文档库 最新最全的文档下载
当前位置:文档库 › Directed Graphs and Rectangular Layouts (Extended abstract)

Directed Graphs and Rectangular Layouts (Extended abstract)

Directed Graphs and Rectangular Layouts

(Extended abstract)

Adam L.Buchsbaum,Emden R.Gansner,and Suresh Venkatasubramanian

AT&T Labs–Research

Florham Park,NJ07932

{alb,erg,suresh}@https://www.wendangku.net/doc/3414466719.html,

Abstract.This paper deals with the problem,arising in practice,of drawing a di-

rected graph as a collection of disjoint,isothetic rectangles,where the rectangles

of the nodes of each edge must touch and where the placement of the rectangles

respects the ordering of the edges.It provides characterizations for those graphs

having the special type of rectangular layout known as a rectangular dual.It then

characterizes the st-graphs having rectangular layouts in terms of the existence of

certain planar embeddings and the non-existence of a particular subgraph.

1Introduction

We consider the problem of drawing a directed graph using disjoint,isothetic rectangles for the nodes,such that(u,v)is an edge in the graph if and only if the corresponding rectangles R u and R v touch,with R u above or to the left of R v.Figure1provides an example,showing a directed tree drawn both using the traditional,straight-line drawing and as a collection of rectangles.

The problem arose in the context of providing a graphical user interface to a re-lational database support system which allows users to model and administer their https://www.wendangku.net/doc/3414466719.html,ers can specify their own schemas using entity-relationship models[17].It is assumed that there are no cycles among the relationships in the schema.The system then displays the database entities as rectangular buttons.Clicking on a button provides information related to the corresponding entity type,such as detailed descriptions of the entity attributes or information about speci?c records.Experience indicates the bene?t of juxtaposing buttons that correspond to related entities.In addition,if the relationship is one-to-many,the button corresponding to the“many”entity is positioned below or to the right of the“one”entity,to emphasize this sense of directionality.There are no additional constraints.In particular,even if two entities are not related,their rectan-gles may abut.Viewing the database schema as the obvious directed tree,with entities as vertices and relations as edges,and allowing undirected cycles,leads to the graph drawing problem stated above.1

This generalizes the concept of rectangular layouts,in which an undirected graph G is drawn using disjoint rectangles for nodes,and two nodes are adjacent in G if and only if the two corresponding rectangles are adjacent.Without directionality,this[10,11,

RPremises RElement Premise Element Detail Port Gateway RCard IOC Trunk RPPort LPort RLPort Pvc

Fig.1.Traditional drawing and rectangular layout of tree.

3,12,6,9,14,7,15,16,5]and related problems,such as proximity drawing [2,8]and rectangle of in?uence drawings [13,4],have been extensively studied.In particular,there are effective characterizations for graphs having rectangular layouts,and some provable bounds on the size of the layouts.

In this paper,we explore what effect the directionality constraint has.In Section 2,we formally de?ne the problem and note some basic results.In Section 3,we consider the special case of rectangular duals,where the rectangles in a rectangular layout form one large rectangle.We give several characterizations for graphs having a rectangular dual.Then,in Section 4,we show that,for st-graphs,we have the same characterization as in the undirected case after accounting for one forbidden subgraph.

2Preliminaries

Throughout,we assume that all graphs are directed and connected,with no loops or multiple edges,and have at least 4vertices.

A (strong)rectangular layout of a graph G =(V,E )is a set R of isothetic rectan-gles whose interiors are pairwise disjoint,with an isomorphism R :V →R such that for any two vertices u,v ∈V ,the boundaries of R u =R (u )and R v =R (v )overlap non-trivially with

R (u )above or to the left of R (v )(1)

if and only if (u,v )∈E .Figure 2gives two graphs and sample rectangular layouts.

It is immediate that only acyclic graphs can have a rectangular layout.Thus,we assume that any graph is a directed acyclic graph (dag ).

A weak rectangular layout of G is a rectangular layout in which two nodes might touch even if there is no edge between the corresponding nodes.Note that,in Figure 1,layout (b)is a weak layout for both graphs (a)and (b)but a strong layout only for graph (b).The reader may have also noticed that the rectangular layout in Figure 1is weak,with the rectangles for nodes Detail and IOC touching but with no edge connecting them.

For purposes of construction,however,the distinction between strong and weak layouts does not matter,as shown by the following lemma.

c b

d a d a (a)a (b)d

b

c b c

Fig.2.Two graphs and associated rectangular layouts.The shaded region depicts a gap.Lemma 1.Graph G has a weak rectangular layout R if and only if G has some strong rectangular layout L .

Proof.The shearing argument given in Buchsbaum et al.[5]extends to the directed case.

Furthermore,the assumption that no two rectangles meet trivially at a corner can be relaxed.If rectangles R u and R v meet at a corner,we can perturb the boundaries by some small amount to make the boundary overlap non-trivial.The layout becomes weak if it was not already.Lemma 1shows that it can be made strong with only non-trivial boundary overlaps.

3Directed rectangular duals

For the case of rectangular layouts of undirected graphs,it has been useful (e.g.,see

[5,6,10–12])to consider the case where the rectangles form a partition of an enclos-ing rectangle.We take a similar approach here.A rectangular dual of a graph G is a rectangular layout in which the union of the rectangles is a rectangle.

Let G be a planar st-graph 2with embedding E .Let b r =(v 0=s,v 2,...,v n =t )be the right boundary path of E from s to t.Let b l =(u 0=s,u 2,...,u m =t )be the left boundary path of E from s to t.Any vertex not in b r or b l is an interior vertex.Add four vertices N,E,S,and W so that N is above and to the right of G ,W is above and to the left of G ,S is below and to the left of G ,and E is below and to the right of G .We say the boundary of E is embeddable if we can ?nd 0≤i ≤n and 0≤j ≤m such that G extended with the nodes N,E,S ,and W and the edges (N,v k ),0≤k ≤i ,(v k ,E ),i ≤k ≤n ,(W,u k ),0≤k ≤j ,and (u k ,S ),j ≤k ≤m ,is planar,and all of the vertices v k and u k have indegree and outdegree ≥2.

Theorem 1.A dag G has a directed rectangular dual if and only if G is a planar st-graph with an embedding E such that:

1.all interior faces are triangles

2.all interior vertices have indegree and outdegree ≥2.

3.the boundary of E is embeddable.

Proof.For necessity,the?rst two conditions are obvious.As for the third,if G has a rectangular dual,attaching4rectangles to the sides of the layout shows that the bound-ary is embeddable.

Let G be G extended with the vertices N,E,S,W,the edges from condition3), and the edges(N,E)and(W,S).Note that for any vertex v in G,its rightmost inedge and outedge form two edges of a triangle in G .The similar property holds for the leftmost inedge and outedge.

For suf?ciency,we show how to construct a regular edge labeling(REL)in the sense of He[6]on G .Given an REL,He’s construction produces a rectangular dual for the underlying undirected graph of G .It is simple to verify that the construction honors edge directions,thereby giving us a(directed)rectangular dual for G .

We now show how to construct the necessary REL.Recall that an REL is a partition of the directed edges3into2sets T1and T2such that,for each vertex v,the edges adjacent to v consist of the inedges of T1,followed by the inedges of T2,followed by the outedges of T1,followed by the outedges of T2,in the counterclockwise direction. Each of the four subsets must be non-empty.

