文档库 最新最全的文档下载
当前位置:文档库 › 2009-Rapid_prototyping– a technology transfer approach for development of rapid tooling

2009-Rapid_prototyping– a technology transfer approach for development of rapid tooling

2009-Rapid_prototyping– a technology transfer approach for development of rapid tooling
2009-Rapid_prototyping– a technology transfer approach for development of rapid tooling

Rapid prototyping–a technology transfer approach for development of rapid tooling

Dilip Sahebrao Ingole

Department of Mechanical Engineering,Prof.Ram Meghe Institute of Technology and Research,Badnera,India

Abhay Madhusudan Kuthe

Department of Mechanical Engineering,Visvesaraya National Institute of Technology,Nagpur,India

Shashank B.Thakare

Department of Mechanical Engineering,Prof.Ram Meghe Institute of Technology and Research,Badnera,India,and

Amol S.T alankar

Department of Mechanical Engineering,Gyan Ganga Institute of Technology and Sciences,Jabalpur,India

Abstract

Purpose–The purpose of this paper is to apply rapid prototyping(RP)philosophy as a technology transfer in industries to take its time and cost-effective advantages for development of rapid tooling(RT).

Design/methodology/approach–Experimentations are performed for development of RT for sand casting,investment casting and plastic moulding applications.

Findings–This paper reports the procedures developed for manufacture of production tooling using RP.A cost/bene?t model is developed to justify implementation of RP as a technology transfer in industries.

Research limitations/implications–The examples are limited to parts build by fused deposition modelling RP process.However,the concepts experimented may be applied for other RP processes.

Practical implications–RP has proved to be a cost-effective and time-ef?cient approach for development of RT,thereby ensuring possibility for technology transfer in casting as well as plastic industries.

Originality/value–This is the pioneer attempt towards quantifying RP bene?ts,in view of technology transfer.This paper presents original case studies and?ndings on the basis of experimentations performed in foundries.

Keywords Rapid prototyping,Machine tools,Cost-bene?t analysis

Paper type Case study

1.Introduction

Despite the substantial research in CAD/CAM technology, the gap between CAD and CAM have been identi?ed in two aspects:

1rapid creation of3D models and prototypes;and

2cost-effective production of tooling required for casting industry.

Rapid technologies(RTs)are the solutions for physical realization of products well before full-scale manufacturing (Y an and Gu,1996).Rapid manufacturing(RM),rapid tooling(RT),rapid prototyping(RP),virtual prototyping and reverse engineering are the range of technologies considered under RTs.The RP processes can be used for directly producing the casting patterns referred to as direct RT.Several researchers have explored rapid casting development using RP and RT(Chua et al.,1999;Pham and Gault,1998; Chakradeo and Kulkarni,2002;Rooks,2002;Pal et al.,2002; Rathore et al.,2002;Ingole et al.,2006).

Pattern development is the main bottleneck in terms of time and cost for manufacturing intricate castings in the foundries.T o substantially shorten the time for developing patterns,moulds and prototypes,RP is an ideal method for complex patterns making and component prototyping (Chakradeo and Kulkarni,2002;Rooks,2002).In particular,the use of RP processes has proved to be a cost-effective and time-ef?cient approach for producing patterns and core boxes for sand casting(Wang et al., 1999).Mueller(2005)reported that the RP patterns not only lowers cost and shortens lead times for low-volume casting jobs,but also it enables investment casting to compete with machining and weldments for very low-volume projects,even quantities of one.

There are two ways to realize the tooling using RP.The?rst is to obtain the mould cavity and deposit a layer of metal on

The current issue and full text archive of this journal is available at https://www.wendangku.net/doc/3d14330623.html,/1355-2546.htm

Rapid Prototyping Journal

15/4(2009)280–290

q Emerald Group Publishing Limited[ISSN1355-2546] [DOI10.1108/13552540910979794]Received:15August2008 Revised:14January2009 Accepted:12March2009

the mould obtained by RP.The metal layer forms the mould surface.The second is to use RP process to directly build pattern for investment casting process or sand casting process (Chua et al.,1999;Dickens et al.,1995;Pal et al.,2002;Pham and Gault,1998;Rathore et al.,2002).

The main aim of this paper is to report on the experimentation conducted for the rapid manufacture of production tooling required by casting as well as plastic moulding industries.It also aims to develop a cost/bene?t model to justify technology transfer of RP.

2.Need and scope for technology transfer in foundry industry

The idea of using RP machines for the manufacture of products in high or medium volumes seems unrealistic as the cycle times,material costs and capital equipment for processes such as injection moulding are far lower than RP. However,Hopkinson and Dickens(2001)appreciated the zero tool costs,reduced lead times and considerable gains in terms of freedom in product design and production schedules using RP.In metal casting processes,conventionally,the development of patterns and core boxes account for more than70per cent lead time and greatly in?uence cost and dimensional quality of the product.Lee et al.(2004) reported signi?cant amount of time savings(89per cent)in the lead times for the patterns produced with direct RP method as compared to sacri?cial patterns.Bernard et al. (2003)identi?ed that the layered manufacturing techniques are economically comparable with machining processes for the manufacturing of the core boxes.T o stay ahead in competition,the updated technology demands development of fast and accurate products of high standards.Study revealed that the sand cast components manufactured using RP patterns shown better results for dimensions and surface ?nish(Ingole et al.,2006).

These facts highlight the importance of developing a method for the RM of tooling.RP techniques involve no tooling or?xtures,resulting in simpler set-up,lower overhead cost and shorter production lead times.The parts that were previously impossible,extremely costly and time consuming can be built with an ease with RP.Karapatis et al.(1998) mentioned that,with an RT,the mass production tools such as moulds,dies,etc.can be made ready in very short times. The need for technology transfer for the development of tooling is due to following reasons:

.RP fabrication process is automated;

.fabricates intricate and small parts;

.substantial reduction in lead time;

.eliminates tooling;

.eliminates process planning;

.customized product;

.produces no scrap;and

.no assemblage of parts.

The following types of industries have the scope for technology transfer:

.sand casting;

.investment casting;and

.plastic moulding.3.Challenges in tooling development

Basically,the sand casting practice is not suitable for manufacturing small and intricate parts due to many reasons.The established tooling technologies require a great deal of time and expense.The challenges in established tooling development practices are summarized below:

.preparation of small-sized sand moulds are dif?cult with conventional patterns;

.perfection in producing contoured patterns is always the problem;

.wooden patterns are dimensionally unstable and metal patterns require more?nishing time and cost;

.accuracy is the major problem for parts produced with sand casting;

.parts produced with conventional patterns require further ?nishing;

.cores and core prints are required to be separately prepared and assembled;

.lead time for producing patterns is considerably large;and .metal patterns are heavy and wooden patterns being delicate,both required to be handled carefully.

4.Objectives and methodology

The objectives of the study are:

.to develop a model for faster and cheaper method for manufacturing of tooling;

.to verify the possibility for technology transfer from conventional to modern so as to take time and cost-effective advantage;and

.to quantify the magnitude of cost savings and other ef?ciencies that will result from technology transfer.

The following experimentations were conducted using RP: .development of RT with sand casting;

.development of RT with fused deposition modelling (FDM);and

.development of master patterns with RP patterns.

4.1Development of rapid tooling with sand casting There are various ways of obtaining the tooling using RP techniques.The?rst is to obtain the sand mould cavity using RP patterns and pouring metal into it.The obtained permanent mould can be used as a die after?nishing and surface treatment.The dies are used to produce wax patterns for investment casting.The dies produced with this method are also suitable to produce parts with plastic moulding process.Second,the acrylonitrile butadiene styrene(ABS) part cavities produced with RP process can be used as a die after metal coating/spraying.Third is to use the RP technique to directly fabricate a master pattern to produce other metal patterns.

The illustration is related to the method for rapid fabrication of cast iron small-sized dies,in considerably less time compared to the conventional die manufacturing techniques.The steps involved in development of the RT by using sand casting is shown in Figure1.The?rst step in development of RT consists3D solid model of a part as shown in Figure2.The standard tessellation language(STL)?le generated directly from solid model is used for part geometry recognition and preprocessing of physical prototype.The STL?le is utilized for physical realization of mould prototypes using FDM RP process as shown in

Figure 3.The cope and drag parts of the sand mould prepared using RP patterns are shown in Figure 4.The cast iron semi-?nished permanent moulds are shown in Figure 5.The permanent mould,called a die,is further heat treated,?nished and surface treated is shown in Figure 6.The plastic and wax components produced with ?nished die are shown in Figure 7.

The major advantages of the process are summarized below:

.produces accurate cast iron dies,since it uses accurately produced RP patterns;

.process is economical,manufacturing of patterns do not require tooling and process planning;

.intricate cast iron dies can be easily produced,since there is no limitation for shape of the required pattern;

.dies produced are suitable for investment casting,injection and blow moulding processes;and

.

dies are suitable for materials like wax,plastics and low melting point alloy parts.

4.2Development of rapid tooling with FDM

RP patterns can be used as substitutes for the traditional wax patterns employed in investment casting process.Figure 8represents a CAD model of a crankshaft and Figure 9shows the CAD model of split mould cavities of a crank part.Figure 2CAD models of split mould cavities

19

519

5105

24

Figure 3Split mould cavities of ABS produced with FDM

process

Figure 4Cope and drag parts of sand

moulds

Figure 5Semi-?nished cast iron

moulds

Figure 1Steps in RT development with sand casting

The plastic moulds are obtained with FDM RP process are shown in Figure 10.

