文档库 最新最全的文档下载
当前位置:文档库 › 度量空间紧集上连续自映射的几个结果

度量空间紧集上连续自映射的几个结果

度量空间紧集上连续自映射的几个结果
度量空间紧集上连续自映射的几个结果

泛函分析知识点

泛函分析知识点 知识体系概述 (一)、度量空间和赋范线性空间 第一节 度量空间的进一步例子 1.距离空间的定义:设X 是非空集合,若存在一个映射d :X ×X →R ,使得?x,y,z ∈X,下列距离公理成立: (1)非负性:d(x,y)≥0,d(x,y)=0?x=y; (2)对称性:d(x,y)=d(y,x); (3)三角不等式:d(x,y)≤d(x,z)+d(z,y); 则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X ,d ) 2.几类空间 例1 离散的度量空间 例2 序列空间S 例3 有界函数空间B(A) 例4 可测函数空M(X) 例5 C[a,b]空间 即连续函数空间 例6 l 2 第二节 度量空间中的极限,稠密集,可分空间 1. 开球 定义 设(X,d )为度量空间,d 是距离,定义 U(x 0, ε)={x ∈X | d(x, x 0) <ε} 为x 0的以ε为半径的开球,亦称为x 0的ε一领域. 2. 极限 定义 若{x n }?X, ?x ∈X, s.t. ()lim ,0n n d x x →∞ = 则称x 是点列{x n }的极限. 3. 有界集 定义 若()(),sup ,x y A d A d x y ?∈=<∞,则称A 有界 4. 稠密集 定义 设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ?,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。 5. 可分空间 定义 如果X 有一个可数的稠密子集,则称X 是可分空间。 第三节 连续映射 1.定义 设X=(X,d),Y=(Y , ~ d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任 意给定的正数ε,存在正数0δ>,使对X 中一切满足 ()0,d x x δ < 的x ,有 ()~ 0,d Tx Tx ε <,

泛函分析部分知识点汇总

度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离, 使之成为距离空间,这将是深入研究极限过程的一个有效步骤。 泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范 线性空间,就是一种带有线性结构的度量空间。 一、度量空间的进一步例子 1、度量空间 设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1° 的充要条件为x=y 2° 对任意的z 都成立, 则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空 间。x 中的元素称为点。 2、常见的度量空间 (1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称 为离散的度量空间。 (2)序列空间S 令S 表示实数列(或复数列)的全体,对S 中的任意两点 令 称 为序列空间。 (3)有界函数空间B(A ) 设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A) 中任意两点x,y ,定义 (4)可测函数空间 设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度, 若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。令 (5)C[a,b]空间 令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意 两点x,y ,定义 二、度量空间中的极限、稠密集、可分空间 1、收敛点列 设 是(X ,d )中点列,如果存在 ,使 则称点列 是(X ,d ) 中的收敛点列,x 是点列 的极限。 收敛点列性质: (1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯 一的。 (2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。 (,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠?=?=?(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()| f t g t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-?(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