We de?ne T1to include the leftmost outedge and the rightmost inedge of every vertex.Let T2be the complement of T1.To show that the four subsets of edges around a vertex are non-empty,it suf?ces to show that the leftmost inedge and the rightmost outedge of each vertex will be in T2.Let e=(v,w)be the rightmost outedge of v. Since v has outdegree at least2,e cannot be the leftmost outedge.In addition,if(u,v) is the rightmost inedge of v,we must have a face{u,v,w}with an edge(u,w),so e cannot be the rightmost inedge of w.Thus,e must be in T2.The symmetric argument holds for the leftmost inedge of v.

To see that the edges are appropriately ordered,let e=(v,w)be an outedge of v in T1.If e is not the leftmost outedge,let e =(v,u)be the next outedge to the left.Since e is in T1and e is not the leftmost outedge of v,we must have that e is the rightmost inedge of w.Since w has indegree at least2,there must be another inedge of w just to the left of e.This means that{v,u,w}forms a face and e is the rightmost inedge of u, so that e is in T1.This implies that any outedge to the left of an outedge in T1is also in T1,and therefor all T1are to the left of all T2outedges.A symmetric argument holds for the inedges.

Figure3(a)exhibits an embedded planar st-graph.Figure3(b)shows the edges be-longing to the sets T1and T2as de?ned in the theorem.

Once the four vertices N,E,S,W are attached,the amount of variation in con-structing an REL is limited by the following theorem.We say an edge is a middle edge if has the form shown by the dotted edge in Figure4.

Theorem2.If G is a dag satisfying the three conditions of Theorem1,then any edge

e satis?es exactly one o

f the following:

1.e is the leftmost inedge and/or the rightmost outedge of a vertex

Fig.3.(a)st-graph G(b)extended st-graph G with edge sets T1(dotted)and T2

2.e is the leftmost outedge and/or the rightmost inedge of a vertex

3.e is a middle edge

Proof.We have already observed,as part of the proof of Theorem1,that the?rst two sets are disjoint.To complete the proof,we simply have to show that any edge not in one of the?rst two sets must be a middle edge.This is almost immediate.If e=(u,v) is not the rightmost outedge of u nor the rightmost inedge of v,the face to the right of e must have be composed of the three edges(u,v),(u,w),(w,v)for some vertex w. Since the same must be true for face to the left of e,we see that e is a middle edge.

Theorem2shows that the only choices in constructing an REL,once the graph is embedded,concern where to put the middle edges.It is a simple observation that any middle edge can be in either T1or T2,so the number of distinct directed rectangular duals is2m,where m is the number of middle edges.

There is a simple suf?cient condition for property3)in Theorem1,namely,that,on the right and left boundaries of E,no vertex with indegree1appears after any vertex with outdegree1.Consider the right boundary b r=(v0=s,v2,...,v n=t)of E.Let k be the largest index so that v k has indegree<2.Let l be the smallest index so that v l has outdegree<2.Let i be any value k≤i≤l,and add the edges(N,v k),0≤k≤i and(v k,E),i≤k≤n.By hypothesis,the extended graph is planar.Each v k in G has indegree and outdegree at least1.If it has indegree1,the edge(N,v k)was added,so it

Fig.4.Middle edge

has indegree2in the extended graph.The analogous results hold for the outdegrees in b r,and for the left boundary of E.

This condition characterizes the biconnected graphs with directed rectangular du-als.(We consider a dag biconnected or not according to that property holding in the underlying undirected graph.)

Theorem3.A biconnected dag G has a directed rectangular dual if and only if G is a planar st-graph with an embedding E such that:

1.all interior faces are triangles

2.all interior vertices have indegree and outdegree≥2.

3.on the right and left boundaries of E,no vertex with indegree1appears after any

vertices with outdegree1.

Proof.We have already noted how the three properties,along with Theorem1,imply the existence of a directed rectangular dual.Conversely,if G has a directed rectangular dual,any vertex v on b r with indegree1must correspond to a rectangle on the top boundary.Any vertex u on b r appearing before v is therefore also on the top boundary with a rectangle to its right.Since G is biconnected,u cannot also lie along the bottom boundary,as then it would be an articulation point.Thus,u has a rectangle below it. This shows it has outdegree≥2.

It is simple to apply this result to the cases where the condition3)is trivially satis-?ed.

Corollary1.A biconnected dag G has a directed rectangular dual with a single rect-angle on both the right and left sides if and only if it satis?es properties1)and2)of Theorem3and all vertices of one boundary path have outdegree≥2,and all vertices of the other boundary path have indegree≥2.

Analogous results hold when the degree constraints are only applied to one side.

Theorem3clearly fails for non-biconnected graphs.A chain has a rectangular dual but condition3)does not hold.The next theorem,however,allows us to apply the the-orem to the block decomposition of non-biconnected graph.

Theorem4.A dag G has a rectangular dual if and only if

1.its block tree is a chain

2.each interior block has a directed rectangular dual with a single rectangle on both

the left and right sides

3.both the?rst and last blocks have rectangular duals,with a single rectangle on the

right and left side,respectively.

Proof.Given the3conditions,joining the rectangular duals in the order speci?ed by the block tree chain,abutting or identifying the side rectangles as necessary,gives a dual for the whole graph.On the other hand,if G has a rectangular dual,any rectangle R v corresponding to a cut point v must be as wide or as high as the whole rectangle. By a90?rotation,we can assume it is as high.By dividing the rectangular dual at R v, splitting R v into2rectangles if both its indegree and outdegree are greater than1,we end up with rectangular duals for2proper subgraphs of G,and can complete the proof by induction using Theorem3for the base case.

4st-Graphs with rectangular layouts

As with the undirected case,any graph with a(directed)rectangular layout is a subgraph of some graph with a(directed)rectangular dual.Thus,the results from Section3can help us characterize certain classes of graphs with rectangular layouts.

We start with some de?nitions and lemmas.We let F denote the graph shown in Figure5(a).From the next lemma,we also refer to F as forbidden.

Lemma2.Let G be a biconnected planar st-graph with an embedding such that all interior faces are triangles.The condition that all interior vertices have indegree and outdegree≥2is equivalent to G not containing a subgraph isomorphic to F.

(a)(b)

(c)

Fig.5.(a)The forbidden graph F.(b)Quadrilateral face(c)Triangulation of a quadrilateral face Proof.If G has F as a subgraph,we can assume,by symmetry,that its embedding is as shown in Figure5(a).Consider the set formed by u and all vertices within the quadrilateral,and pick one w with the minimum y coordinate.Then the only possible outedge is(w,v),and w has outdegree1.

To show the opposite direction,we can assume,without loss of generality,that G has a vertex u with outdegree1.Let(u,v)be the unique outedge.The two triangular faces common to(u,v)must have the form(w,u),(w,v),(u,v)and(z,u),(z,v),(u,v). Therefore,G has the subgraph(w,u),(w,v),(z,u),(z,v)isomorphic to F.

For a planar embedding of a graph,a?lled triangle is de?ned to be a length-3cycle with at least one vertex inside the induced region.

Lemma3.Let E be an embedding of a planar st-graph G.If E has a?lled triangle,G has an interior vertex with outdegree or indegree1.

Proof.Consider a?lled triangle with edges(v,u),(v,w)and(u,w).If there is any vertex inside the triangle whose y coordinate is the same or less than that of u,pick the one x with the smallest y coordinate.Then the only possible outedge of x is(x,w)and x has outdegree1.A symmetric argument holds if any vertex inside the triangle has y coordinate the same or more than that of u.

We can now characterize planar st-graphs having a rectangular layout.

