文档库 最新最全的文档下载
当前位置:文档库 › 初中数学共圆问题知识点与常考难题和培优提高练习压轴题(含解析)复习课程

初中数学共圆问题知识点与常考难题和培优提高练习压轴题(含解析)复习课程

初中数学共圆问题知识点与常考难题和培优提高练习压轴题(含解析)复习课程
初中数学共圆问题知识点与常考难题和培优提高练习压轴题(含解析)复习课程

初中数学共圆问题提高练习与常考难题和培优题压轴题(含解析)

问题探究:

一个班级的学生正在做投圈游戏,他们呈“一”字型排开,这样的队形对每个人公平吗?你认为他们应当排成什么样的队形?怎样排?

四点共圆是平面几何证题中一个十分有利的工具,四点共圆这类问题一般有以下两种形式:

(1) 证明某四点共圆或者以四点共圆为基础证明若干点共圆;

(2) 通过某四点共圆得到一些重要结论,进而解决问题

下面给出与四点共圆有关的一些基本知识

(1) 若干个点与某定点的距离相等,则这些点在一个圆上;

(2) 在若干个点中有两点,其他点对这两点所成线段的视角均为直角,则这些点共圆;

(3) 若四点连成的四边形对角互补或有一外角等于它的内对角,则这四点共圆;

(4) 若点C 、D 在线段AB 的同侧,且ACB ADB ∠=∠,则A B C D 、、、四点共圆;

(5) 若线段AB CD 、交于E 点,且AE EB CE ED =g g ,则A B C D 、、、四点共圆;

(6) 若相交线段PA PB 、上各有一点C D 、,且PA PC PB PD =g g ,则A B C D 、、、四点共圆。 四点共圆问题不但是平面几何中的重要问题,而且是直线形和圆之间度量关系或者位置关系相互转化的媒介。

1.如图,把直角三角板的直角顶点O 放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M 、N ,量得OM=8cm ,ON=6cm ,则该圆玻璃镜的半径是( )

A .

cm B .5cm C .6cm D .10cm

2.正方形的四个顶点和它的中心共5个点能确定 个不同的圆.

3.如图,若AD 、BE 为△ABC 的两条角平分线,I 为内心,若C ,D ,I ,E 四点共圆,且DE=1,则ID= .

4.如图,在△ABC中,AD,BE分别是∠A,∠B的角平分线,O是AD与BE的交点,若C,D,O,E四点共圆,DE=3,则△ODE的内切圆半径为.

5.如图,已知A,B,C,D四点共圆,且AC=BC.求证:DC平分∠BDE.

6.如图,BD,AH分别是△ABC的高,求证:A、B、H、D四点共圆.

7.等腰梯形ABCD中,AD∥BC,求证:A,B,C,D四个顶点共圆.

8.如图,四边形ABCD中,∠B=∠D=90°,点E为AC的中点,则A,B,C,D四点共圆吗?

9.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.

10.如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.

11.O和H分别是△ABC的外心和垂心,若∠BAC=60°,求证:B、0、H、C的共圆.

12.如图,AB为⊙O直径,BF⊥AB,E为BF上一点,AE和AF交⊙O于C和D,求证:C、D、F、E四点共圆.

13.如图,在△ABC中,AB=AC,延长CA到P,延长AB到Q,使AP=BQ,求证:△ABC的

外心O与A,P,Q四点共圆.

14.如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.

15.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,O是△ABC 的外心,证明C,E,O,F四点共圆.

16.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G四点共圆.

参考答案

1.(2016?常州)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()

A.cm B.5cm C.6cm D.10cm

【解答】解:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,

∴MN===10(cm).∴该圆玻璃镜的半径是:MN=5cm.故选:B.2.(2006?黄石)正方形的四个顶点和它的中心共5个点能确定5个不同的圆.

【解答】解:正方形的四个顶点和它的中心的点的距离相等,中心与一边的两个端点可以确定一个圆,正方形有四条边,因而有四个圆;而正方形的四个顶点都在以中心为圆心的圆上,因而能确定5个不同的圆.

3.如图,若AD、BE为△ABC的两条角平分线,I为内心,若C,D,I,E四点共圆,且DE=1,则ID=.

【解答】解:连接CI,∵AD、BE为△ABC的两条角平分线,

∴∠BAI=∠BAC,∠IBA=∠ABC,∵∠AIB=180°﹣∠BAI﹣∠IBA,

∴∠AIB=180°﹣(∠CAB+∠CBA),又∵∠ABC+∠CBA+∠ACB=180°,

∴∠AIB=90°+∠C,∵C,D,I,E四点共圆,∴∠EID+∠ACB=180°,

又∵∠AIB=∠EID,∴90°+∠C+∠C=180°,∴∠ACB=60°,

∵I为内心,∴∠ICD=30°,∵DE=1,∴=2R,

∴R=,∴,∴ID=,故答案为:.

4.(2005?温州校级自主招生)如图,在△ABC中,AD,BE分别是∠A,∠B的角平分线,O是AD与BE 的交点,若C,D,O,E四点共圆,DE=3,则△ODE的内切圆半径为3﹣.

【解答】解:作OF⊥ED于点F,∵AD,BE分别是∠A,∠B的角平分线,

∴∠AOB=90°+∠C,CO平分∠ACB,又∵∠DOE=∠AOB,∠DOE+∠C=180°,

∴∠C=60°,∠DOE=∠AOB=120°,又∵OD=OE,∴∠OED=∠ODE=30°,

∴FD=,tan30°==,∴FO=,OD=OE=,

∴△ODE的周长为:2+3,∴△ODE的面积为:×3×=,

∴△ODE的内切圆半径为=3﹣.故答案为:3﹣.

5.如图,已知A,B,C,D四点共圆,且AC=BC.求证:DC平分∠BDE.

【解答】证明:∵A,B,C,D四点共圆,∴∠2=∠1,∠3=∠ABC,∵AC=BC,

∴∠1=∠ABC,∴∠2=∠3,∴DC平分∠BDE.

