文档库 最新最全的文档下载
当前位置:文档库 › 2019第1章第2节气体分子运动与压强语文

2019第1章第2节气体分子运动与压强语文

第2节气体分子运动与压强

1.气体分子运动的特点

气体分子都在永不停息地做无规则运动,每个分子的运动状态瞬息万变,每一时刻的运动情况完全是偶然的、不确定的.

2.现象

某一事件的出现纯粹是偶然的,但大量的偶然事件却会表现出一定的规律.3.定义

大量偶然事件表现出来的整体规律.

4.气体分子速率分布规律

(1)图象

图1-2-1

(2)规律

在一定温度下,不管个别分子怎样运动,气体的多数分子的速率都在某个数值附近,表现出“中间多、两头少”的分布规律.当温度升高时,该分布规律不变,气体分子的速率增大,分布曲线的峰值向速率大的一方移动.[再判断]

1.气体的温度升高时,所有气体分子的速率都增大.(×)

2.某一时刻气体分子向任意一个方向运动的分子数目近似相等.(√)

3.某一温度下大多数气体分子的速率不会发生变化.(×)

[后思考]

气体分子运动的统计规律有几个特点?

【提示】(1)气体分子沿各个方向运动的机会(几率)相等.

(2)大量气体分子的速率分布呈现中间多(占有分子数目多)、两头少(速率大或小的分子数目少)的规律.

[合作探讨]

探讨1:为什么气体会充满它能到达的整个空间?

【提示】由于气体分子间的距离比较大,分子间作用力很弱.通常认为,气体分子除了相互碰撞或者跟器壁碰撞外,不受力而做匀速直线运动,因而气体会充满它能达到的整个空间.

探讨2:为什么说分子的运动是杂乱无章的,但大量分子的运动会表现出一定的规律性?

【提示】气体分子的密度很大,分子之间频繁地碰撞,每个分子的速度大小和方向频繁地改变,所以分子的运动杂乱无章,在某一时刻,向着各个方向运动的分子都有,而且向各个方向运动的气体分子数目都相等,所以说大量分子的运动会表现出一定的规律性.

[核心点击]

1.气体的微观结构特点

(1)气体分子间的距离较大,大于10r0(10-9m),气体分子可看成无大小的质点.

(2)气体分子间的分子力很微弱,通常认为气体分子除了相互碰撞或与器壁碰撞外,不受其他力的作用.

2.气体分子运动的特点

(1)气体分子可以在空间自由移动而充满它所能到达的任何空间.

(2)气体分子间频繁发生碰撞

一个空气分子在1 s内与其他分子的碰撞达6.5亿次之多,分子的频繁碰撞

使每个分子速度的大小和方向频繁地发生改变,造成气体分子杂乱无章地做无规则运动.

(3)某时刻,气体分子沿各个方向运动的概率相同.某时刻,沿任何方向运动的分子都有,且沿各个方向运动的分子数目是相等的.

1.气体分子永不停息地做无规则运动,同一时刻都有向不同方向运动的分子,速率也有大有小.下表是氧气分别在0 ℃和100 ℃时,同一时刻在不同速率区间内的分子数占总分子数的百分比,由表能得出结论()

A.

B.大多数气体分子的速率处于中间值,少数分子的速率较大或较小

C.随着温度升高,气体分子的平均速率增大

D.气体分子的平均速率基本上不随温度的变化而变化

E.随着温度的升高,速率大的分子数变多

【解析】根据表格数据,逐项分析如下:

2.某种气体在不同温度下的气体分子速率分布曲线如图1-2-2所示,图中f (v )表示v 处单位速率区间内的分子数百分率,所对应的温度分别为T Ⅰ、T Ⅱ、T Ⅲ,则T Ⅰ、T Ⅱ、T Ⅲ的高低关系为________.

【导学号:30110006】

图1-2-2

【解析】 一定质量的气体,温度升高时,速率增大的分子数目增加,曲线的峰值向速率增大的方向移动,且峰值变小,由此可知T Ⅲ>T Ⅱ>T Ⅰ.

【答案】 T Ⅲ>T Ⅱ>T Ⅰ

气体分子速率分布规律

表中只是给出了氧气在0 ℃和100 ℃两个温度下的速率分布情况,通过分析比较可得出:

1.在一定温度下,气体分子的速率都呈“中间多、两头少”的分布. 2.温度越高,速率大的分子比例较大.这个规律对任何气体都是适用的.

1.产生原因

大量气体分子频繁撞击器壁,对器壁产生一个稳定的压力,从而产生压强.2.压强特点

气体内部压强处处相等.

3.决定因素

(1)气体的温度.(2)单位体积内的分子数.

[再判断]

1.气球内气体压强是由于气体重力作用产生的.(×)

2.影响气体压强的因素有温度、体积.(√)

3.当温度升高时,气体压强一定变大.(×)

[后思考]

用小滚珠作空气分子模型,把装有滚珠的杯子拿到秤盘上方某处,把1粒滚珠倒在秤盘上,秤的指针会摆动一下.再在相同的高处把100粒或更多的滚珠快速倒在秤盘上,秤的指针会在一个位置附近摆动,如图1-2-3,如果使这些滚珠从更高的位置倒在秤盘上,可以观察到秤的指针所指示的压力更大.想一想,为什么?

图1-2-3

【提示】释放位置越高,滚珠对秤盘的冲击力越大.

[合作探讨]

探讨1:气体压强是由气体分子间的相互作用产生的吗?

【提示】不是.气体压强是由大量气体分子频繁地碰撞器壁而产生的.探讨2:气体压强和大气压是一回事吗?

【提示】不是.气体压强由气体分子频繁地碰撞器壁产生,大小由气体的体积和温度决定,与地球引力无关;大气压强是由于空气受到重力作用而对浸在其中的物体产生的压强,随高度的升高而减小,如果没有地球引力作用,地球表

面就没有大气,也就没有大气压强.

[核心点击]

1.产生原因

大量做无规则热运动的分子对器壁频繁、持续地碰撞产生了气体的压强.单个分子碰撞器壁的冲力是短暂的,但是大量分子频繁地碰撞器壁,就对器壁产生持续、均匀的压力.所以从分子动理论的观点来看,气体的压强就是大量气体分子作用在器壁单位面积上的平均作用力.