Theorem5.Let G be a planar st-graph.G has a rectangular layout if and only if G has no subgraph isomorphic to F and has an embedding with no?lled triangles. Proof.F has no rectangular layout,so it cannot be a subgraph of any graph having one.In addition,if G has a rectangular layout,it is a subgraph of a graph H with a rectangular dual.By Theorem1,H has an embedding with all interior faces triangles and all interior vertices having outdegree and indegree greater than1.By Lemma3,the embedding for H,and hence G,has no?lled triangle.

To show the converse,?rst assume that G is biconnected and let E be an embedding of G.For each non-triangular face F,let n be the length of the longest boundary path (i.e.,the path has n+1vertices).If n=2,then F must look like Figure5(b).Add a single vertex and four edges to form the graph in Figure5(c).The added edges are dotted.To maintain a valid planar embedding of an st-graph,we need to vertically shift down node c and all nodes reachable from it by a directed path by a uniform amount, as indicated in the?gure.

If n>2,insert n?2vertices to form a path in the interior from the top vertex of F to the bottom.Alternately connect the vertices along the longest boundary path to the inserted vertices as indicated in Figure6(a).The added edges are dotted.Similarly triangulate the shorter side,connecting the highest boundary path node to all of the remaining added vertices.None of these operations can introduce a?lled triangle,a cut vertex,or a subgraph isomorphic to F.

After processing all non-triangular faces,the resulting graph is still biconnected and acyclic,with a planar embedding with all interior faces triangular.In addition,there is no subgraph isomorphic to F.Thus,by Lemma2,every interior vertex has indegree and outdegree at least2.

To be able to invoke Theorem3,we need to make sure the graph satis?es property 3.For a given boundary path,if there is any node of indegree1appearing after a node of outdegree1,let n be the number of vertices on the boundary path from s to t.The cases where n<4are trivial,so we can assume n≥4.Let the vertices on the boundary path be s,v,...,w,t.Add n?3new vertices on a path from v to w.Then triangulate the face as indicated in Figure6(b)for the case n=6.As usual,the added edges are dotted.This process eliminates any vertices of outdegree1before a vertex of indegree 1,and maintains the hypotheses of the theorem.

We now can apply Theorem3to get a rectangular dual for the extended graph. Removing the rectangles corresponding to added vertices gives a rectangular layout for G.

Fig.6.(a)Triangulation of a non-quadrilateral face(b)Triangulating a boundary path

Finally,if G is not biconnected,we can use induction,with the base case of a bi-connected graph dealt with above.Pick a cut vertex v in G.Possibly replicating v if both its indegree and outdegree are greater than1,we can split G at v into two smaller st-graphs,each satisfying the hypotheses of the theorem.By induction,we get rectan-gular layouts for each.Necessarily,in any rectangular layout of an st-graph,the source and sink nodes correspond to the upper left and lower right rectangles,respectively.As in Theorem4,we can join the layouts together,identifying rectangles if necessary for replicated nodes,to obtain a rectangular layout for G.

Except for the forbidden subgraph,Theorem5is identical to Corollary3.5in[5]. Note that if all face boundary paths have length at least2,there can be no?lled triangles. The example of Figure7(a)shows how the triangulation used in the proof of the theorem fails in the case of?lled triangles.The graph is the same that of Figure5(c)but we assume it also has an edge(a,d),giving the?lled triangle(a,d),(a,c),(c,d).When the auxiliary node(e)and(dotted)edges are added,we have a forbidden subgraph (a,d),(e,d),(a,c),(e,c).

Both conditions of the theorem are necessary in order to have a rectangular layout. Figure7(b)shows an example of an st-graph with no forbidden subgraph all of whose embeddings have a?lled triangle.Figure7(c)shows an example of an st-graph with a forbidden subgraph but no?lled triangle.Of course,neither has a rectangular layout.

We believe Theorem5can be extended to general dags as follows:

Conjecture1.Let G be a dag.G has a directed rectangular layout if and only if G has no subgraph isomorphic to F and has an upward planar embedding with no?lled triangles.

Fig.7.(a)Filled triangle yielding F(b)All embeddings with?lled triangle(c)Subgraph F but no?lled triangle

The idea of the proof should be the same as that for Theorem5but the bookkeeping is more complex.

5Summary and future work

If this paper,we considered the extension of the problem of rectangular layouts to di-rected graphs.We presented characterizations for which graphs have rectangular duals, and which st-graphs admit rectangular layouts.

As for future work,we have already noted the conjecture at the end of the previous section.In analogy with the undirected case,there are many avenues open for further research.In particular,given the original motivation for the problem,it would be nice to have a layout algorithm with provably tractable running time and provable area or width,bounds similar to the results presented by Buchsbaum et al.[5]for the undirected problem.

References

1.G.Di Battista,P.Eades,R.Tamassia,and I.Tollis.Graph Drawing:Algorithms for the

Visualization of Graphs.Prentice-Hall,Upper Saddle River,NJ,1999.

2.G.Di Battista,W.Lenhart,and G.Liotta.Proximity drawability:A survey.In Proc.Graph

Drawing,DIMACS Int’l.Wks.(GD’94),volume894of Lecture Notes in Computer Science, pages328–39.Springer-Verlag,1994.

3.J.Bhasker and S.Sahni.A linear algorithm to?nd a rectangular dual of a planar triangulated

graph.Algorithmica,3:247–78,1988.

4.T.Biedl,A.Bretscher,and H.Meijer.Rectangle of in?uence drawings of graphs without

?lled3-cycles.In Proc.7th Int’l.Symp.on Graph Drawing’99,volume1731of Lecture Notes in Computer Science,pages359–68.Springer-Verlag,1999.

5. A.L.Buchsbaum,E.R.Gansner,C.M.Procopiuc,and S.Venkatasubramanian.Rectangular

layouts and contact graphs.Technical Report TD-59JQX5,AT&T Labs–Research,2005.

https://www.wendangku.net/doc/3414466719.html,/areas/visualization/papers

7.X.He.A simple linear time algorithm for proper box rectangular drawings of plane graphs.

Journal of Algorithms,40(1):82–101,2001.

8.J.W.Jaromczyk and G.T.Toussaint.Relative neighborhood graphs and their relatives.

Proceedings of the IEEE,80:1502–17,1992.

9.G.Kant and X.He.Regular edge labeling of4-connected plane graphs and its applications

in graph drawing problems.Theoretical Computer Science,172:175–93,1997.

10.K.Ko′z mi′n ski and W.Kinnen.Rectangular duals of planar https://www.wendangku.net/doc/3414466719.html,works,15:145–57,

1985.

11.K.Ko′z mi′n ski and W.Kinnen.Rectangular dualization and rectangular dissections.IEEE

Transactions on Circuits and Systems,35(11):1401–16,1988.

https://www.wendangku.net/doc/3414466719.html,i and S.M.Leinwand.A theory of rectangular dual graphs.Algorithmica,5:467–83,

1990.

13.G.Liotta,A.Lubiw,H.Meijer,and S.H.Whitesides.The rectangle of in?uence drawability

https://www.wendangku.net/doc/3414466719.html,putational Geometry:Theory and Applications,10:1–22,1998.

14.T.Matsumoto,K.Mizunoand,and T.Watanabe.Drawing a rectangular dual to meet pre-

scribed constraints.In Proc.IEEE Int’l.Symp.on Circuits and Systems,volume3,pages 1772–1775,1997.

15.M.Saidur Rahman,T.Nishizeki,and S.Ghosh.Rectangular drawings of planar graphs.In

Proc.10th Int’l.Symp.on Graph Drawing’02,volume2528of Lecture Notes in Computer Science,pages244–55.Springer-Verlag,2002.