概率论

1.1.1 确定性现象 在自然界和人类社会生活中,人们观察到的现象大体可以分为两种类型:确定性现象与随机现象. 确定性现象是在一定条件下必然发生(或出现)某个结果的现象,这一类现象也称为必然现象. 例如,①向上抛一块石头必然会落下;②在标准大气压下,水在100oC时一定沸腾;③异性电荷相互吸引,同性电荷相互排斥;?? 确定性现象蕴含的客观规律,我们称为确定性规律,它是人类早期科学研究的主要课题.同学们中小学所接触的自然科学知识几乎都是这些规律的知识. 如,前例①中我们知道那是万有引力定律在作用;前例②中我们知道了水的沸点是与大气压成正比的规律;前例③中如果我们进一步的知道点电量及它们之间的距离,就可以算出它们之间的作用力??这些确定性规律只要我们掌握了,如果给出了具体的初始条件,那么我们就可以明确甚至是精确地知道会发生什么结果. 对于确定性规律,大致地可以得出如下的特点: (1)如果给定某种初始条件,则发生的结果唯一; (2)一旦知道了它的规律,则结果的可以预知的. 换句话说,确定性现象在相同条件下进行多次重复观察或实验,它发生的结果仍然保持不变. 1.1.2 随机现象 随机现象,是在确定的条件下观察一次,只发生(或出现)一个结果,但在相同的条件下进行多次重复观察时,却可以发生多种不同结果的现象. 例如,①在相同的条件下抛同一枚硬币,可能出现正面也可能是反面;②在相同的条件下抛掷同一枚骰子,可能出现1点,也可能出现2点,等等;③某城市某个月内交通事故发生的次数可能为0,可能为1,等等;④对某只灯泡做寿命实验,其寿命的可能值为无数多个;?? 随机现象是事前无法预知结果的,因为在相同条件下,可以出现这个结果,也可以出现那个结果,如在相同的条件下抛掷同一枚骰子,我们无法事先预知六面中哪一面会朝上. 1.1.3 统计规律性(1)--抛硬币实验 因此,人们不禁地要问,随机现象是不是毫无规律可循呢?表面上看,随机现象的发生完全是“偶然的”,或“原因不明的”,没有什么规律可循.但事实上并非如此,人们经过长期的反复实践,逐渐发现所谓的无规律可言,只是针对一次或几次观察而言,当在相同条件下进行大量观察时,随机现象会呈现某种规律.典型的例子就是历史上抛掷硬币的实验: 从试验结果可以看出,在大量的重复实验中,硬币出现正面与反面的机会几乎是相等的,而不是杂乱无章法. 1.1.4 统计规律性(2)--其他实验 我们知道,随机现象在相同条件下进行大量观察时呈现出某种规律性.下面再列举几个例子. 1.根据各个国家各时期的人口统计资料,新生婴儿中男婴和女婴的比例大约总是1:1. 2.人的高度虽然各不相同,但通过大量的统计,如果在一定范围内把人的高度按所占的比例画出“直方图”,就可以连成一条和铜钟的纵剖面一样的曲线. 1.1.5 统计规律性(3)--规律描述 从上面的例子我们确实看到,在相同条件下大量重复观察时,随机现象呈现出某种规律,称这种规律为统计规律.概率论和数理统计就是研究随机现象统计规律性的一门学科. 既然概率统计研究的是随机现象的统计规律性,那么我们有必要具体了解那是什么样的规律.通过上面的例子,可以总结出统计规律的特点: (1)随机性每个结果是否出现是随机会而定的,是客观存在的,人为是无法对它进行控制与支配的; (2)频率的稳定性在大量重复的观察中,各个结果出现的频率是稳定的. 一方面,随机性(也称偶然性,不确定性)是客观存在的,它使得人们无法预知会出现哪个结果,也不会更不可能因为发现了频率的稳定性之后就消失.另一方面,频率的稳定性客观上证实了随机现象的各个结果之间存在着某种内在的必然联系,这种必然联系决定了每个结果出现的可能性大小. 通俗地讲,统计规律性就是:每个结果的发生(或出现)都是随机的,但是每个结果发生的内在比例是固定的.

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d()与之对应,而且这一对 应关系满足下列条件: 1°d()≥0 ,d()=0 ?x=y(非负性) 2°d()= d() (对称性) 3°对?z ,都有d()≤d()() (三点不等式) 则称d()是x、y之间的度量或距离(或),称为 ()度量空间或距离空间()。 (这个定义是证明度量空间常用的方法)

注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(),只要 满足1°、2°、3°都称为度量。这里“度量”这个名 称已由现实生活中的意义引申到一般情况,它用来描 述X 中两个事物接近的程度,而条件1°、2°、3°被 认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个 集合X 上若有两个不同的度量函数1d 和2d ,则我们认为 (X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观 起见,今后称度量空间()中的元素为“点” ,例如若 x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间()时可以省略度量函数d ,而称“度 量空间X ” 。 1.1举例 1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点∈X ,令 ()1x y d x y =0x=y ≠??? ,当,,当,则称(X ,d )为离散度量空间。 1.12 序列空间S :S 表示实数列(或复数列)的全体,d()=1121i i i i i i ?η?η∞=-+-∑; 1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界

概率论基本知识(通俗易懂)

