传输速率,也就是每秒钟传送多少个千位的信息(K表示千位,Kb表示的是多少千个位);Kbps也可以表示网络的传输速度,为了在直观上显得网络的传输速度较快,一般公司都使用kb(千位)来表示,如果是KBps,则表示每秒传送多少千字节。1KByte/s=8Kbps(一般简写为1KBps=8Kbps)。ADSL上网时的网速是512Kbps,如果转换成字节,就是512/8=64KBps(即64千字节每秒)。 二、店家检测各类信号强度的方法: 1、移动设备类型:检测设备可以是:iOS系统移动设备、Android 系统移动设备和笔记本电脑。 2、检测软件: 1)iOS系统:SPEEDTEST,可检测Ping值、下载速率、上传速率,功能亮点是可以保存往次检测记录。 2)Android系统:SPEEDTEST,功能和iOS系统的一样,功能亮点是可以保存往次检测记录。 3)WiFi分析仪:可检测WiFi信号强度、信道、寻找AP等功能。

局部解剖学实验指导胸部参考答案汇总

局部解剖学实验指导参考答案 第一章胸部 一、选择题 A 型题: 1-5 E A A D D 6-10 D D A E B 11-15 D D D C B 16-20 D B E A C 21-25 E E C D C 26-30 B D E C E 31-35 C A C A D 36-40 B C C A C 41-45 C C D C E 46-48 B D D B 型题: 49-50 B A 51-55 A D C A B 56-60 E C D D C 61-65 B A A E D 66-70 B E E D C 71-75 B A B C A 76-77 D E C 型题: 78-80 A B D 81-85 A A C D A 86-90 C C A D D 91-95 A B C D B 96-100 A C A B D X 型题:

101-105 ABCE ACD ABCD ABDE CD 106-110 ACDE BDE ABCDE ACDE ABCE 111-115 ABC ABCDE ABE BDE CE 116-120 ADE ACE BC AB ABCD 121-125 ABC BCDE ABCD AC DE 126-130 BD AB ABCDE BC AD 131-133 BCDE ACE ABCDE 注:第 123题 C 选择项“弓”去掉。 二、填空题 1.皮肤、浅筋膜、深筋膜、胸廓外肌层、肋骨、胸内筋膜、壁胸膜 2.肋弓、剑胸结合 3.乳房、胸肌筋膜、乳房悬韧带 4.胸肌淋巴结、中央淋巴结、尖淋巴结、锁骨上淋巴结、胸骨旁淋巴结、对侧乳房淋巴管、腹前外侧壁上部的淋巴管、膈下间隙、肝、胸肌间淋巴结、尖淋巴结。 5.胸长神经、前锯肌、翼状肩;胸背神经、背阔肌 6.肋胸膜、膈胸膜、纵隔胸膜、胸膜顶;胸膜隐窝、肋胸膜、膈胸膜、肋膈隐窝 7.肺静脉、肺动脉、支气管;肺动脉、支气管、肺静脉;上叶支气管、肺动脉、中下叶支