6.如图,BD,AH分别是△ABC的高,求证:A、B、H、D四点共圆.

【解答】证明:取AB的中点O,连接DO、HO,∵BD,AH分别是△ABC的高,

∴△DAB和△HAB都是直角三角形,且它们的斜边都是AB,∵点O为斜边中点,

∴DO=HO=AB=AO=BO,也就是说,点D、H、B在以O为圆心、OA为半径的圆上,

即点D、H、B、A都在以O为圆心、以OA为半径的圆上,故可得:A、B、H、D四点共圆.7.等腰梯形ABCD中,AD∥BC,求证:A,B,C,D四个顶点共圆.

【解答】证明:如图:∵ABCD是等腰梯形,且AD∥BC,

∴∠A=∠D,∠B=∠C,∠A+∠B=180°.∴∠A+∠C=∠B+∠D=180°.

根据对角互补的四边形是圆的内接四边形,所以A,B,C,D四点共圆.

8.如图,四边形ABCD中,∠B=∠D=90°,点E为AC的中点,则A,B,C,D四点共圆吗?

【解答】解:A,B,C,D四点共圆,理由如下:连结DE.

∵在Rt△ABC中,∠ABC=90°,点E为AC的中点,∴EB=EA=EC=AC,

∵在Rt△ADC中,∠ADC=90°,点E为AC的中点,∴ED=EA=EC=AC,

∴EA=EB=EC=ED,∴A、B、C、D四个点在以E为圆心,AC为直径的圆上,

即A,B,C,D四点共圆.

9.如图所示,I为△ABC的内心,求证:△BIC的外心O与A、B、C四点共圆.

【解答】证明:连接OB、BI、OC,由O是外心知∠IOC=2∠IBC.

由I是内心知∠ABC=2∠IBC.从而∠IOC=∠ABC.同理∠IOB=∠ACB.

而∠BAC+∠ABC+∠ACB=180°,故∠BOC+∠BAC=180°,于是O、B、A、C 四点共圆.

10.如图,在△ABC中,AD⊥BC,DE⊥AB,DF⊥AC.求证:B、E、F、C四点共圆.

【解答】解:∵AD⊥BC,DE⊥AB,∴∠AED=∠ADB=90°.又∵∠DAE=∠BAD,

∴△AED∽△ADB,∴=,即AD2=AE?AB.同理可得AD2=AF?AC,

∴AE?AB=AF?AC,即=.又∵∠EAF=∠CAB,∴△AEF∽△ACB,

∴∠AEF=∠ACB,∴B、E、F、C四点共圆.

11.O和H分别是△ABC的外心和垂心,若∠BAC=60°,求证:B、0、H、C的共圆.

【解答】证明:连接BH并延长交AC于E,连接CH并延长交AB于F,连接OB、OC,如图所示:

∵O是三角形的外心,∠BAC=60°,∴∠BOC=2∠BAC=120°(同弧所对的圆心角等于圆周角的两倍)

又∵垂心为点H,∴BE⊥AC,∴∠ABE=90°,∴∠ABE=90°﹣∠BAC=90°﹣60°=30°,

同理:∠ACF=30°,∴∠HBC+∠HCB=180°﹣(∠BAC+∠ABE+∠ACF)=60°,

∴∠BHC=180°﹣(∠HBC+∠HCB)=180°﹣60°=120°,∴∠BOC=∠BHC,又∵O,H在BC边同侧,

∴B,C,O,HI四点共圆.

12.如图,AB为⊙O直径,BF⊥AB,E为BF上一点,AE和AF交⊙O于C和D,求证:C、D、F、E四点共圆.

【解答】证明:连接BC、CD,如图所示:∵AB为⊙O直径,∴∠ACB=90°,∴∠BCE=90°,∴∠BEC+∠EBC=90°,∵BF⊥AB,∴∠ABF=90°,即∠ABC+∠EBC=90°,∴∠ABC=∠BEC,

∵∠ABC+∠ADC=180°,∴∠BEC+∠ADC=180°,∵∠CDF+∠ADC=180°,

∴∠BEC=∠CDF,∴C、D、F、E四点共圆.

13.如图,在△ABC中,AB=AC,延长CA到P,延长AB到Q,使AP=BQ,求证:△ABC的外心O与A,P,Q四点共圆.

【解答】证明:如图,作△ABC的外接圆⊙O,作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,∵O是△ABC的外心,∴OE=OF,OB=OA,由勾股定理得:BE2=OB2﹣OE2,AF2=OA2﹣OF2,

∴BE=AF,∵AP=BQ,∴PF=QE,∵OE⊥AB,OF⊥AC ∴∠OFP=∠OEQ=90°,

在Rt△OPF和Rt△OQE中,,∴Rt△OPF≌Rt△OQE,∴∠P=∠Q,

∴O、A、P、Q四点共圆,即:△ABC的外心O与点A、P、Q四点共圆.

14.(2009?黄冈校级自主招生)如图,点F是△ABC外接圆的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.

【解答】证明:连接FC,FB,则FC=FB.…(2分)连接EF,则△CEF≌△BEF,∴∠BFE=∠CFE.…(5分)∵A,B,F,C共圆,∴∠CAB+∠CFB=180°…(7分)∴∠CAB+2∠BFE=180°.∵AB=AD,

∴∠ABD=∠ADB…(8分)∴∠CAB+2∠ADB=180°.∴∠ADB=∠BFE.…(10分)

∴B、E、D、F四点共圆.…(12分)

15.如图,点E,F分别在线段AC,BC上运动(不与端点重合),而且CE=BF,O是△ABC的外心,证明C,E,O,F四点共圆.

【解答】证明:如图,连接OB、OC、OE、OF.∵OB=OC,∴∠OCB=∠OBC,

又∵AC=BC,∴∠OCB=∠OCA,∴∠OBC=∠OCA,

在△ECO与△FBO中,,∴△ECO≌△FBO(SAS),

∴∠EOC=∠FOB,又∠AOC=∠BOC,∴∠EOF=∠COB,又∵EO=OF,

∴∠OEF=∠OCF,∴C,E,O,F四点共圆.