4.2.1Development of tooling by plating on plastic

The metal plating on plastic carried out on ABS mould cavities is shown in Figure 11.The major bene?ts of metal plating on plastic are it:.

increases the thermal conductivity of the mould surface;.increases the life of the plastic mould acting as a die;and .

improves the surface ?nish of the RP mould.

4.2.2Observations during experimentation of plating on plastic .

During the electroplating of the plastic moulds,the surface treatment was carried out to make it conductive.The moulds were dipped into the solution for etching at 708C for 20min..

The moulds were fabricated in layers with the resolution of 0.3mm;due to its porous surfaces,the chemical percolated into pores..

The entrapped chemical could not be cleaned or taken out by any means.

Figure 6Surface-treated ?nished sand mould

dies Figure 7Plastic and wax components produced with sand cast

dies

Figure 8CAD model of a crank

part

Figure 9CAD models of split mould cavities of a crank

part

Figure 10Rapid prototyping models of split mould cavities with in-build

cores

.

As the surface could not be treated to make it conductive,the dies could not be metal plated.

Figures 12and 13represent the unsuccessful and partially successful attempts,respectively,of producing the wax patterns with ABS mould cavities as shown earlier in Figure 11.

In the next attempt,the two piece die was split into three pieces as shown in Figure 14.The transverse section of the die was taken to reduce height of the die.The additional vent was provided for removal of air.The die was held in vertical position and the molten wax at 788C temperature was injected into the die cavity at 248C (room temperature).The wax was allowed to cool and solidify for 20min.The wax patterns produced plastic die are shown in Figure 15and a wax pattern with gating and riser produced by RP plastic die is shown in Figure 16.

4.2.3Observations during production of wax patterns

Following are the observations during wax pouring process:.

Metal paint cannot cope with temperature above 808C but shows good thermal conductivity.It also improves the surface quality of tooling..

Metal paint is not peeled off when the wax pattern is removed..

Die half having the smaller depth can be separated easily and leaves the pattern,but the die half having larger depth needs ejectors to remove the pattern.4.3Development of master pattern from RP pattern In this case,a CAD model was prepared for the component using reverse engineering technique.The ABS pattern was developed using FDM RP process as shown in Figure 17(a).From this RP pattern,the aluminium master pattern was developed as shown in Figure 17(b).The resulted aluminium master pattern was used successfully to obtain the mould cavity and hundreds of sand casting components as shown in Figure 17(c).The components obtained shown better Figure 12Wax pattern produced after ?rst wax pouring –the unsuccessful

attempt

Figure 13Wax pattern produced after second wax pouring –partially successful

attempt

Figure 14Rapid prototyping models of metal coated mould cavities into three

splits

Figure 15Wax patterns produced by rapid prototyping split

mould

Figure 11Rapid prototyping models of split mould cavities with metal

coating

results including surface ?nish and dimensional accuracy.The features in ABS RP patterns were re?ected in the aluminium master pattern.These features were further transformed in the actual products.This ensures that one can successfully use RP patterns for getting the master patterns from metals.

4.4Rapid prototyping patterns for sand casting

RP patterns were used to obtain the sand mould cavities as shown in Figure 18.The resulted components shown better surface ?nish and dimensional accuracy as compared to the metal patterns.Various features like ?llets,chamfers,edges,etc.were prominently improved and closed tolerances were achieved.Figure 19shows drag part for the mould obtained from RP patterns.RP patterns can be removed very easily from green sand mould as compared to the wooden or metal patterns due to poor adhesive property of ABS plastic material.Figure 20shows actual sand cast components obtained from RP patterns.

4.5Cost and lead time comparison using different types of patterns

The comparison of cost and lead time is vital to the possibility of technology transfer in foundries.In order to determine the total cost of part preparation,the most in?uential parameters like model material,support material,man and machine hour rates,etc.were considered.The material cost was computed based on volume of material used and the unit price of material.The values of lead times for RP,wood and metal patterns are given in T able I.The values of percentage reduction in lead time as compared to RP patterns are given in T ables II and III represent comparative costs of patterns.T ables IV and V represent pattern unit costs and expected number of components produced using wood,ABS and metal patterns,respectively.T able VI gives the percentage savings in lead time compared to wood and metal patterns.

Figure 21shows the lead time comparison of producing RP,wood and metal patterns.The bar chart shows that the time required to produce RP pattern is minimum as compared to wood and metal patterns.The patterns produced with FDM RP process show 82-93per cent reduction in lead time compared to wood and metal patterns as shown in Figure 22.In RP,the lead time is drastically reduced because RP do not require special tooling,machine set-up and process planning before going for actual fabrication.

In order to determine the total cost of part preparation,the most in?uential parameters like model material,support material,man and machine hour rates,etc.were considered.

Figure 16Wax pattern with gating and riser produced by rapid prototyping split

mould

Figure 17Rapid prototyping pattern,brass master pattern and sand cast

product

(a) FDM RP pattern from ABS material (b) Aluminium master pattern (c) Sand cast product

The material cost was computed based on volume of material used and the unit price of material.Figure 23represents a comparison of costs for patterns produced with different methods.It has been observed that the cost of RP patterns is

Figure 18Rapid prototyping patterns for parts I and II produced with FDM

process

(a) Pattern for part-I (b) Pattern for part-II

Figure 19Drag part of green sand

mould

Figure 20Parts produced with sand casting

process

Table I Lead time comparison for producing different types of patterns

Time (h)

Type of pattern Pattern I Pattern II RP 138.5Wood 4848Metal

120

120

Table II Percentage reduction in lead time as compared to RP patterns

Pattern I

Pattern II

Metal Wood Metal Wood 89

82

93

82

Table III Comparative costs of patterns

Pattern I

Pattern II

Wood RP Metal Wood RP Metal Cost of pattern

1,700

9,458

9,673

950

5,428

6,208

Table IV Pattern cost per unit

Cost per unit

Type of patterns Pattern I Pattern II Metal

4.84 3.10RP 23.6513.57Wood

42.50

23.75

Table V Expected number of parts produced with different patterns

Patterns

Expected number of parts produced

Wood 40ABS 400Metal

2,000

lower than the patterns fabricated with CNC operation.But,the costs of RP patterns are found to be higher than the wood patterns.

Figure 24represents the per unit pattern cost comparison for patterns produced with the operations CNC,RP and woodworking.The bar chart indirectly shows that the unit cost of part produced with metal pattern is minimum,provided parts are produced in mass scale.For the small scale volume of production,the unit cost have been observed less in case of RP patterns.

Figure 25shows the expected number of parts that can be produced using wood,ABS and metal patterns.The expected number of parts produced using metal pattern is maximum,i.e.2,000and the number of parts produced using wood patterns is minimum,i.e.40.The RP patterns found to be useful for high-variety mid-volume type of production and RP patterns can generally produce about 400parts without any dif?culty.Figure 26shows the percentage savings in lead time Figure 21Lead time comparison for producing different types of patterns

20406080100120140Types of patterns

L e a d t i m e (h o u r s )

Figure 22Percentage reduction in lead time as compared to RP patterns

102030405060708090%

Figure 23

Comparative costs of patterns produced with different methods

2,000

4,0006,0008,00010,00012,000R S .

Figure 24Pattern cost per unit

51015202530354045Pattern - I Pattern - II

Types of patterns for part I and part II

P a t t e r n c o s t p e r u n i t (R s .)

Figure 25Expected number of parts produced with different patterns

3006009001,2001,5001,8002,100Wood

ABS

Metal

Types of patterns

Q u a n t i t y o f p a r t s

Figure 26Percentage savings in lead time compared to wood and

metal patterns

102030405060708090100% S a v i n g s i n l e a d t i m e

Table VI Percentage savings in lead time compared to wood and metal patterns

Percentage savings in lead time Patterns Pattern I Pattern II Wood 7382Metal

89

93

compared to wood and metal patterns.It has been observed that,the lead time was reduced by more than89-93per cent in comparison with metal patterns.The lead time of RP was reduced by73-82per cent in comparison with wood patterns.

5.1Development of“cost/bene?t”model

The costs incurred and cost saved in manufacturing processes can be easily quanti?ed.The quanti?ed cost helps a lot in making crucial?nancial decisions.But,it is very dif?cult to quantify the bene?ts like time,functionality,quality, satisfaction,manufacturability,customization,etc.in terms of cost.Attempts are made by the author to develop a“cost/ bene?t”model by quantifying the bene?ts of RP philosophy, in terms of costs savings,in order to justify RP’s implementation as a technology transfer in industries.

RP technology derives radical change by eliminating the costs in tooling,jigs and?xtures.It drastically reduces the cost of process planning.As a major change,the human cost is substantially reduced,since RP requires minimum human skill and attention.Finally,the signi?cant change occurs by materially reducing the cost of scrap,rework and assembly. The signi?cant costs incurred and costs saved in RP are identi?ed and conceptualized,respectively.The study revealed important information and the corresponding values of costs incurred and costs saved are represented in T able VII.The part design cost is more or less same in all the manufacturing processes.Hence,the cost of part design is not considered in the formulation of cost/bene?t model.The distinguished features and derived corresponding bene?ts of RP technology,along with their signi?cant impacts on costs are represented in Table VIII.Notations used in the formulation of“cost/bene?t”mathematical model are given in the respective tables.