16.M.Saidur Rahman,T.Nishizeki,and S.Ghosh.Rectangular drawings of planar graphs.

Journal of Algorithms,50(1):62–78,2004.

17.R.Ramakrishnan and J.Gehrke.Database Management Systems.McGraw-Hill,Boston,

MA,2000.

无线传感器网络论文中英文资料对照外文翻译

中英文资料对照外文翻译 基于网络共享的无线传感网络设计 摘要:无线传感器网络是近年来的一种新兴发展技术,它在环境监测、农业和公众健康等方面有着广泛的应用。在发展中国家,无线传感器网络技术是一种常用的技术模型。由于无线传感网络的在线监测和高效率的网络传送,使其具有很大的发展前景,然而无线传感网络的发展仍然面临着很大的挑战。其主要挑战包括传感器的可携性、快速性。我们首先讨论了传感器网络的可行性然后描述在解决各种技术性挑战时传感器应产生的便携性。我们还讨论了关于孟加拉国和加利 尼亚州基于无线传感网络的水质的开发和监测。 关键词:无线传感网络、在线监测 1.简介 无线传感器网络,是计算机设备和传感器之间的桥梁,在公共卫生、环境和农业等领域发挥着巨大的作用。一个单一的设备应该有一个处理器,一个无线电和多个传感器。当这些设备在一个领域部署时,传感装置测量这一领域的特殊环境。然后将监测到的数据通过无线电进行传输,再由计算机进行数据分析。这样,无线传感器网络可以对环境中各种变化进行详细的观察。无线传感器网络是能够测量各种现象如在水中的污染物含量,水灌溉流量。比如,最近发生的污染涌流进中国松花江,而松花江又是饮用水的主要来源。通过测定水流量和速度,通过传感器对江水进行实时监测,就能够确定污染桶的数量和流动方向。 不幸的是,人们只是在资源相对丰富这个条件下做文章,无线传感器网络的潜力在很大程度上仍未开发,费用对无线传感器网络是几个主要障碍之一,阻止了其更广阔的发展前景。许多无线传感器网络组件正在趋于便宜化(例如有关计算能力的组件),而传感器本身仍是最昂贵的。正如在在文献[5]中所指出的,成功的技术依赖于

英汉翻译的基本方法和技巧

英汉翻译的基本方法和技巧 翻译是信息交流过程中极其复杂的社会心理现象。语言知识是翻译的基础。此外,翻译还涉及到推理、判断、分析和综合等复杂的心理认识过程。翻译的方法和技巧是翻译工作者在长期的实践中根据两种语言的特点总结归纳出来的一般规律。这些规律可以指导我们的翻译实践,使我们能更自觉、更灵活地处理翻译过程中所遇到的各种语言现象。下面就英译汉中的一些方法和技巧结合翻译实例作一概述。 1.词义的选择 ? 一词多义和一词多类是英汉两种语言都有的一种语言现象。因此,在平日的翻译练习和测试中,我们在弄清原文句子结构后,务必注意选择和确定句中关键词的词类和词义,以保证译文的质量。通常可从以下三个方面来考虑词义选择: 1)根据词在句中的词类来选择词义 例如:Censorship is for the good of society as a whole. Like the law, it contributes to the common good. [译文]:审查是为了整个社会的利益。它像法律一样维护公众利益。 [注释]:本句中like作介词,意为"像……一样"。但like作动词用,则意为"喜欢;想要"。例如:He likes films with happy endings. (他喜欢结局好的电影。)又如:Would you like to leave a message (你要不要留个话儿)此外,like还可以作形容词用,意为"相同的",如:Like charges repel; unlike charges attract.(电荷同性相斥,异性相吸。) 2)根据上下文和词在句中的搭配关系选择词义 例1According to the new school of scientists, technology is an overlooked force in expanding the horizons of scientific knowledge. [译文]:新学派的科学家们认为,技术在扩大科学知识范围过程中是一种被忽视的力量。 [注释]:school一词常被误译为"学校",其实,school还有一个词义"学派"。可见,正确选择词义对译文质量有重要影响,而文章的上下文和逻辑联系是翻译中选择词义的重要依据。 例2Now since the assessment of intelligence is a comparative matter we must be sure that the scale with which we are comparing our subjects provides a "valid" or "fair" comparison. [译文]:既然对智力的评估是比较而言的,那么我们必须确保,在对我们的对象进行比较时,我们所使用的尺度要能提供"有效的"和"公平的"比较。

车载无线传感器网络监测系统设计(外文原文+中文翻译)

Wireless sensor network monitoring system design Kang yi-mei,Zhao lei,Hu jiang,Yang en-bo (Study on Beijing University of Aeronautics and Astronautics) Summary: A car wireless sensor network monitoring system based on IEEE 802.15.4 and ZigBee standards. With universal wireless sensor networks, expansion of the scope of monitoring and monitoring functions for in-car system, car data acquisition and condition monitoring of equipment status and the necessary equipment control, topology control, topology query functions. Keywords: wireless sensor networks; monitoring system Introduction In order to satisfy the people to car safety, handling and comfort requirements, vehicle integrated with more and more electronic system .At present, car electronic equipment is widely used 16 or 32-bit microprocessor control. Creating in-vehicle monitoring system based on IEEE 802.15.4 and ZigBee standard for wireless sensor networks, designed to achieve a more optimized wireless sensor networks, the progressive realization of the network of automotive systems, intelligent and controllable to provide high-Car System security. System design In this paper, the existing vehicle system, the data transmission mode is extended to the wireless transmission mode, the realization of a star network data acquisition system. And can place each data acquisition node of the acquired data is transmitted to the gateway, the gateway through the serial port to upload data to the host computer, in the host data real-time waveform display, and method of database to preserve, for the follow-up data processing. The application of system object is composed of a temperature sensor, pressure sensor, speed sensor, speed sensor, a current sensor, pressure sensor, sensor subsystem. The purpose of this design is to use a monitoring host machine end to the detection of multiple target environment, taking into account the access data throughput and software system complexity, using time-division multiplexing way, one by one on the net terminal collecting point of control and data acquisition. As shown in Figure 1, the system is divided into 3 parts: Vehicle Monitoring Center, gateway and mobile sensor node. Gateway is the whole vehicle system core, and all vehicular sensor node communication. Vehicle monitoring center to the gateway sends a control command by the gateway, the control command is converted to an RF signal and sent to the vehicle sensor node. When the vehicle sensor nodes to transmit data, gateway into the data reception state, and upload data to the monitoring center for further processing. In addition, car between sensor nodes cannot communicate with each other. The monitoring center of the monitoring software and gateway in RS232standard interface for communication. Vehicle sensor node life cycle is active and dormant periods. Nodes in the active phase of the completion of data acquisition, data sent to the gateway, receiving and