16.设△ADE内接于圆O,弦BC分别交AD、AE边于点F、G,且AB=AC,求证:F、D、E、G四点共圆.

【解答】解:连接EF,CD,∴∠ADE=∠ADC+∠CDE,∵∠ADC=∠ABC,∠CDE=∠CAE,

∴∠ADE=∠ABC+∠CAE,∵AB=AC,∴∠ABC=∠ACB,∴∠ADE=∠ACB+∠CAE,

∵∠AGF=∠ACB+∠CAE(三角形的一个外角等于与它不相邻的两内角之和),

∴∠ADE=∠AGF,∵∠ADE+∠EDF=180°,∠AGF+∠FGE=180°,∴∠EDF=∠EGF,

∴F、D、E、G四点共圆(共底边的两个三角形顶角相等,且在底边的同侧,则可推出四个顶点共圆).

初中数学圆的经典测试题及解析

初中数学圆的经典测试题及解析 一、选择题 1.如图,有一个边长为2cm 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是( ) A .3cm B .2cm C .23cm D .4cm 【答案】A 【解析】 【分析】 根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB 的度数,最后根据等腰三角形及直角三角形的性质解答即可. 【详解】 解:如图所示,正六边形的边长为2cm ,OG ⊥BC , ∵六边形ABCDEF 是正六边形, ∴∠BOC=360°÷6=60°, ∵OB=OC ,OG ⊥BC , ∴∠BOG=∠COG= 12 ∠BOC =30°, ∵OG ⊥BC ,OB=OC ,BC=2cm , ∴BG= 12BC=12×2=1cm , ∴OB=sin 30 BG o =2cm , ∴OG=2222213OB BG -=-=, ∴圆形纸片的半径为3cm , 故选:A . 【点睛】

本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键. 2.如图,正方形ABCD内接于⊙O,AB=22,则?AB的长是() A.πB.3 2 πC.2πD. 1 2 π 【答案】A 【解析】 【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可. 【详解】连接OA、OB, ∵正方形ABCD内接于⊙O, ∴AB=BC=DC=AD, ∴???? AB BC CD DA ===, ∴∠AOB=1 4 ×360°=90°, 在Rt△AOB中,由勾股定理得:2AO2=(2)2,解得:AO=2, ∴?AB的长为902 180 π′ =π, 故选A. 【点睛】本题考查了弧长公式和正方形的性质,求出∠AOB的度数和OA的长是解此题的关键. 3.如图,在平面直角坐标系中,点P是以C271为半径的⊙C上的一个动点,已知A(﹣1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()

中考数学专题训练圆的证明与计算(含答案)

圆的证明与计算 1.如图,已知△ABC 内接于△O , P 是圆外一点,P A 为△O 的切线,且P A =PB ,连接 OP ,线段 AB 与线段 OP 相交于点D . (1)求证:PB 为△O 的切线; (2)若P A =4 5PO ,△O 的半径为10,求线段 PD 的长. 第1题图 (1)证明:△△△△△△OA △OB △ 第1题解图 △P A △PB △OA △OB △OP △OP △ △△OAP △△OBP (SSS)△ △△OAP △△OBP △ △P A △△O △△△△ △△OAP △90°△ △△OBP △90°△ △OB △△O △△△△ △PB △△O △△△△

△△Rt△AOP △△OA △PO 2 △△4 5PO △2△10△ △△PO △50 3△ △cos△AOP △AO OP △OD AO △ △OD △6△ △PD △PO △OD △32 3. 2. △△△△△ABC △△AB △AC △△D △BC △△△△△AD △DC △△A △B △D △△△△O △AE △△O △△△△△△DE . △1△△△△AC △△O △△△△ △2△△cos C △3 5△AC △24△△△△AE △△. 第2题图 (1)证明:△AB △AC △AD △DC △ △△C △△B △△DAC △△C △ △△DAC △△B △ △△△E △△B △ △△DAC △△E △ △AE △△O △△△△ △△ADE △90°△ △△E △△EAD △90°△ △△DAC △△EAD △90°△ △△EAC △90°△

△OA △△O △△△△ △AC △△O △△△△ (2)解:△△△△△△D △DF △AC △△F △ 第2题解图 △DA △DC △ △CF △1 2AC △12△ △Rt△CDF △△△cos C △CF CD △3 5△ △DC △20△ △AD △20△ △Rt△CDF △△△△△△△△1622==CF CD DF -△ △△ADE △△DFC △90°△△E △△C △ △△ADE △△DFC △ △AE DC △AD DF △ △AE 20△1620 △△△AE △25△ △△O △△△AE △25. 3.如图,在△ABC 中,AB =BC ,以AB 为直径作△O ,交BC 于点D ,交AC 于点E ,过点E 作△O 的切线EF ,交BC 于点F . (1)求证:EF △BC ; (2)若CD =2,tan C =2,求△O 的半径.

初中数学圆专题训练

初中数学圆专题训练 This model paper was revised by LINDA on December 15, 2012.