第一章概率论的基本概论 确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等 随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。 由此产生的概念有:随机现象,随机事件,随机试验。 例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。 例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。 随机现象的结果(随机事件)的随机度如何解释或如何量化呢? 这就要引入”概率”的概念。 概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。

§1.1随机试验 以上试验的共同特点是: 1.试验可以在相同的条件下重复进行; 2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发

生哪一个可能结果在试验之前不能预言。 我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。 §1.2样本空间与随机事件 (一) 样本空间与基本事件 E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。 E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。 例:§1.1中试验 E 1--- E 7 E 1:S 1={H,T} E 2:S 2={ HHH,HHT,HTH,THH, HTT,THT,TTH,TTT } E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0 ≥t } E 7:S 7={()y x , 10T y x T ≤≤≤} (二) 随机事件

泛函分析度量空间知识和不动点的应用

泛函分析度量空间知识和不动点的应用 第七章度量空间和赋范线性空间知识总结 一、度量空间的例子 定义:设X 为一个集合,一个映射d :X ×X →R 。若对于任何x,y,z 属于X ,有 (I )(正定性)d(x,y )≥0,且d(x,y)=0当且仅当 x = y ; (Ⅱ)(对称性)d(x,y)=d(y,x ); (Ⅲ)(三角不等式)d(x,z )≤d(x,y)+d(y,z ) 则称d 为集合X 的一个度量(或距离)。称偶对(X ,d )为一个度量空间,或者称X 为一个对于度量d 而言的度量空间。根据定义引入度量空间有离散的度量空间、序列空间、有界函数空间、可测函数空间、C 【a ,b 】空间、2l 空间,这6个空间是根据度量空间的定义可证它们是度量空间,在后面几节中给出它们相关的性质。 二、度量空间中的极限,抽密集,可分空间: 证明极限有二种方法: 1、定义法:设{}n x 是(X ,d )中点列,如果存在x ∈X ,是lim (,)n x d x x →∞ =0,则称点列{} n x 是(X ,d )中的收敛点列,x 是点列{}n x 的极限。 2、M 是闭集是充要条件是M 中任何收敛点列的极限都在M 中。即若n x M ∈,n=1、,2……, n x x →,则x M ∈。 给出n 维欧氏空间、C[a,b]序列空间、可测函数空间中点列收敛的具体意义,由这些系列例子可以看到,尽管在各个具体空间中各种极限概念不完全一致,所以我们引入度量空间中的稠密子集和可分空间的概念,根据定义可得出n 维欧氏空间n R 是可分空间,坐标为有理数的全体是n R 的可数稠密集,离散度量空间X 可分的充要条件为X 是可数集。l ∞ 是不可分空间。 三、连续映射 证明度量空间的连续映射有四种方法: 1、定义法:设X=(X ,d ),Y=(Y ,d )是两个度量空间,T 是X 到Y 中的映射,0 x X ∈,如果对于任意给定的正数ε,存在正数δ 0,使对X 中一切满足d (x ,0x )δ 的x ,有 (,)d Tx Tx ε ,则称T 在0x 连续。 2、对0Tx 的每个ε-领域U ,必有0x 得某个δ—邻域V 使TV ?U ,其中TV 表示V 在映射T 作用下的像。 3、定理1:设T 是度量空间(X ,d )到度量空间(Y ,d )中的映射,那么T 在0 x X ∈连

概率论综述

概率论综述

第一章 事件与概率 §1. 随机现象与统计规律性 一.随机现象 概率论(probability theory )是研究随机现象的数量规律的数学分支。本节概述他的研究对象及殊地位。 在一定条件下,必然会发生的事件称为必然事件。反之,那种在一定条件下,必然不会发生的事件称为不可能事件,这些统称为决定性现象。 另一类现象,在基本条件不变的情况下,一系列试验或观察会得到不同的结果,即就个别实验或观察而言,它会时而出现这种结果,时而出现结果,呈现出一种偶然性。这种现象称之为随机现象(random phenomenon ),对于随机现象通常关心的是试验或观察中某个结果是否出现,这些结果称之为随机事件,简称事件(event)。 二.频率稳定性 对于随机事件A,若在N 次实验中出现了n 次,则称 N n A F N =)( 为随机事件A 在N 次实验中出现的频率. 有种种事实表明,随机现象有其偶然的一面,也有其必然的一面。这种必然性表现为大量试验中随机事件出现的频率的稳定性,即一个随机事件出现的频率常在某个固定的常数附近摆动,这种规律性我们称之为统计规律性。 对于一个随机事件A ,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称之为随机事件A 的概率(probability ).因此概率度量了随机事件发生的可能性大小。 三.频率与概率 首先,概率具有非负性 0)(≥A F N 其次,对于必然发生的事件,在N 此试验中应出现N 次。若以Ω记必然事件,则应有 1)(=ΩN F 还有,若A 及B 是两个两个不会同时发生的随机事件,以A+B 表示A 或B 至少出现其一这一事件,则应有

