文档库 最新最全的文档下载
当前位置:文档库 › 单克隆抗体制备过程中经过两次筛选

单克隆抗体制备过程中经过两次筛选

单克隆抗体制备过程中经过两次筛选
单克隆抗体制备过程中经过两次筛选

单克隆抗体制备过程中经过两次筛选

单克隆抗体制备过程中,总共有两次筛选,第一次筛选出杂交瘤细胞,第二次筛选出能产生特异性抗体的杂交瘤细胞,两次筛选的原理和方法是不相同的。

第一次筛选的原理与方法:细胞融合后,杂交瘤细胞的选择性培养是第一次筛选的关键。普遍采用的HAT选择性培养液是在普通的动物细胞培养液中加入次黄嘌呤(H)、氨基喋呤(A)和胸腺嘧啶核苷酸(T)。其依据是细胞中的DNA合成有两条途径:一条途径是生物合成途径(“D途径”),即由氨基酸及其他小分子化合物合成核苷酸,为DNA分子的合成提供原料。在此合成过程中,叶酸作为重要的辅酶参与这一过程,而HAT培养液中氨基喋呤是一种叶酸的拮抗物,可以阻断DNA合成的“D途径”。另一条途径是应急途径或补救途径(“S途径”),它是利用次黄嘌呤—鸟嘌呤磷酸核苷转移酶(HGPRT)和胸腺嘧啶核苷激酶(TK)催化次黄嘌呤和胸腺嘧啶核苷生成相应的核苷酸,两种酶缺一不可。因此,在HAT培养液中,未融合的效应B细胞和两个效应B细胞融合的“D途径”被氨基喋呤阻断,虽“S途径”正常,但因缺乏在体外培养液中增殖的能力,一般10d左右会死亡。对于骨髓瘤细胞以及自身融合细胞而言,由于通常采用的骨髓瘤细胞是次黄嘌呤—鸟嘌呤磷酸核苷转移酶缺陷型(HGPRT)细胞,因此自身没有“S途径”,且“D途径”又被氨基喋呤阻断,所以在HA T培养液中也不能增殖而很快死亡。惟有骨髓瘤细胞与效应B细胞相互融合形成的杂交瘤细胞,既具有效应B细胞的“S途径”,又具有骨髓瘤细胞在体外培养液中长期增殖的特性,因此能在HA T培养液中选择性存活下来,并不断增殖。

第二次筛选的原理和方法:在实际免疫过程中,由于采用连续注射抗原的方法,且一种抗原决定簇刺激机体形成相对应的一种效应B淋巴细胞,因此,从小鼠脾脏中取出的效应B淋巴细胞的特异性是不同的,经HA T培养液筛选的杂交瘤细胞特异性也存在差异,所以必须从杂交瘤细胞群中筛选出能产生针对某一预定抗原快定簇的特异性杂交瘤细胞。通常采用有限稀释克隆细胞的方法,将杂交瘤细胞多倍稀释,接种在多孔的细胞培养板上,使每一孔含一个或几个杂交瘤细胞(理论上30%的孔中细胞数为0时,才能保证有些孔中是单个细胞),再由这些单细胞克隆生长,最终选出分泌预定特异抗体的杂交细胞株进行扩大培养。因此,单克隆抗体制备过程中,两次筛选的原理和方法是不相同的。

单克隆抗体制备的基本原理与过程

原理:

B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力。B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的。将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体。这种技术即称为单克隆抗体技术。

过程:

1)免疫脾细胞的制备制备单克隆抗体的动物多采用纯系Balb/c小鼠。免疫的方法取决于所用抗原的性质。免疫方法同一般血清的制备,也可采用脾内直接免疫法。

2)骨髓瘤细胞的培养与筛选在融合前,骨髓瘤细胞应经过含8-AG的培养基筛选,防止细胞发生突变恢复HGPRT 的活性(恢复HGPRT的活性的细胞不能在含8-AG的培养基中存活)。骨髓瘤细胞用10%小牛血清的培养液在细胞培养瓶中培养,融合前24h换液一次,使骨髓瘤细胞处于对数生长期。

3)细胞融合的关键:

1技术上的误差常常导致融合的失败。例如,供者淋巴细胞没有查到免疫应答。这必然要失败的。

2融合试验最大的失败原因是污染,融合成功的关键是提供一个干净的环境,以及适宜的无菌操作技术。

4)阳性克隆的筛选应尽早进行。通常在融合后10天作第一次检测,过早容易出现假阳性。检测方法应灵敏、准确、而且简便快速。具体应用的方法应根据抗原的性质,以及所需单克隆抗体的功能进行选择。常用的方法有RIA法、ELISA法和免疫荧光法等。其中ELISA法最简便,RIA法最准确。阳性克隆的筛选应进行多次,均阳性时才确定为阳性克隆进行扩增。

5)克隆化克隆化的目的是为了获得单一细胞系的群体。克隆化应尽早进行并反复筛选。这是因为初期的杂交瘤细胞是不稳定的,有丢失染色体的倾向。反复克隆化后可获得稳定的杂交瘤细胞株。克隆化的方法很多,而最常用的是有限稀释法。

(1)显微操作法:在显微镜下取单细胞,然后进行单细胞培养。这种方法操作复杂,效率低,故不常用。

(2)有限稀释法:将对数生长期的杂交瘤细胞用培养液作一定的稀释后,按每孔1个细胞接种在培养皿中,细胞增值后成为单克隆细胞系。第一次克隆化时加一定量的饲养细胞。由于第一次克隆化生长的细胞不能保证单克隆化,所以为获得稳定的单克隆细胞株需经2~3次的再克隆才成。应该注意的是,每次克隆化过程中所有有意义的细胞都

应冷冻保存,以便重复检查,避免丢失有意义的细胞。

(3)软琼脂法:将杂交瘤细胞稀释到一定密度,然后与琼脂混悬。在琼脂中的细胞不能自由移动,彼此互不相混,从而达到单细胞培养的目的。但此法不如有限稀释法好。

(4)荧光激光细胞分类法:用抗原包被的荧光乳胶微球标记杂交瘤细胞,然后根据抗原与杂交瘤细胞结合的特异性选出细胞,并进行单细胞培养。

6)细胞的冻存与复苏

7)大规模单克隆抗体的制备选出的阳性细胞株应及早进行抗体制备,因为融合细胞随培养时间延长,发生污染、染包体丢失和细胞死亡的机率增加。抗体制备有两种方法。一是增量培养法,即将杂交瘤细胞在体外培养,在培养液中分离单克隆抗体。该法需用特殊的仪器设备,一般应用无血清培养基,以利于单克隆抗体的浓缩和纯化。最普遍采用的是小鼠腹腔接种法。选用BALB/c小鼠或其亲代小鼠,先用降植烷或液体石蜡行小鼠腹腔注射,一周后将杂交瘤细胞接种到小鼠腹腔中去。通常在接种一周后即有明显的腹水产生,每只小鼠可收集5~10ml的腹水,有时甚至超过40ml。该法制备的腹水抗体含量高,每毫升可达数毫克甚至数十毫克水平。此外,腹水中的杂蛋白也较少,便于抗体的纯化。

摘要在单克隆抗体制备中两次提到筛选问题,对于两次筛选的方法和目的始终是一些人的困惑,那么两次筛选的目的和方法到底是什么。

单克隆抗体制备过程中两次提到了筛选,对于两次筛选中的目的和方法许多人也存在疑惑,那么到底是如何筛选的呢?现总结如下:

第一次筛选: 首先在(效应)B淋巴细胞和骨髓瘤细胞进行杂交时可能出现的情况应该先弄清楚,

(一)可能的情况有:

1 (效应)B淋巴细胞和(效应)B淋巴细胞的融合

2 (效应)B淋巴细胞和骨髓瘤细胞的融合(即杂交瘤细胞)

3 骨髓瘤细胞和骨髓瘤细胞的融合(即瘤瘤细胞)