2.气体压强的决定因素

以下说法正确的是()

【导学号:30110007】A.气体的密度增大

B.气体的压强增大

C.气体分子的平均速率减小

D.每秒撞击单位面积器壁的气体分子数增加

E.气体分子的疏密程度不变

【解析】气体的体积不变,对一定质量的气体,单位体积内的分子数不变,当温度升高时,分子的平均速率增大,每秒内撞击单位面积器壁的分子数增加,撞击力增大,压强必增大.所以B、D、E项正确,A、C均不正确.【答案】BDE

4.在某一容积不变的容器中封闭着一定质量的气体,对此气体的压强,下列说法中正确的是()

A.气体压强是由重力引起的,容器底部所受的压力等于容器内气体所受的重力

B.气体压强是由大量气体分子对器壁的频繁碰撞引起的

C.容器以9.8 m/s2的加速度向下运动时,容器内气体压强不变

D.由于分子运动无规则,所以容器内壁各处所受的气体压强相等

E.容器以9.8 m/s2的加速度向上运动时,容器内气体的压强增大

【解析】气体压强是由大量气体分子对器壁的频繁碰撞引起的,它由气体的温度和单位体积内的分子数决定,与容器的运动状态无关.故A、E错误,B、C、D正确.

【答案】BCD

气体压强的分析技巧

(1)明确气体压强产生的原因——大量做无规则运动的分子对器壁频繁、持续地碰撞.压强就是大量气体分子作用在器壁单位面积上的平均作用力.

(2)明确气体压强的决定因素——气体分子的密集程度与温度.

(3)只有知道了这两个因素的变化,才能确定压强的变化,不能根据任何单个因素的变化确定压强是否变化.

高中物理竞赛教程15-温度和气体分子运动论

高中物理竞赛热学教程 第五讲机械振动和机械波 第一讲 温度和气体分子运动论 第一讲 温度和气体分子运动论 §1。1 温度 1.1.1、平衡态、状态参量 温度是表示物体冷热程度的物理量。凡是跟温度有关的现象均称为热现象。热现象是自然界中的一种普遍现象。 热学是研究热现象规律的科学。热学研究的对象都是由大量分子组成的宏观物体,称为热力学系统或简称系统。在不受外界影响的条件下,系统的宏观性质不再随时间变化的状态称为平衡态,否则就称为非平衡态。可见系统平衡态的改变依赖于外界影响(作功、传热)。 系统处于平衡态,所有宏观物理都具有确定的值,我们就可以选择其中几个物理量来描述平衡态,这几个量称为状态参量。P 、V 、T 就是气体的状态参量。 气体的体积V 是指盛放气体的容器的容积,国际单位制中,体积的单位是m 3 。 1m 3 =103L=106 cm 3 气体的压强P 是气体作用在容器的单位面积器壁上的平均压力,单位是p a 。 1atm=76cmHg=1.013?105 p a 1mmHg=133.3p a 1.1.2、 温标 温度的数值表示法称为温标。建立温标的三要素是: 1、选择某种物质的一个随温度改变发生单调显著变化的属性来标志温度,制作温度计。例如液体温度计T(V)、电阻温度计T(R)、气体温度计T(P)、T(V)等等。这种选用某种测温物质的某一测温属性建立的温标称为经验温标。 2、规定固定点,即选定某一易于复现的特定平衡态指定其温度值。1954年以前,规定冰点为0℃,汽点为100℃,其间等分100份,从而构成旧摄氏温标。1954年以后,国际上选定水的三相点为基本固定点,温度值规定为273.16K 。这样0℃与冰点,100℃与汽点不再严格相等,百分温标的概念已被废弃。 3、规定测温属性随温度变化的函数关系。如果某种温标(例如气体温度计)选定为线性关系,由于不同物质的同一属性或者同一物质的不同属性随温度变化的函数关系不会相同,因而其它的温标就会出现非线性的函数关系。 1.1.3、理想气体温标 定容气体温度计是利用其测温泡内气体压强的大小来标志温度的高低的。 T(P)=αP α是比例系数,对水的三相点有 T 3= αP 3=273.16K P 3是273.16K 时定容测温泡内气体的压强。于是 T(P)=273.16K 3P P (1) 同样,对于定压气体温度计有 T(V)=273.16K 3V V (2) 3V 是273.16K 时定压测温泡内气体的体积。 用不同温度计测量同一物体的温度,除固定点外,其值并不相等。对于气体温度计也有)()(V T P T ≠。但是当测温泡内气体的压强趋于零时,所有气体温度计,无论用什么气体,无论是定容式的还是定压式的,所测温度值的差别消失而趋于一个共同的极限值,这个极限值就是理想气体温标的值,单位为K ,定义式为 T=lim 0 →p T(V)=lim 0 →p T(P) =273.16K lim →p 3V V =273.16K lim 0→p 3P P (3) 1.1.4、热力学温标 理想气体温标虽与气体个性无关,但它依赖于气体共性即理想气体的性质。利用气体温度计通过实验与外推相结合的方法可以实现理想气体温标。但其测温范围有限(1K ~1000℃),T <1K ,气体早都已液化,理想气体温标也就失去意义。 国际上规定热力学温标为基本温标,它完全不依赖于任何测温物质的性质,能在整个测温范围内采用,具有“绝对”的意义,有时称它为绝对温度。在理想气体温标适用的范围内,热力学温标与理想气体温标是一致的,因而可以不去区分它们,统一用T(K)表示。 国际上还规定摄氏温标由热力学温标导出。其关系式是: t=T-273.15o (4) 这样,新摄氏温标也与测温物质性质无关,能在整个测温范围内使用。目前已达到的最低温度为5?108 -K , 但是绝对零度是不可能达到的。 例1、定义温标t *与测温参量X 之间的关系式为t * =ln(kX),k 为常数 试求:(1)设X 为定容稀薄气体的压强,并假定水的三相点 16.273*3=T ,试确定t *与热力学温标之间的关系。(2)在温标t * 中,冰点和汽点各为多少度;(3)在温标t * 中,是否存在零度? 解:(1)设在水三相点时,X 之值是3X ,则有273.16o =In(kX 3)将K 值代入温标t * 定义式,有 3316.273*16.273X X In X X e In t +=? ???? ?= (2) 热力学温标可采用理想气体温标定义式,X 是定容气体温度计测温泡中稀薄气体压强。故有 30 lim 16.273X X K T x →= (3) 因测温物质是定容稀薄气体,故满足X →0的要求,因而(2)式可写成 ) lim ln(16.273lim 30 *X X t x x →→+= (4) 16.27316.273*T In t += 这是温标* t 与温标T 之间关系式。 (2)在热力学温标中,冰点K T i 15.273=,汽点K T s 15.373=。在温标* t 中其值分别为 16.27316.27315 .27316.273*=+=In t 47.27315.27315 .37316.273*=+=In t (3)在温标*t 中是否存在零度?令* t =0,有 K e T 116.27316.273<<=- 低于1K 任何气体都早已液化了,这种温标中* t =0的温度是没有物理意义的。 §1-2 气体实验定律 1.2.1、玻意耳定律