8个经典心理学实验

8个经典心理学实验 1霍桑实验: 1924~1932年,以哈佛大学教授G.E.梅奥为首的一批学者在美国芝加哥西方电气公司所属的霍桑工厂进行的一系列实验的总称。 1924年11月,霍桑工厂内的研究者在本厂的继电器车间开展了厂房照明条件与生产效率关系的实验研究。研究者预先设想,在一定范围内,生产效率会随照明强度的增加而增加,但实验结果表明,不论增加或减少照明强度都可以提高效率(有两个女工甚至在照明降低到与月光差不多时仍能维持生产的高效率)。随后,研究者又试验不同的工资报酬、福利条件、工作与休息的时间比率等对生产效率的影响,也没有发现预期的效果。 1927年梅奥等人应邀参与这项工作。从1927~1932年, 他们以"继电器装配组"和"云母片剥离组"女工为被试,通过改变或控制一系列福利条件重复了照明实验。 结果发现,在不同福利条件下,工人始终保持了高产量。研究者从这一事实中意识到,工人参与试验的自豪感极大地激发了其工作热情,促使小组成员滋生出一种高昂的团体精神。这说明职工的士气和群体内的社会心理气氛是影响生产效率的更有效的因素。在此基础上,梅奥等在1928~1932年中,又对厂内2100名职工进行了采访,开展了一次涉及面很广的关于士气问题的研究。起初,他们按事先设计的提纲提问,以了解职工对工作、工资、监督等方面的意见,但收效不大。后来的访谈改由职工自由抒发意见。由于采访过程既满足了职工的尊重需要,又为其提供了发泄不满情绪和提合理化建议的机会,结果职工士气高涨,产量大幅度上升。为了探索群体内人际关系与生产效率之间的联系,研究者在1931~1932年间进行了对群体的观察研究。结果发现,正式群体内存在着非正式群体,这种非正式群体内既有无形的压力和自然形成的默契,也有自然的领导人,它约束着每个成员的行为。 在心理学研究的历史上,霍桑实验第一次把工业中的人际关系问题提到首要地位,并且提醒人们在处理管理问题时要注意人的因素,这对管理心理学的形成具有很大的促进作用。梅奥根据霍桑实验,提出了人际关系学说。人际关系学说为西方管理科学和管理工作指出了新的方向。但也有人对霍桑实验提出批评,认为它带有推论的性质,缺乏客观性。研究者没有考虑工人的阶级觉悟、工会的作用以及其他厂外力量对职工态度的影响。 2."迟延满足" 发展心理学研究中有一个经典的实验,称为“迟延满足”实验。实验者发给4岁被试儿童每人一颗好吃的软糖,同时告诉孩子们:如果马上吃,只能吃一颗;如果等20分钟后再吃,就给吃两颗。有的孩子急不可待,把糖马上吃掉了;而另一些孩子则耐住性子、闭上眼睛或头枕双臂做睡觉状,也有的孩子用自言自语或唱歌来转移注意消磨时光以克制自己的欲望,从而获得了更丰厚的报酬。研究人员进行了跟踪观察,发现那些以坚韧的毅力获得两颗软糖的孩子,长到上中学时表现出较强的适应性、自信心和独立自主精神;而那些经不住软糖诱惑的孩子则往往屈服于压力而逃避挑战。在后来几十年的跟踪观察中,也证明那些有耐心等待吃两块糖果的孩子,事业上更容易获得成功。实验证明:自我控制能力是个体在没有外界监督的情况下,适当地控制、调节自己的行为,抑制冲动,抵制诱惑,延迟满足,坚持不懈地保证目标实现的一种综合能力。它是自我意识的重要成分,是一个人走向成功的重要心理

实验一_信号及其传输特性分析

实验一 练习一信号的特性及其频谱分分析 实验原理 一. 信号的概念和分类 1. 信号 在通信与信息系统中,传输的主体是信号,系统所包含的各种电路、设备都是为了实施这种传输。因此,电路系统设计和制造的要求,必然要取决于信号的特性。随着待传输信号的日益复杂,相应地,信号传输系统中的元器件、电路的结构等也日益复杂。因此,对信号进行分析变得越来越重要。 2. 信号的分类 下面从不同角度对信号进行分类。 确定信号和随机信号:若其在任何时间的值都是确定已知的,那么是确定信号;若信号在实际发生之前具有一定的不确定性,则表明信号是随机信号。 连续信号和离散信号:将一个信号表示成为时间t的函数,如果其时间变量t的取值是连续的,那么这个信号就称为连续信号。若信号只在某些不连续的时间点上有确定的取值,则称信号是离散信号。 模拟信号和数字信号:时间或幅度连续的信号称为模拟信号,时间和幅度都离散的信号称为数字信号。 周期信号和非周期信号:在一个可以测量的时间范围内完成一种模式,并且在后续的相同时间范围内重复这一模式,这种信号是周期信号;不随时间变化出现重复的模式或循环,则是非周期信号。 二. 周期模拟信号 周期模拟信号可以分为简单类型或复合类型两种。简单类型模拟信号,即正弦波,不能再分解为更简单的信号。而复合型模拟信号则是由多个正弦波信号组成的。 正弦波是周期模拟信号的最基本形式。可以看做一条简单的震荡曲线,在一个周期内的变化是平滑、一直的、连续的、起伏的曲线。下图就是一个正弦波,每个循环由时间轴上方的单弧和后跟着的时间轴下方的单弧构成。 图1-1-1 正弦波

单个正弦波可以用三个参数表示:峰值振幅、频率和相位。这三个参数完全决定正弦波。 1. 峰值振幅 信号的峰值振幅是其最高强度的绝对值,与其携带的能量成正比。图1-1-2表示了两个信号和它们的峰值振幅。 图1-1-2 相位和频率相同但振幅不同的两个信号 2. 周期和频率 周期是信号完成一个循环所需要的时间,以秒为单位。频率是指1秒内的周期数。周期是频率的倒数,频率是周期的倒数,如下列公式所示。 图1-1-3显示了两个信号和它们的频率。