度量空间与连续映射

定义2.1.1 定理2.1.1 作业 第2章度量空间与连续映射 从数学分析中读者已经熟知单变量和多变量的连续函数,它们的定义域和值域都是欧氏空间(直线,平面或空间等等)或是其中的一部分.在这一章中我们首先将连续函数的定义域和值域主要特征抽象出来用以定义度量空间,将连续函数的主要特征抽象出来用以定义度量空间之间的连续映射(参见§2.1).然后将两者再度抽象,给出拓扑空间和拓扑空间之间的连续映射(参见§2.2).随后再逐步提出拓扑空间中的一些基本问题如邻域,闭包,内部,边界,基和子基,序列等等. §2.1度量空间与连续映射 本节重点:掌握拓扑学中度量的概念及度量空间中的连续映射的概念. 注意区别:数学分析中度量、连续映射的概念与本节中度量、连续映射的概念. 注意,在本节的证明中,应细细体会证明的方法. 首先让我们回忆一下在数学分析中学习过的连续函数的定义.函数f:R→R称为在点 ∈R处是连续的,如果对于任意实数ε>0,存在实数δ>0,使得对于任何x∈R,当|x- |<δ时,有 |f(x)-f()|<ε.在这个定义中只涉及两个实数之间的距离(即两个实数之差的绝对值)这个概念;为了验证一个函数在某点处的连续性往往只要用到关于上述距离的最基本的性质,而与实数的其它性质无关,关于多元函数的连续性情形也完全类似.以下,我们从这一考察出发,抽象出度量和度量空间的概念. 定义2.1.1 设X是一个集合,ρ:X×X→R.如果对于任何 x,y,z∈X,有 (1)(正定性),ρ(x,y)≥0并且ρ(x,y)=0当且仅当x=y; (2)(对称性)ρ(x,y)=ρ(y,x);

(3)(三角不等式)ρ(x,z)≤ρ(x,y)+ρ(y,z) 则称ρ是集合X的一个度量. 如果ρ是集合X的一个度量,称(X,ρ)是一个度量空间,或称X是一个对于ρ而言的度量空间.有时,或者度量ρ早有约定,或者在行文中已作交代,不提它不至于引起混淆,这时我们称X是一个度量空间.此外,对于任意两点x,y∈X,实数ρ(x,y)称为从点x到点y的距离. 着重理解:度量的本质是什么? 例2.1.1 实数空间R. 对于实数集合R,定义ρ:R×R→R如下:对于任意x,y∈R,令 ρ(x,y)=|x-y|.容易验证ρ是R的一个度量,因此偶对(R,ρ)是一个度量空间.这个度量空间特别地称为实数空间或直线.这里定义的度量ρ,称为R的通常度量,并且常常略而不提,迳称R为实数空间.(今后我们说实数空间,均指具有通常度量的实数空间.) 例2.1.2 n维欧氏空间. 对于实数集合R的n重笛卡儿积 =R×R×…×R 定义ρ:×→R如下:对于任意x=(), y=, 令 ρ(x,y)= 容易验证(详见课本本节最后部分的附录)ρ是的一个度量,因此偶对(,ρ)是一 个度量空间.这个度量空间特别地称为n维欧氏空间.这里定义的度量ρ,称为的通常 度量,并且常常略而不提,迳称为n维欧氏空间.2维欧氏空间通常称为欧氏平面或平面.(今后说通常度量,均指满足这种公式的度量) 例2.1.3 Hilbert空间H.

