文档库 最新最全的文档下载
当前位置:文档库 › 带串联间隙氧化锌避雷器的工频放电电压

带串联间隙氧化锌避雷器的工频放电电压

带串联间隙氧化锌避雷器的工频放电电压
带串联间隙氧化锌避雷器的工频放电电压

金属氧化物避雷器常见故障及处理

金属氧化物避雷器常见故障及处理避雷器是电力系统所有电力设备绝缘配合的基础设备。合理的绝缘配合是电力系统安全、可靠运行的基本保证,是高电压技术的核心内容。而所有电力设备的绝缘水平,是由雷电过电压下避雷器的保护特性确定的(在某些环境中,由操作过电压下避雷器的保护特性确定)。金属氧化物避雷器,简称氧化锌避雷器,以其良好的非线性,快速的陡波响应和大通流能力,成为新一代避雷器的首选产品。由于避雷器是全密封元件,一般不可以拆卸。同时使用中一旦出现损坏,基本上没有修复的可能。所以其常见故障和处理与普通的电力设备不同,主要是预防为主。选则原则。避雷器是过电压保护产品,其额定电压选择比较严格,且与普通电力设备完全不同,容易出现因选型失误造成的事故。对于这类事故,只要明确了正确的选择方法,就可以有效避免。正确的金属氧化物避雷器额定电压的选择,应遵循以下原则。 1、对于有间隙避雷器,额定电压依据系统最高电压来选择。10kV 及以下的避雷器,额定电压按系统最高电压的1.1 倍选取。35kV 至66kV 避雷器,额定电压按系统最高电压选取。110kV 及以上避雷器,额定电压按系统最高电压的0.8 倍选取。例如:35kV 有间隙避雷器,额定电压应选择42kV 。 2、对于无间隙避雷器,额定电压同样依据系统最高电压来选择。10kV 及以下的避雷器,额定电压按系统最高电压的1.38倍选取。35kV至66kV避雷器,额定电压按系统最高电压的1.25 倍选取。110kV 及以上避雷器,额定电压按系统最高电压的0.8倍选取。例如:10kV无间隙避雷器,额定电压应选择17kV。但对于电机保护用的无间隙避雷器,不按额定电压选择,而按持续运行电压选择。一般应选择持续运行电压与电机额定电压一致的避雷器。例如:13.8kV 电机,应选用13.8kV 持续运行电压的避雷器,即:选用17.5/40 的避雷器。具体的型号选择,可参考GB11032-2000 标准,或我公司的避雷器产品选型手册。另外,由于传统碳化物阀式避雷器以及按1989老国家标准制作的早期金属氧化物避雷器在很多系统中还在使用。为确保新生产的产品在这类老系统中可以安全的配合,遇到老系统产品的更换替代时,建议用户直接咨询我公司,以确保选型正确。二、正确的预防及维护性试验方法。预防及维护性试验,是及时发现事故 隐患,防止隐患演变为事故的重要手段。金属氧化物避雷器的预防及维护性试验,一般每两年到四年进行一次。有条件的用户,最好每年雷雨季节前测试一次。以最大可能的提早发现事故隐患。测试的目的是提前发现产品的劣化倾向, 及早作出更换。测试主要考察两个性能指标:a、转变电压值(稳压电源下), 用以考察避雷器的工作特性有无明显变化。b、泄漏电流值(转变点以下),用以考察避雷器的安全特性有无明显变化。 1、有间隙金属氧化物避雷器的测试方法。a、测试工频放电电压值,考 察避雷器的工作特性。具体的试验方法和合格范围可参考JB/T9672-2005 ,或者我公司的产品使用说明书。一般以偏差不大于出厂参数的10%为正常。b、测试系统最高电压下的电导电流值,考察避雷器的安全特性。具体的试验方法和合格范围可参考 JB/T9672-2005 ,或者我公司的产品使用说明书。一般以不大于20 ^A为正常。 2、无间隙金属氧化物避雷器的测试方法。a、测试直流1mA 参考电压值,考察避雷器的工作特性。具体的试验方法和合格范围可参考GB11032-2000 ,或者我公司的产品使用说明书。一般以偏差不大于出厂参数的5%为正常。b、测试0.75 倍直流1mA 参考电压下的泄漏电流值,考察避雷器的安全特性。具体的试验方法和合格范围可参考GB11032-2000 ,或者我公司的产品使用说明书。一般以不大于50 yA为正常。 3、其它的替代办法。在没有合适的测试设备,不能进行上述的测试时,可以采用一些替代的办法,但同时也存在一些测试盲点。a、用摇表测试绝缘电