信号强度(RSSI)实验

2.7 信号强度(RSSI)实验 【实验内容】 RSSI指接收信号的强度,在无线定位、无线测距方面有广泛的应用。本实验通过点对点或者一点对多点通信测定RSSI的值,通过该实验希望读者知道RSSI值的获取方法,同时使读者能够更加熟练地使用SXIOT-WSN实验平台下的底层协议栈。 【实验环境】 1. 带有CC2530芯片的基站一个 2. 基本节点一个 3. 天线两个 4. 烧录器一个 5. 烧录线一根 6. Mini USB线一根 7. 平行串口线一根 【准备知识】 查阅CC2530芯片手册,了解RSSI的概念,了解RSSI和发送功率以及和传输距离的关系。 【实验原理】 RSSI即Received Signal Strength Indication,CC2530芯片中有专门读取RSSI值的寄存器,当数据包接收后,CC2530芯片中的协处理器将该数据包的RSSI值写入寄存器。如图2.7.1所示。RSS值和接收信号功率的换算关系如下: P = RSSI_VAL + RSSI_OFFSET [dBm]

其中,RSSI_OFFSET是经验值,一般取-45,在收发节点距离固定的情况下,RSSI值随发射功率线性增长,如下图所示。 RSSI的产生过程 图 2.7-2RSSI随发射功率的变化曲线 【注意事项】 烧录基站的时候节点号一定要为1,烧录节点的时候,组号要和基站统一。因为在代码中规定,节点号为1的只收不发,而节点号不为1的只发不收。 【实验总结】 在完成这个实验后,我们能够掌握CC2530中RSSI对应的寄存器,同时可以掌握怎么去获取两个通讯节点之间的RSSI。在掌握RSSI的基础之上,可以从直观上了解RSSI和距离之间的关系。

局部解剖学实验操作指导

. 解剖操作简介 局部解剖学是研究人体各个局部层次结构及各器官之间的位置与毗邻关系的科学。它是临床医学课程尤其是外科学的重要基础课程。局部解剖学的学习方法与系统解剖学不同,系统解剖学是通过理论大课的讲授和实验小课的示教见习进行学习;而局部解剖学主要是通过学生自己大量的实地解剖操作和少量的阶段总结性大课进行学习的。因此,实地解剖操作学习局部解剖学的主要方法,是掌握人体解剖学知识的重要实践过程。通过解剖、观察和辨认,不仅能巩固已获得的系统解剖学知识,而且将进一步熟悉和掌握人体各局部的层次结构和各器官之间的毗邻关系,为学习临床医学课程奠定良好的基础。百闻不如一见,百看不如实践,在实地解剖过程中,要充分利用有限的尸体标本,在教员指导下,严格按照解剖操作步骤和要求,认真细致地进行解剖,细心观察和辨认各层次结构,并作阶段性的归纳总结,真正按教学大纲的目的和要求,掌握局部解剖学知识。 为了更好地进行实地解剖操作,在解剖尸体之前,先简要介绍一下解剖操作的方法和要求。 一、解剖操作前准备 1、每次课前应预习《局部解剖学》和《局部操作指导》,明确本次课的目的要求、解剖部位的层次结构和毗邻关系以及操作步骤和过程中的注意事项。 2、第一次进实验室前学员要进行分组,每个实验室分成若干个组,每组分成4个小组解剖1具标本,每个小组由3~5名学员组成。 3、小组成员要进行分工,要安排主刀、助手、阅读教材和指导者。每个角色要定期交换,使每个学员都有解剖操作的机会。 4、准备好各种操作器械,如刀、镊、止血钳,此外还有咬骨钳、肋骨剪等。 5、放置好尸体的位置。 二、常用的解剖器械及其使用方法 在实地解剖过程中,常用的器械有刀、剪、镊、止血钳和组织钳,此外还有咬骨钳、肋骨剪、锯子、骨凿和锤子等。 1、刀有解剖刀和手术刀两种,现一般使用手术刀。通常用于切开皮肤、翻起皮瓣以及切割各种组织。持刀的方式有执笔式持刀法和指压式持刀法之分。前者与持钢笔的姿势相同,解剖操作时多用此法。后者则将刀柄握于拇指与中指、环指及小指之间,食指压在刀背上,此法除用于作较长的皮肤切口外,一般均不采用。 2、止血钳有各种不同形式的止血钳,其用途亦不尽相同,一般用于钳夹各种组织,亦可借助止血钳分离各种组织结构。持止血钳的方法是将止血钳柄套在拇指和环指上,食指紧贴于止血钳背,起导向和稳定作用。 3、镊含有各种不同形式的镊,用于固定各种组织器官,以免滑动,便于解剖。亦可借助镊剥除各种组织。除固定皮肤采用有齿镊外,固定其它各种组织器官均宜用无齿镊。持镊法与握笔姿势相同。 除上述常用的解剖器械外,还有剪、组织钳、咬骨钳和肋骨剪等器械,将在使用时逐一介