第二章气体分子运动论的基本概念汇总

第二章?????气体分子运动论的基本概念2013-7-22崎山苑工作室1 2.1物质的微观模型分子运动论是从物质的微观结构出发来阐明热现象的规律的。 一、宏观物体是由大量微粒--分子(或原子)组成的宏观物体是由分子组成的,在分子之间存在着一定的空隙。例如气体很容易被压缩,又如水和酒精混合后的体积小于两者原有体积之和,这都说明分子间有空隙。用20000atm的压强压缩钢筒中的油,结果发现油可以透过筒壁渗出,这说明钢的分子间也有空隙。目前用高分辨率的扫描隧道显微镜已能观察晶体横截面内原子结构的图像,并且能够操纵原子和分子。2013-7-22崎山苑工作室2 2013-7-22崎山苑工作室

二、物体内的分子在不停地运动着,这种运动是无规则的,其剧烈程度与物体的温度有关扩散现象说明:一切物体(气体、液体、固体)的分子都在不停地运动着 在显微镜下观 察到悬浮在液 体中的小颗粒 都在不停地作 无规则运动,

该运动由布朗 最早发现,称 为布朗运动。 2013-7-22崎山苑工作室4 布朗运动的无规则性,实际上反映了液体内部分子运动的无规则性。 所谓“无规则”指的是: 1。由于分子间的相互碰撞,每个分子的运动方向和速率都在不断地改变; 2。任何时刻,在液体或气体内部,沿各个方向运动的分子都有,而且分子运动的速率有大有小。 实验结果:扩散的快慢和布朗运动的剧烈程度都与温度的高低有显著的关系。随着温度的升高,扩散过程加快,悬浮颗粒的运动加剧。 结论:分子无规则运动的剧烈程度与温度有关,温度越高,分子的无规则运动就越剧烈。通常把分子的这种运动称为热运动。 2013-7-22崎山苑工作室5 三、分子之间有相互作用力吸引力:由于固体与液体的分子之间存在着相互的吸引力使固体能够保持一定的形状与体积而液体能保持一定的体积。 右图演示实验说明分子之间存在着相互的吸引力 排斥力:固体和液体的很难压缩说明分子之间存在着斥力结论:一切宏观物体都是由大量分子(或原子)组成的;所有的分子都处在不停的、无规则热运动中;分子之间有相互作用力。 2013-7-22崎山苑工作室6 三、分子之间有相互作用力吸引力:由于固体与液体的分子之间存在着相互的吸引力使固体能够保持一定的形状与体积而液体能保持一定的体积。 右图演示实验说明分子之间存在着相互的吸引力

习题 气体分子动理论

《大学物理》作业 No.10气体分子动理论 班级 ________ 学号 ________ 姓名 _________ 成绩 _______ 一、选择题 1. 两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等。现将6 J 热量传给氦气,使之升高到一定温度。若使氢气也升高同样的温度,则应向氦气传递热量: [ ] (A) 6 J (B) 10 J (C) 12 (D) 5 J 2. 在标准状态下, 若氧气(视为刚性双原子分子的理想气体)和氦气的体积比2 121=V V ,则其内能之比21/E E 为: [ ] (A) 21 (B) 35 (C) 65 (D) 10 3 3. 在容积V = 4×10 3 -m 3的容器中,装有压强p = 5×102 P a 的理想气体,则容器中气分 子的平均平动动能总和为: [ ] (A) 2 J (B) 3 J (C) 5 J (D) 9 J 4. 若在某个过程中,一定量的理想气体的内能E 随压强 p 的变化关系为一直线(其延长线过E ~ p 图的原点),则该过程为 [ ] (A)等温过程 (B) 等压过程 (C) 等容过程 (D) 绝热过程 5. 若)(v f 为气体分子速率分布函数,N 为分子总数,m 为分子质量,则 )(2 12 2 1 v Nf mv v v ? d v 的物理意义是: [ ] (A) 速率为v 2的各分子的总平均动能与速率为v 1的各分子的总平均动能之差。 (B) 速率为v 2的各分子的总平动动能与速率为v 1的各分子的总平动动能之和。 (C) 速率处在速率间隔v 1~ v 2之内的分子的平均平动动能。 (D) 速率处在速率间隔v 1~ v 2之内的分子平动动能之和。

气体压强与流速的关系

气体压强与流速的关系 授课时间 编写人 汤志东 定稿人 吴怡 【学习目标】 1、了解流体压强与流速的关系,会解释相关的现象 2、流体压强与流速关系的实际应用 【学习重难点】 重点:通过观察,认识气体的压强跟流速有关的现象 难点:体验由气体压强差异产生的力 【情境导入】一、情景引入 课件展示三个生活情景 1. 一阵秋风吹过,地上的落叶像长了翅膀一样飞舞起来。 2. 冬天,风越刮越大,带烟囱的炉子里的火越着越旺,火苗越蹿越高。 3. 居室前后两面的窗子都打开着,过堂风吹过,居室侧面摆放的衣柜的门被吹开了。 4.在足球赛场上,常见队员起脚劲射,眼见球偏离球门而去,却又鬼使神差地转了个弯,飘然入门,这就是使球迷们如醉如痴、叹为观止 的“香蕉球”.“香蕉球”因球的路径为弧形弯曲而得名.为什么球看似直射却又弯曲前进,它受到了什么魔力呢? 这些都是生活中司空见惯的生活现象,同学们思考过其中的奥妙吗?科学往往就藏在我们身边,今天这节课我们就要通过实验揭示这个小秘密。 【自主学习与指导】 (一)学生实验 教师布置给学生以下七个实验,要求学生在15分钟内,选择其中一部分,根据要求进行实验(选择的实验越多越好),提醒学生注意认真观察实验现象。

1. 纸条一端贴近下嘴唇,用力向纸条上方吹气,观察现象(图1)。 2. 将一张纸折成∩形(图2)平放在桌子上,用力向∩形纸的下方与桌面之间的空间吹气,观察现象。 3. 用手握着两张纸,让纸自由下垂,在两张纸的中间向下吹气(图3),观察两张纸怎样运动。

4. 在倒置的漏斗里放一个乒乓球,用手指托住乒乓球,然后从漏斗口向下用力吹气(图4),并将手指移开,观察现象。 5. 两个乒乓球用绳拴好,手提绳将两个球平行放置,向两个球中间用力吹气,观察现象。(图5) 6. 把一根长10 cm左右的饮料吸管A插在盛水的杯子里,另一根吸管B的管口贴靠在A管的上端。往B中用力吹气,观察现象。(图6) 7. 轻轻捏着一个轻质小勺的勺柄,能使小勺在手指间晃动自如,打开水龙头,让水稳定的往下流,把勺子的凸面靠近水流,观察现象。(图7)