4 单个骨髓瘤细胞

5 单个(效应)B淋巴细胞

(二)筛选的目的————获得杂交瘤细胞

(三)筛选的方法

用选择性培养基来完成,即HAT培养基。含有次黄嘌呤、氨基喋呤和胸腺嘧啶,其中氨基喋呤可阻断DNA合成的主要途径。主要途径阻断后,依靠应急途径即在HGPRT(次黄嘌呤鸟嘌呤磷酸核糖转移酶)和TK(胸苷激酶)作用下,利用胸腺嘧啶和次黄嘌呤合成DNA,缺少其中一种,DNA合成不能发生。用于杂交的骨髓瘤细胞系均由经有毒药物诱导而成选择产生的代谢缺陷型细胞,细胞内均无TK或HGPRT,所以单个或融合骨髓瘤细胞在HAT培养液中将死亡。B细胞虽然有HGPRT和TK,但在体外通常培养条件下,尤其是在单个细胞环境下难于长期存活和增殖传代。因此只有杂交瘤细胞才能在HAT培养液中生长繁殖。

所以通过以上方法可以选择出杂交瘤细胞,但虽然都是杂交瘤细胞,但可能是同一抗原的不同抗原决定基刺激产生的。所以产生抗体是不纯的。如果不进一步提纯,这样得到的是多克隆抗体。所以就有了第二次筛选。

第二次筛选:要想获得单克隆抗体,所以必须得到由一个细胞分裂而成的一个细胞群,由这样的细胞群产生的抗体才是真正意义的单克隆抗体。

(一) 筛选的目的

筛选只针对某一种特定的抗原决定簇产生抗体的杂交瘤细胞,即得到由一个细胞分裂而成的一个细胞群并且能产生所需抗体

(二)筛选的方法

1、分离单个细胞置入多孔培养板的每个孔中培养

2、检测每孔细胞是否产生所注射抗原的抗体(即教材插图中提到的选出能产生特定抗体的细胞群)所以筛选的条件是两层意思:单个细胞单孔培养保证每个孔中的细胞在产生抗体时是针对同一抗原的同一抗原决定簇产生的的,但每个孔中细胞却不一定都能产生抗体,把那些不产生抗体的细胞淘汰,对能分泌针对抗原某一决定簇抗体的阳性细胞选择下来继续克隆,从而保证大量的生产所需抗体。

3、对选择下来的细胞进行克隆方法有两种:一种可以在体外培养;一种可以一直到小鼠腹腔中增殖,即可从中提取所需要的单克隆抗体。

单克隆抗体的制备及应用

单克隆抗体的制备及应用 单克隆抗体是由淋巴细胞杂交瘤产生的、只针对复合抗原分子上某一单个抗原决定簇。单克隆抗体技术(monoclonal antibody technique):一种免疫学技术,将产生抗体的单个B淋巴细胞同骨髓肿瘤细胞杂交,获得既能产生抗体,又能无限增殖的杂种细胞,并以此生产抗体。是仅由一种类型的细胞制造出来的抗体,对应于多克隆抗体、多株抗体——由多种类型的细胞制造出来的一种抗体。 1 单克隆抗体的优点与局限性: 单克隆抗体的优点:(1)杂交瘤可以在体外“永久”地存活并传代,只要不发生细胞株的基因突变,就可以不断地生产高特异性、高均一性的抗体。(2)可以用相对不纯的抗原,获得大量高度特异的、均一的抗体。(3)由于可能得到“无限量”的均一性抗体,所以适用于以标记抗体为特点的免疫学分析方法,如IRMA和ELISA等。(4)由于单克隆抗体的高特异性和单一生物学功能,可用于体内的放射免疫显像和免疫导向治疗。 总体来说,即:高特异性、高纯度、重复性好、敏感性强、成本低和可大量生产等。 单克隆抗体的局限性:(1)单克隆抗体固有的亲和性和局限的生物活性限制了它的应用范围。由于单克隆抗体不能进行沉淀和凝集反应,所以很多检测方法不能用单克隆抗体完成。 (2)单克隆抗体的反应强度不如多克隆抗体。(3)制备技术复杂,而且费时费工,所以单克隆抗体的价格也较高。 2 单克隆抗体的制备: 单克隆抗体的制备原理:应用细胞杂交技术使骨髓瘤细胞与免疫的淋巴细胞二者合二为一,得到杂种的骨髓瘤细胞。这种杂种细胞继承两种亲代细胞的特性,它既具有B淋巴细胞合成专一抗体的特性,也有骨髓瘤细胞能在体外培养增殖永存的特性,用这种来源于单个融合细胞培养增殖的细胞群,可制备抗一种抗原决定簇的特异单克隆抗体。 单克隆抗体的制备过程:抗原准备、动物的选择与免疫、细胞融合、选择杂交瘤细胞及抗体检测、杂交瘤的克隆化、杂交瘤细胞的冻存与复苏、单克隆抗体的纯化等步骤。 抗原准备 抗原,是指能够刺激机体产生(特异性)免疫应答,并能与免疫应答产物抗体和致敏淋巴细胞在体外结合,发生免疫效应(特异性反应)的物质。抗原的基本特性有两种,一是诱导免疫应答的能力,也就是免疫原性,二是与免疫应答的产物发生反应,也就是抗原性。很多物质都可以成为抗原,抗原的具体分类可以参见抗原,在进行单克隆抗体制备过程中,很多物质都可以成为抗原,在常规的科研实验中,科研者经常选用每只小鼠/大鼠每次注射10~50ug 重组蛋白、偶联多肽、偶联小分子等作为抗原产生特异性的单克隆抗体。 动物的选择与免疫

单克隆抗体制备的基本原理

单克隆抗体制备的基本原理 一、单克隆抗体的概念 抗体(antibody)是机体在抗原刺激下产生的能与该抗原特异性结合的免疫球蛋白。常规的抗体制备是通过动物免疫并采集抗血清的方法产生的,因而抗血清通常含有针对其他无关抗原的抗体和血清中其他蛋白质成分。一般的抗原分子大多含有多个不同的抗原决定簇,所以常规抗体也是针对多个不同抗原决定簇抗体的混合物。即使是针对同一抗原决定簇的常规血清抗体,仍是由不同B细胞克隆产生的异质的抗体组成。因而,常规血清抗体又称多克隆抗体(polyclonal antibody),简称多抗。由于常规抗体的多克隆性质,加之不同批次的抗体制剂质量差异很大,使它在免疫化学试验等使用中带来许多麻烦。因此,制备针对预定抗原的特异性均质的且能保证无限量供应的抗体是免疫化学家长期梦寐以求的目标。随着杂交瘤技术的诞生,这一目标得以实现。 1975年,Kohler和Milstein建立了淋巴细胞杂交瘤技术,他们把用预定抗原免疫的小鼠脾细胞与能在体外培养中无限制生长的骨髓瘤 细胞融合,形成B细胞杂交瘤。这种杂交瘤细胞具有双亲细胞的特征,既像骨髓瘤细胞一样在体外培养中能无限地快速增殖且永生不死,又能像脾淋巴细胞那样合成和分泌特异性抗体。通过克隆化可得到来自单个杂交瘤细胞的单克隆系,即杂交瘤细胞系,它所产生的抗体是针

对同一抗原决定簇的高度同质的抗体,即所谓单克隆抗体(monoclonal antibody,McAb),简称单抗。 与多抗相比,单抗纯度高,专一性强、重复性好、且能持续地无限量供应。单抗技术的问世,不仅带来了免疫学领域里的一次**,而且它在生物医学科学的各个领域获得极广泛的应用,促进了众多学科的发展。 德国科学家柯勒(Georges Ko1er)和英国科学家米尔斯坦(Cesar Milstein)两人由此杰出贡献而荣获1984年度诺贝尔生理学和医学奖。 二、杂交瘤技术 (一)杂交瘤技术的诞生 淋巴细胞杂交瘤技术的诞生是几十年来免疫学在理论和技术两方面 发展的必然结果,抗体生成的克隆选择学说、抗体基因的研究、抗体结构与生物合成以及其多样性产生机制的揭示等,为杂交瘤技术提供了必要理论基础,同时,骨髓瘤细胞的体外培养、细胞融合与杂交细胞的筛选等提供了技术贮备。1975年8月7日,Kohler和Milstein 在英国《自然》杂志上发表了题为“分泌具有预定特异性抗体的融合细胞的持续培养”(Continuous cultures of fused cells secreting antibody of