(中文)基于无线传感器网络桥梁安全监测系统

基于无线传感器网络的桥梁安全检测系统 摘要 根据桥梁监测无线传感器网络技术的桥梁安全监测系统,以实现方案的安全参数的需要;对整个系统的结构和工作原理的节点集、分簇和关键技术,虽然近年来在无线传感器网络中,已经证明了其潜在的提供连续结构响应数据进行定量评估结构健康,许多重要的问题,包括网络寿命可靠性和稳定性、损伤检测技术,例如拥塞控制进行了讨论。 关键词:桥梁安全监测;无线传感器网络的总体结构;关键技术 1 阻断 随着交通运输业的不断发展,桥梁安全问题受到越来越多人的关注。对于桥梁的建设与运行规律,而特设的桥梁检测的工作情况,起到一定作用,但是一座桥的信息通常是一个孤立的片面性,这是由于主观和客观因素,一些桥梁安全参数复杂多变[1]。某些问题使用传统的监测方法难以发现桥梁存在的安全风险。因此长期实时监测,预报和评估桥梁的安全局势,目前在中国乃至全世界是一个亟待解决的重要问题。 桥梁安全监测系统的设计方案,即通过长期实时桥跨的压力、变形等参数及测试,分析结构的动力特性参数和结构的评价科关键控制安全性和可靠性,以及问题的发现并及时维修,从而确保了桥的安全和长期耐久性。 近年来,桥梁安全监测技术已成为一个多学科的应用,它是在结构工程的传感器技术、计算机技术、网络通讯技术以及道路交通等基础上引入现代科技手段,已成为这一领域中科学和技术研究的重点。 无线传感器网络技术,在桥梁的安全监测系统方案的实现上,具有一定的参考价值。 无线传感器网络(WSN)是一种新兴的网络科学技术是大量的传感器节点,通过自组织无线通信,信息的相互传输,对一个具体的完成特定功能的智能功能的协调的专用网络。它是传感器技术的一个结合,通过集成的嵌入式微传感器实时监控各类计算机技术、网络和无线通信技术、布式信息处理技术、传感以及无线发送收集到的环境或各种信息监测和多跳网络传输到用户终端[2]。在军事、工业和农业,环境监测,健康,智能交通,安全,以及空间探索等领域无线传感器网络具有广泛应用前景和巨大的价值。 一个典型的无线传感器网络,通常包括传感器节点,网关和服务器,如图1

unit5词义的选择与引申

unit5词义的选择与引申 实用翻译策略与常用技巧 第一讲词义的选择和引申 词义的选择和词义引申是翻译中最常用的翻译技巧。也是英语翻译中最基础的工作,准确把握词义,并在必要时加以适度的引申,是保证译文质量的前提和基础。一方面,英语和汉语各自都有丰富的词汇,各自的词义又极其繁复;另一方面,这两种语言差异巨大,其词义关系错综复杂,往往难以找到词义完全对应的词。 因此,在翻译中绝不能拘泥于自己所记忆的词典提供的基本释义,机械地用固定的汉语词替换对应的英语词。正确的做法应当是,在掌握每一个单词基本释义的基础上,根据 “家” ’ . ’ . . ’ . . . . 的差异。如:这个单词,在作名词时,意思是“书,书籍”;用作动词却常表示“预订,预约”的意思。又如:作连词时,有“当...的时候,而,虽然”等意思;作名词时,却指“片刻,一会儿”;作动词,又有“消磨”的意思。遇到这种情况,如果不弄清楚词性,常常就会将词义搞错,进而影响原文的正确理解和准确翻译。因此在翻译中,我们可以根据语法关系来辨别关键词的词性,以便能准确的判断词义。如: : . . ?

(二)根据上下文确定词义 除了根据词性来判断词义之外,词义选择一个更为重要的方法就是根据上文来判断词义了。因为很多英语单词即使弄清楚了词性,但仍须从几个或几十个义项中选定确切的词义。这就需要借助于上下文提供的各种线索做出合理的分析、推理、判断。有时候,我们还可能会在考试中碰到生词。可是,我们绝对不会在一个英语句子中出现这种情况:某一个单词不认识,而这个单词上下文中的所有单词都不认识。正因为上下文的存在,这也给我们考研翻译中解决生词提供了突破口。因此,在考研翻译中,我们一定要随时注意上下文,上下文的不同在很大程度上决定了单词意义的不同,也在很大程度上决定了翻译中理解和表达的正确性、准确性和译文是否通顺。 我们以动词为例,如果上下文不一样,的意思显然也是不一样,必须依据上下文才能 . . . . ' ' . . , . . . ’ . . . 随着时代的发展,每天都有新的词汇产生。一些词在不同的领域中更是有着迥然不同的含义。例如,在一般情况下是“服务员、侍者”的意思;在体育范畴内,该词指“发球员”;而在计算机领域中,它又是“服务器”的含义。另如,在一般语境下是“拖欠、未履行“的意思,如;在法律范畴下则指的是“被要求出庭时未到庭”,如;而计算机用语中的则常被翻译为“缺省”,指的是“由操作系统自动指定并持续有效的特定值”,如。类似的例子还有很多,试译下句: . “’ .” , “ . . .” 二、词义的引申() 引申是英汉翻译的常用手法之一。英语和汉语在长期发展和使用中形成了富有各自特

英语翻译中词义的选择与引申

英语翻译中词义的选择与引申 【摘要】在翻译过程中,要把英语准确,通顺地译成汉语,正确选择词义此意,注重词义的引申至关重要。 【关键词】引申;翻译;选择 在英汉翻译过程中,正确选择词义是保证译文质量的中心问题。英语单词所表达的意义并不完全可以在汉语里找到其完全对应的词来表达的,许多英语单词与汉语中有些词只是部分对应,而英语中一词多义、一词多用、一词多类的现象很多,这就要求我们在将英语多义词译成汉语时,必须根据上下文和全句的意思确认其中一个正确的含义,而不能不求甚解,望词生义,想当然地进行翻译。下面从几个方面来分析英语翻译中词义的选择与引申。 一、词义的选择 1. 文化背景知识与词义的理解及翻译 英汉两种语言分属两大不同语系,英语国家的文化背景、风俗习惯与我国有很大的不同,有时候对英语某些词汇的理解涉及英语国家的文化背景知识,包括历史、地理、风土人情等各方面,如果这方面的知识匮乏,翻译出的句子就会出错,甚至闹出笑话。 例(1): Franz Boas was a specialist in American Indian languages. 弗兰兹·博厄斯是一位美洲的印第安人语言专家。 这句中的American Indian不能译为“美国印第安人”,因为不仅美国有印第安人,而且加拿大、南美洲和中美洲各国也有,这里涉及普通历史、地理常识。事实上,America和American严格地来说应作“美洲”和“美洲的”解,当然有时也用来指“美国”,但在一定的上下文中应注意区分。 例(2): South African leopard-spot policy came under fierce black fire… 南非实行的“豹斑式”的种族隔离政策受到了黑人的猛烈抨击… 这句中的leopard-spot是一个专门术语。如译者不了解它的背景知识,就很难把它准确地翻译出来。“豹斑”这一概念形成于20世纪60年代中期,当时南越人民武装力量在战区后方建立了许多小块根据地,美方军事地图上就此标有“豹斑”状异色标示区。以后“豹斑”这一军事术语又被转用为政治术语,指白人种族主义者把黑人强行驱入若干小块地区居住的种族隔离政策。 2. 从词的联立关系及上下文确定词义 所谓“词的联立关系”是指词在行文中的搭配组合关系。一般来说,一个孤立的英语单词,其词义是游移不定的,具有该词可能具有的一切含义。但当词出于特定的联立关系中时,它的词义受到上下文的制约就稳定化了,因此根据词的上下文关系确定词义是词义解析中非常重要而又切实可行的手段。如英语单词“wet”的意思是“湿的”,但它在不同的句子中所表达的意义就差别很大。 例(1): Wet Paint! 油漆未干! 例(2): He was wet to the skin. 他全身都湿透了。 例(3): If you think I am for him, you are all wet. 如果你认为我支持他,那你就大错特错了。 “last”这一形容词,它的一般意义为“最后的”,但在翻译中我们应注意它在不同的句中所表达的含义。 例(1): He is the last man to come. 他是最后来的。