地球运动专题

周六专题训练(一)地球运动部分提升训练A卷 某同学对居住地每天的日出时间实行了一段时间的持续观测与记录,绘成下图。读图完成1~2题。 1.a~b期间,该地的昼夜长短及其变化趋势是 A.昼长夜短,且昼渐长夜渐短B.昼长夜短,且昼渐短夜渐长 C.昼短夜长,且昼渐长夜渐短D.昼短夜长,且昼渐短夜渐长 2.该地一年中昼夜长短的变化幅度约为 A.1小时40分钟B.2小时20分钟C.3小时20分钟D.4小时40分钟下图为a和b两地同一日期太阳高度日变化示意,X、Y分别为两地最大太阳高度,且Y的取值范围为0°~46°,据此回答3~5小题。 3.若X=70°,则Y必定为 A.0°B.20° C.40° D.0°或40° 4.若X=60°,则a地可能位于 A.四川盆地 B.长江三角洲 C.青藏高原D.华北平原 5.若X=67°,且b地位于西伯利亚地区,则此时 A.长江入海区正值咸潮多发季B.武汉昼长达到一年中最大值 C.巴西高原一片枯黄D.北京香山红叶正值最佳观赏季节 下图是经纬网图,已知M地位于赤道,N地比P地先见到日落;此刻,图中70°纬线以内为极昼,再过8小时,N地太阳高度达当日最大。读图回答6~7题。 6.此刻,太阳直射 A.世界著名渔场B.热带沙漠地区 7.图幅范围内 A.此刻,绝大部分地区是黑夜 B.此刻,各地在同一日 C.此日后,各地白昼逐渐增长 D.此季节,N地原野一片枯黄 下图中OP、OQ分别表示某地二至日的正午

树影长度,读图回答8~9题。 8.当地的纬度位置为( ) A.0° B.11°S C.20°N D.67°S 9.该地树影最长的日期( ) A.当地昼短夜长 B.南欧正值雨季 C.华北落叶纷飞 D.北极极光绚丽 下图为“世界经纬线展开示意图”,图中AS虚线代表晨昏线,D点为晨昏线与赤道的交点,同时也是GF的中点;阴影与非阴影部分分别代表6日和7日两个不同的日期。读图完成第10~11题。 10.此时甲地地方时为( ) A.7日21时 B.6日9时 C.6日21时 D.7日9时 11.关于该图的说法,准确的是( ) A.AS线为晨线 B.BC线为国际日期变更线 C.赤道上西半球的白昼长于黑夜 D.赤道上东、西半球的白昼长度之比为23∶13 我国古代人民根据日月运行位置和天气及动植物生长等自然现象,把一年平分为二十四等份,这就是二十四节气。二十四节气能反映季节的变化,指导农事活动。读二十四节气分布图(图甲),回答12~13题。 12.在下列各组节气中,北京的昼长时间最接近的是( )

《气体分子运动论》答案

第10章 气体分子运动论 一、选择题 1(B),2(C),3(C),4(B),5(D),6(E),7(B),8(B),9(A),10(C) 二、填空题 (1). 23kT ,25kT ,2 5 MRT /M mol .; (2). 1.2×10-24 kg m / s ,3 1×1028 m -2s-1 ,4×103 Pa . (3). 分布在v p ~∞速率区间的分子数在总分子数中占的百分率, 分子平动动能的平均值. (4). v v v d )(0 ? ∞ Nf , v v v/v v v v d )(d )(0 ?? ∞ ∞ f f , v v v d )(0 ? ∞ f . (5). 氢,1.58×103.; (6). 保持不变. 参考解答:令,2,m kT x p p == v v v 麦克斯韦速率分布函数可以写作: x e x N N x d 4d 22-=π 又,8πm kT =v .2π =p v v 所以有 .d 4π2 1 22x e x N N x ?-=?-πv v p 这个积分显然与温度无关! (7). 理想气体处于热平衡状态 , A N iPV /21或R ikPV /2 1 .; (8). B A B B A A N N f N f N ++) ()(v v . (9). 2; (10). 1 . 三、计算题 1. 一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 ) 解: A = Pt = T iR v ?2 1 , ∴ ?T = 2Pt /(v iR )=4.81 K . 2. 储有1 mol 氧气,容积为1 m 3的容器以v =10 m ·s -1 的速度运动.设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能,问气体的温度及压强各升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 ) 解: 0.8× 221v M =(M / M mol )T R ?2 5 , ∴ T =0.8 M mol v 2 / (5R )=0.062 K

第二章气体动理论

第二章 气体动理论 1-2-1选择题: 1、处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,都处于平衡态。以下说法正确的是: (A )它们的温度、压强均不相同。 (B )它们的温度相同,但氦气压强大于氮气压强。 (C )它们的温度、压强都相同。 (D) 它们的温度相同,但氦气压强小于氮气压强。 2、三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比4:2:1: : 2 2 2 C B A v v v , 则其压强之比C B A p p p ::为: (A) 1 : 2 : 4 (B) 1 : 4 : 8 (C) 1 : 4 : 16 (D) 4 : 2 : 1 3、一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m . 根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为: (A) 2x v = m kT 3 (B) 2 x v = m kT 331 (C) 2 x v = m kT 3 (D) 2 x v = m kT 4、关于温度的意义,有下列几种说法: (1) 气体的温度是分子热运动平均平动动能的量度. (2) 气体的温度是大量气体分子热运动的集体表现,具有统计意义. (3) 温度的高低反映物质内部分子热运动剧烈程度的不同. (4) 从微观上看,气体的温度表示每个气体分子的冷热程度. 上述说法中正确的是 (A ) (1)、(2)、(4) (B ) (1)、(2)、(3) (C ) (2)、(3)、(4) (D) (1)、(3)、(4)

5、两容器内分别盛有氢气和氦气,若它们的温度和质量分别相等,则: (A) 两种气体分子的平均平动动能相等. (B) 两种气体分子的平均动能相等. (C) 两种气体分子的方均根速率相等. (D) 两种气体的内能相等. 6、一容器内装有N 1个单原子理想气体分子和N 2个刚性双原子理想气体分子,当该系统处在温度为T 的平衡态时,其内能为 (A) ??? ??++kT kT N N 2523)(21 (B) ??? ??++kT kT N N 252 3 )(2121 (C) kT N kT N 252321+ (D) kT N kT N 2 3 2521+ 7、有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边,如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央则另一边应装入同一温度的氧气质量为: (A ) kg 16 1 (B) 0.8 kg (C ) 1.6 kg (D) 3.2 kg 8、若室内生火炉以后,温度从15°C 升高到27°C ,而室内的气压不变,则此时室内的分子数减少了: (A) 0.5% (B) 4% (C) 9% (D) 21% 9、有容积不同的A 、B 两个容器,A 中装有单原子分子理想气体,B 中装有双原子分子理想气体。如果两种气体的压强相同,那么这两种气体的单位体积的内能A V E ??? ??和B V E ??? ??的关系为: (A )B A V E V E ??? ????? ??

