文档库 最新最全的文档下载
当前位置:文档库 › 水土压力计算示例

水土压力计算示例

水土压力计算示例
水土压力计算示例

4.1 基坑围护墙、外的土压力、水压力计算

4.1.1主动土压力的计算

按照水土分算原则计算土压力时,可采用总应力抗剪强度指标按下式计算主动土压力。

()a a i i a K C K h q p 2-+=∑γ 式中,a p ——计算点处的主动土压力强度(kPa ),0≤a p 时,取0=a p ;

i γ——计算点以上各土层的重度(kN/m 3),地下水位以上取天然重度,地下水位以下取水下重度;

i h ——各土层的厚度(m );

a K ——计算点处土的主动土压力系数,()245tan 2?-=οa K ;

C 、?——计算点处土的总应力抗剪强度指标。按三轴固结不排水试验或直剪固结快剪试验峰值强度指标取用。

计算式:

①填土

()

33.021045tan 21=-=οοa K ; 在水位以上 ()1111112a a a

K C K h r q p -''+='; m h 01='; ())(6.633.0233.002011Kpa p a

=?-?+='; m h 5.01='; ())(57.933.00233.05.0182012Kpa p a

=?-??+='。 在水位以下 ()111111

112a a a K C K h r h r q p -+''+=; m h 01=; ())(57.933.00233.05.0182011Kpa p a =?-??+=; m h 11=; ())(21.1233.00233.0185.0182012Kpa p a =?-??+?+=。 ②褐黄色粉质粘土

()49.022045tan 22=-=οοa K ;

()22222111

122a a a K C K h r h r h r q p -++''+=; m h 02=; ()49.018249.0185.0182021?-??+?+=a p

)(07.7Kpa -=;

m h 5.12=; ()49.018249.05.16.8185.0182022?-??+?+?+=a p

)(75.0Kpa -= ;

③淤泥质粉质粘土夹砂 ()74.025.845tan 23=-=οοa K ;

()3333322111

132a a a K C K h r h r h r h r q p -+++''+=; m h 03=; ()74.05.23274.05.16.8185.0182031?-??+?+?+=a p

)(49.3Kpa -=;

m h 9.43=; ()74.09.48.75.16.8185.0182032??+?+?+?+=a p

74.05.232?-

)(41.18Kpa =;

④淤泥质粘土 ()6.023.1445tan 24=-=οοa K ;

()444443322111

142a a a K C K h r h r h r h r h r q p -++++''+=; m h 04=; )9.909.48.75.16.8185.01820(41?+?+?+?+?+=a p

6.01326.0??-?

)(69.37Kpa =;

m h 9.94=; ()9.979.48.75.16.8185.0182042?+?+?+?+?+=a p

6.08.926.0?-?

)(27.79Kpa =;

⑤粉质粘土加粘土 ()58.05.1545tan 25=-=οοa K ;

()55555443322111

152a a a K C K h r h r h r h r h r h r q p -+++++''+=; m h 05=; ()9.979.48.75.16.8185.0182051?+?+?+?+?+=a p

58.04.14258.0?-?

)(37.69Kpa =;

m

h 2.25=;

()2.25.89.979.48.75.16.8185.0182052?+?+?+?+?+?+=a p

58.04.14258.0??-? )(22.80Kpa =;

4.1.2 被动土压力的计算

坑极限被动土压力强度按下式计算:

ph p i i p K C K h p 2+=∑γ 式中,p p ——计算点处的被动土压力强度(kPa );

i γ——计算点以上各土层的重度(kN/m 3),地下水位以下取水下重度; i h ——计算点以上各土层的厚度(m );

p K 、ph K ——计算点处土的被动土压力系数, ()22cos sin sin 1cos ??????+-=δ?δ??

p K

()[]222sin 1cos cos δ?δ

?+-=ph K

C 、?——计算点处土的粘聚力(kPa )和摩擦角(o)

δ——计算点处地基土与墙面间的摩擦角(o),取c ?δ??

? ??=43~32,地基土较差时(如淤泥质粘土),取大值,反之取小值,且20≤δ,无坑降水措施时取0=δ。

计算式:

①淤泥质粘土 取οο725.103.144

343=?==?δ; ()

17.1725.10cos 3.14sin 725.103.14sin 13.14cos 221=????????+-=οοοοο

p K ; ()[]72.2725.103.14sin 1725.10cos 3.14cos 2221=+-=οοοοph K ; 在水位以上 1111

112ph p p K C K h r p +''='; m h 01=' )(33.3272.28.92011Kpa p p =?+=';

m h 11=' )(22.5272.28.9217.111712Kpa p p =?+??='; 在水位以下 111111

112)(ph p p K C K h r h r p ++''=; m h 01= )(22.5272.28.9217.111711Kpa p p =?+??=;

m h 8.61= )(91.10772.28.9217.1)8.67117(12Kpa p p =?+??+?=。 ②淤泥质粉质粘土

取οο625.115.154

343=?==?δ ()

21.2625.11cos 21sin 625.115.15sin 15.15cos 222=????????+-=οοοοο

p K ()[]97.2625.115.15sin 1625.11cos 5.15cos 2222=+-=οοοοph K ;

22222111

122)(ph p p K C K h r h r h r p +++''= ;

m h 02= )(40.19297.24.14221.2)8.67117(21Kpa p p =?+??+?=; m h 2.22= ()97.24.14221.22.25.88.6711722?+??+?+?=p p

)(73.233Kpa =;

4.1.3 水压力的计算

因地下水有稳定渗流,作用于围护墙上主动土压力侧的水压力可按以下近似方法计算:

按图1计算

图4-1 地下水稳态渗流时的近似水压力分布模式

①基坑地下水位处的水压力,由该处的静水压力w w h ?γ值减去1w P ?计算。

w w a w h i P ?=?γ1 式中,1w P ?——基坑开挖面处水压力修正值(kPa );

a i ——基坑外的近似水力坡降,2117.0w w w w

a h h h h i +?=;

w h ?——基坑外、外侧地下水位差;

1w h 、2w h ——基坑外侧、基坑侧地下水位至维护墙底的高度(m )。 ②维护墙底端处的水压力由基坑开挖深度处的静水压力w w h ?γ减去2w P ?计算。