初中数学圆专题训练(一) (一)选择题 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有()(A)4个(B)3个(C)2个 (D)1个 2.下列判断中正确的是() (A)平分弦的直线垂直于弦(B)平分弦的直线也必平分弦所对的两条弧 (C)弦的垂直平分线必平分弦所对的两条弧(D)平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB=∠A′OB′=60°,则()(A)=(B)> (C)的度数=的度数 (D)的长度=的长度 4.如图,已知⊙O的弦AB、CD相交于点E,的度数为60°,的度数为100°,则∠AEC等于()

(A )60° (B )100° (C )80° (D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是 ( ) (A )67.5° (B )135° (C )112.5° (D )110° 6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那 么圆P 与OB 的位置关系是 ( ) (A )相离 (B )相切 (C )相交 (D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) (A )21(a +b +c )r (B )2(a +b +c ) (C )3 1(a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM =2 3,则tan ∠BCG 的值为……( ) (A )33 (B )2 3 (C )1 (D )3

【中考必备】初三数学难题集锦

初中数学难题集锦 1.(本小题满分10分) 如图,AB 为⊙O 的直径,点C 在⊙O 上,过点C 作⊙O 的切线交AB 的延长线于点D ,已知∠D =30°. ⑴求∠A 的度数; ⑵若点F 在⊙O 上,CF ⊥ 2.(本小题满分10分) 已知抛物线2y ax bx =+(a ≠0)的顶点在直线112 y x =--上,且过点A (4,0). ⑴求这个抛物线的解析式; ⑵设抛物线的顶点为P ,是否在抛物线上存在一点B ,使四边形OPAB 为梯形?若存在,求出点B 的坐标;若不存在,请说明理由. ⑶设点C (1,-3),请在抛物线的对称轴确定一点D ,使A D C D -的值最大,请直接写出点D 的坐标. 3.(本小题满分12分) 已知在梯形ABCD 中,AB ∥DC ,且AB =40cm ,AD =BC =20cm ,∠ABC =120°.点P 从点B 出发以1cm/s 的速度沿着射线BC 运动,点Q 从点C 出发以2cm/s 的速度沿着线段CD 运动,当点Q 运动到点D 时,所有运动都停止. 设运动时间为t 秒. ⑴如图1,当点P 在线段BC 上且△CPQ ∽△DAQ 时,求t 的值; ⑵在运动过程中,设△APQ 与梯形ABCD 重叠部分的面积为S ,求S 关于t 的函数关系式,并写出自变量t 的取值范围; 图1Q P D C B A A B 备用图A B C D

3.如图,在平面直角坐标系xOy 中,⊙O 交x 轴于A 、B 两点,直线FA⊥x 轴于点A ,点D 在FA 上,且DO 平行⊙O 的弦MB ,连DM 并延长交x 轴于点C. (1)判断直线DC 与⊙O 的位置关系,并给出证明; (2)设点D 的坐标为(-2,4),试求MC 的长及直线DC 的解析式. 4.如图,在平面直角坐标系中,抛物线y =-3 2x 2+b x +c ,经过A (0,-4)、B (x 1,0)、 C (x 2,0)三点,且x 2-x 1=5. (1)求b 、c 的值; (2)在抛物线上求一点D ,使得四边形BDCE 是以BC 为对角线的菱形; (3)在抛物线上是否存在一点P ,使得四边形B P O H 是以OB 为对角线的菱形?若存在,求出点P 的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由. 5.如图,直角坐标系中,已知两点(00)(20)O A ,, ,,点B 在第一象限且OAB △为正三角形,OAB △的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交x 轴于点D . (1)求B C ,两点的坐标; (2)求直线CD 的函数解析式; (3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长. 试探究:AEF △的最大面积?

初中数学圆专题训练一)

初中数学圆专题训练(一) (一)选择题 1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有 ( ) (A )4个 (B )3个 (C )2个 (D )1个 2.下列判断中正确的是 ( ) (A )平分弦的直线垂直于弦 (B )平分弦的直线也必平分弦所对的两条弧 (C )弦的垂直平分线必平分弦所对的两条弧 (D )平分一条弧的直线必平分这条弧所对的弦 3.如图,在两半径不同的同心圆中,∠AOB =∠A ′OB ′=60°,则 ( ) (A )= (B ) > (C )的度数=的度数 (D ) 的长度= 的长度 4.如图,已知⊙O 的弦AB 、CD 相交于点E ,的度数为60°, 的度数为100°,则∠AEC 等于 ( ) (A )60° (B )100° (C )80° (D )130° 5.圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数比是2︰3︰6,则∠D 的度数是( ) (A )67.5° (B )135° (C )112.5° (D )110° 6.OA 平分∠BOC ,P 是OA 上任一点,C 不与点O 重合,且以P 为圆心的圆与OC 相离,那么圆P 与OB 的位置关系是 ( ) (A )相离 (B )相切 (C )相交 (D )不确定 7.△ABC 的三边长分别为a 、b 、c ,它的内切圆的半径为r ,则△ABC 的面积为( ) (A ) 21(a +b +c )r (B )2(a +b +c ) (C )3 1 (a +b +c )r (D )(a +b +c )r 8.如图,已知四边形ABCD 为圆内接四边形,AD 为圆的直径,直线MN 切圆于点B ,DC 的延长线交MN 于G ,且cos ∠ABM = 2 3 ,则tan ∠BCG 的值为……( ) (A ) 33 (B )2 3 (C )1 (D ) 3 9.在⊙O 中,弦AB 和CD 相交于点P ,若PA =3,PB =4,CD =9,则以PC 、PD 的长为根的一元二次方程为 ( ) (A )x 2 +9 x +12=0 (B )x 2 -9 x +12=0 (C )x 2 +7 x +9=0 (D )x 2 -7 x +9=0 10.已知半径分别为r 和2 r 的两圆相交,则这两圆的圆心距d 的取值范围是 ( ) (A )0<d <3 r (B )r <d <3 r (C )r ≤d <3 r (D )r ≤d ≤3 r 11.两圆半径分别为2和3,两圆相切则圆心距一定为 ( ) (A )1cm (B )5cm (C )1cm 或6cm (D )1cm 或5cm 12.弦切角的度数是30°,则所夹弧所对的圆心角的度数是 ( ) (A )30° (B )15° (C )60° (D )45° 13.在两圆中,分别各有一弦,若它们的弦心距相等,则这两弦 ( ) (A )相等 (B )不相等 (C )大小不能确定 (D )由圆的大小确定 14. ∠PAD= ( ) A.10° B.15° C.30° D.25°