4第四章 单克隆抗体与基因工程抗体制备技术

第四章单克隆抗体与基因工程抗体制备技术 本章考点 1.概念 2.杂交瘤技术基本原理 3.杂交瘤抗体的制备技术 4.基因工程抗体 由杂交瘤细胞产生的针对抗原分子上某一单个抗原决定簇的抗体,称为单克隆抗体。其理化性状高度均一、生物活性单一、与抗原结合的特异性强、且来源容易。 传统的方法是将抗原注入动物,由动物体内B细胞产生的抗体。由于多数天然的抗原分子具有多种抗原决定簇,每一种决定簇可激活具有相应抗原受体的B细胞产生针对某一抗原决定簇的抗体。因此,将抗原注入机体后,刺激多个B细胞克隆所产生的抗体是针对多种抗原决定簇的混合抗体,故称为多克隆抗体(PoAb)。 第一节杂交瘤技术基本原理 单克隆是指利用在细胞融合基础上的B细胞杂交瘤技术。 杂交瘤技术的基本原理是通过融合两种细胞而同时保持两者的主要特征。这两种细胞分别是经抗原免疫的小鼠脾细胞和小鼠骨髓瘤细胞。被特异性抗原免疫的小鼠脾细胞(B淋巴细胞)的主要特征是它的抗体分泌功能,但不能在体外连续培养,小鼠骨髓瘤细胞则可在培养条件下无限分裂、增殖,即具有所谓永生性。在选择培养基的作用下,只有B细胞与骨髓瘤细胞融合的杂交细胞才能具有持续培养的能力,形成同时具备抗体分泌功能和保持细胞永生性两种特征的细胞克隆。 一、B细胞杂交瘤技术 1.细胞的选择和融合:杂交瘤技术的目的是制备对抗原特异性的单克隆抗体,所以融合一方必须是经过抗原免疫的B细胞,通常选用被免疫动物的脾细胞,脾淋巴细胞的主要特征是抗体分泌功能。融合细胞另一方则要求在培养条件下的永生性,只有肿瘤细胞才是具备这一条件,所以选择同一体系的骨髓瘤细胞,因多发性骨髓瘤是B细胞系恶性肿瘤,其特点是稳定易培养、自身不分泌免疫球蛋白及细胞因子、融合率高、是次黄嘌呤磷酸核酸核糖转化酶(HGPRT)的缺陷株,是理想的脾细胞融合对象。 2.选择培养基的应用:细胞融合的选择培养基中有三种关键成分:次黄嘌呤(H)、氨甲蝶呤(A)、胸腺嘧啶核苷(T),所以取三者的字头称为HAT培养基。次黄嘌呤和胸腺嘧啶核苷是细胞DNA合成的途径;氨甲蝶呤(A)是叶酸的拮抗剂,可阻断瘤细胞利用正常途径合成DNA,而融合作用的瘤细胞是经毒性培养基选取出的缺乏HGPRT细胞株,不能在该培养基上生长,只有融合细胞具有亲代双方遗传性能,才能在HAT 培养基上长期存活与繁殖。 3.有限稀释与抗原特异性的选择:细胞融合是一个随机的过程,需在融合细胞抗体筛选的基础上进行特异性筛选。将融合细胞进行充分稀释,进行克隆化处理,再将阳性细胞进行再次克隆化,应用特异性抗原包被的ELISA找出针对目标抗原的抗体阳性细胞株进行增殖,再进行冰冻,体外培养或动物腹腔接种。

单克隆抗体的制备流程

单克隆抗体的制备流程 (一)动物的选择与免疫 1.动物的选择纯种BALB/C小鼠,较温顺,离窝的活动范围小,体弱,食量及排污较小,一般环境洁净的实验室均能饲养成活。目前开展杂交瘤技术的实验室多选用纯种BALA/C小鼠。 2.免疫方案选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb 至关重要。一般在融合前两个月左右根据确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。 (1)可溶性抗原免疫原性较弱,一般要加佐剂,半抗原应先制备免疫原,再加佐 剂。常用佐剂:福氏完全佐剂、福氏不完全佐剂。 初次免疫抗原1~50μg加福氏完全佐剂皮下多点注射或脾内注射(一般0.8~1ml,0.2ml/点) ↓3周后 第二次免疫剂量同上,加福氏不完全佐剂皮下或ip(腹腔内注射)(ip剂量不宜超过0.5ml) ↓3周后 第三次免疫剂量同一,不加佐剂,ip(5~7天后采血测其效价) ↓2~3周 加强免疫,剂量50~500μg为宜,ip或iv(静脉内注射) ↓3天后 取脾融合 目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如:① 将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗 原的使用量。②改变抗原注入的途径,基础免疫可直接采用脾内注射。③使用细胞 因子作为佐剂,提高机体的免疫应答水平,增强免疫细胞对抗原的反应性。 (2)颗粒抗原免疫性强,不加佐剂就可获得很好的免疫效果。以细胞性抗原为例,免疫时要求抗原量为1~2×107个细胞。 初次免疫1×107/0.5ml ip ↓2~3周后 第二次免疫1×107/0.5ml ip ↓3周后 加强免疫(融合前三天)1×107/0.5ml ip或iv ↓ 取脾融合 (二)细胞融合

常用的单克隆抗体检测方法

常用的单克隆抗体检测方法 通过杂交瘤技术制备单克隆抗体,在杂交瘤制备完成后,需要对抗体进行一个检测,本文介绍了几种常用的抗体检测的方法(1)免疫酶技术免疫酶技术是将抗原抗体反应的特异性和酶对底物显色反应的高效催化作用有机结合而 成的免疫学技术。由于它特异性强,灵敏度高,现已广泛用于筛选和鉴定单抗。①器材和试剂a、包被缓冲液:碳酸盐缓冲液:取0.2mol/L Na2CO3 8ml,0.2mol/L NaHCO3 17ml 混合,再加75ml蒸馏水,调PH至9.6。Tris-HCl缓冲液(PH8.0,0.02mol/L):取0.1mol/L Tris 100ml,0.1mol/L HCl 58.4ml混合,加蒸馏水至1000ml。b、洗涤缓冲液(PH7.2的PBS):KH2PO4 0.2g,KCl 0.2g,Na2HPO4·12H2O 2.9g,NaCl 8.0g,Tween-20 0.5ml,加蒸馏水至1000ml。c、稀释液和封闭液:牛血清白蛋白(BSA)0.1g,加洗涤液至100ml;或用洗涤液将小牛血清配成5-10%使用。d、酶反应终止液(2mol/L H2SO4):取蒸馏水178.3ml,滴加浓硫酸(98%)21.7ml。e、底物缓冲液(PH5.0,磷酸盐-柠檬酸缓冲液):取0.2mol/L Na2HPO4 25.7ml,0.1ml/L柠檬酸24.3ml,再加50ml蒸馏水。柠檬酸溶液及配成的底物缓冲液不稳定,易形成沉淀,因此一次不宜配制过多。f、底物使用液:OPD底物使用液(测490nm的OD值):OPD 5mg,底物缓冲液10ml,3% H2O2