212w w p w w a w h i h i P ?+?=?γγ 式中,2w P ?——基坑墙底端处水压力修正值(kPa );

p i ——基坑被动区的近似水力坡降,2127.0w w w w

a h h h h i +?=。

作用在维护墙上的水压力计算,如图2所示。AB 间按静水压力直线分布,确定B 、C 、D 、E 各点的水压力按渗径直线比例法确定。

图4-2

作用于维护墙上水压力计算简图 计算B 处水压力:

m h h h w w w 5.1095.1921=-=-=? 224.095.195.195.107.07.0211=?+?=+?=w w w w

a h h h h i

)(05.235.108.9224.01Kpa h i P w w a w =??=?=?γ

B 处水压力 )(85.7905.235.108.91Kpa P h w w w =-?=?-?γ

图4-3 各点的水压力按渗径直线比例

AB=10.5; BC=1.5*10.5=15.75; CD=1; DE=1.5*10.5=15.75;由图3按比例计算得: C处水压力 41.35(Kpa);

D处水压力 38.50(Kpa)。

图4-4 水土压力分布

第四章 静水压力计算习题及答案

第四章静水压力计算 一、是非题 1O重合。 2、静止液体中同一点各方向的静水压强数值相等。 3、直立平板静水总压力的作用点与平板的形心不重合。 4、静止水体中,某点的真空压强为50kPa,则该点相对压强为-50kPa。 5、水深相同的静止水面一定是等压面。 6、静水压强的大小与受压面的方位无关。 7、恒定总流能量方程只适用于整个水流都是渐变流的情况。 二、选择题 1、根据静水压强的特性,静止液体中同一点各方向的压强 (1)数值相等 (2)数值不等 (3)水平方向数值相等 (4)铅直方向数值最大 m,则该点的相对压强为 2、液体中某点的绝对压强为100kN/2 m (1)1kN/2 m (2)2kN/2 m (3)5kN/2 m (4)10kN/2 m,则该点的相对压强为 3、液体中某点的绝对压强为108kN/2 m (1)1kN/2 m (2)2kN/2 m (3)8kN/2 m (4)10kN/2 4、静止液体中同一点沿各方向上的压强 (1)数值相等 (2)数值不等 (3)仅水平方向数值相等 5、在平衡液体中,质量力与等压面 (1)重合 (2)平行 (3)正交 6、图示容器中有两种液体,密度ρ2 > ρ1 ,则A、B 两测压管中的液面必为 (1)B 管高于A 管 (2)A 管高于B 管 (3)AB 两管同高。

7、盛水容器a 和b 的测压管水面位置如图(a)、(b) 所示,其底部压强分别为pa和pb。若两容器内水深相等,则pa和pb的关系为 (1)pa>pb (2)pa< pb (3)pa=pb (4)无法确定 8 (1)牛顿 (2)千帕 (3)水柱高 (4)工程大气压 三、问答题 1、什么是相对压强和绝对压强? 2、在什么条件下“静止液体内任何一个水平面都是等压面”的说法是正确的? 3、压力中心D和受压平面形心C的位置之间有什么关系?什么情况下D点与C点重合? 4、图示为几个不同形状的盛水容器,它们的底面积AB、水深h均相等。试说明: (1)各容器底面所受的静水总压力是否相等? (2)每个容器底面的静水总压力与地面对容器的反力是否相等?并说明理由(容器的重量不计)。 四、绘图题 1、绘出图中注有字母的各挡水面上的静水压强分布。

水土合算与水土分算

1水土分算的概念与原理 1.1基本概念 水土分算原则,即分别计算土压力和水压力,两者之和即为总的侧压力。这一原则适用于土体孔隙中存在自由的重力水的情况,或土的渗透性较好的情况,一般适用于砂土、粉土和粉质粘土。 1.2侧压力计算原理 1.2.1土压力计算 侧向土压力通常按朗金主动土压力和被动土压力计算,计算时地下水位以下的土的重度采用浮重度。朗金理论的基本假定为: ①挡土墙背竖直,墙面光滑,不计墙面和土层之间的摩擦力; ②挡土墙后填土的表面为水平面,土体向下和水平方向都能伸展到无穷,即为半无限空间; ③挡土墙后填土处于极限平衡状态。在弹性均质的半空间体中,离开地表面深度为Z处的任意一点的竖向应力和水平应力分别为: σz= γZ(1) σx=K0γZ(2) 在朗金主动土压力状态下,最大主应力为σ1=γZ,最小主应力为σ3=Pa, Pa=γZtg2(45°-φ/2)-2ctg(45°-φ/2) (3)在朗金被动土压力状态下,最大主应力为被动土压力σ1=Pp,最小主应力为竖向压力σ 3=γZ ,Pp=γZtg2(45°+φ/2)+2ctg(45°+φ/2)(4)引入主动土压力系数Ka和被动土压力系数 Kp,并令: Ka=tg2(45°- φ/2) (5) Kp=tg2(45°+ φ/2) (6) 将式(5)、式(6)分别代入式(3)、式(4)得: Pa= γZKa-2c Ka(7) Pp= γZKp+2c Kp(8) 用朗金或库仑理论进行土压力计算时,通常要用到土的物性参数:重度γ、摩擦角φ和粘聚力c。而各层土的物性参数是不一样的,在工程应用中一般有两种处理方法。 (1)直接取用各层土物性参数的方法 当地层由多层土组成时,可分别采用各层土的物性参数,分别计算得到各层土的主动土压力强度和被动土压力强度。由于通常各土层是不同的,因此土压力强度图形沿挡土墙深度方向是不连续的;在土压力计算过程中要比单一土层情况复杂些,但计算结果比较符合工程实际。目前基坑支护结构土压力计算多采用专用程序计算,土层的数量几乎不会对计算速度产生影响。因此,该方法在工程实际中得到广泛采用。 (2)取土层物性参数加权平均的方法 该方法一般在地下结构的初步设计阶段,希望采用简单的计算方法来初步确定基坑的支护方案,不需要对土压力进行精确计算。为简化计算,将土层简化成单一均质土层的情况,通常采用土层厚度进行加权平均,算出等效的地层物性参数。 1.2.2土层中水压力的计算 地下水位稳定的地下结构物的侧向水压力可按静水压力确定,水压力强度根据帕斯卡定理计算: p w=h wγw(9) 式中p w———侧向静水压力的强度值; h w———水头高度,即地下水位到计算点的垂直距离;