初一数学难题大全

一、填空。 1.如果下降5米,记作-5米,那么上升4米记作()米;如果+2千克表示增加2千克,那么-3千克表示()。 2.海平面的海拔高度记作0m,海拔高度为+450米,表示(),海拔高度为-102米,表示()。 3.如果把平均成绩记为0分,+9分表示比平均成绩(),-18分表示(),比平均成绩少2分,记作()。 4.+8.7读作(),-25 读作()。 5.数轴上所有的负数都在0的()边,所有正数都在0的()边。 6.在数轴上,从表示0的点出发,向右移动3个单位长度到A点,A点表示的数是();从表示0的点出发向左移动6个单位长度到B点,B点表示的数是()。 7.比较大小。 -7○ -5 1.5○52 0○-2.4 -3.1○3.1 二、判断。 1.零上12℃(+12℃)和零下12℃(-12℃)是两种相反意义的量。………() 2.数轴上左边的数比右边的数小。………………………………………………() 3.在8.2、-4、0、6、-27中,负数有3个。…………………………………() 三、选择。(将正确答案的序号填在括号里)。 1.规定10吨记为0吨,11吨记为+1吨,则下列说法错误的是()。 A、8吨记为-8吨 B、15吨记为+5吨 C、6吨记为-4吨 D、+3吨表示重量为13吨 2.以明明家为起点,向东走为正,向西走为负。如果明明从家走了+30米,又走了-30米,这时明明离家的距离是()米。 A、30 B、-30 C、60 D、0 3.数轴上,-12 在-18 的()边。 A、左 B、右 C、北 D、无法确定 4.一种饼干包装袋上标着:净重(150±5克),表示这种饼干标准的质量是150克,实际每袋最少不少于()克。 A、155 B、150 C、145 D、160

(专题精选)初中数学圆的易错题汇编及答案

(专题精选)初中数学圆的易错题汇编及答案 一、选择题 1.“直角”在几何学中无处不在,下列作图作出的AOB ∠不一定... 是直角的是( ) A . B . C . D . 【答案】C 【解析】 【分析】 根据作图痕迹,分别探究各选项所做的几何图形问题可解. 【详解】 解:选项A 中,做出了点A 关于直线BC 的对称点,则AOB ∠是直角. 选项B 中,AO 为BC 边上的高,则AOB ∠是直角. 选项D 中,AOB ∠是直径AB 作对的圆周角,故AOB ∠是直角. 故应选C 【点睛】 本题考查了尺规作图的相关知识,根据基本作图得到的结论,应用于几何证明是解题关键. 2.如图,在平行四边形ABCD 中,BD ⊥AD ,以BD 为直径作圆,交于AB 于E ,交CD 于F ,若BD=12,AD :AB=1:2,则图中阴影部分的面积为( ) A .3 B .36ππ C .312π D .48336ππ 【答案】C 【解析】 【分析】 易得AD 长,利用相应的三角函数可求得∠ABD 的度数,进而求得∠EOD 的度数,那么一个阴影部分的面积=S △ABD -S 扇形DOE -S △BOE ,算出后乘2即可.

【详解】 连接OE ,OF . ∵BD=12,AD :AB=1:2, ∴AD=43 ,AB=83,∠ABD=30°, ∴S △ABD =×43×12=243,S 扇形= 603616,633933602OEB S ππ?==??=V ∵两个阴影的面积相等, ∴阴影面积=() 224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.如图,在平面直角坐标系中,点P 是以C (﹣2,7)为圆心,1为半径的⊙C 上的一个动点,已知A (﹣1,0),B (1,0),连接PA ,PB ,则PA 2+PB 2的最小值是( ) A .6 B .8 C .10 D .12 【答案】C 【解析】 【分析】 设点P (x ,y ),表示出PA 2+PB 2的值,从而转化为求OP 的最值,画出图形后可直观得出OP 的最值,代入求解即可. 【详解】 设P (x ,y ), ∵PA 2=(x +1)2+y 2,PB 2=(x ﹣1)2+y 2, ∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2, ∵OP 2=x 2+y 2, ∴PA 2+PB 2=2OP 2+2, 当点P 处于OC 与圆的交点上时,OP 取得最值,

中考数学《圆》专项训练及答案解析

中考数学《圆》专项训练及答案解析 1.(2018?鞍山)如图,四边形ABCD内接于⊙O,AC与BD为对角线,∠BCA=∠BAD,过点A 作AE∥BC交CD的延长线于点E. (1)求证:EC=AC. (2)若cos∠ADB=,BC=10,求DE的长. 解:(1)证明:∵BC∥AE, ∴∠ACB=∠EAC, ∵∠ACB=∠BAD, ∴∠EAC=∠BAD, ∴∠EAD=∠CAB, ∵∠ADE+∠ADC=180°,∠ADC+∠ABC=180°, ∴∠ADE=∠ABC, ∵∠EAD+∠ADE+∠E=180°,∠BAC+∠ABC+∠ACB=180°, ∴∠E=∠ACB=∠EAC, ∴CE=CA. (2)解:设AE交⊙O于M,连接DM,作MH⊥DE于H. ∵∠EAD=∠CAB,

∴=, ∴DM=BC=10, ∵∠MDE+∠MDC=180°,∠MDC+∠MAC=180°, ∴∠MDE=∠CAM, ∵∠E=∠CAE, ∴∠E=∠MDE, ∴MD=ME=10,∵MH⊥DE, ∴EH=DH, ∵∠ADB=∠ACB=∠BAD=∠E, ∴cos∠E==, ∴EH=4, ∴DE=2EH=8. 2.(2018?河池)如图,⊙O的直径为AB,点C在⊙O上,点D,E分别在AB,AC的延长线上,DE⊥AE,垂足为E,∠A=∠CDE. (1)求证:CD是⊙O的切线; (2)若AB=4,BD=3,求CD的长. (1)证明:连接OC, ∵DE⊥AE, ∴∠E=90°, ∴∠EDC+∠ECD=90°, ∵∠A=∠CDE, ∴∠A+∠DCE=90°, ∵OC=OA, ∴∠A=∠ACO,

