文档库 最新最全的文档下载
当前位置:文档库 › 轮胎滚动噪声的研究浅析

轮胎滚动噪声的研究浅析

轮胎滚动噪声的研究浅析
轮胎滚动噪声的研究浅析

轮胎路面噪声及其测量

收稿日期!"###$#%$#"&修订日期!"###$#’$#"作者简介!俞悟周()*+"$,- 女-博士-讲师.文章编号!)###$%/%#("###,#"$*#$#0 轮胎1路面噪声及其测量 俞悟周-毛东兴-王佐民 (同济大学声学研究所-上海"###*", 摘要!轮胎1路面噪声是道路交通噪声的重要噪声源-其产生的机理相当复杂-影响的因素也很 多.本文介绍了产生轮胎1 路面噪声的主要机理及影响因素-同时介绍了目前轮胎1路面噪声几种主要的测量方法-及各自的特点.关键词!轮胎1路面噪声&声学测量 中图分类号!230%%4 "文献标识码!5 678918:;<=:7>9;=<7?>@9;>A 89@9=? B C DE $F G H E -I5J K H L M $N O L M -D5P Q R E H $S O L (T L U V O V E V W H X 5Y H E U V O Y U -2H L M Z O C L O [W \U O V ]-^G _L M G _O "###*"-‘G O L _ ,a b >?8;c ?!Q W L W \_V O H LS W Y G _L O U S H X V O \W 1\H _dL H O U W -e G O Y GO U H L WH X V G WS H U V O S f H \V _L V Y H L V \O g E V H \H X V \_X X O Y L H O U W -O U [W \]Y H S f h W N i 2G W \W W N O U V h H V U H X X _Y V H \U O L X h E W L Y O L MV O \W 1\H _dL H O U W i T LV G O U f _f W \-S _O LU H E \Y W U _L d _X X W Y V O L MX _Y V H \U H X V O \W 1\H _dL H O U W _\W f \W U W L V W d i IW _L e G O h W -V G W _E V G H \_h U HW N f h _O L U V G W S _O LS W _U E \W S W L V S W V G H d U H X V O \W 1\H _dL H O U W i 5d [_L V _M W U _L dd O U _d [_L V _M W U H X V G W S W V G H d U _\W Y H S f _\W d i j 9kl :8<>!V O \W 1\H _dL H O U W &_Y H E U V O Y _h S W _U E \W S W L V )引 言 许多民意调查表明-城市中的道路交通噪声是困扰人们生活的主要环境污染源之一-在各种交通噪声中-汽车噪声问题最为显著.轮胎1 路面噪声是汽车噪声的三大噪声源之一-尤其是对中速行驶的轿车(/0m S 1G $)##m S 1G ,-轮胎1路面噪声的贡献最大.随着各国环境保护立法机构对车辆辐射噪声的规定日趋严格-轮胎1路面噪声的降低在近"#年里越来越受到汽车制造商及轮胎生产厂家的重视-投入大量人力物力-采用了各种先进的测试手段进行探索研究-如激光n 多普勒振动测量仪及多种相关分析等-以寻求降低轮胎噪声的途径. 尽管有一些文献报道利用各种模型和计算方法进行轮胎1路面噪声的预测-但由于其机理的复杂性-目前还难以对轮胎1路面噪声进行准确的定量估计-实测是研究轮胎噪声 特性的重要手段. "轮胎1 路面噪声的形成机理o i p 产生机理 一般认为-轮胎1路面噪声的产生主要有以下几个途径! (),轮胎振动 当运动的轮胎与路面接触时-一方面外胎结构的不均匀性及路面的粗糙性引起轮胎振动&另一方面-轮胎和路面的接触区产生切向力-部分切向力导致轮胎在路面上的滑移. 引起轮胎外胎形变的摩擦粘滞力以及外胎的 滑移导致轮胎表面的振动-从而产生可听声. 轮胎振动主要包括外胎面和轮胎侧壁的振动-这两部分区域振动的幅度q 频率及产生 原因并不一样-由此辐射的噪声也不同.图) (_,为某轮胎在"##m r _的轮胎气压下的振 动实验结果s )t - 激振源位于外胎中心.在0##u F $v ##u F 频率范围内-轮胎侧壁的振动比外胎面稍强-而在v ##u F 以上的频率范围内-外胎面的振动远强于侧壁的振动.而且在 n #*n )*卷"期("###,

试说明轮胎滚动阻力的定义

第一章 1.1、试说明轮胎滚动阻力的定义、产生机理和作用形式? 1.2、滚动阻力系数与哪些因素有关? 1.3、确定一轻型货车的动力性能(货车可装用4档或5档变速器,任选其中的一种进行整车性能计算): 1)绘制汽车驱动力与行驶阻力平衡图。 2)求汽车的最高车速、最大爬坡度及克服该坡度时相应的附着率。 3)绘制汽车行驶加速倒数曲线,用图解积分法求汽车有Ⅱ档起步加速行驶至70km/h 的车速-时间曲线,或者用计算机求汽车用Ⅱ档起步加速至70km/h 的加速时间。 轻型货车的有关数据: 汽油发动机使用外特性的Tq —n 曲线的拟合公式为 4321000(8445.3)1000(874.40)1000(44.165)1000( 27.25913.19n n n n Tq ?+?+?= 式中, Tq 为发功机转矩(N ·m);n 为发动机转速(r /min)。 发动机的最低转速n min =600r/min ,最高转速n max =4000 r /min 装载质量 2000kg 整车整备质量 1800kg 总质量 3880 kg 车轮半径 0.367 m 传动系机械效率 ηт=0.85

波动阻力系数f=0.013 m 空气阻力系数×迎风面积C D A=2.772 主减速器传动比i0=5.83 m 飞轮转功惯量I f=0.218kg·2 二前轮转动惯量I w1=1.798kg·2m 四后轮转功惯量I w2=3.598kg·2m 变速器传动比i g(数据如下表) 轴距 L=3.2m 质心至前铀距离(满载)α=1.947m 质心高(满载)h g=0.9m 1.4、空车、满载时汽车动力性有无变化?为什么? 1.5、如何选择汽车发动机功率? 1.6、超车时该不该换入低一档的排档? 1.7、统计数据表明,装有0.5~2L排量发动机的轿车,若是前置发动机前轮驱动(F.F.)轿车,其平均的轴负荷为汽车总重力的61.5%;若是前置发动机后轮驱动(F.R.)轿车,其平均的前轴负荷为汽车总重力的55.7%。设一轿车的轴距L= 2.6m,质心高度h=0.57m。试比较采用F.F.及F. R.形式时的附着力利用情况,分析时其前轴负荷率取相应形式的平均值。确定上述F. F.型轿车在φ=0. 2及0. 7路面上的附着力,并求由附着力所决定的权限最高车速与极限最大爬坡