0.15ml。TMBS或TMB底物使用液(测450nm的OD值):TMBS或TMB(1mg/ml)1.0ml,底物缓冲液10ml,1% H2O2 25ul。ABTS底物使用液(测410nm的OD值):ABTS 0.5mg,底物缓冲液1ml,3% H2O2 2ul。g、抗体对照:以骨髓瘤细胞培养上清作为阴性对照,以免疫鼠血清作为阳性血清。h、抗原:可溶性抗原:尽量纯化,以获得高特异性。病毒感染的传代细胞或全菌抗原。淋巴细胞等悬液。i、酶标抗鼠抗体或酶标SPA或其他类似试剂。j、细胞固定液:-20℃丙酮;或丙酮-甲醛固定液:Na2HPO4 100mg,KH2PO4 500mg,蒸馏水150ml,丙酮225ml,甲醛125ml;或丙酮-甲醛溶液(1;1);或-20℃甲醇。k、聚苯乙烯微孔板:40孔、96孔、或条孔;硬板或软板均可使用。l、酶联免疫阅读仪;或光镜。m、吸管、加样器及水浴箱、离心机等。②可溶性抗原的酶联免疫吸附试验(ELISA)a、纯化抗原用包被液稀释至1-20ug/ml。 b、以50-100ul/孔量加入酶标板孔中,置4℃过夜或37℃吸附2小时。 c、弃去孔内的液体,同时用洗涤液洗3次,每次3-5分钟,拍干。 d、每孔加200ul封闭液4℃过夜或37℃封闭2小时;该步骤对于一些抗原,可省略。 e、洗涤液洗3次;此时包被板可-20℃或4℃保存备用。 f、每孔加50-100ul 待检杂交瘤细胞培养上清,同时设立阳性、阴性对照和空白对照;37℃孵育1-2小时;洗涤,拍干。 g、加酶标第二抗体,每孔50-100ul,37℃孵育1-2小时,洗涤,拍干。 h、加底物

单克隆抗体制备流程

单抗制备流程 1975年,Kohler和Milstein发现将小鼠骨髓瘤细胞和绵羊红细胞免疫的小鼠脾细胞进行融合,形成的杂交细胞既可产生抗体,又可无限增殖,从而创立了单克隆抗体杂交瘤技术。这一技术上的突破不仅为医学与生物学基础研究开创了新纪元,也为临床疾病的诊、防、治提供了新的工具。 制备单克隆抗体包括动物免疫、细胞融合、选择杂交瘤、检测抗体、杂交瘤细胞的克隆化、冻存以及单克隆抗体的大量生产,要经过几个月的一系列实验步骤,下面按照制备单克隆抗体的流程顺序,逐一介绍其实验方法。 一、细胞融合前准备 (一) 免疫方案 选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb至关重要。一般要在融合前两个月左右确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。 1.颗粒性抗原免疫性较强,不加佐剂就可获得很好的免疫效果。下面以细胞性抗原为例的免疫方案: 初次免疫1×107/0.5ml ip (腹腔内注射) ↓2~3周后 第二次免疫1×107/0.5ml ip ↓3周后 加强免疫(融合前三天) 1×107/0.5ml ip或iv(静脉内注射) ↓ 取脾融合 2.可溶性抗原免疫原性弱,一般要加佐剂,常用佐剂:福氏完全佐剂,福氏不完全佐剂。要求抗原和佐剂等体积混合在一起,研磨成油包水的乳糜状,放一滴在水面上不易马上扩散呈小滴状表明已达到油包水的状态。商品化福氏完全佐剂在使用前须振摇,使沉淀的分枝杆菌充分混匀。 初次免疫 Ag 1~50μg 加福氏完全佐剂皮下多点注射

│(一般0.8~1ml 0.2ml/点) ↓3周后 第二次免疫剂量同上,加福氏不完全佐剂皮下或ip │(ip剂量不宜超过0.5ml) ↓3周后 第三次免疫剂量同上,不加佐剂,ip │ (5~7天后采血测其效价,检测免疫效果) ↓2~3周后 加强免疫,剂量50~500μg为宜,ip或iv ↓3天后 取脾融合 目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如①将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗原的使用量。②改变抗原注入的途径,基础免疫可直接采用脾内注射。③使用细胞因子作为佐剂,提高机体的免疫应答水平,促进免疫细胞对抗原反应性。 (二) 饲养细胞 在制备单克隆抗体过程中,许多环节需要加饲养细胞,如:在杂交瘤细胞筛选、克隆化和扩大培养过程中,加入饲养细胞是十分必要的。常用的饲养细胞有:小鼠腹腔巨噬细胞(较为常用)、小鼠脾脏细胞或小鼠胸腺细胞,也有人用小鼠成纤维细胞系3T3经放射线照射后作为饲养细胞,使用比较方便,照射后可放入液氮罐长期保存,随用随复苏。 小鼠腹腔巨噬细胞的制备 小鼠采用与免疫小鼠相同的品系,常用BaLb/c小鼠6~10周龄 ↓ 拉颈处死浸泡于75%酒精,消毒3~5分钟 ↓

单克隆抗体制备过程中经过两次筛选

单克隆抗体制备过程中经过两次筛选 单克隆抗体制备过程中,总共有两次筛选,第一次筛选出杂交瘤细胞,第二次筛选出能产生特异性抗体的杂交瘤细胞,两次筛选的原理和方法是不相同的。 第一次筛选的原理与方法:细胞融合后,杂交瘤细胞的选择性培养是第一次筛选的关键。普遍采用的HAT选择性培养液是在普通的动物细胞培养液中加入次黄嘌呤(H)、氨基喋呤(A)和胸腺嘧啶核苷酸(T)。其依据是细胞中的DNA合成有两条途径:一条途径是生物合成途径(“D途径”),即由氨基酸及其他小分子化合物合成核苷酸,为DNA分子的合成提供原料。在此合成过程中,叶酸作为重要的辅酶参与这一过程,而HAT培养液中氨基喋呤是一种叶酸的拮抗物,可以阻断DNA合成的“D途径”。另一条途径是应急途径或补救途径(“S途径”),它是利用次黄嘌呤—鸟嘌呤磷酸核苷转移酶(HGPRT)和胸腺嘧啶核苷激酶(TK)催化次黄嘌呤和胸腺嘧啶核苷生成相应的核苷酸,两种酶缺一不可。因此,在HAT培养液中,未融合的效应B细胞和两个效应B细胞融合的“D途径”被氨基喋呤阻断,虽“S途径”正常,但因缺乏在体外培养液中增殖的能力,一般10d左右会死亡。对于骨髓瘤细胞以及自身融合细胞而言,由于通常采用的骨髓瘤细胞是次黄嘌呤—鸟嘌呤磷酸核苷转移酶缺陷型(HGPRT)细胞,因此自身没有“S途径”,且“D途径”又被氨基喋呤阻断,所以在HA T培养液中也不能增殖而很快死亡。惟有骨髓瘤细胞与效应B细胞相互融合形成的杂交瘤细胞,既具有效应B细胞的“S途径”,又具有骨髓瘤细胞在体外培养液中长期增殖的特性,因此能在HA T培养液中选择性存活下来,并不断增殖。 第二次筛选的原理和方法:在实际免疫过程中,由于采用连续注射抗原的方法,且一种抗原决定簇刺激机体形成相对应的一种效应B淋巴细胞,因此,从小鼠脾脏中取出的效应B淋巴细胞的特异性是不同的,经HA T培养液筛选的杂交瘤细胞特异性也存在差异,所以必须从杂交瘤细胞群中筛选出能产生针对某一预定抗原快定簇的特异性杂交瘤细胞。通常采用有限稀释克隆细胞的方法,将杂交瘤细胞多倍稀释,接种在多孔的细胞培养板上,使每一孔含一个或几个杂交瘤细胞(理论上30%的孔中细胞数为0时,才能保证有些孔中是单个细胞),再由这些单细胞克隆生长,最终选出分泌预定特异抗体的杂交细胞株进行扩大培养。因此,单克隆抗体制备过程中,两次筛选的原理和方法是不相同的。 单克隆抗体制备的基本原理与过程 原理: B淋巴细胞在抗原的刺激下,能够分化、增殖形成具有针对这种抗原分泌特异性抗体的能力。B细胞的这种能力和量是有限的,不可能持续分化增殖下去,因此产生免疫球蛋白的能力也是极其微小的。将这种B细胞与非分泌型的骨髓瘤细胞融合形成杂交瘤细胞,再进一步克隆化,这种克隆化的杂交瘤细胞是既具有瘤的无限生长的能力,又具有产生特异性抗体的B淋巴细胞的能力,将这种克隆化的杂交瘤细胞进行培养或注入小鼠体内即可获得大量的高效价、单一的特异性抗体。这种技术即称为单克隆抗体技术。 过程: 1)免疫脾细胞的制备制备单克隆抗体的动物多采用纯系Balb/c小鼠。免疫的方法取决于所用抗原的性质。免疫方法同一般血清的制备,也可采用脾内直接免疫法。 2)骨髓瘤细胞的培养与筛选在融合前,骨髓瘤细胞应经过含8-AG的培养基筛选,防止细胞发生突变恢复HGPRT 的活性(恢复HGPRT的活性的细胞不能在含8-AG的培养基中存活)。骨髓瘤细胞用10%小牛血清的培养液在细胞培养瓶中培养,融合前24h换液一次,使骨髓瘤细胞处于对数生长期。 3)细胞融合的关键: 1技术上的误差常常导致融合的失败。例如,供者淋巴细胞没有查到免疫应答。这必然要失败的。 2融合试验最大的失败原因是污染,融合成功的关键是提供一个干净的环境,以及适宜的无菌操作技术。 4)阳性克隆的筛选应尽早进行。通常在融合后10天作第一次检测,过早容易出现假阳性。检测方法应灵敏、准确、而且简便快速。具体应用的方法应根据抗原的性质,以及所需单克隆抗体的功能进行选择。常用的方法有RIA法、ELISA法和免疫荧光法等。其中ELISA法最简便,RIA法最准确。阳性克隆的筛选应进行多次,均阳性时才确定为阳性克隆进行扩增。 5)克隆化克隆化的目的是为了获得单一细胞系的群体。克隆化应尽早进行并反复筛选。这是因为初期的杂交瘤细胞是不稳定的,有丢失染色体的倾向。反复克隆化后可获得稳定的杂交瘤细胞株。克隆化的方法很多,而最常用的是有限稀释法。 (1)显微操作法:在显微镜下取单细胞,然后进行单细胞培养。这种方法操作复杂,效率低,故不常用。 (2)有限稀释法:将对数生长期的杂交瘤细胞用培养液作一定的稀释后,按每孔1个细胞接种在培养皿中,细胞增值后成为单克隆细胞系。第一次克隆化时加一定量的饲养细胞。由于第一次克隆化生长的细胞不能保证单克隆化,所以为获得稳定的单克隆细胞株需经2~3次的再克隆才成。应该注意的是,每次克隆化过程中所有有意义的细胞都