2.4G各信道信号强度测试实验

***************** 实践教学 ******************* 兰州理工大学 计算机与通信学院 2013年春季学期 嵌入式系统开发技术课程设计 题目:2.4G各信道信号强度测试实验 专业班级:通信工程4班 姓名:王强 学号:10250424 指导教师:薛建斌 成绩:

摘要 本次课程设计使用CC2530的RF射频CC2530RF功能模块及带有RF功能模块的智能主板分析2.4G频段信道11-26各个信道的信号强度。在模块设计中,在两个CC2530的RF 模块间进行无线通信,并且在无线通信的基础上进行2.4G 频段信道11-26 各个信道的信号强度分析与测试。而且测试的效果是通过LED灯的亮灭来进行监测的。 关键词: CC2530 无线通信 2.4G信道信号监测

前言.......................................................................... 一、CC2530 基本介绍 (5) 1.1CC2530芯片基本介绍 (5) 1.2CC2530芯片引脚功能 (5) 1.3电源引脚功能 (6) 1.4控制线引脚 (7) 1.5强型8051内核 (7) 1.6复位 (7) 二、CC2530RF模块以及信号信道分配模式 (8) 三、设计流程 (9) 3.1计原理及说明 (9) 3.2设计步骤 (9) 3.3程序流程图 (10) 四、测试 (11) 4.1测试装置 (11) 4.2设计原理及说明 (11) 4.3测试步骤 (11) 总结 (13) 参考文献 (14) 致谢 (15) 附录 (16)

10个著名的心理学实验

10个著名的心理学实验 我们都有成为恶魔的潜在可能。 在心理学史上最著名的具有争议性的实验,是1971年斯坦福大学的监狱实验。它从微观上展现出社会环境会怎样影响人的行为。由心理学家Philip Zimbardo领导的研究者们,在斯坦福的心理大楼的地下室设立了一个模拟监狱,并且挑选了24名大学生(没有犯罪记录以及被视为心理健康)去扮演囚犯和监狱的警卫。然后研究人员通过使用隐蔽摄像头观察囚犯(必须每天24小时留在监狱里)还有狱警(每8小时轮班)。 实验原本打算持续两周,但因为狱警的虐待行为,实验在实验的第六天就被迫中止——有时候他们甚至让囚犯遭受心理折磨——从囚犯展现出极度的情绪紧张和焦虑可以看出。 “狱警对囚犯的攻击升级,让他们脱得赤裸裸的,把袋子套在他们头上,最后强迫他们做一些让人羞辱的关于性的行为,”Zimbardo这样对《美国科学家》说。“6天之后我不得不结束实验因为这个实验实在是失控了——除了担心警卫会怎么对待囚犯之外,我晚上都睡不着觉。” 我们没有注意到在我们的前方正在发生什么。 试想一下,你知道你周围将会发生什么事吗?你可能没有像你认为的那样保持清醒。在1998年,哈佛大学和肯特州立大学针对大学里的路人展开关于人们对即时环境的警觉程度。在实验中,一个演员向路人迎面走来,然后向他问路。当路人向演员指示方向的时候,有两个人拿着一扇大木门从演员和路人之间经过,在几秒内完全阻挡了他们的视线。在那段时间内,本来的演员会替换成另一个演员,不仅他们的身高、体格不同,连衣着、发型还有声线都不一样。超过一半的被试都没有注意到这个替换改变。 这个实验是最先阐明“变化视盲”的现象的实验之一,它仅仅向我们展示了对于现有提供的视觉场景,我们是非常选择性地接受——那似乎显示出我们比想象中还要依赖我们的记忆和模式识别。 延迟满足很困难——但如果延迟满足,我们会更成功。 斯坦福在19世纪60年代末有一个很著名的实验,是测试学前儿童的抗拒即时满足的的诱惑的能力。这个实验引申出很多关于意志力和自制力的一些很有力的观点。在这个实验中,4岁的孩子们进入到一个房间里,在他们面前的事放在碟子上的一块棉花糖。研究人员告诉他们要不就把棉花糖吃掉,要不就等15分钟后研究人员回来,他们会获得两块棉花糖。 虽然大部分的孩子都说他们会等,但是他们很多都难以抗拒面前的吸引然后屈服了——在研究人员回来之前就把棉花糖吃了,这里有《时代》的跟踪报道。成功延迟整整15分钟的孩子一般的采取了回避策略,例如别过头去或者盖着自己的眼睛。孩子们的行为意义很深远:能够延迟满足的孩子在青年时期很少会过于肥胖、有毒瘾或其他行为问题,他们将来的生活也会更成功。 我们可能有非常矛盾的道德冲动体验。 耶鲁大学的心理学家Stanley Milgram 在1961年进行了一个相当令人惊恐的著名实验,是关于人们当被要求伤害他人的时候,内心关于个人道德和服从权威的想法,进行了激烈的斗争。 Milgram希望通过进行这个实验,可以在二战这个灾难后深刻理解纳粹战犯可能保有的永不可饶恕的行为。为了达到研究目的,他共同测试一对被试,一个担当“老师”,另一个担当“学生”。如果学生答错问题,老师被要求对学生进行电击(学生大概是坐在对面的房间,但实际上他不会受电击)。取而代之,Milgram会播放一些喊叫声,听起来就像是那个