中英文文献翻译-低滚动阻力轮胎

附录 附录A: LOW ROLLING RESISTANCE TIRES According to the report,80% or more of a car’s fuel energy is wasted by friction and other such losses. 1.5 to 4.5% of total gasoline use could be saved if allreplacement tires in use had low rolling resistance. About 237 million replacement tires are sold in the U.S. each year – none has rolling resistance labeling. 1. America’s Fuel Use, Its Impacts,and Opportunities for Savings The environmental impacts of America’s gasoline use are profound. With over 160 million passenger cars and light trucks on the road, we burn about 126 billion gallons of gasoline per year. Our fuel use continues to rise about 3% annually, propelled by continued increases in total number of vehicles, rising average distance driven per car, and falling average fuel economy. Today, light-duty vehicles (cars & light trucks) are responsible for about 20% of the nitrogen oxides, 27% of the volatile organic compounds, 51% of the carbon monoxide, and roughly 30% of all the carbon dioxide (the main greenhouse gas) emitted from human activities nationwide. Rising fuel use also has enormous implications for protection of wilderness and public lands (vulnerable to increased exploration), water resources (vulnerable to tanker and pipeline accidents), and national security. So the opportunity to save money and improve environmental quality through fuel use reductions is clear. One of the most promising opportunities for fuel savings across the entire fleet of existing vehicles is to utilize low rolling resistance tires instead of standard replacement models. This change improves the inherent efficiency of the vehicle, automatically saving fuel over the typical 30,000 to 50,000 mile lifetime of a set of tires. This report examines the opportunity for saving gasoline through use of improved tire technology and recommends particular tire models for which our initial test data suggest environmental advantages. Its findings are applicable to government and corporate fleet managers as well as individual tire buyers. 2. How Tires Can Reduce Fuel Consumption

滚动阻力成因分析与影响因素分析

滚动阻力的成因分析与影响因素分析报告 车辆1203班第2组 汽车在水平道路上等速行驶时受到的道路在行驶方向上的分力称为滚动阻力,主要有车轮的弹性变形、路面变形和车辙摩擦等。本文主要针对滚动阻力的成因和影响因素研究分析。 一、滚动阻力的成因分析 近代摩擦学关于滚动摩擦的理论认为:滚动体在力的推动下滚动,在赫兹接触区内除存在赫兹正压力外,还存在切向力,从而使接触区被分为微观滑动区和黏着区,在黏着区内只有滚动而无滑动,微观 滑动区内还存在着滑动,认为滚动摩擦阻力由 以下四个因素构成:弹性滞后、黏着效应、微 观滑动、朔性滞后。 但在车轮滚动过程中,热弹性滞后、黏着 效应、微观滑动、朔性滞后引起的能量损失所 占比例很小,因此,主要原因在于弹性滞后。 当弹性轮胎在硬路面(混凝土路、沥青路)上滚动时,轮胎的变形是主要的。由于弹性材料的粘弹性性能,弹性轮胎在硬支撑路面上行驶时,加载变形曲线和卸载变形曲线不重合导致能量损失,此能量系损耗在轮胎各部分组成相互间的摩擦以及橡胶、棉线等物质间的分子间摩擦,最后转化为热能消失在空气中,是轮胎变形时做的工不能全部收回。这种损失称为弹性物质的迟滞损失。(如右图) 这种迟滞损失表现为一种阻力偶。当车轮不滚动时,地面对车轮的法向反作用力的分布是前后对称的;当车轮滚动时,由于弹性迟滞现象,处于压缩过程的前部点的地面法向反作用力就会大于处于压缩过程的后部点的地面法向反作用力, F相对于法线前移这样,地面法向反作用力的分布前后不对称,而使他们的合力z

一个距离a, 它随弹性迟滞损失的增大而变大。即滚动时有滚动阻力偶矩 T Fz f a =? ,阻碍车轮滚动。(如下图) 由此可见,滚动阻力的作用形式为 f f f T F Wf F r == 。 另一方面,当轮胎在松软的路面上滚动时,轮胎的变形很小,主要是路面下凹变形,在车轮前方实际形成了具有一定坡度的斜面,对车轮前进产生阻力。还有车轮轴承内部也存在着磨擦,这些磨擦和变形都要损耗发动机的动力,从而形成了汽车行驶中的滚动阻力。车轮行驶在不平路面上时,引起车身振荡、减振器压缩和伸长时做功,也是滚动阻力的产生来源。 由上可知,汽车的滚动阻力主要是由轮胎和路面的变形引起的,而轮胎和支撑面的相对刚度决定了变形的特点。 二、滚动阻力影响因素分析 由滚动阻力的作用形式 f f f T F Wf F r == 可知,滚动阻力主要与滚动阻力 系数有关,试验可知,滚动阻力系数主要与以下因素有关。 路面环境 不同路面的滚动阻力系数不同。总的来说,路面状况越良好,摩擦因数越小,滚动阻力越小。 柔性路面(土路、草地、沙土、雪地)比硬性路面滚动阻力大。因为还需要克服附加滚动阻力,具体包括接触面材料被压缩和移动行程的车辙阻力和车辙与轮胎之间的摩擦力。