单克隆抗体制备方法(全)

单克隆抗体制备方法 1975年Kohler和Milstein发现将小鼠骨髓瘤细胞与和绵羊红细胞免疫的小鼠脾细胞进行融合,形成的杂交瘤细胞既可产生抗体,又可无性繁殖,从而创立了单克隆抗体杂交瘤技术。这一技术上的突破使血清学的研究进入了一个高度精确的新纪元。 采用杂交瘤技术制备单克隆抗体包括动物免疫、细胞融合、选择杂交瘤、检测抗体、杂交瘤细胞的克隆化、冻存以及单克隆抗体的大量生产,要经过几个月的一系列实验步骤。 主要仪器设备: 超净工作台、CO2恒温培养箱、超低温冰箱(-70℃)、倒置显微镜、精密天平或电子天平、液氮罐、离心机(水平转子,4000r/min)、37℃水浴箱、纯水装置、滤器、真空泵等。其需要的主要器械包括:100ml、50ml、25ml细胞培养瓶,10ml、1ml刻度吸管,试管,滴管(弯头、直头),平皿,烧杯,500ml、250ml、100ml盐水瓶,青霉素小瓶,10ml、5ml、1ml注射器等,96孔、24孔细胞培养板,融合管(50ml圆底带盖玻璃或塑料离心管),眼科剪刀,眼科镊,血细胞计数板,可调微量加样器(~50ul,~200ul,~1000ul),弯头针头,200目筛网,小鼠固定装置等。此外,一般的单克隆抗体制备方法大同小异。 方法 动物的选择与免疫 1. 动物的选择 BALB/C小鼠,较温顺,离窝的活动范围小,体弱,食量及排污较小,一般环境洁净的实验室均能饲养成活。目前开展杂交瘤技术的实验室多选用纯种BALA/C小鼠。 2. 免疫方案 选择合适的免疫方案对于细胞融合杂交的成功,获得高质量的McAb至关重要。一般在融合前两个月左右根据确立免疫方案开始初次免疫,免疫方案应根据抗原的特性不同而定。 (1)可溶性抗原免疫原性较弱,一般要加佐剂,半抗原应先制备免疫原,再加佐剂。常用佐剂:福氏完全佐剂、福氏不完全佐剂。 初次免疫抗原1~50μg加福氏完全佐剂皮下多点注射或脾内注射(一般0.8~1ml,0.2ml/点) ↓3周后 第二次免疫剂量同上,加福氏不完全佐剂皮下或ip(腹腔内注射)(ip剂量不宜超过0.5ml) ↓3周后 第三次免疫剂量同一,不加佐剂,ip(5~7天后采血测其效价) ↓2~3周 加强免疫,剂量50~500μg为宜,ip或iv(静脉内注射) ↓3天后取脾融合 目前,用于可溶性抗原(特别是一些弱抗原)的免疫方案也不断有所更新,如:①将可溶性抗原颗粒化或固相化,一方面增强了抗原的免疫原性,另一方面可降低抗原的使用量。②改变抗原注入的途径,基础免疫可直接采用脾内注射。③使用细胞因子作为佐剂,提高机体的免疫应答水平,增强免疫细胞对抗原的反应性。

单克隆抗体制备过程中的两次筛选

单克隆抗体制备过程中的两次筛选 动物细胞工程中动物细胞融合的主要应用是制备单克隆抗体。在单克隆抗体制备过程中,有两次筛选,这地方学生很容易弄混了。第一次筛选的目的是筛选出杂交瘤细胞,第二次筛选的目的是筛选出能产生特异性抗体的杂交瘤细胞,两次筛选的原理和方法并不相同。 第一次筛选: 细胞融合后,杂交瘤细胞的选择性培养是第一次筛选的关键。普遍采用的HAT选择性培养液是在普通的动物细胞培养液中加入次黄嘌呤(H)、氨基喋呤(A)和胸腺嘧啶核苷酸(T)。 其依据是细胞中的DNA合成有两条途径:一条途径是生物合成途径(“D途径”),即由氨基酸及其他小分子化合物合成核苷酸,为DNA分子的合成提供原料。在此合成过程中,叶酸作为重要的辅酶参与这一过程,而HAT培养液中氨基喋呤是一种叶酸的拮抗物,可以阻断DNA合成的“D途径”。另一条途径是应急途径或补救途径(“S途径”),它是利用次黄嘌呤—鸟嘌呤磷酸核苷转移酶(HGPRT)和胸腺嘧啶核苷激酶(TK)催化次黄嘌呤和胸腺嘧啶核苷生成相应的核苷酸,两种酶缺一不可。因此,在HAT培养液中,未融合的效应B细胞和两个效应B细胞融合的“D途径”被氨基喋呤阻断,虽“S途径”正常,但因缺乏在体外培养液中增殖的能力,一般10d左右会死亡。对于骨髓瘤细胞以及自身融合细胞而言,由于通常采用的骨髓瘤细胞是次黄嘌呤—鸟嘌呤磷酸核苷转移酶缺陷型(HGPRT)细胞,因此自身没有“S途径”,且“D途径”又被氨基喋呤阻断,所以在HAT培养液中也不能增殖而很快死亡。惟有骨髓瘤细胞与效应B细胞相互融合形成的杂交瘤细胞,既具有效应B细胞的“S途径”,又具有骨髓瘤细胞在体外培养液中长期增殖的特性,因此能在HAT培养液中选择性存活下来,并不断增殖。 第二次筛选: 在实际免疫过程中,由于采用连续注射抗原的方法,且一种抗原决定簇刺激机体形成相对应的一种效应B淋巴细胞,因此,从小鼠脾脏中取出的效应B淋巴细胞的特异性是不同的,经HAT培养液筛选的杂交瘤细胞特异性也存在差异,所以必须从杂交瘤细胞群中筛选出能产生针对某一预定抗原快定簇的特异性杂交瘤细胞。通常采用有限稀释克隆细胞的方法,将杂交瘤细胞多倍稀释,接种在多孔的细胞培养板上,使每一孔含一个或几个杂交瘤细胞(理论上30%的孔中细胞数为0时,才能保证有些孔中是单个细胞),再由这些单细胞克隆生长,最终选出分泌预定特异抗体的杂交细胞株进行扩大培养。 因此,单克隆抗体制备过程中,两次筛选的原理和方法是不相同的。