泛函分析习题1

线性与非线性泛函分析◇ - 1 - 习题1 1.(张燕石淼)设在全体实数R 上,定义两个二元映射2(,)()x y x y ρ=-和 (2) (,)d x y ,证明(1)(,)ρR 不是度量空间;(2)(,)d R 是度量空间. 2.(范彦勤孙文静)设X ρ(,)为度量空间,:f ∞→∞[0,+][0,+]为严格单调函数,且满足 ,x y f ?∈∞[0,+],(0)=0,()()()f x y f x f y +≤+,令(,)((,))d x y f x y ρ=,证明X d (,)为度量空间. 3. (武亚静张丹)设X d (,)为度量空间,证明,,,x y z w X ?∈有 (,)(,)(,)(,)d x z d y w d x y d z w -≤+. 4.(崔伶俐杨冰)设全体实数列组成的集合为{}123(,,,....,...)|,1,2,...n i X x x x x x R i =∈=,对于 123(,,,....,...)n x x x x x =及12(,,...,...)n y y y y =∈X ,定义11(,)12k k k k k k x y d x y x y ∞ =-=+-∑ .证明 X d (,)为度量空间. 5.设()X n 为0和1组成的n 维有序数组,例如(3){000,001,010,011,100,101,110,111}X =,对于任意的,()x y X n ∈,定义(,)d x y 为x 和y 中取值不同的个数,例如在(3)X 中,(110,111)1d =, (010,010)0d =(010,101)3d =.证明((),)X n d 为度量空间. 6.(苏艳丁亚男)设X d (,)为度量空间, A X ?且A ≠φ.证明A 是开集当且仅当A 为开球的并. 7.(张振山赵扬扬)设X d (,)和Y ρ(,)是两个度量空间.那么映射:f X Y →是连续映射当且仅当Y 的任意闭子集F 的原象1()f F -是X 中的闭集. 8.(王林何超)设{}n x 与{}n y 是度量空间X d (,)的两个Cauchy 列.证明(),n n n a d x y =是收敛列. 9.(李敬华孙良帅)设X d (,)和Y ρ(,)是两个度量空间,在X Y ?上定义度量 112212121 ((,),(,)){[(,)][(,)]}p p p x y x y d x x d y y γ=+,其中1122(,),(,)x y x y X Y ∈?,1p ≥为正数.证明 X Y ?是完备空间当且仅当X d (,)和Y ρ(,)均是完备空间. 10.(李秀峰钱慧敏)设X d (,)是完备的度量空间,{}11n G x G ∈是X 中的一列稠密的开子集,证明1n n G ∞ = 也是X 中的稠密子集. 11.(王胜训闫小艳)设n A ?R ,证明A 是列紧集当且仅当A 是有界集. 12 (冯岩盛谢星星)设X d (,)为度量空间,A X ?且A φ≠.证明 (1){|,(,)}x x X d x A ε∈<是X 的开集. (2){|,(,)}x x X d x A ε∈≤是X 的闭集,其中0ε>.

实变函数与泛函分析基础第三版

书籍目录: 第一篇实变函数 第一章集合 1 集合的表示 2 集合的运算 3 对等与基数 4 可数集合 5 不可数集合 第一章习题 第二章点集 1 度量空间,n维欧氏空间 2 聚点,内点,界点 3 开集,闭集,完备集 4 直线上的开集、闭集及完备集的构造 5 康托尔三分集 第二章习题 第三章测度论 1 外测度 2 可测集 3 可测集类 4 不可测集 .第三章习题 第四章可测函数 1 可测函数及其性质 2 叶果洛夫(EropoB)定理 3 可测函数的构造 4 依测度收敛 第四章习题 第五章积分论 1 黎曼积分的局限性,勒贝格积分简介 2 非负简单函数的勒贝格积分 3 非负可测函数的勒贝格积分 4 一般可测函数的勒贝格积分 5 黎曼积分和勒贝格积分 6 勒贝格积分的几何意义·富比尼(Fubini)定理第五章习题 第六章微分与不定积分 1 维它利(Vitali)定理 2 单调函数的可微性 3 有界变差函数 4 不定积分 5 勒贝格积分的分部积分和变量替换 6 斯蒂尔切斯(Stieltjes)积分 7 L-S测度与积分