最新轮胎的现状以及发展趋势

轮胎地现状以及发展趋势 子 午 胎 地 发 展

一、子午线轮胎地产生及发展 子午线轮胎地发明是法国米其林公司地贡献。曾于1946年6 月4 日在巴黎申请了子午线轮胎结构地专利,并于1951年把专利内容公布于众,专利号是1001585。其实,子午线轮胎地构想早在1913年由英国地两位发明者申请了专利(据邓录普公司著《充气轮胎地历史》一书中介绍)。采用钢丝增强胎面(简称为“束缚腰带”)携在径向排列帘线地胎体上,但当时缺乏橡胶与钢丝黏合地复合材料技术,则使此发明未能得到开发。 子午线轮胎问世已有半个多世纪了。它以独特地结构带来了优异地性能,它是汽车工业发展中地一项杰出成就,引起了汽车悬挂系统地大改革,它为轮胎行业开辟了一条崭新地道路。子午线轮胎地投产使用也是轮胎工业中一场真正地技术革命。 米其林公司自1938年开始进行大规模生产地一种叫“梅达利克”地轮胎,是一种全钢丝斜交载重轮胎,用2层或4层钢丝帘布层替代了12~20 层地棉线帘布层。为了生产这种轮胎,米其林公司在从事钢丝生产地同时,还调动了一切有关橡胶专门技术地人力来研究橡胶与钢丝地黏合、钢丝帘线地制造以及钢丝地拉拔方法,还研制出了各个生产环节中地高精度工艺。这为后来生产子午线轮胎奠定了坚实地基础。 为了更好地认识轮胎地散热和热流量问题,研究人员努力想区分一些在胎侧和胎面中暴露出来地现象,设计了一种无胎侧地轮胎,但失败了。后来又设想使胎侧减薄甚至只有大间隙地钢丝帘线围绕着钢

丝圈反包,轮胎很快暴露出由于散热不良而产生地大量问题,但不是出现在胎冠处,而是在胎肩部位产生大量地热量,因此处频繁地发生弯曲运动。这种实验性轮胎行驶稳定性极差,于是轮胎技术人员又进一步地改进,设计出一种由 2 层钢丝帘线构成地坚固轮胎,胎面下帘线排列角度较小,约为20°,是采用公司内部现成地材料制成。子午线轮胎就这样诞生了。这种轮胎地结构仍有许多不够完美地地方,迅速得到了改进和完善。将精致地钢丝帘线胎体改为一层或二层地织物帘线胎体,排列角度为90°,由薄层地胎侧胶来保护。带束层是三层钢丝帘线,使胎体帘线地三角结构更加完善。新开发地子午线轮胎于1946 年在巴黎申请了专利。 从公布地专利中可知,子午线轮胎地工业化生产出现在20世纪40年代末。公司动员了企业里所有地人力、物力投入到这个工业化生产中。仅在一年多地时间里,这种子午线轮胎就大量地行驶在法国地公路上。1949年米其林公司生产地两种规格地轮胎(165-400 和185-400)参加了在巴黎举办地汽车博览会,大家都称它们为X轮胎。其中一个规格地轮胎装备在了雪铁龙11CV 型地前轮驱动轴上。轮胎和车辆互相辉映,成为具有重大历史意义地一套装备。泊若公司、阿尔发一罗梅奥公司及其他用户立刻就采用了X轮胎。从那时起,子午线轮胎地质量和特性对欧洲汽车地式样和设计都起了非常重要地作用。 子午线轮胎地优点是: 1)接地面积大,附着性能好,胎面滑移小,对地面单位压力也小,

轮胎滚动阻力模型研究进展

作者简介:李锋祥(19822),男,山东临沂人,北京化工大学在读博士研究生,研究方向为轮胎力学与热学、强化传热与节能。 轮胎滚动阻力模型研究进展 李锋祥,杨卫民 (北京化工大学机电工程学院,北京 100029) 摘要:介绍国内外围绕轮胎滚动阻力所展开的理论模型研究、试验技术研究和模拟分析方法研究,指出轮胎滚动阻力模型研究的发展方向为精确和细化。在以往研究的基础上,提出一种新的轮胎滚动阻力模型———“Semi 2Tweel ”模型,该模型由轮辋模型、胎冠模型和弹性2阻尼子模型组成,可与温度场耦合。 关键词:轮胎;滚动阻力;模型研究 中图分类号:TQ336.1+1 文献标识码:B 文章编号:10002890X (2008)0420251205 在目前能源日益缺乏而需求不断增长的形势 下,提高能源利用率、降低轮胎滚动能量损失是轮胎研究人员面临的一项重大课题。在能源节省和环境清洁方面,减小车辆燃料消耗具有越来越重要的作用,而轮胎滚动阻力作为影响车辆燃料消耗的基本因素必须尽可能地降低[1]。基于保护环境和节约能源的观点,米其林曾提出新世纪新型轮胎的发展方向是低燃料消耗的绿色轮胎。低滚动阻力轮胎也是我国本世纪轮胎发展的方向,国家橡胶轮胎质量监督检验中心也即将开展轮胎滚动阻力检测新项目[2]。1 理论背景 摩擦学中对滚动阻力的定义是在滚动摩擦 中,由于滚动物体与支撑物体之间相互作用而产生变形和接触压力,接触压力在接触面内的不均匀分布产生阻碍滚动的扭矩,从而产生滚动阻力。而对轮胎来说,其滚动阻力定义为:轮胎在水平道路上滚过单位距离机械能转化为热能的能量,实际测试和计算时取力的单位(N )。在假定初始温度分布的条件下,轮胎滚动阻力为轮胎转动一周的总能耗除以轮胎在路面上滚过的相应距离[3]。轮胎滚动阻力包括轮胎与路面的摩擦力(滚动摩擦和滑动微摩擦)、轮胎内部材料摩擦产生的阻力、轮胎滚动时受到的空气阻力以及胎面花纹块撞击路面发声消耗的能量等。在中等行驶速度条 件下,轮胎内摩擦产生的能量消耗占轮胎总能量消耗的80%以上[4]。因此,通常所说的降低轮胎滚动阻力主要是指降低轮胎材料的内摩擦阻力。在20世纪90年代,固特异就对从两种角度定义的轮胎滚动阻力的一致性进行了试验验证[5]。轮胎滚动阻力受使用条件、轮胎材料特性、轮胎结构、加工工艺以及材料分布等诸多因素的影响,而且其中某些影响因素之间相互关联。理想的情况是在降低轮胎滚动阻力的同时提高轮胎的综合使用性能,至少不能以牺牲轮胎的其它性能为代价来降低轮胎滚动阻力。 建立合理且精确的稳态滚动子午线轮胎模型是研究子午线轮胎滚动阻力的必要手段,也是降低子午线轮胎滚动阻力和优化子午线轮胎结构和材料分布的基础。子午线轮胎结构复杂,且所用材料种类繁多。早期的研究[6]表明,轮胎的滚动阻力能量损失与轮胎结构有很大关系,因此,以结构作为研究降低子午线轮胎滚动阻力的切入点是合理且重要的。不仅如此,早在20世纪70年代,就已经开始了对轮胎滚动阻力模型的研究[7,8],目前已取得了很多研究成果,轮胎滚动阻力模型也逐渐向精确和细化的方向发展,而计算机技术和高性能计算(H PC )的飞速发展为此提供了足够的发展空间。2 国内外研究进展211 国内 针对轮胎模型和滚动阻力的研究,国内研究