单克隆抗体制备注意事项

单克隆抗体(McAb)制备技术 1975年Khler和Milstein首次利用杂交瘤技术生产单克隆抗体(monoclonal antibody,McAb)获得成功,开创了免疫学和分子生物学研究的新纪元,被人们誉为“免疫学中的一场革命”,该项技术具有巨大生命力和发展前景,目前已被成功地用于分子生物学、免疫学、细菌学、病毒学、生物化学、遗传学、药物学等许多领域的研究。下面以抗空肠弯曲菌共同抗原McAb的制备为例,介绍McAb的制备技术。 一、材料和方法 (一) 材料 1 PRMI1640培养液 PRMI1640培养基粉104g,双蒸馏水1000ml,抽滤或高压 蒸气灭菌,每瓶80ml分装。 2 完全PRMI1640培养液 PRMI1640培养液80ml,1mol/L Hepes 2ml,0.2mol/L谷 氨酰胺1ml,青、链霉素溶液(1000u/ml)1ml,灭活小牛血清20ml。 3 次黄嘌呤、胸腺嘧啶核苷(HT母液×100)次黄嘌呤1361mg,胸腺嘧核苷387mg,蒸馏水加至100ml。在45~50℃水浴中溶解,过滤除菌,分装小试管,每支5ml,置 -20℃ 中保存。 4 氨基喋呤(A母液×100)氨基喋呤176mg,蒸馏水90ml,1mol/L NaOH 0.5ml,加蒸馏水至100ml,再加0.5ml 1mol/L HCl中和,过滤除菌,分装小试管,每支5ml,置-20℃中保存。 5 HAT选择性培养基完全PRMI1640培养液100ml,100×HT母液1ml,100×A母液1ml。用5%NaHCO3调整pH值至7.4左右。 6 HT培养液完全RPMI1640培养液100ml,100×HT母液1ml。用5%NaHCO3调整pH值至7.4左右。 7 50%聚乙二醇(PEG)溶液将PEG(MW4000)放在试管内加盖,121.3℃高压蒸气灭菌20min。使用前加入等量的pH值8.2无血清培养液,置56℃混合,直至完全溶解,移置37℃备用。 8 8-氮杂鸟嘌呤称取8-氮杂鸟嘌呤20mg,溶于4mol/L NaOH 10ml 或0.36%Na2CO3 10ml中,以蒸馏水稀释至1000ml,过滤备用。 9 台盼蓝溶液台盼蓝100mg,溶于PBS 100ml中即成。 10 0.34mol/L蔗糖溶液蔗糖5.8g,蒸馏水50ml,高压蒸气灭菌,分装。 (二) 方法(以空肠弯曲菌共同抗原的单抗制备为例) 1. 动物免疫将提取的空肠弯曲菌共同抗原(CA)与等量的福氏完全佐

单克隆抗体制备简要流程

制备单克隆抗体是复杂而费时的工作,整个技术流程如图: 单克隆抗体制备(免疫2-3月,总周期4-6 月) 准备抗原 动物免疫——选择免疫动物 Elisa测抗血清--------- ? ¥ 分离脾细胞骨髓瘤细胞 细胞融合(融合剂:PEJ HAT培养基筛选杂交瘤细胞 筛选阳性细胞------- * (三天内做完流式)“ 阳性克隆并扩大培养呻—细胞冻存 性! 扩大培养收集上清动物接种收集腹水 单克隆抗体纯化保存 1、抗原提纯与动物免疫: 选择BALB/c健康小鼠。如为细胞抗原,可取 1 X 107个细胞作腹腔免疫;可溶性抗原需加完全福氏佐剂并经充分乳化,可将抗原所在的电泳条带切下,研磨后直接用以动物免疫。免疫3?4只小鼠,间隔一般2?3周,末次免疫后3?4天,分离脾细胞。 2、骨髓瘤细胞及饲养细胞的制备 选择Sp2/0细胞株,将昆明鼠的腹腔细胞作为饲养细胞 3、细胞融合 将两种细胞混合后加入PEG(融合剂)使细胞彼此融合。其后用培养液稀释PEG 消除PEG的作用。注意:细胞比例、培养液成分、反应时间 4、有限稀释法筛选阳性株 筛选阳性株一般选用的骨髓瘤细胞为HAT敏感细胞株(一般稀释至0.8个细胞/孔)细胞培养至覆盖0 %?20%孔底时,吸取培养上清用ELISA检测抗体含量。首先依抗体的分泌情况筛选出高抗体分泌孔,将孔中细胞再行克隆化,尔后进行抗原特异的ELISA 测定,选高分泌特异性细胞株扩大培养或冻存。 5、单克隆抗体的制备与保存 筛选出的阳性细胞株应及早进行抗体制备,最普遍采用的是小鼠腹腔接种法。选用BALB/c小鼠,先用液体石蜡进行小鼠腹腔注射,一周后将杂交瘤细胞接种到小鼠腹腔中去。通常在接种一周后即有明显的腹水产生,每只小鼠可收集5?10ml的腹水,冻存。6、单克隆抗体的纯化 硫酸铵沉淀法

单克隆抗体制备中筛选杂交瘤细胞的原理

单克隆抗体制备过程中筛选杂交瘤细胞的原理和方法单克隆抗体制备过程中,有两次筛选过程,第一次是选出杂交瘤细胞(用选择培养基),第二次是进一步选出能产生我们需要的抗体的杂交瘤细胞。 第一次筛选的原理和方法: 细胞融合后,杂交瘤细胞的选择性培养是第一次筛选的关键。普遍采用的HAT选择性培养液是在普通的动物细胞培养液中家次黄嘌呤、氨基蝶呤和胸腺嘧啶核苷酸。其一居室细胞中的DNA合成油两条途径: 一条途径是生物合成途径(“D途径”),即由氨基酸及其其他小分子化合物合成氨基酸,为DNA分子的合成提供原料。再此合成过程中,叶酸作为重要的辅酶参与这一过程,而HA T培养液中氨基蝶呤是一种叶酸的拮抗物,可以阻断DNA合成的D途径。 另一条途径是应急途径(“S途径”),她是利用次黄嘌呤——鸟嘌呤磷酸核苷转移酶和胸腺嘧啶核苷激酶催化次黄嘌呤和胸腺嘧啶生成相应的核苷酸,两种酶缺一不可。 因此,在HA T培养液中,未融合的效应B 细胞核两个效应B细胞融合的D途径被氨基蝶呤阻断,随S途径正常,但因缺乏在体外培养液中增殖的能力,一般10天左右会死亡。对于骨髓瘤细胞以及自身融合细胞而言,由于通常采用的骨髓瘤细胞是次黄嘌呤-鸟嘌呤磷酸核苷转移酶缺陷型细胞,因此自身没有S途径,且D途径又被氨基蝶呤阻断,所有在HA T培养液中也不能增殖而很快死亡。只有骨髓瘤细胞与效应B细胞相互融合形成的杂交瘤细胞,既具有效应B细胞的S途径,又具有骨髓瘤细胞在体外培养液中长期增殖的特性,因此能在HAT培养液中选择性存活下来,并不断增殖。 第二次筛选的原理和方法: 在单克隆抗体的生产过程中,由于效应B细胞的特异性是不同的,经HAT培养液第一次筛选出的杂交瘤细胞产生的抗体存在差异,必须对杂交瘤细胞进行第二次筛选,选出能产生特定抗体的杂交瘤细胞。二次筛选通常采用有限稀释克隆细胞的方法,将杂交瘤细胞多倍稀释,接种在多孔的细胞培养板上,是每孔细胞不超过一个,通过培养让其增殖,然后检测各孔上清液中的细胞分泌的抗体,上清液可与特定抗原结合的培养孔为阳性孔。阳性孔中的细胞还不能保证是来自单个细胞,继续进行有限稀释,一般重复3-4次,直至确信每孔中增殖的细胞为单克隆细胞。第二次筛选也是鉴定的过程。