流体力学复习要点(计算公式)

D D y S x e P gh2 gh1 h2 h1 b L y C C D D y x P hc 第一章 绪论 单位质量力: m F f B m = 密度值: 3 m kg 1000=水ρ, 3 m kg 13600=水银ρ, 3 m kg 29.1=空气ρ 牛顿内摩擦定律:剪切力: dy du μ τ=, 内摩擦力:dy du A T μ= 动力粘度: ρυ μ= 完全气体状态方程:RT P =ρ 压缩系数: dp d 1dp dV 1ρρκ= -=V (N m 2 ) 膨胀系数:T T V V V d d 1d d 1ρρα - == (1/C ?或1/K) 第二章 流体静力学+ 流体平衡微分方程: 01;01;01=??-=??-=??- z p z y p Y x p X ρρρ 液体平衡全微分方程:)(zdz ydy xdx dp ++=ρ 液体静力学基本方程:C =+ +=g p z gh p p 0ρρ或 绝对压强、相对压强与真空度:a abs P P P +=;v a abs P P P P -=-= 压强单位换算:水银柱水柱mm 73610/9800012 ===m m N at 2/101325 1m N atm = 注: h g P P →→ρ ; P N at →→2m /98000乘以 2/98000m N P a = 平面上的静水总压力:(1)图算法 Sb P = 作用点e h y D +=α sin 1 ) () 2(32121h h h h L e ++= ρ 若01 =h ,则压强为三角形分布,3 2L e y D == ρ 注:①图算法适合于矩形平面;②计算静水压力首先绘制压强分布图, α 且用相对压强绘制。 (2)解析法 A gh A p P c c ρ== 作用点A y I y y C xc C D + = 矩形12 3 bL I xc = 圆形 64 4 d I xc π= 曲面上的静水总压力: x c x c x A gh A p P ρ==;gV P z ρ= 总压力z x P P P += 与水平面的夹角 x z P P arct an =θ 潜体和浮体的总压力: 0=x P 排浮gV F P z ρ== 第三章 流体动力学基础 质点加速度的表达式??? ? ? ? ??? ??+??+??+??=??+??+??+??=??+??+??+??=z u u y u u x u u t u a z u u y u u x u u t u a z u u y u u x u u t u a z z z y z x z z y z y y y x y y x z x y x x x x A Q V Q Q Q Q Q G A = === ? 断面平均流速重量流量质量流量体积流量g udA m ρρ 流体的运动微分方程: t z t y t x d du z p z d du y p Y d du x p X = ??-=??-=??- ρρρ1;1;1 不可压缩流体的连续性微分方程 : 0z u y u x u z y x =??+??+?? 恒定元流的连续性方程: dQ A A ==2211d u d u 恒定总流的连续性方程:Q A A ==2211νν 无粘性流体元流伯努利方程:g 2u g p z g 2u g p z 2 2 222 111++=++ρρ 粘性流体元流伯努利方程: w 2 2222111'h g 2u g p z g 2u g p z +++=++ρρ

水的流量与管径的压力的计算公式

1、如何用潜水泵的管径来计算水的流量 Q=4.44F*((p2-p1)/ρ)0.5 流量Q,流通面积F,前后压力差p2-p1,密度ρ,0.5是表示0.5次方。以上全部为国际单位制。适用介质为液体,如气体需乘以一系数。 由Q=F*v可算出与管径关系。 以上为稳定流动公式。 2、请问流水的流量与管径的压力的计算公式是什么? 管道的内直径205mm,高度120m,管道长度是1800m,请问每小时的流量是多少?管道的压力是多少,管道需要采用多厚无缝钢管? 问题补充: 从高度为120米的地方用一根管道内直径为205mm管道长度是1800米放水下来,请问每个小时能流多少方水?管道的出口压力是多少?在管道出口封闭的情况下管道里装满水,管道底压力有多大 Q=[H/(SL)]^(1/2) 式中管道比阻S=10.3*n^2/(d^5.33)=10.3*0.012^2/(0.205^5.33)=6.911 把H=120米,L=1800米及S=6.911代入流量公式得 Q=[120/(6.911*1800)]^(1/2) = 0.0982 立方米/秒= 353.5 立方米/时 在管道出口封闭的情况下管道里装满水,管道出口挡板的压力可按静水压力计算: 管道出口挡板中心的静水压强P=pgH=1000*9.8*180=1764000 帕 管道出口挡板的静水总压力为F: F=P*(3.14d^2 /4)=1764000*(3.14*0.205^2 /4)=58193.7 牛顿 3、管径与流量的计算公式 请问2寸管径的水管,在0.2MPA压力的情况下每小时的流量是多少?这个公式是如何计算出来的? 流体在水平圆管中作层流运动时,其体积流量Q与管子两端的压强差Δp,管的半径r,长度L,以及流体的粘滞系数η有以下关系: Q=π×r^4×Δp/(8ηL) 4、面积,流量,速度,压力之间的关系和换算方法、 对于理想流体,管道中速度与压强关系:P + ρV2/2 = 常数,V2表示速度的平方。 流量=速度×面积,用符号表示 Q =VS 5、管径、压力与流量的计算方法 流体在一定时间内通过某一横断面的容积或重量称为流量。用容积表示流量单位是L/s或 (`m^3`/h);用重量表示流量单位是kg/s或t/h。 流体在管道内流动时,在一定时间内所流过的距离为流速,流速一般指流体的平均流速,单位

孔隙压力有效应力和排水

第六章 孔隙压力、有效应力和排水 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图(a)中的竖向应力为: z z γσ= 其中γ为土的容重(见节)。如果地基在水平面以下或者在湖底、海底的话(如图(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= 如果在基础或路堤表面有荷载q 作用的话(如图(c)所示),那么竖向应力计算公式就变为: q z z +=γσ 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,