∴∠ACO+∠DCE=90°, ∴∠OCD=90°, ∴OC⊥CD, ∴CD是⊙O的切线; (2)解:∵AB=4,BD=3, ∴OC=OB=AB=2, ∴OD=2+3=5, ∴CD===. 3.(2018?朝阳)如图,AB是⊙O的直径,AC是⊙O的弦,OD⊥AB,OD与AC的延长线交于点D,点E在OD上,且CE=DE. (1)求证:直线CE是⊙O的切线; (2)若OA=,AC=3,求CD的长. (1)证明:连接OC, ∵OD⊥AB, ∴∠AOD=90°, ∴∠D+∠A=90°, ∵OA=OC, ∴∠A=∠ACO,

初中数学易错题集锦及答案

答案:D 初中数学易错题及答案 1. 4 的平方根是.(A ) 2 (B ) ?、2 (C ) _2 ( D ) 2 . 解:..4 = 2 , 2的平方根为二'”2 2. 若|x|=x ,则x 一定是( ) A 、正数 B 、非负数 C 、负数 D 、非正数 答案:B (不要漏掉0) 3. 当 x 时,|3-x|=x-3。答案:x-3 丸,贝U x3 4. 乎_分数(填“是”或“不是” 答案:三 是无理数,不是分数。 5. 尺的算术平方根是 _______ 。 答案:"6 = 4, 4的算术平方根=2 6. _________ 当m= 时,J _m 2有意义 答案:-m 2 X ),并且m 3 4 X ),所以m=0 x 5 +x —6 7分式 2 -的值为零,贝u x= ______________ ■ x -4 (A) a ::: -2, (B ) a - -2 , (C ) a ■ -2 , (D ) a 一 -2 . 2 - 答案:I x-6=0 ... x 「2,X 2 二 [x 2 -4 H0 8.关于x 的一元二次方程(k -2)x 2 -2(k -1)x k 0总有实数根?则K [k —2式0 答案:i . /-k<3 且 k = 2 9.不等式组 x= -2, a .的解集是x> a ,则a 的取值范围是. _3「.x 「3

10. 关于X的不^-<3等式4x-a"的正整数解是1和2:则a的取值范围是。 4 答案:2且3 4 11. 若对于任何实数X,分式于」总有意义,则C的值应满足______ . x +4x +c 答案:分式总有意义,即分母不为0,所以分母X2+4X+C =0无解,--C〉4 12. 函数v=也土中,自变量x的取值范围是 x+3 x -1 -0 、,‘ 答案:「X昌 |x +3鼻0 13. 若二次函数y =mx2-3x+2m-m2的图像过原点,贝U m = _______________ . m = 0 2- m = 2 2m - m =0 14 .如果一次函数y=kx的自变量的取值范围是-2辽x乞6,相应的函数值的范围是 -11兰y兰9,求此函数解析式________________________ . 1 x = - 2 _|_x = 6 \ x =-2_|_x = 6 t . t,、“ 答案:当时,解析式为:时,解析式为 |y--11y=9 l y=9 y--11 15.二次函数y=x2-x+1的图象与坐标轴有 _______ 交点。 答案:1个 16 .某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费再提高2元,则再减少10张床位租出.以每次这种提高2元的方法变化下去,为了投资少而获利大,每床每晚应提高_________ 元. 答案:6元 17. 直角三角形的两条边长分别为8和6,则最小角的正弦等于________ . 答案:3 或口5 4

20年苏教版初中数学《圆有关的最值问题》专题

圆有关的最值问题 一、求解方法: 1.根据“三角形三边关系”求解: -≤≤+ a b c a b 2.动中有静,抓住不变量求解. 3.旋转必产生圆,很多情况在相切位置产生最值. 4.四点共圆(补充). 五个基本判断方法: (1)若四个点到一个定点的距离相等,则这四个点共圆. (2)若一个四边形的一组对角互补(和为180。),则这个四边形的四个点共圆. (3)若一个四边形的外角等于它的内对角,则这个四边形的四个点共圆. (4)若两个点在一条线段的同旁,并且和这条线段的两端连线所夹的角相等,那么这两个点和这条线的两个端点共圆. (5)同斜边的直角三角形的顶点共圆, 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

三、中考展望与题型训练 例一、圆外一点与圆的最近点、最远点 1.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,点D是平面内的一个动点,且AD=2,M为BD的中点,在D点运动过程中,线段CM长度的取值范围是. 例二、正弦定理 2.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为. 3.如图,定长弦CD在以AB为直径的⊙O上滑动(点C、D与点A、B不重合),M是CD的中点,过点C作CP⊥AB于点P,若CD=3,AB=8,PM=l,则l的最大值是.例三、不等式、配方法 4.如图,已知半径为2的⊙O与直线l相切于点A,点P是直径AB左侧半圆上的动点,过点P作直线l的垂线,垂足为C,PC与⊙O交于点D,连接PA、PB,设PC的长为x (2<x<4).当x为何值时,PD?CD的值最大?最大值是多少?

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

初中数学圆的专题训练

圆的专题训练初中数学组卷 一.选择题(共15小题) 1.如图,⊙O的半径为4,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为() A.3B.4C.5D.6 2.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为() A.cm B.3cm C.3cm D.6cm 3.如图,AB是⊙O的直径,CD⊥AB,∠ABD=60°,CD=2,则阴影部分的面积为()

A.B.π C.2πD.4π 4.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为() A.20°B.40°C.50°D.70° 5.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧 ⊙A优弧上一点,则tan∠OBC为() A.B.2C.D. 6.如图,AB是圆O的直径,弦CD⊥AB,∠BCD=30°,CD=4,则S () 阴影=

A.2πB.πC.πD.π 7.如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是() A.15°B.25°C.30°D.75° 8.如图,点A,B,C在⊙O上,∠A=36°,∠C=28°,则∠B=() A.100° B.72°C.64°D.36° 9.如图,在平面直角坐标系中,⊙P与x轴相切,与y轴相交于A (0,2),B(0,8),则圆心P的坐标是()

A.(5,3)B.(5,4)C.(3,5)D.(4,5) 10.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是() A. B.1﹣C.﹣1 D.1﹣ 11.如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于() A.B.C.D.