单克隆抗体制备的技术原理

单克隆抗体制备的技术原理 单克隆抗体是由一个杂交瘤细胞及其后代所产生的抗体,具有单一、特异与纯化的特性。该抗体在医学临床诊断及治疗上具有极其重要的作用。因此它的问世在现代免疫学上具有划时代的意义。 大家知道,当外源性物质在人体或动物血液中出现时,机体中有一些淋巴细胞便会做出反应,产生一些特殊的免疫球蛋白,叫做抗体。而那些外源性物质则称为抗原。抗体与抗原能发生特异结合,从而清除异物,达到保护肌体的作用。抗原不同,它所诱发的抗体也不一样。如细菌或病毒表面存在着几种抗原,因此它们就会对应地诱发出几种不同的抗体。过去人们为了获得抗体,就根据上述原理,反复注射某种抗原到动物(如兔、羊、马等)体内,然后从其血清中分离出所需的抗体。长期以来,用这种经典方法得到的抗体,往往存在着两个严重的缺点:第一,这些抗体不是均质的,而是一种抗体的混合物,特异性差,效价低;第二,抗体的产生是有限量的,因为分泌抗体的成熟淋巴细胞寿命很短,一般只能存活几天,无法大量生产。 为了克服上述缺点,许多免疫学家曾进行了长期的研究与探索,这一难题终于在1975年被国外两名免疫学家考勒和米尔斯坦解决了。他们利用自己创立的杂交瘤技术,使产生抗体的淋巴细胞能在体外长期存活,并源源不断地分泌抗体。这就是有高特异性和非常均质的单克隆抗体。 单克隆抗体的技术原理并不十分复杂。它是把能产生单一抗体的淋巴细胞与有增殖能力的骨髓瘤细胞进行融合,形成杂交瘤细胞,又称杂交瘤。由于这些杂种细胞继承了双亲细胞的遗传物质,因此它们不仅能表现出淋巴细胞分泌单一抗体的能力,而且还能表现出骨髓瘤细胞在体外大量繁殖的本领。就这样,取长补短,使杂交瘤变成了一座制造单克隆抗体的理想“工厂”。 目前制备单克隆抗体的具体方法,主要有以下三步(图2-9)。 第一步:将抗原注射到小鼠体内进行免疫,取出受免脾细胞,与小鼠骨髓瘤细胞融合。 第二步:用选择培养基,选出杂交瘤细胞,逐一克隆或扩增,从中挑出能产生抗体的杂交瘤细胞。 第三步:将杂交瘤细胞接种在培养瓶中扩大培养或注射到动物的体液中作为腹水癌生长,然后再分离纯化单克隆抗体。

单克隆抗体制备实验过程

单克隆抗体制备实验过程 I 细胸培养 选出所需要的细J腕 群,继续培养 免疫动物 免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞 的过程。一般选用6-8周龄雌性Balb/c小鼠,按照预先制定的免疫方案进行免疫注射。抗原通过血液循环或淋巴循环进入外周免疫器 官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B 淋巴细胞。 杂交瘤细腕 体内培养 体外培养 从培养液中 \ /从腹水中提取 单克隆抗体

说明:FCA弗氏完全佐剂;FIA,弗氏不完全佐剂;Quickantibody ,北京康碧泉公司研制 的佐剂。上表中第四种免疫方法产生的抗体大部份都为IgM,存在亲和力弱等缺点,慎用。 PS:1、一般皮下注射每个注射点注射30-50ul左右混有佐剂的抗原,每只小鼠注射6-8个点为宜。 2 、腹腔注射时,如果抗原混有弗氏佐剂,建议注射在左侧腹腔,如果采用右侧腹腔注射,则在免疫过程中,很容易导致小鼠脾脏与腹膜粘连的情况,造成后期取出脾脏麻烦。 3 、冲击免疫完成后,应在96小时内完成细胞融合,否则相应的B 细胞数量会下降到未冲击前的水平。 二、细胞融合(Cell fusion) 【材料和试剂】 (1)骨髓瘤细胞悬液选好骨髓瘤细胞株,取体外培养对数生长期细胞或体内生长的肿瘤分离骨髓瘤细胞,制备细胞悬液。 (2)免疫小鼠脾细胞悬液取3天前加强免疫的小鼠,眼眶放血,?分离血清冻存备用。拉颈处死小鼠,浸泡于75%酒精中3?5min。无菌操作取出脾脏,置入盛有5ml不完全培养液的平皿中洗涤,剪去周围

的结缔组织,将脾脏移入另一盛有5ml不完全培养液的平皿中的钢网上,先用剪刀剪成3?5个小块,然后用注射器内芯研磨。将脾脏细胞悬液移至50ml离心管中,加不完全培养液50ml, 1000r/min 离心5min,弃上清,再以同法洗涤离心一次。然后将沉淀细胞重新悬浮于10ml不完全培养液中,计活细胞数,一般一只小鼠可得0.5?2X 108个脾细胞。 (3)饲养细胞将小鼠致死、体表消毒和固定后,用消毒剪镊 从后腹掀起腹部皮肤,暴露腹膜。用酒精棉球擦拭腹膜消毒。用注射器注射10ml不完全培养基至腹腔,注意避免穿入肠管。右手固定注射器,使针头留置在腹腔内,左手持酒精棉球轻轻按摩腹部1分钟, 随后吸出注入的培养液。1000r/min离心5-10分钟,弃上清。先用5ml HAT培养基将沉淀细胞悬浮,根据细胞计数结果,补加HAT培养基,使细胞浓度为2X 105/ml,备用。 (4)主要试剂的配制 ①细胞培养基杂交瘤技术中使用的细胞培养基主要有RPMI-1640或DMEM (Dulberco Modified Eagles Medium )两种基础培养基,配好后过滤除菌 (0.22um),分装,4C保存。 不完全RPMI-1640培养基: 完全RPMI-1640或DMEI培养基: HT或HAT培养基:

制备单克隆抗体的技术要点

制备单克隆抗体的技术要点 1.交瘤技术的技术流程 如图4-1所示。 图4 杂交瘤技术制备单克隆抗体的基本流程2.技术要点 1)免疫脾细胞的制备制备单克隆抗体的动物多采用纯系Balb/c小鼠。免疫的方法取决于所用抗原的性质。免疫方法同一般血清的制备,也可采用脾内直接免疫法。 2)骨髓瘤细胞的培养与筛选在融合前,骨髓瘤细胞应经过含8-AG的培养基筛选,防止细胞发生突变恢复HGPRT的活性(恢复HGPRT的活性的细胞不能在含8-AG的培养基中存活)。骨髓瘤细胞