液体与气体压强提高与竞赛题

液体与气体压强提高与竞赛题 1.如图所示,容器重为G 1,放在水平面上,容器内盛有重为G 2的液体,若用N 1表示容器对桌面的压力,N 2表示液体对容器底的压力,则N 1和N 2应满足( ) A . N 1=G 1+G 2,N 2=G 2 B .N 1>G 1+G 2, N 2>G 2 C .N 1G 2 2.质量为1kg 的平底空水桶,底面积为700cm 2。水桶内装有30cm 深的水,放在水平地面上,如图甲所示,水对水桶底的压强比水桶对地面的压强小l000Pa 。当小明用竖直向上的力F 提水桶,但没有提起来时,如图乙所示,水桶对地面的压 强为1800Pa 。则下列选项正确的是(g 取10N /kg ) A .水桶内水的质量为28kg B .水桶内水的质量为27kg C .F 的大小为l54N D .F 的大小为l26N 3.在装有水的容器左侧加入70cm 高的煤油,最终达到稳定状态,煤油和水不相溶,则左右两端液面高度相差____cm 。(已知煤油密度为0.8×103kg/m 3) 4.如图5-4所示的连通器,粗管截面积为16cm 2,半径是细管半径的2倍,横管长10cm ,粗细与细管一样。先把0.24L 水银注入连通器内,然后在细管一端灌水。问:(1)灌多少mL 水可以灌满?(2)如果改在由粗管一端灌水,则需多少mL 可以把粗管灌满? 5.如图所示,两个底面积不同的圆柱形容器甲和乙,容器足够高,分别盛有水和酒精(ρ 水>ρ酒精),且两种液体对容器底部的压强相等.一定能使水对 容器底部的压强大于酒精对容器底部压强的方法是( ) A.倒入相同质量的水和酒精 B.倒入相同体积的水和酒精 C.抽出相同质量的水和酒精 D.抽出相同体积的水和酒精

高考地理一轮复习地球的运动专题突破训练

高考地理一轮复习地球的运动专题突破训练 一、选择题 下图为地球公转轨道示意图。读图回答1~2题。 1.地球从甲运行到乙期间,重庆的正午太阳高度() A.逐渐减小B.逐渐增大 C.先减小后增大D.先增大后减小 2.当地球在甲位置时() A.黄河流域进入汛期B.南极昆仑站正值极夜 C.三峡水库处于蓄清期D.潘帕斯草原处于枯黄期 【解析】根据地球公转方向(逆时针)可以判断该示意图为北极上空投影图,甲为近日点(1月初),此时太阳直射南半球,由甲到乙期间太阳由南半球向北移动,重庆的正午太阳高度逐渐增大。从图中可以判断地球在甲位置时,处于近日点附近,北半球为冬季,黄河流域为枯水期,南极昆仑站正值极昼时期,潘帕斯草原一片葱绿(南半球为夏季),因三峡水库处于枯水期,水量较小,流速较慢,水质较清。 【答案】 1.B 2.C 右图中A、B两地同在40°N纬线上,读图回答3~4题。 3.若北京时间同一时刻两地杆影的指向如右图所示,则可知B地位于A地的() A.东南方B.西南方 C.正东方D.正西方 4.若图中A地某日正午的杆长和影长相等,则当日太阳直射点的纬度为() A.5°S B.5°N C.23°26′S D.23°26′N 【解析】此刻,A地的杆影指向正北方,说明太阳直射点位于A地的正南方;而此时B 地的杆影指向东北方,说明此时的太阳直射点位于B地的西南方。又知A、B两地位于同一条纬线上,故B地位于A地的正东方。图中A地某日正午的杆长与影长相等,即该地正午太阳高度为45°,说明此时太阳直射在A地所在的40°N纬线以南45°的地方,即5°S。 【答案】 3.C 4.A 托勒密大约于公元90年出生在希腊。下图是他描述的成角日晷仪,它被用来测量太阳每天的正午太阳高度。据此回答5~6题。 5.根据图中信息确定当时黄赤交角大约为() A.24°11′B.22°51′ C.23°26′D.23°51′ 6.当日晷仪指针如α所示,下列说法正确的是() A.好望角附近风平浪静 B.从大西洋进入地中海的船只逆风逆水 C.华北平原处于返盐的季节 D.印度此时盛行东北季风 【解析】5题计算即可,360°××≈23°51′。 6题当日晷仪指针如α所示时,时间为4、5月或7、8月。好望角为南半球地中海气候,风平浪静应是当地夏季,时间为1、2月份左右。从大西洋进入地中海的船只由于大西洋表层海水流向地中海,不可能逆水。印度盛行东北季风时是冬季。华北平原返盐的季节是春秋季,有这种可能性。 【答案】 5.D 6.C 下面是某地冬至日(12月22日)太阳高度变化曲线图,读图回答7~8题。

气体分子运动理论

学科:物理 教学内容:气体分子运动理论 【基础知识精讲】 1.气体分子运动的特点 (1)气体分子之间的距离很大,距离大约是分子直径的10倍,因此除了相互碰撞或者跟器壁碰撞外,气体分子不受力的作用,在空间自由移动. 气体能充满它们所能达到的空间,没有一定的体积和形状. (2)每个气体分子都在做永不停息的运动,大量气体分子频繁地发生碰撞使每个气体分子都在做杂乱无章的运动. (3)大量气体分子的杂乱无章的热运动,在宏观上表现出一定的规律性. ①气体分子沿各个方向运动的数目是相等的. ②对于任一温度下的任何气体来说,多数气体分子的速率都在某一数值范围之内,比这一数值范围速率大的分子数和比这一数值范围速率小的分子数依次递减.速率很大和速率很小的分子数都很少.在确定温度下的某种气体的速率分布情况是确定的. 在温度升高时,多数气体分子所在的速率范围升高,而且在这一速度范围的分子数增多. 2.气体压强的产生 (1)气体压强的定义 气体作用在器壁单位面积上的压力就是气体的压强,即P=F/S. (2)气体压强的形成原因 气体作用在器壁上的压力是由碰撞产生的,一个气体分子和器壁的碰撞时间是极其短暂的.它施于器壁的作用力是不连续的,但大量分子频繁地碰撞器壁,从宏观上看,可以认为气体对器壁的作用力是持续的、均匀的. (3)气体压强的决定因素 ①分子的平均动能与密集程度 从微观角度来看,气体分子的质量越大,速度越大,即分子的平均动能越大,每个气体分子撞一次器壁对器壁的作用力越大,而单位时间内气体分子撞击器壁的次数越多,对器壁的总压力也越大,而撞击次数又取决于单位体积内分子数(分子的密集程度)和平均动能(分子在容器中往返运动着,其平均动能越大,分子平均速率也越大,连续两次碰撞某器壁的时间间隔越短,即单位时间内撞击次数越多),所以从微观角度看,气体的压强决定于气体的平均动能和密集程度. ②气体的温度与体积 从宏观角度看,一定质量的气体的压强跟气体的体积和温度有关.对于一定质量的气体,体积的大小决定分子的密集程度,而温度的高低是分子平均动能的标志. (4)几个问题的说明 ①在一个不太高的容器中,我们可以认为各点气体的压强相等的. ②气体的压强经常通过液体的压强来反映. ③容器内气体压强的大小与气体的重力无关,这一点与液体的压强不同(液体的压强是由液体的重力造成的).这是因为一般容器内气体质量很小,且容器高度有限,所以不同高度