第六章习题 第二篇泛函分析 第七章度量空间和赋范线性空间 1 度量空间的进一步例子 2 度量空间中的极限,稠密集,可分空间 3 连续映射” 4 柯西(CaHcLy)点列和完备度量空间 5 度量空间的完备化 6 压缩映射原理及其应用 7 线性空间 8 赋范线性空间和巴拿赫(Banach)空间第七章习题 第八章有界线性算子和连续线性泛函 1 有界线性算子和连续线性泛函 2 有界线性算子空间和共轭空间 3 广义函数 第八章习题 第九章内积空间和希尔伯特(Hilbert)空间 1 内积空间的基本概念 2 投影定理 3 希尔伯特空间中的规范正交系 4 希尔伯特空间上的连续线性泛函 5 自伴算子、酉算子和正常算子 第九章习题 第十章巴拿赫空间中的基本定理 l 泛函延拓定理 2 C[a,b)的共轭空间 3 共轭算子 4 纲定理和一致有界性定理 5 强收敛、弱收敛和一致收敛 6 逆算子定理 7 闭图像定理 第十章习题 第十一章线性算子的谱 1 谱的概念 2 有界线性算子谱的基本性质 3 紧集和全连续算子 4 自伴全连续算子的谱论 5 具对称核的积分方程 第十一章习题 附录一内测度,L测度的另一定义 附录二半序集和佐恩引理 附录三实变函数增补例题

泛函分析第七章 习题解答125

第七章习题解答 1.设(X ,d )为一度量空间,令}),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2.设],[b a C ∞ 是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明(1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 21 ),()()()()(0 t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞ 按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞ =1。 证明令n n n o n n B x d Bo o .2,1},1 ),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使n x x d 1 ),(10< 。设,0),(110>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是开集 显然B o n n ??∞ =1 。若n n o x ∞ =?∈1则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此)(∞?→??→? n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞ =1 。 4.设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d += 是X 上的距离。 证明(1)若0),(___ =y x d 则0),(=y x d ,必有x=y (2)因),(),(),(z y d z x d y x d +≤而 t t +1在),[∞o 上是单增函数,于是) ,(),(1) ,(),(),(),(1),(),(___ ___ z y d z x d z y d z x d y x d y x d y x d y x d +++=≤+=

[指南]第一章 度量空间-黎永锦

[指南]第一章度量空间-黎永锦 第1章度量空间 在1900年巴黎数学家大会上我曾毫不犹豫 地把十九世纪称为函数论的世纪. V. Volterra(伏尔泰拉) (1860-1940, 意大利数学家) 泛函分析这一名称是由法国数学家P. Levy引进 的. 在十九世纪后期,许多数学家已经认识到数学中许 多领域处理的是作用在函数上的变换或者算子,推动 创立泛函分析的根本思想是这些算子或变换可以看作 某类函数上算子的抽象形式,把这类函数全体看成空 间,而每个函数就是空间的点,算子或变换就把点变成 点,将函数变成实数或复数的算子就称为泛函.泛函的 抽象理论是由V. Volterra(1860-1940)在关于变分法的 P. Levy (1886-1971)

工作中最先研究的,但在建立函数空间和泛函的抽象理论中,第一个卓越的成果是由法国数学家M. Frechet 1906年在他的博士论文中得到的. 1. 1 度量空间 M. Frechet是法国数学家,他1906年获得博士学位. M. Frechet的博士论文 开创了一般拓扑学,G. Cantor, C. Jordan, G. Peano, E. Borel和其他数学家发展了有限维空间的点集理论. V. Volterra, G. ascoli和J. Hadamard等开始把实值函数作为空间的 点来考虑. M. Frechet的博士论文统一了这两种思想,并建立了一个公理结构. 他给出收敛序列的极限的一组公理,然后定义了闭集、内点和完备集等基本概念,还引入了相对列紧性和列紧性,并得到了列紧集的基本性质,在他的博士论文中,M. Frechet第一次给出了度量空间的公理. d:X,X,R定义 1.1.1 若是一个非空集合,是满足下列条件的实值函数,X 对于任意,有 x,y,X (1) 当且仅当; x,yd(x,y),0 (2) d(x,y),d(y,x); (3) . d(x,y),d(x,z),d(y,z) X则称d为上的度量,称为度量空间. (X,d) 明显地,由(3)可知 ,故由(2)可知,d(x,y),d(y,x),d(x,x)d(x,y),0 d因此是一个非负函数. EXX若是一个度量空间,是的非空子集,则明显地也是度量空间,称(E,d) 为的度量子空间. (E,d)(X,d) R例1.1.1 若是实数集,定义,则容易看出是度量空间. d(x,y),|x,y|(R,d) X例1.1.2 对于任意一个非空集,只需定义 ,0,当 x , y 时,d(x,y) = ,,1当 x , y 时.,