5.2Signi?cance of complexity index

RP processes are in demand basically to manufacture complex geometry parts for single or low volume of production.Since RP is an automatic process,the number of parts produced of similar size and geometry show negligible variation.This causes dif?culty in comparing RP parameters to evaluate the performance.The mathematical model or generic form is necessary to correlate the costs and bene?ts in RP.The author has introduced a new term called“complexity index”in order to overcome above dif?culty and formed the basis to deal with variety of RP parts.The“complexity index”is computed from two parameters,i.e.total volume of material required to build the part and time elapsed and is represented by equation(1):

i?

em mts mT

t b

e1Twhere m m,s m and t b are the model material,support material and the build time,respectively.The values of build time are considered in minutes for the computation of complexity indices. The sample values of“complexity index”computed for various parts using the above formula are represented in T able IX.

The computed values of various bene?ts in terms of costs in RP are represented in T able X.

5.3Formulation of mathematical models for C o,C m,C L and C p

The following four mathematical models are formulated after identifying the dependent and independent parameters,for signi?cant costs and bene?ts in RP.The data are computed using dimensionally homogeneous equations(2-5),as given below:

Table VII Costs incurred and costs saved in RP

S.No.Costs incurred in RP Costs saved in RP(in terms of bene?ts)Range of savings(%)Average saving(%) 1Machine operation(C o)No process planning95-9896.5

2Material(C m)No tooling90-9592.5

3Operator(C L)No scrap or rework90-9894

4Pre-and post-processing(C p)No assembly100100

5–Operator80-9085

6–Machine setup90-9592.5

7–Total cycle time80-9587.5

8–Customized product80-9085

Table VIII Bene?ts affecting signi?cant costs in RP

Impact of bene?ts on signi?cant costs in RP S.No.Features of RP Bene?ts of RP C o C m C L C p 1Automated process Minimizes human cost(H m)A N A N 2Fabricate intricate and small parts Good manufacturability(M g)N N N N 3No tooling,jigs and?xtures Eliminates tooling cost(T c)A N A A 4Reduces process planning Reduces planning time(P p)N N A A 5Single unit or small batch Customized product(P c)A A A N 6Produces no scrap No disposal cost(D o)A A N A 7Better accuracy and?nish Assured quality(Q m)A A A A 8Integrated product manufacturing Eliminates assembly cost(A o)N N A A 9Requires no machine setup time Reduces total cycle time(M t)N N A A Note:A–affects,N–does not affect

C o?1:10136*

C o

P c

0:9705

e2T

C m?0:5821*

P2

c

*C m

D3

o

0:9875

e3T

C L?0:9283*eM t*C LT0:998e4T

C p?0:3942*

C p

t

1:022

e5T

The computed data are correlated with the data generated for fabricated RP parts.A good coef?cient of correlation(R2)is yielded using above equations for the observed and computed values.The“C”program is developed to inter-relate various in?uencing parameters and equations are solved by multiple regression analysis.

It is observed that the above equations are justi?able for the costs and bene?ts pertaining to RP.These equations may be used with con?dence for predicting the costs of various parts manufactured with RP.T able XI represents the observed and computed values of costs in RP.The effects of complexity index is studied for different costs mentioned earlier.It is observed that the complexity index in?uences most the operating cost as compared to the other three costs.Hence,the mathematical model represented by equation(2)was rearranged as follows:

C o?1:10136*

C o

P c

0:9705

ie6T

Equation(6)represents a re?ned model for computation of operating cost in RP.As far as the experience is concerned, author felts that the pre-and post-processing costs also should be in?uenced by complexity index.But the study of model suggests that it has the least effect on other three costs.The concept of complexity index hence proved to be very useful while designing the model equations for“cost/bene?t”in conjunction with RP.Equations(2-5)are justi?able by taking into consideration all of the observed values errors themselves.

Figures27-30represent the plots between observed and computed values from the model formulated to compute C o, C m,C L and C p values.It has been estimated that the simulation equations(2-5)predict the values of C o,C m,C L and C p with R2values0.9998,0.9729, 1.0and0.9805, respectively.

The formulated models therefore,may be used with con?dence for predicting the values of signi?cant costs C o, C m,C L and C p and considered as“cost/bene?t models”while dealing with RP.

6.Conclusions

RP have proved to be a cost-effective and time ef?cient approach for development of RT,thereby ensuring possibility for technology transfer in casting as well as plastic industries. The patterns produced with FDM RP process shown overall 82-93per cent reduction in lead time.The lead time observed to be reduced by89-93per cent in comparison with metal patterns.Similarly,the lead time of RP observed to be reduced by73-82per cent in comparison with wood patterns.The cost of RP patterns is lower than the patterns fabricated with CNC operation.But,the costs of RP patterns are found to be higher than the wood patterns.For the small scale volume of production,the unit cost have been observed less in case of RP patterns.The adopted methodologies provide cost and time saving approaches of manufacturing of small-sized cast iron dies.These dies are useful for producing wax,plastic or low melting point alloy components with investment casting, injection moulding and blow moulding processes.The total cycle time for manufacturing of small-sized dies drastically

Table IX“Complexity index”values for various parts

Part

Model

material,

m m(cm3)

Support

material,

s m(cm3)

Build

time,t b(hrs)

Complexity

index(i)

P1547.6444.1420.080.49

P2237.6514.6610.520.40

P3152.7517.577.80.36

P490.2913.68 4.010.43

P5109.5118.01 5.420.39

P6109.5118.01 5.420.39

P735.2878.95 3.760.51

Table X Bene?ts in terms of costs in RP

Part Complexity index(i)H m T c P p M t D o P c

P10.490.420.4540.470.450.460.42

P20.400.340.3700.390.370.380.34

P30.360.310.3370.350.340.340.31

P40.720.610.6640.690.660.670.61

P50.390.330.3630.380.360.370.33

P60.390.330.3630.380.360.370.33

P70.510.430.4680.490.470.480.43

Table XI Observed and computed values of costs incurred in RP

C o C m C L C p

Part Observed Computed Observed Computed Observed Computed Observed Computed P13,0122,9968,5556,6066026003028

P21,5781,5863,8023,6743163151314

P31,1701,1762,6542,840234233910

P41,0351,0752,0552,061207206159

P5*******,0552,06116316267

P6*******,8691,46716316267

P7564583––11311265

reduced because the manufacturing of patterns do not require special tooling and planning.Intricate cast iron dies can be easily produced,since there is no limitation for shape of the required pattern.The quanti?cation of bene?ts in terms of cost is very essential in order to evaluate the systems performance.The most signi?cant factors affecting decision criterion need to be identi?ed and analysed on common ground.The concept of complexity index taken into account for determining parameters to compare the performance proved to be very useful.The cost/bene?t model formulated to justify

implementation of RP as a technology transfer may be used with con?dence for predicting the values of signi?cant costs while dealing with RP .

References

Bernard,A.,Delplace,F.,Perry,N.and Gabriel,S.(2003),“Integration of CAD and rapid manufacturing for sand casting optimization”,Rapid Prototyping Journal ,Vol.9No.5,pp.327-33.

Chakradeo,A.and Kulkarni,M.A.(2002),“Rapid prototyping –a tool for pre-surgical planning”,International Conference on e-Manufacturing,Bhopal ,pp.271-2.

Chua,C.K.,Hong,K.H.and Ho,S.L.(1999),“Rapid tooling technology.Part 1.A comparative study”,Int.J.Adv.Manuf.T echnol.,Vol.15,pp.604-8.

Dickens,P .M.,Stangroom,R.,Greul,M.,Holmer, B.,Hon,K.K.B.,Hovtun,R.,Neumann,R.,Noeken,S.and Wimpenny, D.(1995),“Conversion of RP models to investment castings”,Rapid Prototyping Journal ,Vol.1No.4,pp.4-11.

Ingole,D.S.,Kuthe,A.M.and Deshmukh,T .R.(2006),“Rapid prototyping for pattern making”,Vol.XVIII No.5,pp.53-5.Hopkinson,N.and Dickens,P .(2001),“Rapid prototyping for direct manufacture”,Rapid Prototyping Journal ,Vol.7No.4,pp.197-202.

Karapatis,N.P .,van Griethuysen,J.-P .S.and Glardon,R.(1998),“Direct rapid tooling:a review of current research”,Rapid Prototyping Journal ,Vol.4No.2,pp.77-89.

Lee,C.W .,Chua,C.K.,Cheah,C.M.,T an,L.H.and Feng,C.(2004),“Rapid investment casting:direct and indirect approaches via fused deposition modeling”,Int.J.of Advanced Manufacturing T echnology ,Vol.23,pp.93-101.Mueller,T .(2005),“Rapid prototyping patterns create new opportunities for investment casting”,Paper 05-156(07),American Foundry Society,Schaumburg,IL,pp.1-9.

Pal, D.K.,Ravi, B.and Bhargava,L.S.(2002),“E-manufacturing one-off intricate castings using rapid prototyping technology”,International Conference on e-Manufacturing,Bhopal ,pp.259-63.