制动噪声的研究现状

制动噪声的研究现状 摘要:本文主要分析了汽车制动噪声产生的原因和特点,同时指出制动噪声对环境的污染,并系统介绍了制动噪声的研究工作及其研究成果.最后,指出目前制动噪声研究工作的不足,并对未来的研究工作提出了一些展望和建议. 关键词:制动噪声 1 概述 1.1防治汽车制动噪音是刻不容缓的重要任务 空气、水源及环境污染称三大污染。环境噪音污染中,城市交通运输噪音已成为重要的污染源。汽车制动噪音危害驾驶员、乘员健康和舒适性,对道路上行人和周围居民造成不必要的不安。从医学角度看,85-90分贝的噪音即对人产生危害,包括影响人的听力。当今,市民对交通噪音反映强烈。据报载,北京市在奥运会召开前的数年中,将投资8亿人民币防治交通运输噪音现阶段,多数机动车采用摩擦式制动器制动,有可能产生制动噪音,而在以半金属材质摩擦材料取代石棉树脂摩擦材料进程中,处理不好带来的副作用—有较显的多发性制动噪音产生,益发要引起供货商重视。在出口产品的质量问题中,制动噪音问题已成为瓶颈问题之一。 1.2 制动噪声的产生和原理及其特点 汽车制动引起的噪声是一个很复杂的自然现象,主要是由于制动器工作中发生振动造成的.制动噪声的产生及噪声声压级的大小与很多因素有关,不仅与经典的摩擦振动理论联系紧密,还受到自身结构和复杂工况的强烈影响,如整个制动系统的刚度、制动速度、制动压力、对偶件的材质以及环境条件(温度、湿度、润滑条件)等,有时这些因素的一个或多个发生变化,都会严重影响到制动噪声出现的状态及噪声声压级的大小.由于影响因素的复杂性,尽管学术界研究摩擦噪声已有相当长的历史,但仍有许多问题没有解决.迄今为止,这个课题已吸引了包括摩擦学、振动力学、材料学和计算机模拟科学等诸多学者的兴趣,并发表了许多研究成果.制动噪声的频率范围非常宽,从几十赫兹到上万赫兹不等.一般根据振动频率的频段可分为低频振动噪声(低于1000Hz)和中高频振动噪声(1000~10000Hz以上).文献中经常提到的Moan、Hum、Judder、Groan、Roughness基本上可归入低频振动噪声的范围,Squeal则可划为中高频振动噪声范围.而Squeal又可分为低频尖叫(1~3kHz)和高频尖叫(5~15kHz),高频尖叫最高时可达到120dB左右,是人耳难以忍受的一种尖叫声,对人们的身心能够产生极大的危害,同时也是城市噪声的主要污染源之一. 2制动噪声的研究概况 实验在制动噪声的研究中有着不可替代的作用,大多数研究制动噪声的方法都是实验法.理论研究主要回答了制动噪声的激励源问题,但由于理论研究总是在一些假设的前提下进行推导的,脱离实际情况.同时摩擦系统参数识别困难,因此理论计算大多只能定性的说明问题.另外,在实验中发现,条件都相同的各次试验中并非均能出现摩擦尖叫声.很显然,理论模型研究都不能考虑这些因素,必须在实验研究中加以解决.因此进行摩擦噪声的实验研究必不可少.汽车制动噪声实验在国外研究较早,早在20世纪50年代,

轮胎滚动阻力文献述评

轮胎滚动阻力文献述评 王登祥 [上海轮胎橡胶(集团)股份有限公司 200002] 摘要 对近10年来有关轮胎滚动阻力的文献进行述评,特别对最近几年的文献予以特别关注,联系到国际上各大公司的研究动向、美国朝野对设立轮胎滚动阻力标准之争,指出建立轮胎滚动阻力标准是大势所趋。综合各种文献,总结出影响轮胎滚动阻力的各种因素,最后归纳出需要高温滞后损失减小、低温滞后损失增大的胶料,达到既满足降低轮胎滚动阻力要求,又兼顾到轮胎湿牵引性。 关键词 滚动阻力,滞后损失,损耗因子,轮胎 如果说子午线轮胎开创了节能轮胎的新纪元,那么70年代的能源危机则是轮胎子午化的催生婆。降低了轮胎的滚动阻力也就节 胎滚动阻力方面的优势游说美国政府,要求美国交通部(DO T)对轿车轮胎原有的“统一轮胎质量分级”(U TQ G)标准加上燃油经济性/轮胎滚动阻力等级指标。米其林是迄今为止轮胎公司中唯一竭力主张推行强制性的、以燃料经济性为目的的按轮胎滚动阻力等级分级的,它企图说服克林顿总统将降低轮胎滚动阻力放到他的全球气象活动计划中去[1]。固特异、普利司通/费尔斯通和库珀等轮胎公司则通力反对这样一个分级系统,双方斗智斗法。在这场争斗中米其林公司差点获胜,甚至美国国家公路运输安全管理局(N HTSA)已经提出了法规草案:在美国的统一轮胎质量分级标准中,用轮胎滚动阻力/燃 作者简介 王登祥,男,53岁。高级工程师。上海轮胎橡胶(集团)股份有限公司轮胎研究所美国阿克隆分部TRTR公司总经理。参加的子午线轮胎研究开发项目多次获得上海市科技进步奖,并获得国家科技进步三等奖;曾获国家专利二项。先后发表论文18篇,并出版专著1本。料经济性等级来取代轮胎的温升等级,并以1995年6月作为法规投票最后期限;但是以固特异为代表的另一方成功地游说了美国国会,国会投票冻结N HTSA用于实施推行轮胎滚动阻力标准的资金[2]。一场恶战虽然暂告平息,但是笔者认为推行轮胎滚动阻力等级是大势所趋,反对一方只是因为在技术上略输一筹,要借推迟来赢得时间,好作技术上的准备。 根据现在掌握的信息,各个轮胎公司都在全力研究不损害轮胎牵引性的低滚动阻力胎面胶配方;合成橡胶公司在继续开发低滞后损失的聚合物的同时扩大溶聚丁苯橡胶(SSBR)的生产能力。据国际合成橡胶制造商协会(IISRP)预测,西欧对SSBR的消耗在2000年前可望达到8.8%的年增长率,以满足对低滚动阻力轮胎日益增长的需要[3];有消息说[4],米其林集团在泰国投资的“米其林暹罗聚合物公司”,年生产能力11万t,将于1999年开始生产SSBR和BR,供应米其林生产“绿色轮胎”;生产白炭黑的德固萨公司抓住有利时机在比利时安特卫普投入6360万美元,使Si69的生产能力达到112万t,于1996年10月投产[5];炭黑公司不甘于白炭黑大量用于胎面胶配方中(多达80份),要收复因降低轮胎滚动阻力所失去的市场,卡博特公司最近推出低滚动阻力炭黑E2 约了燃料消耗,达到了节能目的。自从1989年以来,世界各地发表的重要的有关轮胎滚动阻力的论文已超过450篇,围绕如何降低轮胎滚动阻力,各大轮胎公司在胎面配方设计上狠下功夫。米其林公司凭着自己在低轮