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、 度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y) 与之对应,而且这一对应关系满足下列条件: 1°d(x,y)≥0 ,d(x,y)=0 ? x=y (非负性) 2°d(x,y)= d(y,x) (对称性) 3°对?z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式) 则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空 间或距离空间(metric space )。 (这个定义是证明度量空间常用的方法) 注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为 度量。这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。 1.1举例

浅谈度量空间资料

度 量 空 间 摘要:度量空间是一类特殊的拓扑空间,并且它是理解拓扑空间的一个重要过 程. 因此,本文通过度量空间的基本概念,力图给出度量空间的一些重要性质. 并且引入一些度量空间的其它性质. 关键词: 度量空间 导集 闭集 正文:度量空间是现代数学中一种基本的、重要的、最接近于欧几里得空间的 抽象空间.19世纪末叶,德国数学家G .康托尔创立了集合论,为各种抽象空间的建立奠定了基础.20世纪初期,法国数学家M.-R.弗雷歇发现许多分析学的成果从更抽象的观点看来,都涉及函数间的距离关系,从而抽象出度量空间的概念. 1.度量空间的定义 度量空间是一类特殊的拓扑空间,它对于拓扑空间的理解起着非常重要的作用.因此,研究度量空间的一些性质是必要的.为了证明这些性质,首先介绍以下定义. 定义1.1 设X 是一个集合,若对于X 中任意两个元素y x ,都有唯一确定的实数()y x p ,与之对应,而且这一对应关系满足下列条件: (1)正定性 ()0,≥y x p ,并且()y x p ,0=当且仅当y x =; (2)对称性 ()y x p , =()y x p ,; (3)三角不等式 ()()()z y p y x p z x p ,,,+≤.则称p 是集合X 的一个度量,同时将()p X ,称为度量空间或距离空间. X 中的元素称为点,条件(3)称为三点不等式. 定义1.2 设()p X ,是一个度量空间,∈x X .对于任意给定的实数0>ε,集合(){}ε<∈y x p X y ,,记作()ε,x B ,称为一个以x 为中心,以ε为半径的球形邻域,简称为x 的一个球形邻域.

泛函分析试卷(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分) 1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立( ). A .10<<-≤-αα, y x Ty Tx B.1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:( ). A. 0等价于0且,0==≥x x x B.()数复为任意实,αααx x = C. y x y x +≤+ D. y x xy +≤ 3、下列关于度量空间中的点列的说法哪个是错误的( ). A .收敛点列的极限是唯一的 B. 基本点列是收敛点列 C .基本点列是有界点列 D.收敛点列是有界点列 4、巴拿赫空间X 的子集空间Y 为完备的充要条件是( ). A .集X 是开的 B.集Y 是开的

C.集X是闭的 D.集Y是闭的 5、设(1) p l p <<+∞的共轭空间为q l,则有11 p q +的值为(). A. 1- B.1 2 C. 1 D. 1 2 - 二、填空题(每个3分,共15分) 1、度量空间中的每一个收敛点列都是()。 2、任何赋范线性空间的共轭空间是()。 3、1l的共轭空间是()。 4、设X按内积空间成为内积空间,则对于X中任意向量x,y 成立不等式()当且仅当x与y线性相关时不等式等号成立。 5、设T为复希尔伯特空间X上有界线性算子,则T为自伴算子的充要条件是()。 三、判断题(每个3分,共15分) 1、设X是线性赋范空间,X中的单位球是列紧集,则X必为有限维。 ( ) 2、距离空间中的列紧集都是可分的。( ) 3、若范数满足平行四边形法则,范数可以诱导内积。( ) 4、任何一个Hilbert空间都有正交基。( ) 5、设X是线性赋范空间,T是X X的有界线性算子,若T既是单