无线传感器网络期末试卷

2011学年第一学期高一无线传感器网络期末试卷适用班级:11计6 满分:100分考试时间:60分钟 一、单项选择题(将最合适的选项填入括号中,每小题3分,共24分) 1.下列对无线传感器网络中传感器结点的叙述错误的是()。 A.数目庞大 B.分布密集 C.易受环境干扰 D.可随意移动 2.关于传感器的现代感知方法,下列说法错误的是()。 A.使用多跳路由算法向用户报告观测结果 B.多个传感器协同完成感知区域的大观测任务 C.传感器无计算能力 D.每个传感器完成临近感知对象的观测 3.无线网络技术使用的介质是()。 A.无线电波 B.双绞线 C.光缆 D.同轴电缆 4.()是传感器结点没有的组件。 A.处理子系统和无线通信子系统 B.传感器子系统 C.一个简单的操作系统和基本的变成语言 D.传统的Web浏览界面 5.以下哪个不是对无线传感器网络技术的设计挑战?() A.驱动程序 B.有限的能源 C.可靠性 D.对Linux的支持 6.以下名词中中英文对应错误的是()? A.无线传感器网络——Wireless Sensor Network,WSN B.全球定位系统——Geographical Information System,GIS C.云计算——Cloud Computing D.智能家居——Intelligent Home 7.电饭煲中的主要传感器是() A.压力传感器 B.红外传感器 C.温度传感器 D.湿敏传感器 8.智能家居功能包括() A.家居安全监控 B.家电控制 C.门禁系统 D.以上皆是 二、填空题(每个空格1分,共21分) 1.传感器网络的主要应用领域有__________________、__________________、__________________、__________________等。 2. 无线传感器网络的三大基础技术是__________________、__________________、__________________。 3.传感器网络的协议可分为五层,从下到上可分为_________________、_________________、_________________、_________________、_________________。 4.传感器结点的物理结构是: 5.传感器网络节点的功能模块组成为: 三、简答题(共30分)

英语翻译方法和技巧归纳

英语翻译方法和技巧归纳 一、词汇方面 ㈠.词义选择 大多数英语词汇是多义的,翻译时必须选择正确的词义。词义选择的方法有三:根据上下文和词的搭配选择、根据词类选择、根据专业选择。 ㈡.词义转换 在理解英文词汇的原始意义基础上,翻译时可根据汉语的习惯按引伸义译出;或用反义词语译出,即所谓的正文反译、反文正译。 ㈢.词类转换

英语中很多由动词转化而成的名词、以及动名词、非谓语动词等,汉译时可将它们转换成动词。 ㈣.补词 是指原文已有某种含义但未用词汇直接表达,译文中需将这些含义补充进去,这样才更通顺易读,如:英语中数词与名词之间没有量词,而译成汉语时可酌情增加。 ㈤.省略 是指原文中某些词在译文中省略不译,只要并不影响意义的完整。如:上面讲的汉语“量词”,译成英语时则可以省略;又如:英语中大量使用物主代词而汉语中往往省略不用。 ㈥.并列与重复

英语在表达重复含义的并列结构中常采用共享、替代、转换等形式来避免重复,而汉语却常常有意重复表达以加强文字的力度,如:英语的物主代词替代前面的名词,短语动词只重复介词而省略主动词,汉译时可考虑重复表达。 二、句子结构方面 子结构方面的翻译技巧,主要有三种类型:语序类、组合类和转换类。 ㈠.语序类 1. 顺译法与逆译法 英语时间状语可前可后。不仅如此,英语在表达结果、条件、说明等定语从句、状语从句也很灵活,既可以先述也可以后述。而汉语

表达往往是按时间或逻辑的顺序进行的,因此,顺译法也罢逆译法也罢,其实都是为了与汉语的习惯相一致。英语表达与汉语一致的就顺译,相反的则逆译。 有时候顺译法与逆译法的差别,就象前面谈的正译与反译,依译者的爱好而定。 2. 前置法 英语中较短的限定性定语从句、表身份特征等的同位语在译成汉语时,往往可以提到先行词(中心词)的前面。 3. 分起总叙与总起分叙 长句子和句子嵌套现象在英语中比较普遍,这是因为英语的连词、关系代词、关系副词等虚词比较活跃、生成能力强,可构成并列句、复合句以及它们的组合形式。

翻译中词义的选择

Run的词义选择 1.run across 2.run away 3.run back over 4.run counter to 5.run down 6.run in 7.run into 8.run into debt 9.run off 10.run out 11.run over 12.run through 13.run up 14.run to seed 15.run a race 16.run for presidency 17.run to sb’s aid 18.run agroun 19.run wild 20.run to extremes 21.run the streets 22.run a car 23.run a factory 24.run message 25.run the water off 26.run oil 27.run on 28.run sb. into difficulties 29.run the risk of 30.run one’s eyes down a list 31.run a simile too far 32.run a fever 33.run a sword through sb. 34.run a thread through an eyelet 35.run one’s head into wall 36. The idea runs in his mind. 37.The street runs north. 38.The news runs rapidly in the town. 39.The machine runs well. 40.The river runs east. “上”的不同含义 1.上班 2.上学 3.上岗 4.上报 5.上场 6.上当 7.上冻 8.上访 9.上纲 10.上钩 11.上光 12.上轨道 13.上火 14.上进 15.上课 16.上口 17.上路 18.上门 19.上马 20.上年纪 21.上任 22.上台 23.上膛 24.上相 25.上刑 26.上演 27.上账 28.上阵 29.上瘾 30.上街 31.上朝 32.上书 33.干部要能上能下 34.随函复上1元钱邮票一张。 35.这一局你上。 36.一连上了好几道菜。 37.行李还没上架。 38.他正在给门上漆。 39.这事已经上了电视。 40.表该上了。 1

无线传感器网络中英文对照外文翻译文献

(文档含英文原文和中文翻译) 中英文对照翻译 基于网络共享的无线传感网络设计 摘要:无线传感器网络是近年来的一种新兴发展技术,它在环境监测、农业和公众健康等方面有着广泛的应用。在发展中国家,无线传感器网络技术是一种常用的技术模型。由于无线传感网络的在线监测和高效率的网络传送,使其具有很大的发展前景,然而无线传感网络的发展仍然面临着很大的挑战。其主要挑战包括传感器的可携性、快速性。我们首先讨论了传感器网络的可行性然后描述在解决各种技术性挑战时传感器应产生的便携性。我们还讨论了关于孟加拉国和加利尼亚州基于无线传感网络的水质的开发和监测。 关键词:无线传感网络、在线监测