轮胎噪声的研究现状

轮胎噪声的研究现状 李论 2012级车辆1班 222012322220013 摘要:从当前国内轮胎噪声研究的现状来说。轮胎噪声研究从最初的单纯测试发展到建立了泵浦噪声、气柱共鸣、共振、模态分析等噪声研究理论;轮胎噪声测试方法有通过噪声法、拖车法和实验室转鼓法,通过轮胎声学模型和软件系统可对不同花纹轮胎噪声进行模拟和预测。随着社会对环境噪声的重视,汽车噪声的控制标准越来越严格。 关键词:噪声污染;轮胎噪声;噪声测试;花纹;研究现状 0、引言 汽车行驶噪声是交通噪声的主要来源之一, 随着我国汽车工业的迅猛发展和城市道路的不断扩张, 城市车流量持续增加,噪声污染日益严重。交通噪声不仅影响人们的正常生活和工作,甚至会危害人们的身心健康。随着生活质量的不断提高,人们对降低交通噪声提出了越来越高的要求。 试验表明, 轮胎噪声是构成汽车行驶噪声的主要因素之一, 当汽车行驶速度大于 50 km h- 1时, 轮胎噪声逐渐显现; 当车速超过 80 km h- 1时, 轮胎噪声则成为汽车行驶噪声的主要成分。车速越快、负荷越大, 轮胎噪声的能量级就越高, 在汽车行驶噪声中所占比例也就越大。轮胎作为车辆与地面接触的唯一部件,其噪声辐射及振动特性直接影响汽车的乘坐舒适性和平稳。因此国内外各大汽车公司纷纷开展轮胎噪声方面的研究, 对配套轮胎的噪声提出了更苛刻的要求。因此, 开展轮胎噪声研究、了解轮胎噪声的产生机理、开发低噪声轮胎已是当务之急。 1、国外轮胎噪声研究进展 20 世纪初期, 轮胎噪声的研究只停留在单纯测试阶段, 缺乏对噪声机理的理论分析。20 世纪70 年代后, 人们才开始从理论上对轮胎噪声进行研究, 并提出模拟计算的理念。 1971 年, H ayden J R E 首先提出空气泵浦原理是轮胎主要噪声机理。他将简单轮胎花纹沟槽视作一个单极子源, 并得出花纹沟声压级的半经验公式。但是用该公式进行轮胎花纹噪声预测仍然存在诸多困难。 1985 年, 通用汽车研究实验室的 Law rence J 等在横向花纹沟槽研究的基础上得出气柱共鸣与泵浦作用是横向花纹沟槽噪声的两大机理。当气柱的固有频率与花纹间距频率一致时, 就会发生气柱共鸣现象, 使轮胎噪声加剧。 20 世纪 80 年代后, 随着物理学和振动理论的发展, 人们对轮胎噪声的研究进入试验测试与模拟研究相结合的阶段。根据流体结构相互作用原理可以得出以下结论: 若已知轮胎的振动方式, 结合辐射边界条件, 可以用克希霍夫亥姆霍兹积分公式计算出轮胎振动噪声。因此, 80 年代末, 许多学者相继建立起轮胎动态特性模型, 开始了轮胎动态特性的理论研究。 1992 年, Nakajim用有限元、边界元和模态分析相结合的方法对轮胎的振动和噪声进行了预测。有限元和边界元法在中低频段可以较准确地预测轮胎噪声; 但在高频段, 由于计算量大大增加, 使结果误差增大, 于是人们开始用统计能量法对高频段的轮胎噪声进行分析计算。Hiroshi Y 等[研究了轮胎内部空腔的共鸣声, 认为汽车内部噪声在250 H z 左右的峰值主要是轮胎内部空腔的共振噪

轮胎的现状以及发展趋势

轮胎的现状以及发展趋势 子 午 胎 的 发 展 班级:高分子1131班 组别:第七组 姓名:白林涛 37 指导老师:黄勇 2013年4月13日

一、子午线轮胎的产生及发展 子午线轮胎的发明是法国米其林公司的贡献。曾于1946年6 月4 日在巴黎申请了子午线轮胎结构的专利,并于1951年把专利内容公布于众,专利号是1001585。其实,子午线轮胎的构想早在1913年由英国的两位发明者申请了专利(据邓录普公司著《充气轮胎的历史》一书中介绍)。采用钢丝增强胎面(简称为“束缚腰带”)携在径向排列帘线的胎体上,但当时缺乏橡胶与钢丝黏合的复合材料技术,则使此发明未能得到开发。 子午线轮胎问世已有半个多世纪了。它以独特的结构带来了优异的性能,它是汽车工业发展中的一项杰出成就,引起了汽车悬挂系统的大改革,它为轮胎行业开辟了一条崭新的道路。子午线轮胎的投产使用也是轮胎工业中一场真正的技术革命。 米其林公司自1938年开始进行大规模生产的一种叫“梅达利克”的轮胎,是一种全钢丝斜交载重轮胎,用2层或4层钢丝帘布层替代了12~20 层的棉线帘布层。为了生产这种轮胎,米其林公司在从事钢丝生产的同时,还调动了一切有关橡胶专门技术的人力来研究橡胶与钢丝的黏合、钢丝帘线的制造以及钢丝的拉拔方法,还研制出了各个生产环节中的高精度工艺。这为后来生产子午线轮胎奠定了坚实的基础。 为了更好地认识轮胎的散热和热流量问题,研究人员努力想区分一些在胎侧和胎面中暴露出来的现象,设计了一种无胎侧的轮胎,但失败了。后来又设想使胎侧减薄甚至只有大间隙的钢丝帘线围绕着钢