如图所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= 当竖管中的水位低于地表面时(如图(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢? 图说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-=

水土压力计算示例

4.1 基坑围护墙内、外的土压力、水压力计算 4.1.1主动土压力的计算 按照水土分算原则计算土压力时,可采用总应力抗剪强度指标按下式计算主动土压力。 ()a a i i a K C K h q p 2-+=∑γ 式中,a p ——计算点处的主动土压力强度(kPa ),0≤a p 时,取0=a p ; i γ——计算点以上各土层的重度(kN/m 3) ,地下水位以上取天然重度,地下水位以下取水下重度; i h ——各土层的厚度(m ); a K ——计算点处土的主动土压力系数,() 245tan 2?-= a K ; C 、?——计算点处土的总应力抗剪强度指标。按三轴固结不排水试验或直剪固结快剪试验峰值强度指标取用。 计算式: ①填土 () 33.021045tan 21=-= a K ; 在水位以上 ()1111112a a a K C K h r q p -''+='; m h 01 ='; ())(6.633.0233.002011Kpa p a =?-?+='; m h 5.01 ='; ())(57.933.00233.05.0182012Kpa p a =?-??+='。 在水位以下 ()111111 112a a a K C K h r h r q p -+''+=; m h 01=; ())(57.933.00233.05.0182011Kpa p a =?-??+=; m h 11=; ())(21.1233.00233.0185.0182012Kpa p a =?-??+?+=。 ②褐黄色粉质粘土 () 49.02045tan 22=-= a K ; ()22222111 122a a a K C K h r h r h r q p -++''+=;

学习情境一 静水压强与静水压力计算

学习情境一 静水压强与静水压力计算 1.1液体的认知 1.1.1液体的基本特性 一、液体与固体、气体的区别 自然界物质分为气体,固体和液体. 固体的主要特性是有:固定的形状,在外力作用下不易变形。 液体和气体统称为流体,其共同特性是易流动和变形,液体和气体的主要区别是在外力的作用下液体不易压缩,而气体易压缩。 所以液体:易流动 、不易压缩。 二、连续介质的概念 在实际水流中,由水分子组成,水分子与水分子之间存在有空隙,如果按实际情况去研究,是相当困难的,由于水力学是为工程服务的,不需研究水分子的运动(即微分运动)情况,只需研究宏观的机械运动,而分子间的空隙与研究的的范围相比小的多,在水力学研究中,认为研究工作的液体是由无数的液体质点组成的无空隙的连续体——这种抽象化的液体模型即为1753年由欧拉提出来的连续介质假设。 因此我们研究的液体是均质等向的连续介质。 有了连续介质的概念,我们就可以用数学中的连续函数理论来研究液体的运动。 1.1.2液体的主要物理力学性质 (一)惯性 惯性——物体保持原有运动状态的性质。 惯性用惯性力来表示,其大小为,ma F -= 由此可见惯性力又可用质量力来表示 m 大F 大,m 小F 小。 对于均质液体来说,质量可用密度来表示。 V m = ρ 3 m kg 3 cm k g 同一液体随温度和压强变化,但变化甚小,一般可看成是常数。 当一个标准大气压下4=T ℃, m kg /1000=ρ。 (二)万有引力特性 万有引力特性——运动物体之间相互吸引的性质, 地球对物体的吸引力为重力或重量。 mg G = 单位 N kN g ——重力加速度,2 /8.9s m g = 均质液体,重力用容重(重度): g V mg V G ργ=== 3/8.9m kn =γ 3 /3.133m kn =γ 例1:已知某液体的36m V =,3/3.983m kg =ρ,求该液体的质量和容重。 解: 因为 V m =ρ )(8.589963.983kg V m =?==ρ)(3.96368.93.9833m N g =?==ργ

水土压力计算示例

4.1 基坑围护墙、外的土压力、水压力计算 4.1.1主动土压力的计算 按照水土分算原则计算土压力时,可采用总应力抗剪强度指标按下式计算主动土压力。 ()a a i i a K C K h q p 2-+=∑γ 式中,a p ——计算点处的主动土压力强度(kPa ),0≤a p 时,取0=a p ; i γ——计算点以上各土层的重度(kN/m 3),地下水位以上取天然重度,地下水位以下取水下重度; i h ——各土层的厚度(m ); a K ——计算点处土的主动土压力系数,()245tan 2?-=οa K ; C 、?——计算点处土的总应力抗剪强度指标。按三轴固结不排水试验或直剪固结快剪试验峰值强度指标取用。 计算式: ①填土 () 33.021045tan 21=-=οοa K ; 在水位以上 ()1111112a a a K C K h r q p -''+='; m h 01='; ())(6.633.0233.002011Kpa p a =?-?+='; m h 5.01='; ())(57.933.00233.05.0182012Kpa p a =?-??+='。 在水位以下 ()111111 112a a a K C K h r h r q p -+''+=; m h 01=; ())(57.933.00233.05.0182011Kpa p a =?-??+=; m h 11=; ())(21.1233.00233.0185.0182012Kpa p a =?-??+?+=。 ②褐黄色粉质粘土

()49.022045tan 22=-=οοa K ; ()22222111 122a a a K C K h r h r h r q p -++''+=; m h 02=; ()49.018249.0185.0182021?-??+?+=a p )(07.7Kpa -=; m h 5.12=; ()49.018249.05.16.8185.0182022?-??+?+?+=a p )(75.0Kpa -= ; ③淤泥质粉质粘土夹砂 ()74.025.845tan 23=-=οοa K ; ()3333322111 132a a a K C K h r h r h r h r q p -+++''+=; m h 03=; ()74.05.23274.05.16.8185.0182031?-??+?+?+=a p )(49.3Kpa -=; m h 9.43=; ()74.09.48.75.16.8185.0182032??+?+?+?+=a p 74.05.232?- )(41.18Kpa =; ④淤泥质粘土 ()6.023.1445tan 24=-=οοa K ; ()444443322111 142a a a K C K h r h r h r h r h r q p -++++''+=; m h 04=; )9.909.48.75.16.8185.01820(41?+?+?+?+?+=a p 6.01326.0??-? )(69.37Kpa =; m h 9.94=; ()9.979.48.75.16.8185.0182042?+?+?+?+?+=a p 6.08.926.0?-?