中考数学经典难题解答集锦

经典难题(一) 1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 连接BC1和AB1分别找其中点F,E.连接C2F 与A2E 并延长相交于Q 点, 连接EB2并延长交C2Q 于H 点,连接FB2并延长交A2Q 于G 点, 由A2E= A1B1= B1C1= FB2 ,EB2= AB= BC=FC1 ,又∠GFQ+∠Q=900和 ∠GEB2+∠Q=900,所以∠GEB2=∠GFQ 又∠B2FC2=∠A2EB2 , 可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 , 又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 , 从而可得∠A2B2 C2=900 , 同理可得其他边垂直且相等, 从而得出四边形A2B2C2D2是正方形。 A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1

4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 求∠DEN ,不是吧,这求不出来的吧,是不是求证:∠DEN =∠MFC . 连接AC,取AC 中点G,连接MG,NG ∵N,G 是CD,AC 的中点 ∴GN ‖AD,GN=0.5DA ∴∠GNM=∠DEN 同理,∠NMG=∠MFC,MG=0.5BC ∵AD=BC ∴MG=NG ∴∠GMN=∠GNM ∴∠DEN =∠MFC 经典难题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: B

(完整)初中数学“最值问题”_集锦

“最值问题”集锦 ●平面几何中的最值问题 (01) ●几何的定值与最值 (07) ●最短路线问题 (14) ●对称问题 (18) ●巧作“对称点”妙解最值题 (22) ●数学最值题的常用解法 (26) ●求最值问题 (29) ●有理数的一题多解 (34) ●4道经典题 (37) ●平面几何中的最值问题 在平面几何中,我们常常遇到各种求最大值和最小值的问题,有时它和不等式联系在一起,统称最值问题.如果把最值问题和生活中的经济问题联系起来,可以达到最经济、最节约和最高效率.下面介绍几个简例. 在平面几何问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的面积、角的度数)的最大值或最小值问题,称为最值问题。 最值问题的解决方法通常有两种: (1)应用几何性质: ①三角形的三边关系:两边之和大于第三边,两边之差小于第三边; ②两点间线段最短; ③连结直线外一点和直线上各点的所有线段中,垂线段最短; ④定圆中的所有弦中,直径最长。 ⑵运用代数证法: ①运用配方法求二次三项式的最值; ②运用一元二次方程根的判别式。 例1、A、B两点在直线l的同侧,在直线L上取一点P,使PA+PB最小。 分析:在直线L上任取一点P’,连结A P’,BP’,

在△ABP’中AP’+BP’>AB,如果AP’+BP’=AB,则P’必在线段AB上,而线段AB 与直线L无交点,所以这种思路错误。 取点A关于直线L的对称点A’,则AP’= AP, 在△A’BP中A’P’+B’P’>A’B,当P’移到A’B与直线L的交点处P点时 A’P’+B’P’=A’B,所以这时PA+PB最小。 1 已知AB是半圆的直径,如果这个半圆是一块铁皮,ABDC是内接半圆的梯形,试问怎样剪这个梯形,才能使梯形ABDC的周长最大(图3-91)? 分析本例是求半圆AB的内接梯形的最大周长,可设半圆半径为R.由于AB∥CD,必有AC=BD.若设CD=2y,AC=x,那么只须求梯形ABDC的半周长u=x+y+R的最大值即可.解作DE⊥AB于E,则x2=BD2=AB·BE=2R·(R-y)=2R2-2Ry, 所以 所以求u的最大值,只须求-x2+2Rx+2R2最大值即可. -x2+2Rx+2R2=3R2-(x-R)2≤3R2, 上式只有当x=R时取等号,这时有 所以2y=R=x. 所以把半圆三等分,便可得到梯形两个顶点C,D, 这时,梯形的底角恰为60°和120°. 2 .如图3-92是半圆与矩形结合而成的窗户,如果窗户的周长为8米(m),怎样才能得出 最大面积,使得窗户透光最好? 分析与解设x表示半圆半径,y表示矩形边长AD,则必有2x+2y+πx=8,

初中数学圆的难题汇编附答案解析

初中数学圆的难题汇编附答案解析 一、选择题 1.如图,在Rt ABC △中,90ACB ∠=?,30A ∠=?,2BC =.将ABC V 绕点C 按顺时针方向旋转n 度后得到EDC △,此时点D 在AB 边上,斜边DE 交AC 边于点F ,则n 的大小和图中阴影部分的面积分别为( ) A .302, B .602, C .3602 , D .603, 【答案】C 【解析】 试题分析:∵△ABC 是直角三角形,∠ACB=90°,∠A=30°,BC=2, ∴∠B=60°,AC=BC×cot ∠33AB=2BC=4, ∵△EDC 是△ABC 旋转而成, ∴BC=CD=BD= 12AB=2, ∵∠B=60°, ∴△BCD 是等边三角形, ∴∠BCD=60°, ∴∠DCF=30°,∠DFC=90°,即DE ⊥AC , ∴DE ∥BC , ∵BD=12 AB=2, ∴DF 是△ABC 的中位线, ∴DF=12BC=12×2=1,CF=12AC=1233 ∴S 阴影= 12DF×CF=1233

故选C. 考点:1.旋转的性质2.含30度角的直角三角形. 2.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( ) A.1 B.3 2 C.3D. 5 2 【答案】A 【解析】 【分析】 根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得 OE=1 2 AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解. 【详解】 解:连接CE, ∵E点在以CD为直径的圆上, ∴∠CED=90°, ∴∠AEC=180°-∠CED=90°, ∴E点也在以AC为直径的圆上, 设以AC为直径的圆的圆心为O,若BE最短,则OB最短,∵AC=8, ∴OC=1 2 AC=4, ∵BC=3,∠ACB=90°, ∴22 OC BC ,∵OE=OC=4, ∴BE=OB-OE=5-4=1.