高三物理《理想气态的方程及气体分子动理论》教案

理想气态的方程及气体分子动理论 一、学习目标 1、知道什么是理想气体,能够由气体的实验定律推出理想气体状态方程。 2、掌握理想气体状态方程,并能用来分析计算有关问题。 3、知道理想气体状态方程的适用条件。 4、掌握克拉珀龙方程并能利用方程计算有关问题。 5、明确摩尔气体常量,R是一个热学的重要常数,其重要性与阿伏加德罗常数是一样的。 6、应用克拉珀龙方程解题时,由于R=8.31J/(mol· K)=0.082atm·L/(mol· K)。因此p、 V的单位必须与选用的R的单位相对应。 7、明确p-V, p-T, V-T图线的意义。 8、能够在相应的坐标中表达系统的变化过程。 二、重点难点及考点 1、这一节的内容重点在于能够知道用理想气体状态方程解决问题的基本思路和方法,并 能解决有关具体问题,还要注意到计算时要统一单位,难点在于用理想气体状态方程 解题时有时压强比较难找。 2、本节重点是克拉珀珑方程的应用,应用克拉珀龙方程可以解决很多气体问题,如果把 它学习好,对学生的学习气体这一节会有很大帮助,本节难点是对克拉珀龙方程的应用,但本节在高考中所占比例并不是特别大,因为这一节为现行教材中的新增长率加 内容。 3、本节重点是把气体的三个状态量用分子动理论来描述清楚,难点是用分子动理论解释 气体三定律,要从逻辑严谨的理相气体模型出发解释每个气体定律,本节在高考中涉 及的题目不多但出曾出现过。

三、例题分析 第一阶段 [例1]在密闭的容器里装有氧气100g,压强为10×106Pa,温度为37oC,经一段时间后温度 降为27oC,由于漏气,压强降为6.0×105Pa,求该容器的容积和漏掉气的质量。 思路分析: 本题研究的是变质量气体问题,由于容器的容积和气体种类(设氧气摩尔质量为M)仍未变,只是质量变为m2,再由克拉珀龙方程列出一个方程,联解两个方程,即可求得容器的容积和漏掉的氧气,抓住状态和过程分析是解题的关键。根据题意可得: ①② 方程①可得: 将V代入②可求: 所以漏掉的氧气质量△m=m1-m2=38g 答案:该容器的容积8.05×10-3m3,漏掉气的质量是38g, [例2]一个横截面积为S=50cm2竖直放置的气缸,活塞的质量为80kg,活塞下面装有质量m=5g的NH3,现对NH3加热,当NH3的温度升高△T=100oC时,求活塞上升的高度为多少?设大气压强为75cmHg,活塞与气缸无摩擦。 思路分析:本题研究的是定质量气体问题,首先确定定研究对象HN3,确认初态压强与末态压强相等,由于温度升高,NH3变化过程是等压膨胀,体积发生变化。由克拉珀龙方程可列两个状态下的方程,求出体积变化。再由体积变化和横截面积求出活塞上升的高度。确认等压膨胀是解本题的关键。 根据题意:根据克拉珀龙方程得: 所以活塞上升高度

地球运动专题练习

地球运动规律 选择题(每小题4分,共100分。每小题只有一个选项符合题目要求) 2019年1月3日10时26分,嫦娥四号探测器(重达3.8吨)自主着陆在月球背面南极—艾特 肯盆地内的冯·卡门撞击坑内,实现人类探测器首次在月球背面软着陆。相比嫦娥三号,嫦娥四号 的落月难度更大。嫦娥四号奔月、环月、落月整个过程的控制, 特别是近月制动和落月的过程,没有重来的机会,对系统可靠性 有着极高要求。上图为月球背面冯·卡门撞击坑示意图。据此完 成1~3题。 1.与月球正面相比,月球背面更加崎岖不平。其主要原因是( ) A.月球背面多火山爆发 B.月球背面能量释放导致月面剧震 C.冲向地球的流星体多撞击月球背面 D.月球背面昼夜温差更大 2.相比嫦娥三号,嫦娥四号的落月难度更大。其主要原因最可能是( ) A.嫦娥四号探测器重量更大 B.落月过程地面控制更困难 C.月球背面光线昏暗 D.月球背面温度变化极大 3.与月球正面相比,在月球背面进行深空射电探测具有一定优势。这种优势可能是月球背面( ) A.不受地球无线电信号干扰 B.尘埃物质更少 C.处于黑夜,便于观测 D.表面更干燥 磁纬度是地球磁场坐标的要素之 一,磁极点的磁纬度为90°。距磁极点 约30°以内的范围常出现极光,这个区 域称为极光区。下图示意地球磁纬度分 布。据此完成4~5题。 4.图中便于游客观测极光的最佳地点 是( ) A.甲 B.乙 C.丙 D.丁 5.“极光之都”费尔班克斯 (64°50′N,147°43′W)最适宜观测极光的月份是( ) A.3月 B.6月 C.9月 D.12月 下图中的4条曲线反映R地某日近地面观测的辐射和温度随时间变化情况。其中,太阳总辐射强度 是指到达地面的太阳短波总辐射强度,地面净辐射强度是指地面收入与支出辐射差额的强度。读图, 完成6~8题。 6.影响R地该日太阳总辐射强度变化的主 要因素有( ) ①太阳高度②气候类型③地形特 点④地表温度⑤云量变化 A.①②③ B.②③④ C.①③⑤ D.②④⑤ 7.图中曲线与地面净辐射强度、近地面大 气温度、地表温度依次对应的是( ) A.甲、乙、丙 B.乙、丙、甲 C.丙、乙、甲 D.甲、丙、乙 8.此次的观测地点和时段可能是( ) A.西欧平原,3、4月份 B.撒哈拉沙漠,7、8月份 C.青藏高原,5、6月份 D.准噶尔盆地,10、11月份 2018年6月14日至7月15日,第21届世界杯足球赛在俄罗 斯境内的11座城市举行,北京时间6月16日,王先生看到了好友 小李在索契(43°35′N,39°43′E)比赛现场发布的微信朋友圈信 息(见右图)。据此完成9~10题。 9.世界杯足球赛期间,索契( ) A.昼长夜短且昼渐短 B.昼短夜长且昼渐长 C.日落前的物体影子朝向正东 D.日落前的物体影子朝向东南 10.据图推断小李发布信息时的当地区时大约是( ) A.6月15日10:30 B.6月15日21:30 C.6月16日00:30 D.6月16日02:30 下图为7月份某地观测者通过观测、记录下来的太阳运行示意图。据此完成 11~13题。 11.图中日落的方位是( ) A.西北 B.西南 C.正西 D.正北 12.观察者所在半球及昼夜长短状况是( ) A.北半球,昼长夜短 B.北半球,昼短夜长