水力计算 学习单元2 静水压强与静水压力计算

学习单元二 静水压强与静水压力计算 【教学基本要求】 1.正确理解静水压强的两个重要特性和等压面的性质。 2.掌握静水压强基本公式和物理意义,会用基本公式进行静水压强计算。 3.掌握静水压强的单位和三种表示方法:绝对压强、相对压强和真空度;理解位置水头、压强水头和测管水头的物理意义和几何意义。 4.掌握静水压强的测量方法和计算。 5.会画静水压强分布图,并熟练应用图解法和解析法计算作用在平面上的静水总压力。 6.会正确绘制压力体剖面图,掌握曲面上静水总压力的计算。 【学习重点】 1.静水压强的两个特性及有关基本概念。 2.重力作用下静水压强基本公式和物理意义。 3.静水压强的表示和计算。 4.静水压强分布图和平面上的静水总压力的计算。 5.压力体的构成和绘制以及曲面上静水总压力的计算。 【内容提要和学习指导】 本章研究处于静止和相对平衡状态下液体的力学规律。 2.1 静水压强及其特性 静止液体作用在每单位受压面积上的压力称为静水压强,单位为(N/ m 2),也称为帕斯卡(P a )。某点的静水压强p 可表示为: (2—1) 静水压强有两个重要特性: (1)静水压强的方向垂直并且指向受压面; (2)静止液体内任一点沿各方向上静水压强的大小都相等,或者说每一点的静水压强仅是该点坐标的函数,与受压面的方向无关,可表示为p = p (x ,y ,z )。这两个特性是计算任意点静水压强、绘制静水压强分布图和计算平面与曲面上静水总压力的理论基础。 2.2 等压面 液体中由压强相等的各点所构成的面(可以是平面或曲面)称为等压面,静止液体的自由表面就是等压面。 对静止液体进行受力分析,导出液体平衡微分方程和压强全微方程,根据等压面定义,可得到等压面方程式: X d x+Y d y+Z d z = 0 (2—2) A P p A ??=→?0lim

渗流孔隙水压力的计算

顺流减压,逆流增压—扫地僧 最近大家问了很多渗流的问题,自己也好好总结了一下。岩土考试涉及到渗流情况的孔隙水压力计算时,基本都可归结为8个字:顺流减压,逆流增压。渗流可以理解为水流,流速很慢的水流,沿渗流方向移动,相当于顺流而下,受到的水压力减小,即为顺流减压。逆渗流方向移动,相当于逆流而上,压力增大,即为逆流增压。 任意点D 的孔隙水压力万能公式: 1、按顺流减压:(从总水头高处往低处计算是即为顺流向) 2D u H x i =-? , /i h L =? 2、按逆流增压: (从总水头低处往高处 计算是即为逆流向)112()()/D u H L x i H L x h L H x i =+-?=+-??=-?(注:式中H1、H2分别为逆流向和顺流向D 点的静水压力水头) 力学原理解释:x i ?为计算段总水头损 失1h ,总水头损失=压力水头损失+位置水 头损失,发生渗流的情况与无渗流时(静水)相比较,位置水头差不变,故总水头损失1h 等于相对于静水时的压力水头损失(水头损失全部由压力水头承担),此段话比较绕,理解不了也没关系,下面以顺流减压进行推导。 以黏土层底面为基准面,A 点总水头:2H H x =+ 计算段总水头损失:1h x i =? D 点总水头: 12H H h H x x i '=-=+-? D 点位置水头:x D 点压力水头:1D u H x H x i '=-=-? 实战中的运用: 此方法实际就是上述的顺流减压公式。

此方法实际就是上述的顺流减压公式。 若按逆流曾压则为:30+45/2=52.5 此题若按顺流减压则为: ()22sin 28 6sin 28666sin 286cos 28w i h i ==-??=-?=?

耐静水压测试仪的结构和原理浅析

耐静水压测试仪的结构和原理浅析 本仪器在实际使用中受到普遍欢迎,是工厂企业,各级产品质量检测机构测试织物抗渗水性能的理想仪器。同时也是大专院校,科研单位进行产品开发,研究工作的必备测试手段。 1. 静水压试验方法 GB4744-84纺织织物抗渗水性测试方法(2米) GB4744标准等效采用标准ISO 811 本章摘录GB4744标准中仪器部分内容。 试验仪器应能以下述方式夹紧试样: l 试样水平放置,且不放鼓起; l 织物上面或下面承受持续上升水压面积为100cm2; l 试验时,夹紧装置不应漏水; l 试样在夹紧装置中不会滑移; l 尽量减少试样在夹紧装置边缘处产生渗水的可能性。 与试样接触的水必须是新鲜蒸馏水或去离子水。温度保持在20±2℃或27±2℃。选用哪种温度应在试验报告上注明。(用较高温度水,会得出较低的水压值,其影响的大小,因织物不同而异) 水压上升的速率应为10±0.5cmH2O/min或60±3cmH2O/min。由于两种不同速率得出的结果可能不同,故选用哪种速率应在试验报告上注明。 压力计与试验头相连接,压力计数应精确到0.5cmH2O。 静水压测试仪由试验装置和控制器二部分组成,共同完成静水压试验。 2. 装置结构 试验装置提供静水压测试的条件,装置有不锈钢材料加工组成。试验装置提供一个水平放置试验的平台,平台上有一个100 cm2测试槽,测试槽外圆有橡皮O型密封圈,压力传感器安装在测试孔内。平台上另有一个水平泡,可通过旋转底脚控制平台的水平度。平台上方是一个固定架,能使压布三棱罩与测