丝圈反包,轮胎很快暴露出由于散热不良而产生的大量问题,但不是出现在胎冠处,而是在胎肩部位产生大量的热量,因此处频繁地发生弯曲运动。这种实验性轮胎行驶稳定性极差,于是轮胎技术人员又进一步地改进,设计出一种由 2 层钢丝帘线构成的坚固轮胎,胎面下帘线排列角度较小,约为20°,是采用公司内部现成的材料制成。子午线轮胎就这样诞生了。这种轮胎的结构仍有许多不够完美的地方,迅速得到了改进和完善。将精致的钢丝帘线胎体改为一层或二层的织物帘线胎体,排列角度为90°,由薄层的胎侧胶来保护。带束层是三层钢丝帘线,使胎体帘线的三角结构更加完善。新开发的子午线轮胎于1946 年在巴黎申请了专利。 从公布的专利中可知,子午线轮胎的工业化生产出现在20世纪40年代末。公司动员了企业里所有的人力、物力投入到这个工业化生产中。仅在一年多的时间里,这种子午线轮胎就大量地行驶在法国的公路上。1949年米其林公司生产的两种规格的轮胎(165-400 和185-400)参加了在巴黎举办的汽车博览会,大家都称它们为X轮胎。其中一个规格的轮胎装备在了雪铁龙11CV 型的前轮驱动轴上。轮胎和车辆互相辉映,成为具有重大历史意义的一套装备。泊若公司、阿尔发一罗梅奥公司及其他用户立刻就采用了X轮胎。从那时起,子午线轮胎的质量和特性对欧洲汽车的式样和设计都起了非常重要的作用。 子午线轮胎的优点是: 1)接地面积大,附着性能好,胎面滑移小,对地面单位压力也小,

轮胎噪声影响因素及低噪声轮胎设计方法_赵书凯

轮胎噪声影响因素及低噪声轮胎设计方法 赵书凯,邓世涛,丁海峰,姜晓辉 (三角轮胎股份有限公司,山东威海 264200 ) 摘要: 分析轮胎噪声影响因素,提出低噪声轮胎设计方法。胎面花纹形状、节距及排列、胎面胶配方以及轮胎均匀性等都对轮胎噪声有一定影响; 采用尽可能多的节距数,减小花纹沟深度和宽度,适当降低胎面胶硬度,减小胎冠和胎侧刚度, 提高轮胎均匀性等均有利于减小轮胎噪声。 关键词: 轮胎;噪声;影响因素;胎面花纹;均匀性 中图分类号:TQ336.1;TB533+.2 文献标志码:A 文章编号:1006-8171(2014)02-0076- 05作者简介:赵书凯(1975—),男,山东威海人,三角轮胎股份有限公司工程师,学士,主要从事轮胎结构设计工作。 随着高速公路的迅速发展,汽车速度大大提高,交通噪声对人体健康的影响也日益严重,汽车噪声不仅增加驾乘人员的疲劳, 而且影响汽车行驶安全。欧盟779号指令要求进口欧盟的轮胎要标注轮胎燃料级别、湿地抓着性能和滚动噪声,并要求欧盟各成员国自2012年11月1日起实施。轮胎噪声已经成为衡量汽车质量的重要指标之一。近年来,高性能、低噪声轮胎在轮胎行业中占有明显优势, 许多整车厂选择配套轮胎都已经将轮胎噪声作为考核的主要性能参数。当汽车行驶速度超过50km·h-1时, 轮胎噪声就成为行驶车辆噪声的主要成分[1] ;车速越快、负荷越大,轮胎噪声的能量级越高,在汽车行驶噪声中所占比例也越大。作为汽车乘坐舒适性的重要评价指标,汽车噪声也在很大程度上反映出生产厂家的设计和工艺水平。 本工作分析轮胎噪声产生机理、测试方法和影响因素, 并提出低噪声花纹轮胎的设计方法。1 轮胎噪声分类及产生机理 1.1 分类 轮胎噪声分为直接噪声和间接噪声,直接噪声由轮胎花纹和轮胎振动产生,间接噪声主要指因路面不平等原因导致轮胎振动,传递到悬挂系统和车身,造成内部空气振动产生的车内噪声。 1.2 产生机理 (1)空气紊流噪声。轮胎在滚动前进过程中,前方空气被分开,后方空气被吸入,造成空气紊流,引起声压变化,产生噪声。 (2 )花纹槽泵浦噪声。轮胎滚动时,花纹槽被压缩与释放, 槽内气体随之高速地在前沿区挤压、后沿区膨胀,前后沿产生的压差形成空气涡流,从而产生泵浦噪声( 沟槽空气泵噪声)。(3 )空气柱共鸣噪声。在轮胎花纹与路面接触时,胎面花纹沟槽与路面组成类似管状的结构。管内空气柱振动发声的频率与花纹沟固有频率相同, 二者形成谐振,引发共鸣现象,导致轮胎噪声在此频率处出现峰值。 (4 )轮胎弹性振动噪声。车辆行驶过程中,当前沿的胎面花纹进入接地面时,花纹块撞击路面一起激振;当后沿的胎面花纹离开接地面时,胎面花纹恢复变形产生振动也会产生噪声, 同时会产生连续打击地面的噪声。道路表面凹凸不平和轮胎内部激励因素,如轮胎动不平衡引起的操纵系统振动和行驶中轮胎的不均匀性引起的共振产生噪声。(5 )号角效应。胎面沟槽在接地面内被完全封住时其作用像一个气管, 可以产生窄频鸣叫。(6 )粘滑噪声。当轮胎接地面应力导致轮胎胎面在横向或周向发生滑移时会产生粘着 /滑移噪声。2 轮胎噪声测试方法 (1)试验车惯性滑行法。将轮胎安装在测试车辆上,测试车辆行驶到试验区时,在关闭发动机