[图]RSU信号强度检测装置的制作方法

rsu信号强度检测装置 技术领域 [0001] 本实用新型涉及高速公路收费控制系统,尤其涉及一种rsu信号强度检测装置。 背景技术: [0002] 在etc系统的构建中,rsu微波读写天线的安装调试是其重要环节之一,信号强度和覆盖范围直接影响到etc系统开通后对obu标识扣费的成功率及用户的体验,因此给安装调试人员带来了极大困难。由于5.8ghz 通讯采用无线射频通讯技术,其信号强度检测需要通过专用检测设备,传统检测需通过网络分析仪等设备来测量,这些设备价格昂贵、体积笨重,对测试环境和操作人员技能水平要求较高,不适用于室外操作。 技术实现要素: [0003] 本实用新型所要解决的技术问题是如何提供一种携带方便,操作简单,适用于全天候的工作环境的rsu信号强度检测装置。 [0004] 为解决上述技术问题,本实用新型所采取的技术方案是:一种rsu信号强度检测装置,包括壳体,其特征在于,所述壳体内设置有引向天线,所述引向天线用于屏蔽周围干扰辐射信号,使射频接收天线的方向性更强,所述射频接收天线位于金属屏蔽罩内,通过所述金属屏蔽罩屏蔽无关信号,所述射频接收天线的信号输出端经射频增益电路与mcu控制芯片的信号输入端连接,所述射频接收天线通过引向天线定向

采集rsu微波读写天线的射频信号,并通过所述射频增益电路对接收到的信号进行放大处理,处理后的射频信号传输给所述mcu控制芯片进行处理;激光探头通过调制检测电路与所述mcu控制芯片双向连接,用于在所述mcu控制芯片的控制下发送和接收接收激光测距信号,并将激光测距信号发送给mcu控制芯片进行处理得出所述装置与rsu微波读写天线的距离信息;人机交互模块与所述mcu控制芯片双向连接,用于输入控制命令并显示输出的数据;电源模块与所述装置中需要供电的模块的电源输入端连接,用于为其提供工作电源,所述电源模块包括电池和充放电管理模块,所述电池通过所述充放电管理模块与所述mcu控制芯片的电源输入端连接。 [0005] 进一步的技术方案在于:所述人机交互模块包括lcd显示屏和操作按键,所述lcd显示屏与mcu控制芯片的信号输出端连接,用于显示所述mcu控制芯片输出的数据;操作按键与所述mcu控制芯片的信号输入端连接,用于向所述mcu控制芯片中输入控制命令。 [0006] 优选的,所述lcd显示屏示采用320*240位lcd显示屏,且具有高亮led背光灯。 [0007] 优选的,所述射频接收天线采用5.8ghz微波射频天线。 [0008] 进一步的技术方案在于:所述调制检测电路包括激光调制电路和光电检测电路,激光光源为红色可见激光,偏置电流为30ma,调制电流幅度为8ma,信号源输出经过低通滤波器后得到的主振调制信号为电压信号,使用宽带跨导运算放大器来得到电流调制信号。 [0009] 进一步的技术方案在于:所述光电检测电路采用光电检测前置放大电路,有效输出信号峰峰值大于 20rnv,响应速度小于20ns。 [0010] 采用上述技术方案所产生的有益效果在于:本申请所述装置集测量和显示为一体 的低功耗手持终端设备,不仅携带方便,操作简单,而且适用于全天候的工作环境,为现场操作人员安装调试rsu微波读写天线提供了便捷服务,从而降低安装调试费用,缩短施工工期,达到降本增效的目的。 附图说明 [0011] 下面结合附图和具体实施方式对本实用新型作进一步详细的说明。 [0012] 图1是本实用新型实施例所述检测装置的分解结构示意图; [0013] 图2是本实用新型实施例所述检测装置的原理框图; [0014] 图3是本实用新型实施例中算法流程图; [0015] 图4是本实用新型实施例中算法流程图; [0016] 其中:1、壳体;2、引向天线;3、射频接收天线;4、金属屏蔽罩;5、激光探头;6、mcu控制芯片; 7、lcd显示屏;8、操作按键;9、电源开关;10、电池仓。 具体实施方式 [0017] 下面结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。 [0018]