用10%小牛血清的培养液在细胞培养瓶中培养,融合前24h换液一次,使骨髓瘤细胞处于对数生长期。 3)细胞融合融合是杂交瘤技术的关键一步,细胞融合应在无菌条件下,于室温或37℃水浴中进行。瘤细胞与脾细胞之比为1:8~10,在l~2min内滴加50%PEG 1.0ml 边加边摇,静置1-2min。然后再在2~3min内缓慢滴加无血清培养液,终止反应。1000rpm离心10min。最后加含20%小牛血清的HAT培养液。将细胞混匀,接种于96孔培养板中培养,每孔加0.1ml,同时还加0.1ml的饲养细胞悬液。 4)阳性克隆的筛选应尽早进行。通常在融合后10天作第一次检测,过早容易出现假阳性。检测方法应灵敏、准确、而且简便快速。具体应用的方法应根据抗原的性质,以及所需单克隆抗体的功能进行选择。常用的方法有RIA法、ELISA法和免疫荧光法等。其中ELISA 法最简便,RIA法最准确。阳性克隆的筛选应进行多次,均阳性时才确定为阳性克隆进行扩增。 5)克隆化克隆化的目的是为了获得单一细胞系的群体。克隆化应尽早进行并反复筛选。这是因为初期的杂交瘤细胞是不稳定的,有丢失染色体的倾向。反复克隆化后可获得稳定的杂交瘤细胞株。克隆化的方法很多,而最常用的是有限稀释法。 (1)显微操作法:在显微镜下取单细胞,然后进行单细胞培养。这种方法操作复杂,效率低,故不常用。 (2)有限稀释法:将对数生长期的杂交瘤细胞用培养液作一定

制备单克隆抗体方法

制备单克隆抗体方法 1975年分子生物学家G.J.F.克勒和C.米尔斯坦在自然杂交技术的基础上,创建立杂交瘤技术,他们把可在体外培养和大量增殖的小鼠骨髓瘤细胞与经抗原免疫后的纯系小鼠脾细胞融合,成为杂交细胞系,既具有瘤细胞易于在体外无限增殖的特性,又具有抗体形成细胞的合成和分泌特异性抗体的特点。将这种杂交瘤作单个细胞培养,可形成单细胞系,即单克隆。利用培养或小鼠腹腔接种的方法,便能得到大量的、高浓度的、非常均一的抗体,其结构、氨基酸顺序、特异性等都是一致的,而且在培养过程中,只要没有变异,不同时间所分泌的抗体都能保持同样的结构与机能。这种单克隆抗体是用其他方法所不能得到的。 这项新技术从根本上解决了在抗体制备中长期存在的特异性和可重复性问题,可用于探讨①蛋白质的精细结构;②淋巴细胞亚群的表面新抗原;③组织相容性抗原;④激素和药物的放射免疫(或酶免疫)分析;⑤肿瘤的定位和分类;⑥纯化微生物和寄生虫抗原;⑦免疫治疗和与药物结合的免疫-化学疗法(“导弹”疗法,利用单克隆抗体与靶细胞特异性结合,将药物带至病灶部位。因此,单克隆抗体可直接用于人类疾病的诊断、预防、治疗以及免疫机制的研究,为人类恶性肿瘤的免疫诊断与免疫治疗开辟了广阔前景。 制备过程

1、免疫动物免疫动物是用目的抗原免疫小鼠,使小鼠产生致敏B淋巴细胞的过程。一般选用6-8周龄雌性Balb/c小鼠,按照预先制定的免疫方案进行免疫注射。抗原通过血液循环或淋巴循环进入外周免疫器官,刺激相应B淋巴细胞克隆,使其活化、增殖,并分化成为致敏B淋巴细胞。 2、细胞融合采用二氧化碳气体处死小鼠,无菌操作取出脾脏,在平皿内挤压研磨,制备脾细胞悬液。将准备好的同系骨髓瘤细胞与小鼠脾细胞按一定比例混合,并加入促融合剂聚乙二醇。在聚乙二醇作用下,各种淋巴细胞可与骨髓瘤细胞发生融合,形成杂交瘤细胞。 3、选择性培养选择性培养的目的是筛选融合的杂交瘤细胞,一般采用HAT选择性培养基。在HAT培养基中,未融合的骨髓瘤细胞因缺乏次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,不能利用补救途径合成DNA而死亡。未融合的淋巴细胞虽具有次黄嘌呤-鸟嘌呤-磷酸核糖转移酶,但其本身不能在体外长期存活也逐渐死亡。只有融合的杂交瘤细胞由于从脾细胞获得了次黄嘌呤鸟嘌呤磷酸核糖转移酶,并具有骨髓瘤细胞能无限增殖的特性,因此能在HAT培养基中存活和增殖。 4、杂交瘤阳性克隆的筛选与克隆化在HAT培养基中生长的杂交瘤细胞,只有少数是分泌预定特异性单克隆抗体的细胞,因此,必须进行筛选和克隆化。通常采用有限稀释法进行杂交瘤细胞的克隆化培养。采用灵敏、快速、特异的免疫学方法,筛选出能产生所需单克隆抗体的阳性杂交瘤细胞,并进行克隆扩增。经过全面鉴定其所分泌单克隆抗体的免疫球蛋白类型、亚类、特异性、亲和力、识别抗原的表位及其分子量后,及时进行冻存。 5、单克隆抗体的大量制备单克隆抗体的大量制备重要采用动物体内诱生法和体外培养法。 (1)体内诱生法取Balb/c小鼠,首先腹腔注射0.5ml液体石蜡或降植烷进行预处理。1-2周后,腹腔内接种杂交瘤细胞。杂交瘤细胞在小鼠腹腔内增殖,并产生和分泌单克隆抗体。约1-2周,可见小鼠腹部膨大。用注射器抽取腹水,即可获得大量单克隆抗体。 (2)体外培养法将杂交瘤细胞置于培养瓶中进行培养。在培养过程中,杂交瘤细胞产生并分泌单克隆抗体,收集培养上清液,离心去除细胞及其碎片,即可获得所需要的单克隆抗体。但这种方法产生的抗体量有限。各种新型培养技术和装置不断出现,大大提高了抗体的生产量。

单克隆抗体的制备

单克隆抗体的制备 摘要:单克隆抗体技术是现代生命科学研究的重要工具,在基因和蛋白质的结构和功能研究方面有着不可或缺的作用。近年来,随着分子生物学技术的发展,出现了嵌合单克隆抗体和由转基因小鼠、噬菌体展示技术、核糖体展示技术及共价展示技术所产生的单克隆抗体。这些技术将有效解决单克隆抗体的鼠源性等问题。下面主要讲述制备单抗的实验过程。 关键词:抗体,单克隆,肿瘤,细胞融合,淋巴细胞 现代生物技术制药工业始于1971年,现已创造出35个重要治疗药物,全球大约有2500多家公司,主要产品有重组蛋白质药品、重组疫苗和诊断、治疗用的单克隆机体三大类。我国自80年代在采用现代生物技术改造传统生物技术制药产业方面已取得初步成果。但我国生物技术诊断试剂、酶工程、动植物细胞工程医药产品、现代生物技术支撑技术、后处理技术和制剂技术等方面与国外还存在差距。 1.国外现代生物技术产业发展的现状 自1971年Cetus公司成立至今,现代生物技术制药工业已走完了二十五年的路程,创造出35个重要的治疗药物,目前已在治疗癌症、多发性硬化症、贫血、发育不良,糖尿病、肝炎、心力衰竭、血友病、囊性纤维变性和一些罕见的遗传性疾病中取得良好效果。在医药工业中,传统生物技术(包括近代生物技术)已为人类提供了许多重要药品,在保障人类生命健康和推动社会进步中发挥了巨大作用;现代生物技术以其特有的高新技术又为人类提供了传统生物技术难以获得的极微量的珍贵药品。由于这一系列现代生物技术新型药物的出现,使过去无法治疗的疑难疾病得到了治疗。同时,应用现代生物技术DNA重组,细胞融合以及细胞大规模培养等现代生物技术发展和提高传统生物技术的生产水平,为抗生素、氨基酸、维生素以及基体激素等药品的生产,构建了高产新菌株,创造新工艺,提高生产能力,降低生产成本,促进生产发展。

相关文档