Pham,D.T .and Gault,R.S.(1998),“A comparison of rapid prototyping technologies”,Machine T ools &Manufacture ,Vol.38,pp.1257-87.

Rathore,S.S.,Sharma, A.and Singh,R.(2002),“Rapid prototyping tooling used for pattern making in foundry”,International Conference on e-Manufacturing,Bhopal ,pp.254-8.Rooks, B.(2002),“Rapid tooling for casting prototypes”,Assembly Automation ,Vol.22No.1,pp.40-5.

Y an,X.and Gu,P .(1996),“A review of rapid prototyping technologies and systems”,Computer-Aided Design ,Vol.28No.4,pp.307-18.

Wang,W .,Conley,J.G.and Stoll,H.W .(1999),“Rapid tooling for sand casting using laminated object manufacturing process”,Rapid Prototyping Journal ,Vol.5No.3,pp.134-40.

Corresponding author

Dilip Sahebrao Ingole can be contacted at:dsingole@https://www.wendangku.net/doc/3d14330623.html,

Figure 28Graph between observed and computed values of C

m

01,000

2,0003,0004,0005,0006,0007,0008,000Observed costs (C m )

C o m p u t e d c o s t s (C m )

Figure 29Graph between observed and computed values of C

L

0100200300400500600700Observed costs (C L )

C o m p u t e d c o s t s (C L )

Figure 30Graph between observed and computed values of C

p

010203040506070Observed costs (C p )

C o m p u t e d c o s t s (C p )

Figure 27Graph between observed and computed values of C

o

05001,0001,5002,0002,5003,0003,500Observed costs (C o )

C o m p u t e d c o s t s (C o )

T o purchase reprints of this article please e-mail:reprints@https://www.wendangku.net/doc/3d14330623.html, Or visit our web site for further details:https://www.wendangku.net/doc/3d14330623.html,/reprints

化工原理期末考试试题及答案

1.(20分)有立式列管式换热器,其规格如下:管数30根、管长 3 m、管径由25×2.5 mm,为单管程。今拟采用此换热器冷凝冷却CS2 饱和蒸汽,从饱和温度46℃冷却到10℃,CS2 走管外,其流量为250 kg/h,其冷凝潜热为356 kJ/kg,液体CS2的比热为 1.05 kJ /(kg·℃ );水走管内与CS2成总体逆流流动,冷却水进出口温度分别为5℃和30℃。已知CS2 冷凝和冷却时传热系数(以外表面积为基准)分别为K1= 232.6和K2= l16.8 W/(m2·℃),问此换热器是否适用? 1.解:CS2冷凝的热负荷:Q冷凝=250×356=89000kJ/h=24.72 KW CS2冷却的热负荷:Q 冷凝=250×1.05×(46-10)=9450kJ/h =2.6 KW 总热负荷Q 为:Q=24.7+2.63=27.3 KW 冷却水用量q m2 为:q m2=27.3 =0.261kg/s=940kg/h 4.187×(30-5) 设冷却水进入冷却段的温度为t k,则有:0.261×4.187×(t k- 5)=2.6KW 解之得:t k=7.38℃,则:(5 分) 冷凝段对数平均温差:Δ t m=(46-30)-(46-7.38) =25.67℃ ln46 -30 46-7.38 所需传热面积: A 冷凝=24.7/232.6×10-3×25.67= 4.14m2,(5 分) 冷却段对数平均温差:Δ tm=(46-7.38)-(10-5)= 16.45℃ ln 46-7.38 (5 分)10-5 所需传热面积: A 冷却= 2.6/116.8×10-3×16.45= 1.35m2, 冷凝、冷却共需传热面积:Σ A i=4.14+ 1.35=5.49m2, 换热器实际传热面积为:A0=30×3.14×0.025×3=7.065>ΣA i ,所以适宜使用。(5分) 2.(20 分)某列管换热器由多根Φ 25×2.5mm的钢管组成,将流量为15×103kg/h 由20℃加热到55℃, 苯在管中的流速为0.5m/s ,加热剂为130℃的饱和水蒸汽在管外冷凝,其汽化潜热为2178kJ/kg ,苯的比热容cp为1.76 kJ/kg ·K,密度ρ 为858kg/m3,粘度μ为0.52 ×10-3Pa·s,导热系数λ为0.148 W/m·K,热损失、管壁热阻及污垢热阻均忽略不计,蒸汽冷凝时的对流传热系数α 为10×104 W/m2·K。试求: (1)水蒸汽用量(kg/h );(4分) (2)总传热系数K(以管外表面积为准);(7 分) (3)换热器所需管子根数n及单根管子长度L。(9 分)

化工原理试题及答案

中南大学考试试卷(A) 2013 ~ 2014 学年2 学期时间110分钟化工原理课程48 学时 3 学分考试形式: 闭卷 专业年级:化工?制药?应化11级总分100分,占总评成绩70 % 一、选择填空(35分) 1?(2分) 某离心泵入口处真空表的读数为 200mmHg ,当地大气压为101kPa,则泵入口处的绝对压强为( )? A. 74.3kPa; B. 101kPa; C. 127.6kPa? 2?(2分) 水在圆形直管中作滞流流动,流速不变,若管子直径增大一倍,则阻力损失为原来的( )? A. 1/4; B. 1/2; C. 2倍? 3?(4分) 当地大气压为750mmHg时,测得某体系的表压为100mmHg,则该体系的绝对压强为Pa,真空度为Pa? 4?(2分) 一球形石英颗粒,分别在空气和水中按斯托克斯定律沉降,若系统温度升高,则其在水中的沉降速度将,在空气中的沉降速度将? 5?(5分) 套管由Φ57×2.5mm和Φ25×2.5mm的钢管组成,则环隙的流通截面积等于,润湿周边等于,当量直径等于? 6?(2分) 板框压滤机中,最终的过滤速率是洗涤速率的( )? A.一倍 B.一半 C.四倍 D.四分之一

7?(4分) 冷热水通过间壁换热器换热,热水进口温度为90o C,出口温度为50o C,冷水进口温度为15o C,出口温度为53o C,冷热水的流量相同,且假定冷热水的物性为相同,则热损失占传热量的( )? A?5%; B?6%; C?7%; D?8%; 8?(2分) 为了减少室外设备的热损失,保温层外所包的一层金属皮应该是( ) A?表面光滑,颜色较浅; B?表面粗糙,颜色较深; C?表面粗糙,颜色较浅; D?表面光滑,颜色较深; 9?(4分) 黑体的表面温度从300℃升至600℃,其辐射能力增大到原来的倍?10?(1分) 采用多效蒸发的目的是为了提高( )? A. 完成液的浓度; B. 加热蒸汽经济程度; C. 生产能力 11、(1分) 多效蒸发中,蒸汽消耗量的减少是通过增加( )而换取的? A. 传热面积; B. 加热蒸汽压力; C. 传热系数 12?(1分) ( )加料的多效蒸发流程的缺点是料液粘度沿流动方向逐效增大,致使后效的传热系数降低? A. 并流; B. 逆流; C. 平流 13?(1分) 离心泵的调节阀( ) , A.只能安在进口管路; B.只能安在出口管路上; C.安装在进口管路和出口管路上均可; D.只能安在旁路上 14?(1分) 泵的工作点( )? A 由泵铭牌上的流量和扬程所决定; B 即泵的最大效率所对应的点; C 由泵的特性曲线所决定; D 是泵的特性曲线与管路特性曲线的交点?15?(3分) 在旋风分离器中,某球形颗粒的旋转半径为0.4 m,切向速度为15 m/s ?当颗粒与流体的相对运动属层流时,其分离因数K c为?

化工原理试卷及答案

化工原理试卷及答案 1填空题(每空 1 分,共 20 分) 1.某容器内的绝对压强为200 kPa ,当地大气压为101.3 kPa ,则表压为______。 2.在重力沉降操作中,影响沉降速度的因素主要有 、 和 。 3.热量传递的基本方式有 、 和 。 4.吸收因子A 可表示为 ,它是 与 的比值。 5.空气的干球温度为t ,湿球温度为t w ,露点温度为t d ,当空气的相对湿度等于1时,则t 、 t w 和t d 的大小关系为 。 6.吸收操作一般用于分离 混合物,其原理是利用原料中各组分 差异来达到分离的目的;精馏操作则一般用于分离 混合物,其原理是利用原料中各组分的 差异来达到分离的目的。 7.恒定干燥条件下的干燥速率曲线一般包括 阶段和 阶段。 8.全回流(R = ∞)时,精馏段操作线的斜率为 ,提馏段操作线的斜率为 ,对相同的x D 和x W ,部分回流比全回流所需的理论板数 。 一、 选择题(每小题 2 分,共 20 分) 1.不可压缩流体在圆管内作稳定流动,流动速度与管径的关系是 ( ) A . 21221()u d u d = B .2112 2 ()u d u d = C . 11 22 u d u d = D . 12 21 u d u d = 2.离心泵的特性曲线是在哪种情况下测定 ( ) A .效率一定 B .功率一定 C .转速一定 D .管路(l +∑l e )一定 3. 对一台正在工作的列管式换热器,已知α1=11600 W?m -2?K -1 ,α2=116 W?m -2?K -1,要提高总传热系数K ,最简单有效的途径是 ( ) A .设法增大α1 B .设法增大α2 C .同时增大α1和α2 D .不确定 4.在降尘室内,要使微粒从气流中除去的条件是 ( )