汽车NVH控制技术的研究现状

汽车NVH控制技术的研究现状 杨宗富 车辆2班222011322220154 摘要:NVH:噪声、振动与声振粗糙度(Noise、Vibration、Harshness)的英文缩写。这是衡量汽车制造质量的一个综合性问题,它给汽车用户的感受是最直接和最表面的。车辆的NVH问题是国际汽车业各大整车制造企业和零部件企业关注的问题之一。有统计资料显示,整车约有1/3的故障问题是和车辆的NVH问题有关系,而各大公司有近20%的研发费用消耗在解决车辆的NVH问题上。而汽车NVH中的噪声问题已引起国内外相关科技工作者的极大关注,因此本文阐述了汽车国内噪声的种类。主要介绍了发动机NVH问题及控制方法,并综述噪声控制的研究现状。 关键词:汽车噪声种类NVH控制技术 0 引言 近年来,汽车拥有数量逐年增加。汽车产生的噪声已成为现代城市主要的噪声源之一。汽车噪声中,人们最关注车内噪声.车内噪声过大会严重影响汽车的舒适性、语言清晰度、听觉损失程度、乘坐安全性、人在车内对各种信号的识别能力及入的心理状态。因此,车内噪声作为汽车舒适性重要指标之一,正受到用户的严格挑选;降低车内噪声水平,已是各国政府和车辆生产厂家共同关注的问题。目前,我国在汽车噪声控制方面与国外先进水平差距很大,研究工作开展得也很不够。我国汽车产品噪声控制水平和国外先进水平的差距,首先体现在噪声测量方法及噪声限值的法规上。国外企业由于对环境污染的重视,法规的要求和执行都非常严格;激烈的市场竞争,使得国外非常重视汽车产品的噪声控制。从声源的控制角度来看,对发动机、消声器、变速箱、冷却系统等声源已经有深刻的研究已有成熟的理论计算和产品开发设计程序。国外目前车内噪声控制技术已普遍达到实用阶段。例如德国Benz公司声称已能根据顾客要求制造各种低噪声车,所增加的价格约为350美元左右。我国要缩短与世界先进水平的差距.目前还有许多工作要做。因此,本文介绍汽车噪声的种类、噪声控制方法、以及国内外的研究现状。 1 汽车噪声的分类 为了有效地控制汽车噪声,首先必须确定汽车的各类噪声源及其产生的机理。汽车噪声可划分为车内噪声和车外噪声。车内噪声是指汽车车厢内存在的噪声。车内噪声极易使乘客感到疲劳,对汽车的舒适性有着重要的影响。根据声源性质不同,汽车噪声可划分为发动机燃烧噪声、空气动力性噪声、机构噪声以及结构噪声。发动机燃烧噪声:发动机缸内燃烧过程直接产生的噪声。空气动力性噪声:气体流动过程产生的噪声,包括进气噪声、排气噪声、风扇噪声和空气流过汽车结构表面或孔道时产生的噪声等。机构噪声:汽车中机构运动的不平稳、摩擦、惯性冲击和不平衡等引起的噪声。结构噪声:汽车中的各种结构受激励产生振动而辐射的噪声,如罩、壳类零件、车身壁板等的噪声。 图1 车内噪声声源分解

汽车噪声来源

汽车噪音的来源 汽车是一个高速运动的复杂组合式噪声源。汽车发动机和传动系工作时产生的震动、高速行驶中汽车轮胎在地面上的滚动、车身与空气的作用,是产生汽车噪音的根本原因。 根据汽车噪音对环境的影响,可将汽车噪音分为车外噪音和车内噪音,车外噪音是指汽车各部分噪音辐射到车外空间的那部分噪音。主要包括发动机噪音、排气噪音、轮胎噪音、制动噪音和传动系噪音等。车内噪音是指车厢外的汽车各部分噪音通过各种途径传入车内的那部分噪音以及汽车各部分震动传递路径激发车身各部件的结构震动向车厢内辐射的噪音,这些噪音声波在车内空间声学特性的制约下,生成较为复杂的混响声场,从而形成车内噪音。平静汽车隔音的研发人员通过实验发现抑制车辆内部噪音,改善混响声场最有效的方式就是选择性能优异的隔音材料并利用异型吸音槽来缓冲并吸收汽车噪音,从而在止震和隔音的基础上达到最佳的吸音降噪效果。 平静隔音把汽车噪音来源简要分为以下几种:发动机噪音、排气系统噪音、风扇噪音、传动系统噪音、轮胎噪音、制动噪音、气动噪音、车身结构噪音等等,由于车辆噪音的复杂性,以上噪音源并非仅是并列关系,而从平静隔音实际研发的角度看,汽车噪音源还可以在目前的基础上做更进一步的分析。 发动机噪音