人教版初中数学九年级上册17.圆中的最值问题

人教版初中数学 重点知识精选 掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!

拔高专题 圆中的最值问题 一、基本模型构建 常见模型 图(1) 图(2) 思考 图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。 .在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的 对称 点,对称点与另一点的连线与直线L 的交点就是所要找的点. 二、拔高精讲精练 探究点一:点与圆上的点的距离的最值问题 例1:如图,A 点是⊙O 上直径MN 所分的半圆的一个三等分点,B 点是弧AN 的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。 解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点, ∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′. 【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知

识,把两条线段的和转化为一条线段,即可计算。 探究点二:直线与圆上点的距离的最值问题 例2:如图,在Rt △AOB 中,,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),求切线PQ 的最小值 解:连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2-OQ 2, ∴当PO ⊥AB 时,线段PQ 最短,∵在Rt △AOB 中,OA=OB=3 , ∴OA=6,∴OP= =3,∴. ?OA OB AB 【变式训练】如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 是一动点且P 在第一象限内,过P 作⊙O 切线与x 轴相交于点A ,与y 轴相交于点B .求线段AB 的最小值. 解:(1)线段AB 长度的最小值为4, 理由如下: 连接OP , ∵AB 切⊙O 于P , ∴OP ⊥AB , 取AB 的中点C , ∴AB=2OC ; 当OC=OP 时,OC 最短, 即AB 最短, 此时AB=4.

初三数学圆的专项培优练习题(含答案)

初三数学圆的专项培优练习题(含答案) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

初三数学圆的专项培优练习题(含答案) 1.如图1,已知AB是⊙O的直径,AD切⊙O于点A,点C是EB的中点,则下列结论不成立的 是() A.OC∥AE B.EC=BC C.∠DAE=∠ABE D.AC⊥OE 图一图二图三2.如图2,以等边三角形ABC的BC边为直径画半圆,分别交AB、AC于点E、D,DF是圆的切线,过点F作BC的垂线交BC于点G.若AF的长为2,则FG的长为() A.4 B.33C.6 D.23 3.四个命题: ①三角形的一条中线能将三角形分成面积相等的两部分; ②有两边和其中一边的对角对应相等的两个三角形全等; ③点P(1,2)关于原点的对称点坐标为(-1,-2); ④两圆的半径分别是3和4,圆心距为d,若两圆有公共点,则1

A.19° B.38° C.52° D.76° 图四图五 6.如图五,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE =1:3,则AB= .7.已知AB是⊙O的直径,AD⊥l于点D. (1)如图①,当直线l与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小; (2)如图②,当直线l与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小. 8.如图,AB为的直径,点C在⊙O上,点P是直径AB上的一点(不与A,B重合),过点P作AB的垂线交BC的延长线于点Q。在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由。

中考数学好题难题集锦

中考数学好题难题集锦 一、分式: 1、如果abc=1,求证++=1. 2、已知+=,则+等于多少? 3、一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度. 4、已知M=、N=,用“+”或“﹣”连接M、N,有三种不同的形式,M+N、M ﹣N、N﹣M,请你任取其中一种进行计算,并简求值,其中x:y=5:2.

二、反比例函数: 5、一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示: (1)求y与x之间的函数关系式; (2)“E”图案的面积是多少? (3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围. 6、如图是一个反比例函数图象的一部分,点A(1,10),B(10,1)是它的端点. (1)求此函数的解析式,并写出自变量x的取值范围; (2)请你举出一个能用本题的函数关系描述的生活实例.

7、如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数的图象上,则图中阴影部分的面积等于_________. 8、如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B. (1)写出正比例函数和反比例函数的关系式; (2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP 面积相等如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.

天津市2020版中考数学专题练习:圆50题_含答案

、选择题: 1. 如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子 3. 已知圆内接正三角形的边心距为 1,则这个三角形的面积为( ) A .2 B .3 C .4 D .6 4. 如图,点 A , B , C ,在⊙ O 上,∠ ABO=32°,∠ ACO=38°,则∠ BOC 等于 ( 6.如图, ⊙O 是△ ABC 的外接圆 ,弦AC 的长为 3,sinB=0.75, 则⊙ O 的半径为( ) 圆 50 题 垂直,在测直径时,把 A . O 点靠在圆周上,读得刻度 OE=8个单位, 12 个单位 B . 10 个单位 C CD 是⊙ O 的两条弦,连结 AD 、BC .若∠ BCD=70°, OF=6个单位,则圆的直径为 ( 1 个单位 D . 15 个单位 则∠ BAD 的度数为( 2. 如图, AB 、 A . 40° B .50° C . 60° D . 70° B .70° C .120° D . 140° 5. 如图 , 点 A,B,C 在⊙ O 上, ∠A=36° , ∠ C=28° , 则∠ B=( A.100 B.72 C.64 D.36 OA 、 OB 在 O 点钉在一起,并使它们保持

AD 切⊙ O 于点 A ,点 C 是弧 BE 的中点,则下列结论不成立的是( B . EC=B C C .∠ DAE=∠ABE D .AC ⊥OE 10. 如图 , △ABC 中,AB=5,BC=3,AC=4, 以点 C 为圆心的圆与 AB 相切 ,则⊙ C 半径为( 11. 数学课上,老师让学生尺规作图画 Rt △ABC ,使其斜边 AB=c ,一条直角边 BC=a ,小明的作法如图所 示, 你认为这种作法中判断∠ ACB 是直角的依据是( ) A.4 B.3 C.2 D. OB=6cm,高 OC=8cm 则. 这个圆锥的侧面 积是 7. 如图,圆锥的底面半径 22 A.30cm 2 B.30 π cm 2 C.60 2 π cm D.120cm 9. 如图,AB 是⊙ O 的直径 ,C 、D 是⊙ O 上两点 , 分别连接 AC 、BC 、CD 、OD .∠ DOB=140° A.20° B.30 C.40 D.70 ,则∠ ACD (= B.2.5 C.2.4 D.2.3

相关文档
相关文档 最新文档