化工原理期末试题及答案

模拟试题一 1当地大气压为 745mmHg 测得一容器内的绝对压强为 350mmHg 则真空度为395 mmH?测得另一容器内的表压 强为1360 mmHg 则其绝对压强为 2105mmHg _____ 。 2、 流体在管内作湍流流动时,在管壁处速度为 _0 _______,临近管壁处存在层流底层,若 Re 值越大,则该层厚度 越薄 3、 离心泵开始工作之前要先灌满输送液体,目的是为了防止 气缚 现象发生;而且离心泵的安装高度也不能 够太高,目的是避免 汽蚀 现象发生。 4 、离心泵的气蚀余量越小,则其抗气蚀性能 越强 。 5、 在传热实验中用饱和水蒸汽加热空气,总传热系数 K 接近于 空气 侧的对流传热系数,而壁温接近于 饱和水蒸汽 侧流体的温度值。 6、 热传导的基本定律是 傅立叶定律。间壁换热器中总传热系数K 的数值接近于热阻 大 (大、小)一侧的:?值。 间壁换热器管壁温度t w 接近于:.值 大 (大、小)一侧的流体温度。由多层等厚平壁构成的导热壁面中,所用材料的 导热系数愈小,则该壁面的热阻愈 大 (大、小),其两侧的温差愈 大 (大、小)。 7、 Z= (V/K v a. Q ) .(y 1 -丫2 )/ △ Y m 式中:△ Y m 称 气相传质平均推动力 ,单位是kmol 吸 收质/kmol 惰气;(Y i — Y 2) / △ Y m 称 气相总传质单元数。 8、 吸收总推动力用气相浓度差表示时,应等于 气相主体摩尔浓度 和同液相主体浓度相平衡的气相浓度之 差。 9、 按照溶液在加热室中运动的情况,可将蒸发器分为循环型和非循环型两大类。 10、 蒸发过程中引起温度差损失的原因有:溶液蒸汽压下降、加热管内液柱静压强、管路阻力。 11、工业上精馏装置,由精馏^_塔、冷凝器、再沸器等构成。 12、分配系数k A 是指y A /X A ,其值愈大,萃取效果 量传递相结合的过程。 1、气体在直径不变的圆形管道内作等温定态流动,则各截面上的( 6、某一套管换热器,管间用饱和水蒸气加热管内空气(空气在管内作湍流流动) 13、萃取过程是利用溶液中各组分在某种溶剂中 溶解度的差异 而达到混合液中组分分离的操作。 14、在实际的干燥操作中,常用 干湿球温度计来测量空气的湿度。 15、对流干燥操作的必要条件是 湿物料表面的水汽分压大于干燥介质中的水分分压 ;干燥过程是热量传递和质 越好。 A. 速度不等 B.体积流量相等 C. 速度逐渐减小 D.质量流速相等 2、装在某设备进口处的真空表读数为 -50kPa ,出口压力表的读数为 100kPa , 此设备进出口之间的绝对压强差为 A. 50 B . 150 C . 75 D .无法确定 3、离心泵的阀门开大时,则( B )。A ?吸入管路的阻力损失减小 .泵出口的压力减小 C .泵入口处真空度减小 .泵工作点的扬程升高 4、下列(A )不能实现对往复泵流量的调节。 A .调节泵出口阀的开度 ?旁路调节装置 C .改变活塞冲程 ?改变活塞往复频率 5、已知当温度为 T 时,耐火砖的辐射能力大于铝板的辐射能力,则铝的黑度( )耐火砖的黑度。 A.大于 .等于 C .不能确定 D .小于 ,使空气温度由20 C 升至80 C,

化工原理试卷习题及答案

精品文档 《化工原理》考试试题 一、选择与填空 1. 在层流流动中,若流体的总流量不变,则规格相同的两根管子串联时的压降为并联时的 倍。 A. 2; B. 6; C. 4; D. 1。 2. 流体在圆形直管内作湍流流动时,摩擦系数与和有关;若其作完全湍流(阻力平方区),则仅与有关。 3. 流体在长为3m、高为2m的矩形管道内流动,则该矩形管道的当量直径为。 A. 1.2m; B. 0.6m; C. 2.4m; D. 4.8m。 4. 用离心泵在两个敞口容器间输送液体。若维持两容器的液面高度不变,则当输送管道上的阀门关小后,管路总阻力将。 B. 不变; C. 减小; D. 不确定。 5. 离心泵的效率η和流量Q的关系为。 B. Q增大,η先增大后减小; 6. 若沉降室高度降低,则沉降时间下降;;生产能力. 不变。 7. 用板框过滤机过滤某种悬浮液。测得恒压过滤方程为(θ的单位为s),则K为 m2/s,qe为m3/ m2,为s。 8. 在重力沉降操作中,影响沉降速度的因素主要有、 和。 二、解释下列概念或术语 1. 质量流速 2. 汽蚀余量 3. 过滤速率 化工原理(上)练习题 一、填空 1. 离心泵与往复泵在启动与流量调节的不同之处是离心泵启动前 _ 、启动后通过__ 调节流量;住复泵 启动前_ _、启动后通过_____ 调节流量。 2.用管子从高位槽放水,当管径增大一倍时,则水的流量为原来流量的_______倍,假定液面高度、管长、局部阻力及摩擦系数均不变。 3.流体在管路中典型流动形态有________和________两种,一般以________来区分,前者值为___ ____,后者值为___ ____;而两者的本质区别在于流体流动 时。 4.研究流体在管中流动的沿程阻力系数λ与Re的关系,可用图表示,根据两者关系及流动状态,可将图分为四个区,其中,滞流区λ与Re ,完全湍流区λ与Re 。

上海理工大学高等传热学试题及答案

1.试求出圆柱坐标系的尺度系数,并由此导出圆柱坐标系中的导热微分方程。 2 .一无限大平板,初始温度为T 0;τ>0时,在x = 0表面处绝热;在x = L 表面以对流方式向温度为t f 的流体换热。试用分离变量法求出τ>0时平板的温度分布(常物性)。(需求出特征函数、超越方程的具体形式,范数(模)可用积分形式表示)。(15分) , 3.简述近似解析解——积分法中热层厚度δ的概念。 答:近似解析解:既有分析解的特征:得到的结果具有解析函数形式,又有近似解的特征:结果只能近似满足导热解问题。在有限的时间内,边界温度 的变化对于区域温度场的影响只是在某一有限的范围内,把这个有限的范围定义为热层厚度δ。 4.与单相固体导热相比,相变导热有什么特点 答:相变导热包含了相变和导热两种物理过程。相变导热的特点是 1.固、液两相之间存在着 移动的交界面。 2.两相交界面有潜热的释放(或吸收) | 对流部分(所需量和符号自己设定) 1 推导极坐标系下二维稳态导热微分方程。 2 已知绕流平板流动附面层微分方程为 y u y u V x u u 22??=??+??ν 取相似变量为: x u y νη∞ = x u f νψ∞= 写出问题的数学模型并求问题的相似解。 3 已知绕流平板流动换热的附面层能量积分方程为: ?=∞?? =-δ00)(y y t a dy t t u dx d 当Pr<<1时,写出问题的数学模型并求问题的近似积分解及平均Nu (取三次多项式)。 4 ] O x

5写出常热流圆管内热充分发展流动和换热问题的数学模型并求出速度和温度分布及Nu x.辐射 1.请推导出具有n个表面的净热流法壁面间辐射换热求解公式,并简要说明应用任一种数值方法的求解过程。 2.试推导介质辐射传递方程的微分形式和积分形式,要求表述出各个步骤和结果中各个相关量的含义。 3.根据光谱辐射强度表示下面各量:1)光谱定向辐射力;2)定向辐射力;3)光谱辐射力;4)辐射力;5)辐射热流量。要求写清各量的符号、单位。 4.说明下列术语(可用数学表达式)(每题4分) a)光学厚度 b)漫有色表面 c)? d)兰贝特余弦定律 e)光谱散射相函数 f)定向“灰”入射辐射

化工原理试题库(含答案)