气体分子运动论的基本概念

第二章气体分子运动论的基本概念 §1 物质的微观模型 一、物质微观模型: 1、宏观物体是由大量微粒—分子(或原子)组成的, 2、物体内的分子在不停地运动着,这种运动是无规则的剧烈程度与物体的温度有关。 3、分子之间有相互作用。 二、物质三种聚集态的成因 分子力的作用将使分子聚集在一起,在空间形成某种规则的分布(有序排列),而分子的无规则运动将破坏这种有序排列,使分子分散开来。事实上,物质分子在不同的温度下所以会表现为三种不同的聚集态,正是由这两种相互对立的作用所决定的。 §2 理想气体的压强 一、理想气体的微观模型: 1、分子本身的形成比起分子之间的平均距离来可以忽略不计。 2、除碰撞的瞬间外,分子之间以及分子与容器器壁之间都无相互作用。 3、分子之间以及分子与容器器壁之间的碰撞是完全弹性的,即气体分子的动能不因碰撞而损失。 二、压强公式 1、压强产生的微观实质:是大量气体分子对器壁不断碰撞的结果。(举例说明)。 2、理想气体压强公式的推导过程:思路:欲求分子施于器壁的压强P,应先求出大量分子施于器壁的力F。这个力除以器壁的面积,就得到分子施于器壁的压强。设:有一个边长分别为L1、L2、L3的长方体容器,在平衡态下,共有N个Array分子,分子的质量为m,分子数密度为n=N/V。 ①单个分子在一次碰撞中施于A1面的冲 量,(A1面垂直于x轴) 设某一分子的速度为V i,速度三个分量分别为: V ix、V iy、V iz由于碰撞是完全弹性的,所以碰 撞前后分子在y、z两方向上的速度分量不变, 在x方向上的速度分量由V ix变为-V ix, 大小不变方向反向。这样,分子在碰撞过程中 的动量改变为:-m V ix -m V ix =-2m V ix.按动量定理,这就等于A1面施于分子的冲量,而根据牛顿第三定律,分子施于A1面的冲量为:+2m V ix ②dt时间内分子之施于A1面的冲量:它应等于2m V ix乘以dt时间内分子之于A1面碰 撞的次数,即:

初二物理大气压强流体压强与流速的关系讲解

大气压强 流体压强与流速的关系 【要点梳理】 要点一、证明大气压强存在的实验 1.简单实验: (1)塑料吸盘:把塑料吸盘中的空气排出一部分,塑料吸盘内外压强不等,塑料吸盘就能吸在光滑墙壁上。如果塑料吸盘戳个小孔,空气通过小孔,进入塑料吸盘和光滑的墙壁之间,吸盘便不能贴在光滑墙面上。 (2)悬空塑料管里的水:塑料管装满水,用硬纸片盖住管口倒置,塑料管中的水不会流出来。如果把塑料管的上方和大气相通,上、下压强相等,水就不能留在管中。 (3)用吸管吸饮料:如果把杯口密封,空气不能进入杯内,便无法不断的吸到饮料。大气压的作用使饮料进入口中。 2.大气压的存在: 以上实验说明大气压强确实存在,历史上证明大气压强存在的著名实验是马德堡半球实验。在大气内部的各个位置也存在着压强,这个压强叫做大气压强,简称大气压。 要点诠释:空气和液体一样,具有流动性,所以大气内部向各个方向都有压强。 要点二、大气压的测量(高清课堂《大气压强与流体压强》) 1.托里拆利实验 (1)实验过程:如图所示,在长约1m 、一端封闭的玻璃管灌满水银,用手指堵住,然后倒插在水银槽中。放开手指,管内水银面下降到一定高度时就不再下降,这时管内外水银面高度差约760mm 。 (2)实验是将大气压强转化为液体压强来进行测量的。如图所示,在管内外水银面交界处设想有一假想的液片,由于水银柱静止,液体受到管内水银柱产生的向下的压强与外界大气压相等,也就是大气压支持了管内大约760mm 高的水银柱,大气压强跟760mm 高的水银柱产生的压强相等。通常把这样大小 的压强叫做标准大气压,用0P 表示。 根据液体压强公式:450 1.36109.8/0.76 1.0110P P gh N kg m a ρ==???≈?。

气体动理论

气体动理论 一、选择题 1.按照气体分子运动论,气体压强的形成是由于 ( ) (A )气体分子之间不断发生碰撞; (B )气体分子的扩散; (C )气体分子不断碰撞器壁; (D )理想气体的热胀冷缩现象. 2.理想气体中仅由温度决定其大小的物理量是( ) (A )气体的压强 (B )气体分子的平均速率 (C )气体的内能 (D )气体分子的平均平动动能 3. 在一个容积不变的封闭容器内理想气体分子平均速率若提高为原来的2倍,则( ) A .温度和压强都提高为原来的2倍 B .温度为原来的2倍,压强为原来的4倍 C .温度为原来的4倍,压强为原来的2倍 D .温度和压强都为原来的4倍 4.关于温度的意义,下列几种说法中错误的是:( ) A .气体的温度是分子平均平动动能的量度. B .气体的温度是大量气体分子热运动的集体表现,具有统计意义. C .温度的高低反映物质内部分子运动剧烈程度的不同. D .从微观上看,气体的温度表示每个气体分子的冷热程度. 5.容积为V 的容器中,贮有1N 个氧分子、2N 个氮分子和M kg 氩气的混合气体,则混合 气体在温度为T 时的压强为(其中A N 为阿佛伽德罗常数,μ为氩分子的摩尔质量)[ ] (A )kT V N 1 (B )kT V N 2 (C )kT V MN A μ (D )kT N M N N V A )(121μ ++ 6.一瓶氦气和一瓶氮气(均为理想气体)都处于平衡状态,质量密度相同,分子平均平动动 能相同,则它们( ) A 、温度相同、压强相同; B 、温度相同,但氦气的压强大于氮气的压强; C 、温度、压强都不相同; D 、温度相同,但氦气的压强小于氮气的压强 7.压强、温度相同的氩气和氮气,它们的分子平均平动动能k ε和平均动能ε的关系为 ( ) (A )和k ε都相等 (B )和k ε都不相等 (C )k ε相等,而 ε不相等 (D )ε相等,而k ε不相等 8.mol 2的刚性分子理想气体甲烷,温度为T ,其内能可表示为:( ) A 、kT 5; B 、kT 6; C 、RT 5; D 、RT 6.