1.简介 无线传感器网络,是计算机设备和传感器之间的桥梁,在公共卫生、环境和农业等领域发挥着巨大的作用。一个单一的设备应该有一个处理器,一个无线电和多个传感器。当这些设备在一个领域部署时,传感装置测量这一领域的特殊环境。然后将监测到的数据通过无线电进行传输,再由计算机进行数据分析。这样,无线传感器网络可以对环境中各种变化进行详细的观察。无线传感器网络是能够测量各种现象如在水中的污染物含量,水灌溉流量。比如,最近发生的污染涌流进中国松花江,而松花江又是饮用水的主要来源。通过测定水流量和速度,通过传感器对江水进行实时监测,就能够确定污染桶的数量和流动方向。 不幸的是,人们只是在资源相对丰富这个条件下做文章,无线传感器网络的潜力在很大程度上仍未开发,费用对无线传感器网络是几个主要障碍之一,阻止了其更广阔的发展前景。许多无线传感器网络组件正在趋于便宜化(例如有关计算能力的组件),而传感器本身仍是最昂贵的。正如在在文献[5]中所指出的,成功的技术依赖于共享技术的原因是个人设备的大量花费。然而,大多数传感器网络研究是基于一个单一的拥有长期部署的用户,模式不利于分享。该技术管理的复杂性是另一个障碍。 大多数传感器的应用,有利于这样的共享模型。我们立足本声明认为传感器可能不需要在一个长时间单一位置的原因包括:(1)一些现象可能出现变化速度缓慢,因此小批量传感器可进行可移动部署,通过测量信号,充分捕捉物理现象(2)可能是过于密集,因此多余的传感器可被删除。(3)部署时间短。我们将会在第三节更详细的讨论。 上述所有假定的有关传感器都可以进行部署和再部署。然而有很多的无线传感器网络由于其实时监测和快速的网络功能可能被利用作为共享资源。其作为共同部署资源要求,需要一些高效的技术,包括对传感器的一些挑战,如便携性,流动频繁的传感器内的部署,这使我们在第四节将会有大的挑战。 在本文中,我们专注于作为共享的可行性设计的传感器网络。下面我们开始 阐述传感网络在孟加拉国和加利福尼亚州的水质检测中的应用。 2.无线传感网络在水质监测中的应用

无线传感器网络的应用研究

1武警部队监控平台架构介绍与设计 1.1监控系统的系统结构 基站监控系统的结构组成如上图所示,主要由三个大的部分构成,分别是监控中心、监控站点、监控单元。整个系统从资金、功能以及方便维护性出发,我们采用了干点加节点方式的监控方法。 监控中心(SC):SC的定义是指整个系统的中心枢纽点,控制整个分监控站,主要的功能是起管理作用和数据处理作用。一般只在市级包括(地、州)设置相应的监控中心,位置一般在武警部队的交换中心机房内或者指挥中心大楼内。 区域监控中心(SS):又称分点监控站,主要是分散在各个更低等级的区县,主要功能是监控自己所负责辖区的所有基站。对于固话网络,区域监控中心的管辖范围为一个县/区;移动通信网络由于其组网不同于固话本地网,则相对弱化了这一级。区域监控中心SS的机房内的设备配置与SC的差不多,但是不同的是功能不同以及SS的等级低于SC,SS的功能主要是维护设备和监控。 监控单元(SU):是整个监控系统中等级最低的单元了,它的功能就是监控并且起供电,传输等等作用,主要由SM和其他供电设备由若干监控模块、辅助设备构成。SU侧集成有无线传感网络微设备,比如定位设备或者光感,温感设备等等。 监控模块(SM):SM是监控单元的组成部分之一,主要作用监控信息的采集功能以及传输,提供相应的通信接口,完成相关信息的上传于接收。

2监控系统的分级管理结构及监控中心功能 基站监控系统的组网分级如果从管理上来看,主要采用两级结构:CSC集中监控中心和现场监控单元。CSC主要设置在运营商的枢纽大楼,主要功能为数据处理,管理远程监控单元,对告警信息进行分类统计,可实现告警查询和存储的功能。一般管理员可以在CSC实现中心调度的功能,并将告警信息进行分发。而FSU一般针对具体的某一个基站,具体作用于如何采集数据参数并进行传输。CSC集中监控中心的需要对FSU采集的数据参数进行报表统计和分析,自动生产图表并为我们的客户提供直观,方便的可视化操作,为维护工作提供依据,维护管理者可以根据大量的分析数据和报表进行快速反应,以最快的速度发现网络的故障点和优先处理点,将人力资源使用在刀刃上。监控中心CSC系统的功能中,还有维护管理类,具体描述如下: 1)实时报警功能 该系统的报警功能是指发现机房里的各种故障后,通过声音,短信,主界面显示的方式及时的上报给操作者。当机房内的动力环境,空调,烟感,人体红外等等发生变量后,这些数据通过基站监控终端上传到BTS再到BSC。最后由数据库进行分类整理后存储到SQLSEVRER2000中。下面介绍主要的几种报警方式: 2)声音报警 基站发生告警后,系统采集后,会用声卡对不一样的告警类别发出对应的语音提示。比如:声音的设置有几种,主要是以鸣叫的长短来区分的。为便于引起现场维护人员的重视紧急告警可设置为长鸣,不重要的告警故障设置为短鸣。这样一来可以用声音区分故障的等级,比方某地市的中心交换机房内相关告警声音设置,它的开关电源柜当平均电流达到40AH的时候,提示声音设置为长鸣,并立即发生短信告警工单。如果在夜晚机房无人值守的情况下:

无线传感器网络中文

译文 无线传感器网络的实现及在农业上的应用 1.摘要 无线传感器网络就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统。其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息 并发送给观察者。“传感器、感知对象和观察者”构成了网络的三个要素。这里说的传感器 并不是传统意义上的单纯的对物理信号进行感知并转化为数字信号的传感器它是将传感器模块、数据处理模块和无线通信模块集成在一块很小的物理单元即传感器节点上 功能比传统的传感器增强了许多 不仅能够对环境信息进行感知而且具有数据处理及无线通信的功能。借助传感器节点中内置的形式多样的传感器件可以测量所在环境中的热、红外、声纳、雷达和地震波信号等信号。从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等等众多我们感兴趣的物质现象。无线传感器网络是一种全新的信息获取和信息处理模式。由于我国水资源已处于相当紧缺的程度,加上全国90%的废、污水未经处理或处理未达标就直接排放的水污染,11%的河流水质低于农田供水标准。水是农业的命脉,是生态环境的控制性要素,同时又是战略性的经济资源,因此采用水泵抽取地下水灌溉农田,实现水资源合理利用,发展节水供水,改善生态环境,是我国目前精确农业的关键 因此采用节水和节能的灌水方法是当今世界供水技术发展的总趋势。 2.无线传感器网络概述 2.1无线传感器网络的系统架构无线传感器网络的系统架构如图1所示 通常包括传感器节点、汇聚节点和管理节点。传感器节点密布于观测区域 以自组织的方式构成网络。传感器节点对所采集信息进行处理后 以多跳中继方式将信息传输到汇聚节点。然后经由互联网或移动通信网络等途径到达管理节点。终端用户可以通过管理节点对无线传感器网络进行管理和配置、发布监测任务或收集回传数据。 图1无线传感器网络的系统架构

考研翻译中词义的选择和引申

考研翻译中词义的选择和引申 词义的选择和词义引申是考研翻译中最常用的翻译技巧。其本身也是英语翻译中最基础的工作,准确把握词义,并在必要时加以适度的引申,是保证译文质量的前提和基础。一方面,英语和汉语各自都有丰富的词汇,各自的词义又极其繁复;另一方面,这两种语言差异巨大,其词义关系错综复杂,往往难以找到词义完全对应的词。 在考研翻译中,这中现象更是比比皆是: 在1994年72)题a leader of the new school contends中,school是“学派”的意思,而不是“学校”的意思; 在1996年74)题elegant system中,elegant是“完美,完善”的意思,而不是“优雅”的意思; 在2001年75)题And home appliances will become so smart that...中,smart是“智能化”的意思,而不是“聪明”的意思; 在2003年75)题like the concept of set in mathematics中,set是“集,集合”而不是“一套,放置”等意思.......。 所有的例子都说明了词义选择和词义引申在考研翻译中的重要性。因此,在翻译中绝不能拘泥于自己所记忆的词典提供的基本释义,机械地用固定的汉语词替换对应的英语词。正确的做法应当是,在掌握每一个单词基本释义的基础上,根据这个单词所处的语境,根据上下文提供的各种线索,判定其确切含义;同时,还需要按照汉语的表达习惯和汉语的搭配方式,选用恰当的词语表达这一意义。 一、词义的选择 英语与世界上任何一种语言一样,都存在着一词多义的现象。所谓一词多义,即是指同一个词在同一种词类中,具有几个不同的词义。在英语与汉语中,很难找到一词一义的对应情况。这就需要我们在翻译过程中理解英语原文中单词的意思,然后努力地寻找在汉语中与这个英语单词具有相同意义的常用表达方法。就home这个词而言,大多数人都知道有“家”的意思。但是,上下文不一样,home的翻译就完全不一样,如: I’ll see her home tonight 今晚我送她回家。 India is the home of elephants. 印度是大象的生长地。 He’s at home with the classics. 他精通古典文学 New homes are for sale. 新房出售。 She’s at home where sh e is. 她在哪儿都自由自在。