化工原理试题库 试题一 一:填空题(18分) 1、 某设备上,真空度的读数为80mmHg ,其绝压=________02mH =__________Pa. 该地区的大气压为 720mmHg 。 2、 常温下水的密度为1000 3m Kg ,粘度为1cp ,在mm d 100=内的管内以s m 3 速度流动,其流动类 型为 ______________。 3、 流体在管内作湍流流动时,从中心到壁可以__________.___________._ _________________. 4、 气体的粘度随温度的升高而_________,水的粘度随温度的升高_______。 5、 水在管路中流动时,常用流速范围为_______________s m ,低压气体在管路中流动时,常用流速范 围为_______________________s m 。 6、 离心泵与往复泵的启动与调节的不同之处是:离心泵_________________. __________________.往复泵___________________.__________________. 7、在非均相物糸中,处于____________状态的物质,称为分散物质,处于 __________状态的物质,称为分散介质。 8、 间竭过滤操作包括______._______.________._________.__________。 9、 传热的基本方式为___________.______________.__________________。 10、工业上的换热方法有_________.__________.__________.____________。 11、α称为_______________,其物理意义为____________________________. __________________________,提高管内α值的有效方法____________. 提高管外α值的有效方法______________________________________。 12、 蒸汽冷凝有二种方式,即_____________和________________ 。其中, 由于_________________________________________,其传热效果好。 K Kg Kj C C .187.4==冷水热水 试题一答案: 一、 填充题 1、8.7m 02H ,pa 41053.8?. 2、53 10310.11000.3.1.0?== = -μ ρ du R e 湍流。 1、 层流、过渡流和湍流。 2、 增加、降低。 3、 3-8s m 、8-15s m 。 4、 启动前应灌满液体,关出口阀门、用调节阀调节流量;往复泵启动前不需灌液,开旁路阀、用旁 路阀来调节流量的。 5、 分散、连续。 6、 过滤、洗涤、卸渣、清洗滤布、重整。 7、 热传导、对流传热、热辐射。 10、间壁式、混合式、蓄热式、热管。 11、称为对流传热膜糸数。当流体与壁面温度差为1K 时,通过单位面积单位时间内所传递热量的多少。增加流程、加拆流挡板。 12、滴状冷凝和膜状冷凝。滴状冷凝成小液滴沿壁面直接落下。 试题二

化工原理上册试卷答案

常州工程职业技术学院 06-07学年重修试卷答案及评分标准 课程:《化工原理》上册卷种(A/B):A 考核形式:闭卷试卷总页数:4适用班级(专业、年级):化工、应化类03、04级考试时间:90分钟 学生系部:班级:学号:姓名: 一、填空(共7题,1分/空,共20分) 1、说明气体的密度必须要说明_________和________条件。温度,压力 2、间壁式换热器的传热过程是对流、传导、对 流。 3、流体的流动形态有_____________和____________两种,可用________判断。层流,湍 流,雷诺数Re。 4、多程列管式热交换器的壳程中常装有一定数目与管束相垂直的折流挡板(简 称挡板),其目的是提高对流传热系数。 5、离心泵的构造主要包括________和________组成的旋转部件以及________和_________组 成的固定部件。叶轮,泵轴,泵壳,轴封 6、离心泵开车时,泵空转、吸不上液体、进口处真空度低,此时泵发生了__________现象, 其原因可能是________________或__________________。气缚,没有灌泵,轴封不严密。 7、离心泵运转时,泵振动大、噪音大、出口处压力低、流量下降,此时泵发生了________现 象,其原因可能是____________或_____________或________________。气蚀现象,安装

高度过高,吸入管路阻力太大,被输送流体温度过高。 二、单项选择题(共5题,每题4分) 1、 应用柏努利方程时,错误的是( )B A .单位必须统一出 B .截面与基准水平面可任意取 C .液面很大时,流速可取为零 D .用压头表示能量的大小时,应说明是哪一种流体 2、 离心泵的效率η和流量Q 的关系为( )。B A .Q 增大,η增大; B .Q 增大,η先增大后减小; C .Q 增大,η减小; D .Q 增大,η先减小后增大。 3、 下列说法中错误的是 C 。 A .热量总是自发地从高温处向低温处传递 B .固体中存在热传导,不存在热对流 C .液体中存在热对流,不存在热传导 D .辐射传热不仅是能量的传递,同时还拌有能量形式的转换 4、 关于热导率的叙述错误的是 D 。 A .金属的热导率随纯度的增高而增大 B .气体的热导率随压力的升高而增大 C .与固体和液体相比,气体的热导率最小 D .物质的热导率均随温度的升高而增大 5、 最简单,但测量精度最低的是( )A A. 孔板流量计 B. 文丘里流量计 C. 转子流量计 D. 无法确定 三、简答题(共4题,每题5分) 1、流体在直管中作层流流动,流量不变时,管径增大一倍,流体阻力发生什么样的变化?(写出运算过程) 答:阻力减小16倍。根据阻力计算式:g d q d l d q d h v v f 244642 22? ????? ????=πμ ρ π得4 1d h f ∝,所

化工原理试卷A及答案

(勤奋、求是、创新、奉献) 2014 ~2015 学年第一学期期末考试试卷 主考教师:陆杰、刘锡建、王远强 学院化学化工学院班级姓名 __________ 学号 ___________ 《化工原理(二)》课程试卷A 参考答案 (本卷考试时间 120 分钟) 题号一二三四五六七八九十总得 分 题 分 2020107101815100 得 分 一、填空题(每空1分,共20分) 1、精馏过程是利用多次部分汽化和多次部分冷凝的原理进行的,实现精馏操作的必要条件包括塔顶液相回流和塔底产生上升蒸汽。 2、在温度—组成(t-x-y)图中,气液两相呈平衡状态时,气液两相温度_________相等_______,但气相组成______大于_____液相组成。 3、全回流时,塔顶产品量为_____0______,回流比______无穷大_______,全回流适用的场合通常是_______精馏生产开工或实验研究_________________。

4、当分离要求和回流比一定时, 过热蒸气 进料的q 值最小,此时分离所需的理论板数 最多 。 5、吸收是利用各组分溶解度 不同而分离气体混合物的单元操作,当气相中溶质的的实际分压高于 与液相成平衡的溶质分压时,溶质从气相向液相转移,发生吸收过程。 6、易溶气体的吸收过程属于_______气膜_________控制过程,传质总阻力主要集中在__气膜_______侧,提高传质速率的有效措施是提高______气________相流体的流速和湍动程度。 7、恒速干燥阶段也称为表面汽化 控制阶段,降速阶段也称为内部迁移 控制阶段。 8、饱和空气中冷却, 湿度_________降低________,露点温度 _______降低________。 二、选择题(每题2分,共20分) 1、 对吸收操作有利的条件是:( D ) (A) 操作温度高、压强高 (B) 操作温度高、压强低 (C) 操作温度低、压强低 (D) 操作温度低、压强高 2、精馏过程中在精馏塔中每一块塔板上( C )。 (A) 只进行传质 (B) 只进行传热 (C) 同时进行传热传质 (D) 有时进行传热,有时传质 3、操作中的精馏塔,保持q 、 F 、D x 不变,减小F x ,则( C )。 (A) D 增大,R 减小 (B) D 不变,R 增加 (C) D 减小,R 增加 (D) D 减小,R 不变 4、精馏塔的塔板上,比较理想的气液接触状态是( D )。 (A) 鼓泡状和蜂窝状 (B) 鼓泡状和泡沫状 (C) 蜂窝状和喷射状 (D) 泡沫状和喷射状

化工原理试题及答案

化工原理试题及答案(绝密请勿到处宣扬) 12月25 日 一、填空题(共15空,每空2分,共30 分) 1. 一容器真空表读数为10 kpa,当地大气压强为100 kpa,则此容器的绝对压强和表压强(以kpa计) 分别为:(90kpa)和(-10kpa)。 2. 热传导只发生在固体和(静止)的或(滞)流动的流体中。 3. 物体的吸收率越(大),其辐射能力越(大)。(填大或小) 4. 蒸发中以(二次蒸汽)是否再利用而分为单效或多效蒸发。 5. 蒸发中的温度差损失主要由溶液中的(不挥发溶质)、液柱的(静压头)和管路(阻力)所引起的沸点升高三部分组成。 6. 一容器压力表读数为10 kpa,当地大气压强为100 kpa,则此容器的绝对压强(以kpa计)为: (90kpa)。 7. 对于同种流体,自然对流时的对流传热系数比时的(小)。(填大或小) 8. 物体的吸收率越大,其辐射能力越(大),所以黑体的辐射能力比灰体的(大)。(填大或小) 9. 蒸发操作所用的设备称为(蒸发器)。 10. 按二次蒸汽是否被利用,蒸发分为(单效蒸发)和(多效蒸发)。 二、选择题(共5题,每题2 分,共10分) 1. 对吸收操作有利的条件是:(D ) A. 操作温度高、压强高; B. 操作温度高、压强低; C. 操作温度低、压强低; D. 操作温度低、压 强高 2. 精馏塔内上层塔板液相轻组分浓度较下层塔板(A ),液相温度较下层塔板() A. 高,低; B. 低,高; C. 高,高; D. 低,低 3. (D )是塔内气液两相总体上呈逆流流动,而在每块塔板上呈均匀的错流流动。 A. 板式塔的传质意图; B. 板式塔的设计过程; C. 板式塔的恒摩尔流要求; D. 板式塔的设计意图 4. 恒定干燥条件是指湿空气在干燥器内的(C )及与物料的接触方式都不变。 A. 温度、焓值、湿度; B. 流速、压强、湿度; C. 流速、温度、湿度; D. 温度、湿度、压强