心理学经典实验

实验1 心理旋转实验Cooper & Shepard,1973 选取不同的字母或数字作为实验材料,如R,J,2,5。将材料取正面或反面以及每面六中不同的倾斜角度随机呈现给被试,让其判断是正写的还是反写的字母或数字,并在反应之后记录反应时间。 结果:不同旋转角度的图形的辨认时间不同, 结论:辨认图形时首先将倾斜不同角度的图形的表象加以旋转直至正立位置,然后再进行辨认,这就造成了不同旋转角度的辨认时间不同。 实验2 短时信息编码实验 Posner,1972 实验安排两种材料:一种形同音同的两个字母AA;另一种是形状不同但读音相同的Aa。并安排同时呈现和继时呈现两种模式,而继时呈现有多种时间间隔。要求被试判定所呈现的两个字母是否相同并按键反应。记录反应时间。 结果:同时呈现时形同音同的两个字母的反应时小于形异音同的两个字母的反应时;继时呈现时,随着两个字母呈现间隔增加,形同音同的字母对的反应时间急剧增加;而形异音同的字母对的反应时变化不大。 结论:短时记忆的信息编码先时视觉,而后逐渐过渡为听觉编码。 实验3 反应时相加因素法实验 Sternberg,? 让被试先看1至6个数字(识记项目),然后再看一个数字(测试项目),要求被试判定该数字刚才是否识记过,按键反应,并记下反应时间。 结果:识记集合的大小,反应的肯定或否定、测试项目等因素分别独立作用于反应时间结论:短时记忆提取反应过程包括四个独立阶段,即刺激编码、顺序比较、决策、反应组织 实验4 开窗实验 Hockey,1981 给被试呈现1-4个字母并在后面标上一个数字,如“F+3”、“KENC+4”,其中字母和最后的数字由被试自行控制相继呈现。要求被试将字母按照后面数字转换为字母表上对应数字之后的那个字母,比如“KENC+4”,先呈现“四个字母+4”,然后被试每按键后出现一个字母,他要出声进行转换“L-M-N-O”,然后按键出现下一个字母……,直至四个字母都出现,再进行一次总回答“OIRG” 结果:获得的12个数据可明显看出此字母转换作业的不同加工阶段 结论:作业分为三个阶段 a.编码阶段:从按键看到一个字母到开始出声转换的时间 b.转换阶段:出声转换所用的总时间 c.储存阶段,从前一个字母转换结束到按键看下一个字母的时间 实验5 音笼实验 Pierce & Young,1928 让被试戴上眼罩坐在隔音房间的音笼内,音笼内各点到被试头部保持同样距离,随即在各个方位呈现声音让被试报告声源方位,主试来记录报告是否正确。 结果:在被试头部中切面上声音最容易混淆 结论:双耳听觉差在听觉定向中起主要作用 实验6 锥体暗适应实验 Hecht,1921 整个实验在黑暗环境进行。被试坐在暗适应仪前,先在明灯环境刺激5分钟,然后关灯,