试槽吻合,压布三棱罩内径面积为100 cm2。压布三棱罩由旋转手柄带动可上下移动,放置和夹紧布样进行测试。平台下方是静水压供给部由存水箱、电磁泵、导管、水位检察、放水阀、校验接口等组成。 3. 测试基本原理: 向试样施加不断升高的(动态测试)或一致的(静态测试)水压,直到水从试样的三个不同位置渗出。测试至少3个试样后,测量并计算织物的平均最大水压(测量单位是mBar或cmH2O),这个值就是试样的拒水性能。 具体方法为试样被固定在标准面积的测试区域上,空压机将0-5bar的空气加入一个充满蒸馏水的水罐中,将一定的压力的水作用于试样。可通过动态或静态两种方法进行测试。 (1)动态法:通过测试一定升压速率下未与水接触的试样的一面的渗出固定数量水珠时的压力判定试样的耐静水压性能。 (2)静态法:通过测试一定静水压下,对试样保持该压力一定时间后的渗水情况来判定材料的耐静水压性能。 4. 控制器工作原理 耐静水压测试仪,在进行测试时是由控制器、试验装置和被夹紧的布样,组成一个线性的压力逐步上升的自控系统,试验装置平台上的测试孔和被夹紧的布样是一个封闭的环境,在这封闭环境各处的静水压是完全相等的,布样受到的静水压通过测试孔内的压力传感器检测出来,控制器的功能是对封闭环境,根据选择的上升速率建立静水压,检测静水压,并把布样上受到的静水压用数码管显示出来。 GB 4744标准规定了二种上升速率10cmH2O/min、60 cmH2O/min,仪器可依据标准选择压力上升速率,也可自定义设置。仪器的三种速率通过控制面板选定,仪器测试时实际上升速率完全跟随选择的速率与选择的速率保持一致,升压速率最高水压值都是1000 cmH2O。 静水压检测,安装在测试孔内的压力传感器将布样上受到的0~100 0cmH2O静水压作用,经16位A/D 转换器,转换成数字输出,数码显示为0~1000cmH2O。 静水压的建立:布样上受到的0~1000cm静水压是由泵控程序通过对电磁泵不断调节逐渐产生的。通过压力传感器反馈,以精确的时间控制电磁泵动作。使压力的提升与时间严格保持线性关系。 5. 仪器优势:

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 6.1 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 6.2 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图6.1(a)中的竖向应力为: z z γσ= (6.1) 其中γ为土的容重(见5.5节)。如果地基在水平面以下或者在湖底、海底的话(如图 6.1(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= (6.2) 如果在基础或路堤表面有荷载q 作用的话(如图6.1(c)所示),那么竖向应力计算公式就变为: q z z +=γσ (6.3) 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图6.1(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3 /20m kN ≈γ,干土的3/16m kN ≈γ,水的3/10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 6.3 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,

如图6.2所示。当系统处于平衡状态时,竖管内部和外部的水压力相等,因此得到: w w h u γ= (6.4) 当竖管中的水位低于地表面时(如图 6.2(a)所示),就称为地下水位。如果土中水是静止的,那么地下水位面就像湖面一样是水平的。然而,就像我们后面将要见到的那样,如果地下水位面不是水平的,那么土孔隙中就存在水的渗流。图6.2(a)中地下水位面处孔隙水压力为零(这就是叫做地下水位),水位以下为正值,问题就出来了:地下水位面以上孔隙水压力是什么样的呢? 图6.3说明了地表面和地下水位面之间的土中孔隙水压力的变化情况。在地表面处有一层孔压为零的干土,这种情况很少见到,但是在高潮水面以上的海滩可以发现这种现象。在地下水面以上的一小部分,由于土中孔隙的毛细作用,土体是饱和的。在这一区域,孔隙水压力是负值,计算公式如下: w w h u γ-= (6.5)

【岩土设计】水土分算和水土合算的学习

水土分算和水土合算的学习 一、计算方法概述 在一般地基基础工程计算中,建筑物的自重以及作用于建筑物上的各种荷载通过基础传给地基.无论是建筑物的自重或是其他竖向活荷载都具有由其自重导出的特点,荷载大小明确,计算与实测结果基本接近.而支护结构的主要荷载是地层中水土的水平压力,水土压力是由定值的竖向水土压力按照一定规律转化为水平压力作用于支护结构上.支护结构荷载与上部结构荷载的根本区别在于它不是仅与土的重量有关,还与土的强度、变形特性和渗透性有关,具有很大的不确定性.由于作用在支护结构上的荷载主要是水平荷载,而这种水平荷载具有间接得出的特点,因此,由水土竖向压力转化为水平压力的计算方法的合理与否直接影响到水平荷载的确定,水平荷载的精确度又直接影响到支护结构内力与变形的计算结果. 目前,工程上常采用的土压力计算方法有朗肯土压力、库仑土压力和各种经验土压力确定方法.在水土分算时,水压力的计算方法有:按静水压力计算的方法、按渗流计算确定水压力分布的方法等.而水土合算时不需单独考虑水压力作用. 关于土压力的各种基本理论、主动土压力和被动土压力形成的条件、各种土的抗剪强度指标试验方法和分类,可参考有关土力学教科书,本处不在详述. 二、水土分算和水土合算方法的适用条件

基坑支护工程的土压力、水压力计算,常采用以朗肯土压力理论为基础的计算方法,根据不同的土性和施工条件,分为水土合算和水土分算两种方法.由于水土分算和水土合算的计算结果相差较大,对基坑挡土结构工程造价影响很大,故需要非常慎重的舍取,要根据具体情况合理选择. 地下水位以下的水压力和土压力,按有效应力原理分析时,水压力与土压力应分开计算.水土分算方法概念比较明确.但是在实际使用中有时还存在一些困难,特别是对黏性土,水压力取值的难度大,土压力计算还应采用有效应力抗剪强度指标,在实际工程中往往难以解决.因此,在很多情况下黏性土往往采用总应力法计算土压力,即将水压力和土压力混合计算,也有了一定的工程实验经验.然而,这种方法亦存在一些问题,可能低估了水压力的作用. (1)水土分算 水土分算是分别计算土压力和水压力,以两者之和为总的侧压力.水土分算适用于土孔隙中存在自由的重力水的情况或土的渗透性较好的情况,一般适用于碎石土和砂土,这些土无黏聚性或弱黏聚性,地下水在土颗粒间容易流动,重力水对土颗粒中产生孔隙水压力.对于砂土、粉性土和粉质黏土等渗透性较好的土层,应该采用水土分算的原则来确定支护结构的侧向压力.侧向土压力通常可按朗肯主动压力和被动压力公式计算.地下水无渗流时,作用于挡土结构上的水压力按静水压力三角形分布计算.地下水有稳定渗流时,作用于挡土结构上的水压力可通过渗流分析计算各点的水压力,或近似地按静水压