泛函分析中的度量空间

泛函分析主要内容 泛函分析是20世纪30年代形成的数学分科。是从变分问题,积分方程和理论物理的研究中发展起来的。它综合运用函数论,几何学,现代数学的观点来研究无限维向量空间上的函数,算子和极限理论。它可以看作无限维向量空间的解析几何及数学分析。主要内容有拓扑线性空间等。泛函分析在数学物理方程,概率论,计算数学等分科中都有应用,也是研究具有无限个自由度的物理系统的数学工具。泛函分析是研究拓扑线性空间到拓扑线性空间之间满足各种拓扑和代数条件的映射的分支学科。 1、度量空间 定义:设X为一个集合,一个映射d:X×X→R。若对于任何x,y,z属于X,有 (I)(正定性)d(x,y)≥0,且d(x,y)=0当且仅当 x = y; (II)(对称性)d(x,y)=d(y,x); (III)(三角不等式)d(x,z)≤d(x,y)+d(y,z) 则称d为集合X的一个度量(或距离)。称偶对(X,d)为一个度量空间,或者称X为一个对于度量d而言的度量空间。 例:实数带有由绝对值给出的距离函数d(x, y) = |y?x|,和更一般的欧几里得n维空间带有欧几里得距离是完备度量空间 2、赋范线性空间 泛函分析研究的主要是实数域或复数域上的完备赋范线性空间。这类空间被称为巴拿赫空间,巴拿赫空间中最重要的特例被称为希尔

伯特空间。 例:任何赋范向量空间通过定义d(x, y) = ||y?x|| 也是度量空间。 (如果这样一个空间是完备的,我们称之为巴拿赫空间)。例:曼哈顿范数引发曼哈顿距离,这里在任何两点或向量之间的距离是在对应的坐标之间距离的总和。 3、希尔伯特空间 希尔伯特空间可以利用以下结论完全分类,即对于任意两个希尔伯特空间,若其基的基数相等,则它们必彼此同构。对于有限维希尔伯特空间而言,其上的连续线性算子即是线性代数中所研究的线性变换。对于无穷维希尔伯特空间而言,其上的任何态射均可以分解为可数维度(基的基数为50)上的态射,所以泛函分析主要研究可数维度上的希尔伯特空间及其态射。希尔伯特空间中的一个尚未完全解决的问题是,是否对于每个希尔伯特空间上的算子,都存在一个真不变子空间。该问题在某些特定情况下的答案是肯定的。 4、巴拿赫空间 巴拿赫空间理论(Banach space)是192O年由波兰数学家巴拿赫(S.Banach)一手创立的,数学分析中常用的许多空间都是巴拿赫空间及其推广,它们有许多重要的应用。大多数巴拿赫空间是无穷维空间,可看成通常向量空间的无穷维推广。

泛函分析第七章 习题解答1-25

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞ 是区间],[b a 上无限次可微函数的全体,定义 )()(1)()(ma x 21 ),()()()()(0 t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ 证明],[b a C ∞ 按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ )()(1)()()()(1)()(ma x 21 )()()()()()()()(0 t g t h t g t h t g t f t g t f r r r r r r r r b t a r r -+-+-+-≤≤≤∞ =∑ )()(1)()(max 21 )()(1)()(max 21)()()()(0 )()()()(0t g t h t g t h t g t f t g t f r r r r b t a r r r r r r b t a r r -+-+-+-≤≤≤∞=≤≤∞ =∑∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞ 按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集 n o o o 21,包含B ,而且B o n n =?∞ =1。 证明 令n n n o n n B x d Bo o .2,1},1 ),({ =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10< 。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1。若n n o x ∞=?∈1则对每一个n ,有B x n ∈使n x x d 1 ),(1<,因此 )(∞?→??→?n x x n 。因B 是闭集,必有B x ∈,所以B o n n =?∞ =1。 4. 设d (x ,y )为空间X 上的距离,证明) ,(1) ,(),(___ y x d y x d y x d +=

相关文档