无线传感网络应用论文中英文资料对照外文翻译

外文资料翻译 附件1:外文资料翻译译文 无线传感器网络的实现及在农业上的应用 1引言 无线传感器网络(Wireless Sensor Network ,WSN)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统。其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。“传感器、感知对象和观察者”构成了网络的三个要素。这里说的传感器,并不是传统意义上的单纯的对物理信号进行感知并转化为数字信号的传感器,它是将传感器模块、数据处理模块和无线通信模块集成在一块很小的物理单元,即传感器节点上,功能比传统的传感器增强了许多,不仅能够对环境信息进行感知,而且具有数据处理及无线通信的功能。借助传感器节点中内置的形式多样的传感器件,可以测量所在环境中的热、红外、声纳、雷达和地震波信号等信号,从而探测包括温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等等众多我们感兴趣的物质现象。无线传感器网络是一种全新的信息获取和信息处理模式。由于我国水资源已处于相当紧缺的程度,加上全国90%的废、污水未经处理或处理未达标就直接排放的水污染,11%的河流水质低于农田供水标准。水是农业的命脉,是生态环境的控制性要素,同时又是战略性的经济资源,因此采用水泵抽取地下水灌溉农田,实现水资源合理利用,发展节水供水,改善生态环境,是我国目前精确农业的关键,因此采用节水和节能的灌水方法是当今世界供水技术发展的总趋势。 2无线传感器网络概述 2.1无线传感器网络的系统架构

无线传感器网络的系统架构如图1所示,通常包括传感器节点、汇聚节点和管理节点。传感器节点密布于观测区域,以自组织的方式构成网络。传感器节点对所采集信息进行处理后,以多跳中继方式将信息传输到汇聚节点。然后经由互联网或移动通信网络等途径到达管理节点。终端用户可以通过管理节点对无线传感器网络进行管理和配置、发布监测任务或收集回传数据。 图1无线传感器网络的系统架构 2.2无线传感器网络的特点 (1)自组织。由于网络所处物理环境及网络本身的不可预测因素,如:不能预先精确设定节点的位置,也不能预先知道节点之间的相邻关系,部分节点由于能量耗尽或其他原因而死亡,新的节点的加入等,使得网络的布设和展开能够无需依赖于任何预设的网络设施,节点之间通过分层协议和分布式算法协调各自的行为,节点开机后就可以快速自动地组成一个独立的网络多跳路由。 (2)多跳路由。网络中节点通信距离有限,节点只能与它的邻居直接通信,如果与其射频覆盖范围之外的节点进行通信,则需要通过中间节点进行路由。 (3)大面积的空间分布,节点密集,数量巨大。 (4)以数据为中心。在无线传感器网络中,人们通常只关心某个区域内某个观测指标的数值,而不会去具体关心单个节点的观测数据。 (5)节点能力受限。传感器节点的能量、处理能力、存储能力和通信能力等都十分有限。 ①电源能量受限。由于传感器节点的微型化,节点的电池能量有限,而且由于物理限制难以给节点更换电池,所以传感器节点的电池能量限制是整个无线传感器网络设计最关键的约束之一,它直接决定了网络的工作寿命。 ②计算和存储能力有限。廉价微型的传感器节点带来了处理器能力弱、存储器容量小的特点,使得其不能进行复杂的计算,而传统Internet网络上成熟的协议

无线传感器网络期末试卷

鼎亿网络 2011学年第一学期高一无线传感器网络期末试卷适用班级:11计6 满分:100分考试时间:60分钟 一、单项选择题(将最合适的选项填入括号中,每小题3分,共24分) 1.下列对无线传感器网络中传感器结点的叙述错误的是()。 A.数目庞大 B.分布密集 C.易受环境干扰 D.可随意移动 2.关于传感器的现代感知方法,下列说法错误的是()。 A.使用多跳路由算法向用户报告观测结果 B.多个传感器协同完成感知区域的大观测任务 C.传感器无计算能力 D.每个传感器完成临近感知对象的观测 3.无线网络技术使用的介质是()。 A.无线电波 B.双绞线 C.光缆 D.同轴电缆 4.()是传感器结点没有的组件。 A.处理子系统和无线通信子系统 B.传感器子系统 C.一个简单的操作系统和基本的变成语言 D.传统的Web浏览界面 5.以下哪个不是对无线传感器网络技术的设计挑战?() A.驱动程序 B.有限的能源 C.可靠性 D.对Linux的支持 6.以下名词中中英文对应错误的是()? A.无线传感器网络——Wireless Sensor Network,WSN B.全球定位系统——Geographical Information System,GIS C.云计算——Cloud Computing D.智能家居——Intelligent Home 7.电饭煲中的主要传感器是() A.压力传感器 B.红外传感器 C.温度传感器 D.湿敏传感器 8.智能家居功能包括() A.家居安全监控 B.家电控制 C.门禁系统 D.以上皆是 二、填空题(每个空格1分,共21分) 1.传感器网络的主要应用领域有__________________、__________________、__________________、__________________等。 2. 无线传感器网络的三大基础技术是__________________、__________________、__________________。 3.传感器网络的协议可分为五层,从下到上可分为_________________、_________________、_________________、_________________、_________________。 4.传感器结点的物理结构是: 5.传感器网络节点的功能模块组成为: 三、简答题(共30分)

翻译技巧:注意词义的选择和引申

翻译技巧:注意词义的选择和引申 比如:我们熟悉的单词”through”,往往首先想到它的介词词性,在考试中出现过的“through”却表示“直达”的形容词性。如何熟练掌握大纲词汇,我们做真题的同时需要重视词义的选择和引申: (一)词义的选择 英文中一词多义的现象非常普遍。例如:英语story一词在不同的上下文中可以有不同的词义: 例:It is quite another story now. 现在情况完全不同了。 例:The officials concerned refused to confirm the story in the Post. 有关官员拒绝证实《邮报》的这条消息。 例:The white-haired girl’s story is one of the saddest. 白毛女的遭遇可算是最悲惨的。 例:A young man came to police station with a story. 一个年轻人来到警察局报案。 遇到英语多义词时必须结合上下文反复推敲,切忌望词生义,不求甚解。尤其遇到多义常用词时,不要想当然地把自己懂得的词义放到文章中去。 例:Albert Einstein, who developed the theory of relativity, arrived at this theory through mathematics. 误: 阿尔伯特·爱因斯坦发展了相对论,他是通过数学方法得出这一理论的。(此处develop应译为“创立”) 再以consequence一词为例,考研真题中该词曾出现过三次:Consequence在三句中的分别译为:“推论”“结果”“影响”。 例: consequence Others are reasonable consequences of particular advances in science being to some extent self-accelerating. (1996:71)

相关文档
相关文档 最新文档