孔隙水压力监测

孔隙水压力监测 一、监测内容 用于量测基坑工程坑外不同深度土的孔隙水压力。由于饱和土受荷载后首先产生的是孔隙水压力的变化,随后才是颗粒的固结变形,孔隙水压力的变化是土体运动的前兆。静态孔隙水压力监测相当于水位监测。潜水层的静态孔隙水压力测出的是孔隙水压力计上方的水头压力,可以通过换算计算出水位高度。在微承压水和承压水层,孔隙水压力计可以直接测出水的压力。结合土压力监测,可以进行土体有效应力分析,作为土体稳定计算的依据。不同深度孔隙水压力监测可以为围护墙后水、土压力分算提供设计依据。孔隙水压力监测为重力式围护体系一、二级监测等级、板式围护体系一级监测等级选测项目。 二、仪器、设备简介 1 孔隙水压力计目前孔隙水压力计有钢弦式、气压式等几种形式,基坑工程中常用的是钢弦式孔隙水压力计,属钢弦式传感器中的一种。孔隙水压力计由两部分组成,第一部分为滤头,由透水石、开孔钢管组成,主要起隔断土压的作用;第二部分为传感部分,其基本要素同钢筋计。 2 测试仪器、设备 数显频率仪。 三、孔隙水压力计安装 1 安装前的准备将孔隙水压力计前端的透水石和开孔钢管卸下,放入盛水容器中热泡,以快速排除透水石中的气泡,然后浸泡透水石至饱和,安装前透水石应始终浸泡在水中,严禁与空气接触。 2 钻孔埋设孔隙水压力计钻孔埋设有二种方法,一种方法为一孔埋设多个孔隙水压力计,孔隙水压力计间距大于 1.0m,以免水压力贯通。此种方法的优点是钻孔数量少,比较适合于提供监测场地不大的工程,缺点是孔隙水压力计之间封孔难度很大,封孔质量直接影响孔隙水压力计埋设质量,成为孔隙水压力计埋设好坏的关键工序,封孔材料一般采用膨润土泥球。埋设顺序为①钻孔到设计深度;②放入第一个孔隙水压力计,可采用压入法至要求深度;③回填膨润土泥球至第二个孔隙水压力计位置以上0.5m;④放入第二个孔隙水压力计,并压入至要求深度;⑤回填膨润土泥球…,以此反复,直到最后一个。第

土水压力的计算方法

12.4 土水压力的计算方法 12.4.1 作用于支挡结构上的土压力 (一)概述 作用在挡土支护结构上的侧压力包括土压力、水压力、冰荷载(寒冷地区)、地震力及地面荷载所产生的侧压力等。土压力是作用于挡土支护结构的主要荷载,特别是在大型深基坑工程中若能较准确地估算土压力,对于确保深基坑工程的顺利进行具有十分重要的意义。从广义来说,土压力是土作用在挡土支护结构上的或作用在被土体所包围的结构物表面上的压力及其合力。这些压力(及合力)是由土的自重、土所承受的恒载和活载所产生的,其大小由土的物理与力学性质、土和结构之间的物理作用、绝对位移、相对位移以及变形值与特性所决定。水压力、冰荷载、地震力及地面荷载等均是通过土这一载体作用于挡土支护结构上,因此,均属于广义土压力,也可称为特殊情况下的土压力。 【例题17】在下列各项中,属于广义土压力的是( )。 A、水压力; B、地震力; C、冰荷载; D、地面荷载; 答案:A、B、C、D (二)影响土压力的因素 作用在挡土支护结构上的土压力受以下因素制约: 1不同土类中的侧向土压力差异很大。采用同样的计算方法设计的挡土支护结构,对某些土

类可能安全度很大,而对另一些土类则可能面临倒塌的危险。因此在没有完全弄清挡土支护结构土压力的性能之前,对不同土类应区别对待。 2 土压力强度的计算及其计算指标的取值与基坑开挖方式和土类有关。当剪应力超过土的抗剪强度时,背侧土体就会失去稳定,发生滑动。由于基坑用机械开挖,一般进度均较快,开挖卸荷后,土压力很快形成,为与其相适应采用直剪快剪或三轴不排水剪是合理的。但剪切前是否要固结,则根据土的渗透性而定。渗透性弱的土,由于加荷快、来不及固结即可能剪损,此时宜采用不固结即进行剪切;反之,渗透性强的土,宜固结后剪切。 【例题18】对于侧壁为饱和粘土的基坑,宜采用( )三轴试验确定其抗剪强度指标。 A、固结排水剪; B、固结不排水剪; C、不固结不排水剪; D、不固结排水剪; 答案:C 3土压力是土与挡土支护结构之间相互作用的结果,它与结构的变位有着密切的关系,从而导致设计土压力值的不确定性。如经典的库仑土压力和朗肯土压力理论仅考虑主动与被动状态;在挡土支护结构变形很小时,要采用静止土压力(其值无统一求法);对于作用于多支点挡土支护结构的土压力则按弹塑性理论进行计算。 4 土压力强度的大小与挡土支护结构刚度有关。当基坑深度及地层土质等条件均相同的情况下,作用在重力式挡土支护结构和柔性挡土支护结构上的土压力显然不同,这是由于两者刚度相差太大所致。 5 对于多支点挡土支护结构,其土压力大小及分布又因支点(锚杆或支撑)的位置及反力大小而变化。

孔隙压力、有效应力和排水

孔隙压力、有效应力和排水

第六章 孔隙压力、有效应力和排水 6.1 引言 通常所说的土是由固体颗粒和水两部分组成的,基础或挡墙上的荷载包含土颗粒和孔隙水上面的应力两部分。在没有土颗粒的船体外表面,法向应力就等于水压力;而在没有水的装有糖的盆底,应力就等于所装的糖的重量。问题就是土颗粒应力和孔隙水压力的哪种组合决定着土的性质。要研究这个问题,我们首先研究地基中的应力和水压力。 6.2 地基中的应力 在地基中,某一深度的竖向应力是由上面的一切东西的重量产生的——土颗粒、水和基础,所以应力随着深度的增加而增大。图6.1(a)中的竖向应力为: z z γσ= (6.1)