局部解剖学;三角区

【关键词】局部解剖学;三角区;临床应用 在人体内有许多三角区,它们是局部解剖学的重要内容,也是人体结构的重要组成部份。有的三角区是手术中寻找血管的标志,有的是穿刺部位,有的用作鉴别疾病,有的为危险区等。因此掌握三角区对系统学习局部解剖学,指导临床有极其重要的意义。 1 头部三角 (1)危险三角为两侧口角至鼻根连线所形成的三角形区。面静脉可经内眦静脉、眼静脉与海绵窦交通,也可经面深静脉、翼丛等与海绵窦交通。口角平面以上的面静脉常无静脉瓣,当面部感染引起疖、痈时,可经上述途径至海绵窦,引起化脓性海绵状静脉窦炎、脑膜炎等,故该处感染应避免挤压。 (2)磨牙后三角由下颌骨内斜线和外斜线向上延伸相交而成。其基底部是最后磨牙的远中面,为下牙槽神经传导麻醉时穿刺点的重要标志之一。 (3)颊脂体三角位于颊粘膜下,底位于颊部,尖端靠近翼下颌韧带,相当于下颌孔平面。亦为下牙槽神经传导麻醉时穿刺点的重要标志之一。 (4)外耳道上三角(Macewen三角)位于外耳道上棘(Henle棘)的后方。上界为颧突后根的水平延长线(颞线),前界是骨性外耳道后缘的切线,后下界为自颧突后根的延长线引至外耳道下缘之斜线。乳突凿开术时应以此三角和Henle棘为标志,开放鼓窦和乳突小房。但应注意勿向上误入颅中窝或伤及硬脑膜,向后易伤及乙状窦。 (5)脑桥小脑三角脑桥臂、延髓与小脑交界的三角形区域。前庭蜗神经根和面神经根恰连于此,在其上方有三叉神经根,下方与舌咽神经根和迷走神经根邻近,后方为小脑。因此,当此处有炎症或肿瘤时,会出现一系列症状和体征,称为脑桥小脑角综合征。最常见的是听神经瘤和蛛网膜炎等,随着病灶的扩大逐渐影响周围结构,从而产生相应的症状。此三角的血管、神经走行较为复杂,在其内手术时应注意避免伤及上述结构[13]。 2 颈部三角 (1)颏下三角为左、右二腹肌前腹与舌骨体围成的三角区,此区内有1~3个颏下淋巴结,为颏下恶性肿瘤、颏下区结节性筋膜炎的好发处[1]。 (2)下颌下三角(二腹肌三角)由二腹肌前、后腹与下颌体下缘围成,内有下颌下腺、面动脉、舌动脉、舌神经、舌下神经和下颌下神经节以及4~6个下颌下淋巴结。为颌下腺炎、颌下淋巴结炎的病变处。此区手术要保护舌神经、舌下神经以及下颌下神经节,以免引起舌前2/3感觉障碍、舌肌瘫痪和唾液分泌障碍。 (3)颈动脉三角由胸锁乳突肌上份前缘、肩胛舌骨肌上腹和二腹肌后腹围成。内有颈内静脉及属支、颈总动脉及分支、舌下神经及降支、迷走神经及分支、副神经及部分颈深淋巴结。由于颈总动脉位置表浅、在活体可摸到其搏动。当头面部出血时,可在平环状软骨高度向后内将颈总动脉压向第六颈椎的颈动脉结节进行止血。针刺“人迎”穴治疗高血压、低血压、哮喘等病时,应向深部触压颈总动脉,避开颈总动脉直刺。 1/4 (4)肌三角位于颈前正中线、胸锁乳突肌前缘、肩胛舌骨肌上腹之间。三角内有舌骨下肌群、甲状腺、甲状旁腺、气管颈部和食管颈部等器官。当甲状腺肿大时,如向后内侧压迫喉、气管可出现呼吸、吞咽困难或声音嘶哑;若向后外方压迫颈交感干可出现Horner综合征。在行甲状腺次全切术,结扎甲状腺下动脉时,应远离甲状腺下极,靠近颈动脉鞘处结扎,以免损伤喉返神经引起声音嘶哑;而结扎甲状腺上动脉时,应紧贴甲状腺上极,以免损伤喉上神经外支而出现声音低钝或呛咳等。部份病人在行低位气管切开或甲状腺手术时,还要注意勿伤甲状腺最下动脉。此外甲状腺手术时,还应尽量保留甲状旁腺,以免引起钙、磷代谢紊乱。(5椎动脉三角内侧界为颈长肌、外侧界为前斜角肌,下界为锁骨下动脉第1段,尖为第6