化工原理试题及答案

化工原理试题及答案(绝密请勿到处宣扬) 12月25日 一、填空题(共15空,每空2分,共30分) 1. 一容器真空表读数为10 kpa,当地大气压强为100 kpa,则此容器的绝对压强和表压强(以kpa计)分别为:(90kpa)和( -10kpa)。 2. 热传导只发生在固体和(静止)的或(滞)流动的流体中。 3. 物体的吸收率越(大),其辐射能力越(大)。(填大或小) 4. 蒸发中以(二次蒸汽)是否再利用而分为单效或多效蒸发。 5. 蒸发中的温度差损失主要由溶液中的(不挥发溶质)、液柱的(静压头)和管路(阻力)所引起的沸点升高三部分组成。 6. 一容器压力表读数为10 kpa,当地大气压强为100 kpa,则此容器的绝对压强(以kpa计)为:(90kpa)。 7. 对于同种流体,自然对流时的对流传热系数比时的(小)。(填大或小) 8. 物体的吸收率越大,其辐射能力越(大),所以黑体的辐射能力比灰体的(大)。(填大或小) 9. 蒸发操作所用的设备称为(蒸发器)。 10. 按二次蒸汽是否被利用,蒸发分为(单效蒸发)和(多效蒸发)。 二、选择题(共5题,每题2分,共10分) 1. 对吸收操作有利的条件是:(D) A. 操作温度高、压强高; B. 操作温度高、压强低; C. 操作温度低、压强低; D. 操作温度低、压强高 2. 精馏塔内上层塔板液相轻组分浓度较下层塔板(A ),液相温度较下层塔板() A. 高,低; B. 低,高; C. 高,高; D. 低,低 3. (D )是塔内气液两相总体上呈逆流流动,而在每块塔板上呈均匀的错流流动。 A. 板式塔的传质意图; B. 板式塔的设计过程; C. 板式塔的恒摩尔流要求; D. 板式塔的设计意图 4. 恒定干燥条件是指湿空气在干燥器内的(C)及与物料的接触方式都不变。 A. 温度、焓值、湿度; B. 流速、压强、湿度; C. 流速、温度、湿度; D. 温度、湿度、压强 5. 对于湿物料的湿含量,下面哪种说法是正确的?(B) A. 平衡水一定是自由水; B. 平衡水一定是结合水; C. 自由水一定是结合水; D. 自由水一定是非结合水 6. 当二组分液体混合物的相对挥发度为( C)时,不能用普通精馏方法分离。当相对挥发度为( A )时,可以采用精馏方法

传热学上海理工大学硕士研究生入学考试试题

2004年上海理工大学硕士研究生入学考试试题考试科目:传热学准考证号:得分: 一、问答题(每题5分) 1. 一无内热源平板沿厚度x方向发生一维稳态导热,其一侧表面上的温度梯度 =30 ℃/m,导热系数λ1=40W/(m.℃),如果其另一侧表面上的导热系数λ2=50W/(m.℃),问这一侧表面上的温度梯度是多少? 2. 解释毕渥准则数Bi的物理含义,并说明为什么用Bi判别非稳态导热问题能否采用集总参数法求解。 3. 图1.1示出了常物性、有均匀内热源、二维稳态导热问题局部边界区域的网格配置,试用元体平衡法建立节点0关于温度t的有限差分方程式(设 ,所需参数的符号自己设定)。 4. 当条件相同时,物体在空气中冷却快还是在水中冷却快?这一现象说明对流换热与什么因素相关? 5. 试用简图表示流体沿平板流动时速度边界层的发展并说明速度边界层内分成哪些区域? 6. 试解释普朗特数Pr的物理意义,并示意性的画出Pr>1时的速度边界层和热边界层厚度沿板长的变化(速度边界层和热边界层要画在同一图上以便比较)。 7. 说明温度附面层的概念及附面层能量微分方程在物理上忽略了哪部分换热。 8. 在应用管内旺盛紊流实验关联式时,当流体与换热壁面温差较大时需要对计算结果修正,为什么? 9. 试说明为什么一个细长圆柱水平放置时自然对流换热一般大于竖直放置时的自然对流换热? 10.在稳定膜态沸腾过程中,为什么换热系数随 增加而迅速上升?

11.试说明大气中CO2含量增高为什么会出现大气温室效应? 二、计算题 1. (10分)一直径为5cm的钢球,其初始温度为500℃,突然被置于温度为 30℃的空气中。设钢球表面与周围环境的对流换热系数为10 W/m2℃,试计算钢球非稳态导热的时间常数及其被冷却到300℃所需的时间。已知钢球的比热为c=0.48kJ/kg℃, ρ=7753kg/m3, λ=33W/m℃。 2. (20分)长10m、外径133mm的水平管道通过一大房间,房间壁面及其内 的空气温度均为30℃。若管道表面温度为90℃、黑度为0.9,求管道的散 热量(自然对流换热的努塞尔特数用下式计算)。3. (22分)如图2所示为一半径R=1m的半球,球冠3绝热。底面1和2的 温度分别为500℃和100℃,黑度都为0.9,求底面1和2间的辐射散热量。 4. (23分)温度为95℃的热空气流经一内径100mm、厚度6mm的圆管,管 壁导热系数为22 W/m℃。管外环境温度为30℃,管外壁与环境的总换热系数为10 W/m2℃。若管内空气质量流量为407kg/h,求管出口空气温度降低到65℃时的管长(不需考虑修正)。 三、理论题 1.(8分)一厚度为2δ的无内热源薄平板,其导热系数和初始温度分别为 λ和t0,突然被插在温度为t f的流体中。平板表面与流体的换热系数为h,给出问题的完整数学描述。 2. (12分)绕流平板换热的附面层积分方程为: 平板温度为t W,来流速度和温度分别为u∞和t∞,若Pr<<1,可以忽略速

08-09化工原理(上)考试卷B(答案)

08-09化工原理(上)考试卷B(答案)

- 2B - 长江大学试卷 学院 班级 学号 姓名 2008─2009学年 第 1 学期 《化工原理》试卷参考答案及评分标准(B 卷) 注意:1. 本试卷共 3 页; 2. 考试方式为闭卷,考试时间为120分钟; 3. 姓名、学号必须写在指定地方。 一、填空与选择题(共30分) 1.(3分)如果流体为理想流体且无外加功的情况下,写出: 单位体积流体的机械能衡算式为????常数=++ =p u gz E 2 2 ρρ???; 单位质量流体的机械能衡算式为????常数=++ =ρ p u z E 2g 2 ????; 单位重量流体的机械能衡算式为???常数=++=g p g u z E ρ22 ???????; 2. (4分)如图 (a)、(b)、(c)、(d)所示为同一管路U 型管的四种不同安装方位,管路内A 、B 两点安装水银压差计。若管内水流速相同,流向如图所示,则 (1)比较R l 、R 2、R 3、R 4的大小: R 1=R 2=R 3=R 4 ; (2)试以大小为序,列出四种情况A 、B 两点的压差: d >b >a >c 或 (R 4>R 2>R 1>R 3) 。 题号 一 二 三 总分 得分 阅卷人 得分

- 3B - 3.(2分)并联管路中各管段压强降 相等 ; 4.(2分)流体在管内流动时,如要测取管截面上的流速分布,应选用( B )流量计测量。 A 孔板流量计; B 皮托管; C 文丘里流量计; D 转子流量计 5.(2分)有人认为泵的扬程就是泵的升扬高度,有人认为泵的轴功率就是原动机的功率,我认为( B )。 A 这两种说法都对; B 这两种说法都不对; C 前一种说法对; D 后一种说法对。 6.(2分)板框压滤机洗涤速率与恒压过滤终了的速率 的1/4这一规律只在( D )时才成立。 A 滤液的粘度与洗涤液的粘度相同; B 过滤时的压差与洗涤时的压差相同; C 过滤时的压差与洗涤时的压差相同,滤液的粘度与洗涤液的粘度相同, 而且过滤面积与洗涤相同; D 过滤时的压差与洗涤时的压差相同且滤液的粘度与洗涤液的粘度相同。 7.(2分)过滤介质阻力忽略不计,下列恒压过滤循环中那种生产能力最大( B )(τ为时间) A τ洗涤=τ过滤+τ辅 ; B τ过滤=τ洗涤+τ辅 ; C τ洗涤+τ过滤=τ辅 ; D τ过滤=τ洗涤 ; 8.(3分)过滤常数K 是过滤过程中的一个重要参数。由K 的计算可知,K 与过程 推动力 p ?、滤饼性质(压缩指数s 、比阻r 0)、滤浆性质(μ,c )有关。 9.(3分)沸腾有 膜状 沸腾和 核状 沸腾,工业上沸腾装置一般按 核状 沸腾设计和操作。 10.(4分)在传热实验中用饱和水蒸汽加热空气,总传热系数K 接近于 空气 侧的对流传热系数,而壁温接近于 饱和水蒸汽 侧流体的温度值。 11.(1分)分子扩散中菲克定律的表达式为??dz dC D J A AB A -= 。 12.(2分)单向扩散中漂流因子 C 。 A =1 ; B <1 ; C >1 ; D 不一定 阅卷人 得分