其中γ为土的容重(见5.5节)。如果地基在水平面以下或者在湖底、海底的话(如图6.1(b)所示),竖向应力计算公式就变为: w w z z z γγσ+= (6.2) 如果在基础或路堤表面有荷载q 作用的话(如图6.1(c)所示),那么竖向应力计算公式就变为: q z z +=γσ (6.3) 这里面的γ是单位体积的土颗粒和水重量之和。因为z σ是由土体的总重量产生的,所以成为总应力。注意,图6.1(b)中所示的湖中的水把总应力作用在底部同玻璃杯中的水把总应力作用在杯底的方式相同。土颗粒的重度变化不大,一般来讲,饱和土的3/20m kN ≈γ,干土的3/16m kN ≈γ,水的3 /10m kN ≈γ。 同时也有水平向的总应力h σ,但是在z σ和h σ之间没有简单的关系。在以后的章节我们会对水平向的应力进行研究。 6.3 地下水和孔隙水压力 饱和土的孔隙水中存在的压力叫做孔隙水压力u 。在竖管中经常用w h 来简单地代替,如图6.2所示。当系统处于平衡状态时,竖管内部和

水土分算_水土合算

渗透性好的土一般采用水土分算,故对碎石、砂土用水土分算, 而粘性土若按照水土分算,总的水土压力可能偏大,故有实际工程经验时可采用水土合算。 个人认为粉土介于二者之间,若当地并无实际经验,还是建议以分算为宜。 按照有效应力原理分析,水土分算。但粘性土在实际工程中空隙水压力往往难以确定,因此,在许多情况下,往往采用总应力法计算,即水土合算。 对地下水位以下的粉土,砂土,碎石土,由于其渗透性强,地下水对颗粒可形成浮力,故应采用水土分算。水压力可按静水压力计算。 所谓水土分算,其实质就是分别计算水、土压力,以两者之和为总侧压力。计算土压力时用土的浮重度,计算水压力时按全水头的水压力考虑。这一方法适用于土空隙中存在自由水的情况或土的渗透性较好的情况,如:碎石土及砂土。很显然,土体中的水压力与其空隙中的自由水及其渗透性是密切相关的,而碎石土及砂土的渗透性相差非常大,粉、细砂的渗透系数ks一般为1.0m/d左右,卵石层则可高达500m/d,两者相差达数百倍,如此大的差别都统一按全水头的水压力考虑显然是不合适的。工程实践也表明:按水土分算方法计算水压力对于大多数土层来说,其作用都偏大。 所谓水土合算,其实质就是不考虑水压力的作用,认为土空隙中的水都是结合水,没有自由水,因此不形成水压力。土颗粒与其空隙中的结合水是一整体,直接用土的饱和重度计算土体的侧压力即可。显然这一方法在理论上讲仅适用于渗透系数为零的不透水层。然而,完全不透水的土层是不存在的,因此水土合算法仍然是岩土工程界的一个争论问题。持赞同观点者认为:在一些渗透性很差的粘性土层中,水压力几乎为零,再按水土分算法计算水压力会使支护结构的造价大大增加,显然是不合适的;而持反对观点者认为:粘性土虽然渗透性差,但当支护结构本身具有较好的防水性能时(如地连墙结构、有止水帷幕的排桩结构

灌浆基础知识和计算公式

灌浆基础知识和计算公式 一、灌浆的含义: 简单的说,灌浆就是将具有胶凝性的浆液或化学溶液,按照规定的配比或浓度,借用机械(或灌浆自重)对之施加压力,通过钻孔或其他设施,压送到需要灌浆的部位中的一种施工技术。 二、灌浆的实质: 充填这些节理裂隙、孔隙、空隙、孔洞和裂缝之处,形成结石,从而起到固结、粘合、防渗,提高承载强度和抗变形能力以及传递应力等作用。 三、灌浆分类: 按照大坝坝基岩类构成,可分为岩石灌浆和砂砾石层灌浆。 按照灌浆的作用,可分为固结灌浆、帷幕灌浆、回填灌浆和接触灌浆。 按照灌注材料,可分为水泥灌浆、水泥砂浆灌浆、水泥粘土灌浆以及化学灌浆等。 按照灌浆压力,可分为高压灌浆(3MPa以上)、中压灌浆(0.5~3MPa)、低压灌浆(0.5MPa以下),后两类也可称为常规压力灌浆。 按照灌浆机理,可分为渗入性灌浆和张裂式灌浆。 四、灌浆材料: 水泥(磨细水泥、超细水泥)、砂、粉煤灰、粘土和膨润土、水外加剂(速凝剂、减水剂、稳定剂) 五、水泥浆液: 配置水泥浆时,多依照质量比例配制,也有按照体积比例配制的。我国各灌浆工程都采用质量比,帷幕灌浆使用范围一般多为水:水泥=5:1~0.5:1,固结灌浆多为2:1~0.5:1。 1、水泥浆的配制:

将水泥和水依照规定的比例直接拌和,这种情况最为简单。先将计量好的水放入搅拌筒内,再将水泥按所规定的质量秤好后,放入筒中直接搅拌即可。例如欲配制各种浓度的水泥浆100L,其所用的水泥和水量可见下【表1】。 配制水泥浆100L 【表1】 注:水泥的密度以3kg/L或3g/cm3计 在灌浆过程中,常需要将搅拌桶内的水泥浆变浓。如原水泥浆100L,加水泥质量可见下【表2】。 在原100L水泥浆中加水泥使水泥浆变浓【表2】注:加水泥单位为 kg 注:水泥的密度以3kg/L或3g/cm3计 在灌浆过程中,常需要将搅拌桶内的水泥浆变稀。如原水泥浆100L,加水体积可见下【表3】。 在原100L水泥浆中加水使水泥浆变稀【表3】注:加水单位为L

相关文档