心理学中的10个经典实验

1、Posner实验--信息也可以有视觉编码 给被试安排呈现两个字母,这两个字母可以同时给被试看,或者插进短暂的实践间 隔,让被试指出这两个字母是否相同并按键来反应,记下反应时。所用字母对有两种,一种是两个字母的读音和书写都一样,即为同一个字母(AA);另一种是两个字母的读 音相同而书写不同(Aa)。在这两种情况下,正确的反应都为“相同”。 2、Clark和Chase 句子-图画匹配实验--减法反应时实验的范例 给被试看一个句子和紧接着的一幅图画,如“星形在十字之上,”,要求被试尽快地判定,该句子是否真实地说明了图画,作出是或否的反应,记录反应时。实验应用的介词 有“之上”和“之下”,主语有“星形”和“十字”,句子的陈述有肯定的(在)和否 定的(不在),共有8个不同的句子。Clark和Chase设想,当句子出现在图画之间时,这种句子和图画匹配作业的完成要经过几个加工阶段,并提出了度量一些加工持续时间的 参数。 3、Sternberg用于研究短时记忆信息提取的相加因素法实验 先给被试看1~6个数字(识记项目),然后再看一个数字(测试项目),并同时开始计时,要求被试回答该测试数字是否是刚才识记过的,按键作出是或否的反应,计时也随 即停止。这样就可以确定被试能否正确提取以及所需要的时间即反应时。通过一系列的 实验,Sternberg从反应时的变化上确定了4个对提取过程有独立作用的因素,即测试项 目的质量(优质的或低劣的)、识记项目的数量、反应类型(肯定的或否定的)和每个 反应类型的相对频率。因此,他认为短时记忆信息提取过程包含相应的4个独立的加工阶段,即刺激编码阶段、顺序比较阶段、二择一的决策阶段和反应组织阶段。 4、字母转换实验(“开窗”实验) 给被试呈现1~4个英文字母并在字母后面标上一个数字,如“F+3”、“KENC+4”等。当呈现“F+3”时,要求被试说出英文字母表中F后面第三个位置的字母“I”,换句话说,“F+3”即将F转换为I,而“KENC+4”的正确回答则是“OIRG”,但这4个转换结果要一起说出来,凡刺激字母在一个以上时都应如此,即只作出一次反应。以 “KENC+4”为例,4个刺激字母相继呈现,被试自己按一下键就可以看见第一个字母K并同时开始计时,接着被试作出声的转换,即说出LMNO,然后再按键来看第二个字母(E),再作转换,如此循环直至4个字母全部呈现完毕并作出回答,计时也随之停止。 出声转换的开始和结束均在时间记录中标出来。根据该实验的反应时数据,可以明显地 看出完成字母转换作业的3个加工阶段:(1)从被试按键看一个字母到开始出声转换的 时间为编码阶段,被试对所看到的字母进行编码并在记忆找到该字母在字母表中的位 置;(2)被试进行规定的转换所用的时间即为转换阶段;(3)从出声转换结束到被试 按键看下一个字母的时间为贮存阶段,被试将转换的结果贮存于记忆中。 5、Peterson和Peterson有关遗忘进程的实验 每次给被试听觉呈现3个辅音字母,如KBR;为了阻止复述,在呈现字母之后,立即听觉

实验一_数字基带信号实验

实验报告 课程名称通信原理实验 实验项目名称数字基带信号实验 实验类型实验学时 班级20110815 学号2011081417 20110814 姓名 宋晨 刘佳俊 指导教师张晓琳 实验室名称实验时间 实验成绩预习部分 实验过程 表现 实验报告 部分 总成绩 教师签字日期 哈尔滨工程大学教务处制

数字基带信号实验 一、实验步骤 1、熟悉数字信号源单元模块,AMI&HDB3编译码单元模块的工作原理。 2、打开数字信号源单元和AMI&HDB3编译码单元的电源。用示波器的两个通道分别观察数字信号源模块上的和编译码单元上编译过程中的各种信号波形。 (1)将示波器的CH1和CH2两个通道探头分别接NRZ-OUT和BS-OUT,对照发光二极管的发光状态,判断数字信源单元是否已正常工作,对照标准为1码对应的发光管亮,0码对应的发光管熄。 通过拨动拨码开关,观察发光二极管的发光状态,得出信号源单元正常工作。 (2)用K1产生代码×1110010(×为任意代码,1110010为7位帧 同步码),K2、K3产生任意信息代码,观察本实验给定的集中插入帧 同步码时分复用信号帧结构,和NRZ码特点。 在实验中,我们小组采用:K1:01110010,K2:10011101,K3:00100100的信息代码,则观察到的信号帧结构为: 经过观察,我们发现NRZ码特点为是一种全宽码,即一位码元占一个单位脉冲的宽度。

3、关闭数字信号源模块的电源,将数字信号源单元的NRZ-OUT和BS-OUT用导线分别连接到AMI(HDB3)编译码模块的NRZ-IN和BS-IN 上。打开数字信号源模块和AMI(HDB3)编译码模块电源。用示波器观察AMI(HDB3)编译单元的各种波形。 (1)示波器的两个探头CH1和CH2分别接NRZ-OUT和AMI(HDB3),将信号源模块三个开关的每一位都分别置1和0,观察并记录全1(和0)码对应的AMI码和HDB3码。 全为1时的AMI码和编码器输入信号: 全为1时的HDB3码和编码器输入信号: 全为0时的AMI码和编码器输入信号:

相关文档
相关文档 最新文档