发动机噪音中,除了发动机机体发出的机械声外,还包括进气系统噪音,改装族更换“冬菇头”以后动力增大的同时发动机噪音也增加不少,就是因为对原车进气系统做了改动的原因:高速气体经空气虑清器、进气管、气门进入气缸,在流动过程中,会产生一种很强的气动噪音。降低发动机本身产生的噪音及由发动机震动引起的其它噪音有若干办法: 1 、改造发动机燃烧过程以降低燃烧爆发的冲击; 2 、降低由此冲击产生的激后力引起的发动机各部件震动; 3 、降低由活塞上下运动、曲轴转动引起的不平衡力以及降低发动机机械震动。 发动机运转的噪音主要由挡火墙和驾驶室的前底板部位传入驾驶舱,因此,平静汽车隔音通过在 U 槽、挡火墙及底板部位粘贴带异型吸音槽的吸音棉来抑制噪音。 排气系统噪音 是发动机噪音的一部分,主要包括消声器支撑架及排气管道震动辐射出的噪音,发动机震动及排气动作引起的辐射噪音,还包括由排气口出来的排气噪音。主要降噪方法: 1 、利用消声器降低排气出口噪音,在生产消声器的环节,通过提高仿真计算方法的精度,实现在不增加排气阻力的条件下改善消声效果。 2 、在排气口对排气噪音施加与其幅值大小相等,相位相反的二次声源或震动源,可自动地消除存在的震动噪声问题,实现主动降低噪音。 为降低发动机、传动系统、排气系统表面产生的辐射噪音,不仅要降低激励力,而且要改善结构的震动特性,达到即使有激励力,也不易产生噪音的效果。如:可以通过仿真计算推测发动机缸体等部位产生的辐射噪音,用震动特性优化方法,采取在轻量化基础上达到最佳效果的措施。因此,好的隔音材料和降噪效果不应该以增加车辆自重,牺牲加速性能,增加油耗为代价 风扇噪音 散热风扇通常也称为电子扇,是引擎舱内较大的噪音源。风扇噪音属于空气动力噪音,严格的说,也是构成发动机噪音的一部分。风扇运转过程中,由散热器隔栅吸入的冷却气流,经散热器风扇叶片吸入,从发动机间隙排出,气流运动的这一过程产生了旋转噪音和涡流噪音。夏季在怠速状态下开空调,风扇的运转会明显引起较大噪音。平静隔音研究人员认为风扇的噪音与以下因素密切相关: 1、风扇的外形。风扇外形决定风扇本体的阻力系数。包括叶片数量、叶片间断间隙、叶片角度及弯曲度等。 2、散热器吸入气流的紊流度。 3、风扇叶尖处及缝隙处产生的噪音。

汽车噪声与振动

汽车噪声与振动 概述:随着汽车发动机功率的不断提高,噪声与振动的问题日渐突现出来,开始成为汽车开发工程中的主要问题之一。在汽车界,人们在讨论噪声与振动时,常用的一个词就是NVH,即是噪声(Noise)、振动(Vibration)和不舒适(Harshness)三个英文单词首字母的简写。汽车噪声振动有两个特点,一是与发动机转速与汽车行驶速度有关,二是不同的噪声振动源有不同的频率范围。在低速时,发动机是主要的噪声和振动源,在中速时,轮胎与路面的摩擦是主要的噪声和振动源,而在高速时,车身与空气之间的摩擦变成了最主要的噪声和振动源。 近年来汽车噪声振动问题研究现状 行驶汽车的噪声包括发动机、底盘、车身以及汽车附件和电气系统噪声。发动机噪声是汽车的主要噪声源。在我国,车外噪声中发动机噪声约占60%左右。 1.发动机噪声 发动机噪声按其机理可分为结构振动噪声和空气动力性噪声。 1.1结构振动噪声 通过发动机外表面以及与发动机外表面刚性连接件的振动向大气辐射的噪声称为结构振动噪声或者称为表面辐射噪声。根据发动机表面噪声产生机理,结构振动噪声又可分为燃烧噪声、机械噪声以及液体动力噪声。燃烧噪声的发生机理相当复杂,主要是由于气缸内周期性变化的压力作用而产生的,与发动机的燃烧方式和燃烧速度密切相关。机械噪声是发动机工作时各运动件之间及运动件与

固定件之间作用的周期力、冲击力、撞击力所引起的,它与激发力的大小和发动机结构动态特性等因素有关。一般在低速时,燃烧噪声占主导地位;在高转速时,由于机械结构的冲击振动加剧而使机械噪声上升到主导地位。车用发动机的辐射噪声频率范围主要在500~3000Hz内,而其主要噪声辐射部件的临界频率大致在500—800Hz范围内。发动机中液体流动产生的力对发动机结构激振产生的噪声称为液体流动噪声,如冷却系中水流循环对水套冲击产生的噪声。 1.2空气动力性噪声 空气动力性噪声直接向大气辐射噪声源,即由于空气动力学的原因使空气质点振动产生的噪声。空气动力噪声包括进、排气噪声和风扇或风机噪声。排气噪声是发动机的最大声源,进气噪声次之。风扇噪声也是发动机的主要噪声源之一。排气噪声由周期性排气、涡流和空气柱共鸣噪声组成。周期性排气噪声是排气门开启时一定压力的气体急速排出而产生;涡流噪声是高速气流通过排气门和排气管道时产生的;空气柱共鸣噪声是管道中空气柱在周期性排气噪声的激发下发生共鸣而产生。 对于发动机噪声的评价,除考虑其辐射噪声能量总水平外,还应考察以下噪声特性:噪声级及其随发动机工作状态的变化关系、发动机周围空间各点噪声级数值的分布状态、空间各点的噪声频谱以及发动机工作过程各阶段的瞬时声压级。通过这些信息,不但可以比较和评价发动机辐射噪声的大小,还可以深入研究辐射声能频率的分布情况,判断发动机工作循环中辐射声最大的阶段,以便分析产生高噪声的原因,提高噪声控制措施并比较和评价这些措施的有效性和经济上的合理性。 2.底盘噪声 汽车底盘结构固体声源产生噪声主要是传动系噪声和轮胎噪声。传动系噪声频率为400—2000Hz。其中齿轮传动的机械噪声是主要部分。齿轮噪声以声波向空间传出的仅是一小部分,大部分则是变速器驱动桥的激振使各部分产生振动而变为噪声。 按声源的激励性质不同,轮胎噪声主要产生机理可分三大类: (1)气流声机理。随着轮胎的滚动,在与路面接触区,花纹沟内空气不断被吸入与挤出,由此形成“空气泵”噪声,这是横向花纹的一种主要噪声机理。此声源为起伏变化的气体,属气流噪声。 (2)机械声机理。由胎面花纹块撞击路面、轮胎结构的不均匀性以及路面的不平性等因素激发机械噪声,是光面胎及纵向花纹的主要噪声源。 (3)滤波放大机理。轮胎与路面接触处形成喇叭口几何体,对上述噪声起着滤波放大作用。另外,胎面花纹沟与路面所围管道内的空气共振以及轮胎花纹块离开路面处形成的赫姆霍兹共振效应主要为袋状沟的噪声机理。 3.车身噪声 车身噪声主要是由于汽车加速行驶时空气流过汽车表面和孑L道时产生的噪声。该噪声主要来源于气流有明显折弯的地方,在该区域内气流分离,分离区内旋涡脱落,形成噪声。

相关文档
相关文档 最新文档