2020年传热学考研大纲——上海理工大学材料科学与工程学院

2020年传热学考研大纲——上海理工大学材料科 学与工程学院 传热学A《传热学》杨世铭、陶文铨,高等教育出版社,2006年 二、基本要求 1.掌握热量传递的三种方式(导热、对流和辐射)的基本概念和基本定律; 2.能够对常见的导热、对流、辐射换热及传热过程进行定量的计算,并了解其物理机理和特点,进行定性分析; 3.对典型的传热现象能进行分析,建立合适的数学模型并求解; 4.能够用差分法建立导热问题的数值离散方程,并了解其计算机求解过程。 三、主要知识点 第一章绪论:热量传递的三种基本方式;导热、对流和热辐射的基本概念和初步计算公式;热阻;传热过程和传热系数。 第二章导热基本定律和稳态导热:温度场、温度梯度;傅里叶定律和导热系数;导热微分方程、初始条件与边界条件;单层及多层平壁的导热;单层及多层圆筒壁的导热;通过肋端绝热的等截面直肋的导热;肋效率;一维变截面导热;有内热源的一维稳态导热。 第三章非稳态导热:非稳态导热的基本概念;集总参数法;描述非稳态导热问题的数学模型(方程和定解条件); 第四章导热问题的数值解法:导热问题数值解法的基本思想;用差分法建立稳态导热问题的数值离散方程。 第五章对流换热:对流换热的主要影响因素和基本分类、牛顿冷却公式和对流换热系数的主要影响因素;速度边界层和热边界层的概念;横掠平板层流换热边界层的微分方程组;横掠平板层流换热边界

层积分方程组;动量传递和热量传递比拟的概念;相似的概念及相似 准则;管槽内强制对流换热特征及用实验关联式计算;绕流单管、管 束对流换热特征及用实验关联式计算;大空间自然对流换热特征及对流换热特征及用实验关联式计算。 第六章凝结与沸腾换热:凝结与沸腾换热的基本概念;珠状凝结与膜状凝结特点;膜状凝结换热计算;影响膜状凝结的因素;大容器饱和沸腾曲线;影响沸腾换热的因素。 第七章热辐射基本定律及物体的辐射特性:热辐射的基本概念;黑体、白体、透明体;辐射力与光谱辐射力;定向辐射强度;黑体辐射基本定律:普朗克定律,维恩定律,斯忒藩—玻尔兹曼定律,兰贝 特定律;实际固体和液体的辐射特性、黑度;灰体、基尔霍夫定律。 第八章辐射换热的计算:角系数的概念、性质、计算;两固体表面组成的封闭系统的辐射换热计算;表面热阻;空间热阻;多表面系统辐射换热的网络法计算;辐射换热的强化与削弱、遮热板;辐射换热 系数和复合换热表面传热系数;气体辐射特点。 第九章传热过程分析与换热器计算:传热过程及传热系数的计算;临界绝热直径;换热器型式及对数平均温差;用平均温差法进行换热 器的热计算;换热器效能ε的概念和定义;强化传热。

化工原理试题及答案22718

一、二章复习题 第一章 一、填空题 1.一个生产工艺就是由若干个__________ 与___________构成的。 2.各单元操作的操作原理及设备计算都就是以__________、___________、___________、与___________四个概念为依据的。 3.常见的单位制有____________、_____________与_______________。 4.由于在计量各个物理量时采用了不同的__________,因而产生了不同的单位制。 5.一个过程在一定条件下能否进行,以及进行到什么程度,只有通过__________来判断。6.单位时间内过程的变化率称为___________。 二、问答题 7.什么就是单元操作?主要包括哪些基本操作? 8、提高过程速率的途径就是什么? 第二章流体力学及流体输送机械 流体力学 一、填空题 1.单位体积流体的质量称为____密度___,它与__比容_____互为倒数。 2.流体垂直作用于单位面积上的力,称为__流体的压强__________。 3.单位时间内流经管道任一截面的流体量称为___流量_____,其表示方法有__质量流量______与____体积流量____两种。 4.当管中流体形成稳定流动时,管中必定充满流体,即流体必定就是__连续流动的_______的。5.产生流体阻力的根本原因就是_内摩擦力_______;而___流体的运动状态________就是产生流体阻力的第二位原因。另外,管壁粗糙度与管子的长度、直径均对流体阻力_的大小与影响______________。 6.流体在管道中的流动状态可分为_____滞流_ 与____湍流______两种类型,二者在内部质点运动方式上的区别就是_____湍流的质点有脉动滞流没有________________________________。 7.判断液体内处于同一水平面上的各点压强就是否相等的依据就是_静止的________、___连通的________、__连接的就是同一种液体______________。 8.流体若由低压头处流向高压头处时,所加入外加功的作用就是、分别或同时提高流体的位压头;动压头;静压头以及弥补损失能量______________________________。

2004年上理传热学研究生考试

2004年上海理工大学硕士研究生入学考试试题 考试科目:传热学准考证号:得分: 一、问答题(每题5分) 1. 一无内热源平板沿厚度x方向发生一维稳态导热,其一侧表面上的温度梯度=30 ℃/m,导热系数λ1=40W/(m.℃),如果其另一侧表面上的导热系数λ2=50W/(m.℃),问这一侧表面上的温度梯度是多少? 2. 解释毕渥准则数Bi的物理含义,并说明为什么用Bi判别非稳态导热问题能否采用集总参数法求解。 3. 图1.1示出了常物性、有均匀内热源、二维稳态导热问题局部边界区域的网格配置,试用元体平衡法建立节点0关于温度t的有限差分方程式(设,所需参数的符号自己设定)。 4. 当条件相同时,物体在空气中冷却快还是在水中冷却快?这一现象说明对流换热与什么因素相关? 5. 试用简图表示流体沿平板流动时速度边界层的发展并说明速度边界层内分成哪些区域? 6. 试解释普朗特数Pr的物理意义,并示意性的画出Pr>1时的速度边界层和热边界层厚度沿板长的变化(速度边界层和热边界层要画在同一图上以便比较)。 7. 说明温度附面层的概念及附面层能量微分方程在物理上忽略了哪部分换热。

8. 在应用管内旺盛紊流实验关联式时,当流体与换热壁面温差较大时需要对计算结果修正,为什么? 9. 试说明为什么一个细长圆柱水平放置时自然对流换热一般大于竖直放置时的自然对流换热? 10.在稳定膜态沸腾过程中,为什么换热系数随增加而迅速上升? 11.试说明大气中CO2含量增高为什么会出现大气温室效应? 二、计算题 1. (10分)一直径为5cm的钢球,其初始温度为500℃,突然被置于温度为30℃的空 气中。设钢球表面与周围环境的对流换热系数为10 W/m2℃,试计算钢球非稳态导热 的时间常数及其被冷却到300℃所需的时间。已知钢球的比热为c=0.48kJ/kg℃, ρ =7753kg/m3, λ=33W/m℃。 2. (20分)长10m、外径133mm的水平管道通过一大房间,房间壁面及其内的空气温 度均为30℃。若管道表面温度为90℃、黑度为0.9,求管道的散热量(自然对流换 热的努塞尔特数用下式计算)。 3. (22分)如图2所示为一半径R=1m的半球,球冠3绝热。底面1和2的温度分别为 500℃和100℃,黑度都为0.9,求底面1和2间的辐射散热量。 4. (23分)温度为95℃的热空气流经一内径100mm、厚度6mm的圆管,管壁导热系数 为22 W/m℃。管外环境温度为30℃,管外壁与环境的总换热系数为10 W/m2℃。若

化工原理试卷(含答案)

化工原理上册考题 一、填空与回答问题(20分) 1.在完全湍流时,流体在粗糙管内流动的摩擦系数λ数值只取决于▁▁▁▁▁▁▁。 2.有一并联管路,两支段管路的流速、管径、管长及流动阻力损失分别为u1、d1、l1、h f1及u2、d2、l2、h f2。若d1=2d2,l1=2l2,则当两段管路中流体均作湍流流动时,并取,u1/u2=▁▁▁▁。3.理想流化床中,床层高度随气速的加大而▁▁▁▁,整个床层压强降▁▁▁▁,床层压强降等于▁▁▁▁。 4.在长为L m、高为H m的降尘室中,颗粒的沉降速度为u t m/s,气体通过降尘室的水平流速为u m/s,则颗粒能在降尘室内分离的条件是▁▁▁▁▁▁▁▁。 5.克希霍夫定律的数学表达式为▁▁▁▁▁▁▁▁▁▁▁▁,该式表明▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁。6.画出并流加料法的三效蒸发装置流程示意图,标出各流股的名称,说出并流加料的优缺点。 二、(20分)如图所示的输水系统,已知管内径为d=50 mm,在阀门全开时输送系统的l+Σle=50 m,摩擦系数λ可取0.03, 泵的性能曲线在流量为6m3/h至15m3/h范围内可用下式描述: H=18.92-0.82Q0.8, H为泵的扬程m, Q为泵的流量m3/h。问: (1) 如要求输送量为10 m3/h, 单位质量的水所需外加功为多少? 此泵能否完成任务?(2) 如要求输送量减至8 m3/h(通过关小阀门来达到), 泵的轴功率减少百分之多少?(设泵的效率变化忽略不计)。 三、(15分)某板框压滤机共有10个框, 框空长、宽各为500 mm, 在一定压力下恒压过滤30min后, 获得滤液5m3, 假设滤布阻力可以忽略不计, 试求: (1) 过滤常数K; (2) 如果再过滤30min, 还能获得多少m3滤液? 四、(15分)为测定某材料的导热系数, 把此材料做成一定厚度的圆形平板, 夹在某测定仪器热、冷两面之间进行试验。假定通过平板传热量Q一定,并已知仪器热、冷面平均温度分别为t w1和t w2。当认为仪器热、冷两面与平板之间接触良好没有空隙时,所计算的平板导热系数为。若考虑仪器热、冷两面与平板之

相关文档
相关文档 最新文档