(高二物理) 第一章第二节气体分子运动与压强-课后检测

第二节气体分子运动与压强测试题1.(多选)在研究热现象时,我们可以采用统计方法,这是因为( )。 A.每个分子的运动速率随温度的变化是有规律的 B.个别分子的运动不具有规律性 C.在一定温度下,大量分子的速率分布是确定的 D.在一定温度下,大量分子的速率分布随时间而变化 2.(单选)1859年麦克斯韦从理论上推导出了气体分子速率的分布规律,后来有许多实验验证了这一规律。若以横坐标v表示分子速率,纵坐标f(v)表示各速率区间的分子数占总分子数的百分比。下面四幅图中能正确表示某一温度下气体分子速率分布规律的是________。 3.(多选)下列说法中正确的是( )。 A.气体体积等于容器的容积 B.气体压强的大小取决于单位体积内的分子数和分子平均速率 C.温度升高,大量气体分子中速率小的分子数减少,速率大的分子数增多 D.一定质量的气体,温度一定时,体积减小,则单位时间内分子对单位面积容器壁的碰撞次数增多,压强增大 4.(多选)对于气体压强的产生,下列说法正确的是( )。 A.气体压强是气体分子之间的斥力产生的 B.气体对器壁的压强是由于气体的重力产生的 C.气体压强是大量气体分子频繁碰撞器壁而产生的 D.气体压强决定于单位体积中的分子数和气体的温度 5.(多选)关于气体分子的运动情况,下列说法中正确的是( )。 A.某一时刻具有任一速率的分子数目是相等的

B.某一时刻一个分子速度的大小和方向是偶然的 C.某一时刻向任意一个方向运动的分子数目相等 D.某一温度下大多数气体分子的速率不会发生变化 6.(单选)大量气体分子做无规则运动,速率有的大,有的小,当气体温度由某一较低温度升高到某一较高温度时,关于分子速率的说法正确的是( )。 A.温度升高时,每一个气体分子的速率均增加 B.在不同速率范围内,分子数的分布是均匀的 C.气体分子的速率分布不再呈“中间多,两头少”的分布规律 D.气体分子的速率分布仍然呈“中间多,两头少”的分布规律 7.在宇宙飞船的实验舱内充满CO2气体,且一段时间内气体的压强不变,舱内有一块面积为S的平板舱壁,如图所示。如果CO2气体对平板的压强是由气体分子垂直撞击平板形成的,假设气体分子中各有1/6的个数分别向上、下、左、右、前、后六个方向运动,且每个分子的速率均为v,设气体分子与平板碰撞后仍以原速反弹。已知实验舱中单位体积内CO2的摩尔数为n,CO2的摩尔质量为M,阿伏加德罗常数为N A。求:(1)单位时间内打在平板上CO2的分子个数;(2)气体对平板的压力。 第二节气体分子运动与压强 测试题参考答案 1 解析:少量分子运动无规律,大量分子呈现出一定规律。要研究大量分子,须采用统计法。 答案:BC 2答案:D 3 解析:决定气体压强的因素是温度和单位体积内的分子数。温度越高,分子的平均动

高中物理人教版选修气体分子动理论单元测试题

物理同步测试—分子运动理论能量守恒气体 一、选择题(每小题4分,共40分。在每小题给出的四个选项中,至少有一个选项是正确 的) 1.下列说法中正确的是() A. 物质是由大量分子组成的,分子直径的数量级是10-10m B. 物质分子在不停地做无规则运动,布朗运动就是分子的运动 C. 在任何情况下,分子间的引力和斥力是同时存在的 D. 1kg的任何物质含有的微粒数相同,都是6.02×1023个,这个数叫阿伏加德罗常数 2.关于布朗运动,下列说法正确的是( ) A.布朗运动是在显微镜中看到的液体分子的无规则运动 B.布朗运动是液体分子无规则运动的反映 C.悬浮在液体中的微粒越小,液体温度越高,布朗运动越显着 D.布朗运动的无规则性反映了小颗粒内部分子运动的无规则性 3.以下说法中正确的是( ) A.分子的热运动是指物体的整体运动和物体内部分子的无规则运动的总和 B.分子的热运动是指物体内部分子的无规则运动 C.分子的热运动与温度有关:温度越高,分子的热运动越激烈 D.在同一温度下,不同质量的同种液体的每个分子运动的激烈程度可能是不相同的

4.在一杯清水中滴一滴墨汁,经过一段时间后墨汁均匀地分布在水中,只是由于() A.水分子和碳分子间引力与斥力的不平衡造成的 B.碳分子的无规则运动造成的 C.水分子的无规则运动造成的 D.水分子间空隙较大造成的 5.下列关于布朗运动的说法中正确的是() A.将碳素墨水滴入清水中,观察到的布朗运动是碳分子无规则运动的反映 B.布朗运动是否显着与悬浮在液体中的颗粒大小无关 C.布朗运动的激烈程度与温度有关 D.微粒的布朗运动的无规则性,反映了液体内部分子运动的无规则性 6.下面证明分子间存在引力和斥力的试验,错误的是() A.两块铅压紧以后能连成一块,说明存在引力 B.一般固体、液体很难被压缩,说明存在着相互排斥力 C.拉断一根绳子需要一定大小的力说明存在着相互吸引力 D.碎玻璃不能拼在一起,是由于分子间存在着斥力 7.下列叙述正确的是()A.悬浮在液体中的固体微粒越大,布朗运动就越明显B.物体的温度越高,分子热运动的平均动能越大 C.当分子间的距离增大时,分子间的引力变大而斥力减小

相关文档
相关文档 最新文档