一种提高±800kV直流极线避雷器直流参考电压试验准确性的方法

一种提高±800kV直流极线避雷器直流参考电压试验准确性的方法 发表时间:2017-11-14T20:07:46.403Z 来源:《电力设备》2017年第20期作者:张世峰赵宝斌 [导读] 摘要:现行±800kV特高压换流站极线避雷器直流参考电压试验数据准确率较低。 (北京送变电公司北京房山 102401) 摘要:现行±800kV特高压换流站极线避雷器直流参考电压试验数据准确率较低。根据极线避雷器特点,确定影响极线避雷器直流参考电压试验数据准确率的因素,提出一种正向加压法来改进极线避雷器的直流参考电压试验。试验证明,该方法可有效提高极线避雷器直流参考电压试验的准确性。 关键词:±800kV特高压直流工程;极线避雷器;正向加压法;直流参考电压 Abstract:The data of voltage reference test for ±800kV UHV converter station pole bus arrester is in low accuracy. According to the characteristics of pole bus arrester,the impacting factors on the accuracy of voltage reference test for DC about pole bus arrester is determined. A forward voltage method is presented to improve the voltage reference test for DC of pole bus arrester. Tests show that the proposed method has high accuracy on voltage reference test for DC about pole bus arrester. Key words:±800kV UHV DC project;pole bus arrester;forward voltage method;voltage reference for DC 0 引言 目前,我国±800kV特高压直流输电工程建设正在稳步推进[1-3]。特高压直流避雷器是特高压直流输电系统过电压保护的关键设备,用以限制特高压直流工程建设中出现的雷电过电压和各种因操作及故障引起的暂态过电压。它对于确定整个工程的绝缘水平起着决定性的作用,并直接影响着设备的体积和造价,乃至整个建设工程的占地面积和工程造价等[4-5]。 换流站采用计划检修方式,每年安排全站停电,对电气设备集中开展年度检修及预防性试验。在换流站年度检修中,测量直流参考电压及泄漏电流是避雷器重要的预防性试验项目,其目的是检查氧化锌电阻片经长时间运行后是否受潮、老化,确定其电气性能及绝缘性能是否符合规程要求。而换流站年度检修计划的停电时间通常很短,预防性试验工期更为紧迫,因此,为增加试验安全性,提高工作效率,保证按时完成工作,提高直流试验数据的准确性,以确保试验数据直观、准确地反映直流极线避雷器的电气性能,同时避免反复试验造成的工期压力,提出一种提高±800kV直流极线避雷器预防性试验准确性的方法[6]。 1 极线避雷器特点 根据安装位置不同,直流系统用避雷器可分为阀避雷器、桥避雷器、平波电抗器避雷器、直流母线避雷器、直流线路避雷器、直流滤波器避雷器、直流中性点避雷器和交流母线避雷器等[7]。特高压直流极母线避雷器(简称DB避雷器),包括直流极线避雷器DB1和直流母线避雷器DB2。DB1、DB2避雷器的电气参数基本一致[8-11],只是安装位置不同。DB2位于直流极线平波电抗器线路侧且紧靠平波电抗器,DB1位于直流线路出口处,两者都用于限制直流开关场的操作和雷电引起的暂态过电压问题[12]。DB避雷器的合理配置直接关系到直流开关场设备的绝缘水平和工程造价,以及特高压直流输电的安全运行,其在输电工程中起着极其重要的作用。 国内外科研人员通过对±800kV特高压直流极线避雷器DB工况的研究,发现直流极线避雷器DB的运行条件和工作原理与交流避雷器有很大的差别,主要表现在直流输电系统中电容元件远比交流系统多,而且在正常运行时均处于全部充电状态,一旦有某一只避雷器动作,他们将通过这一只动作避雷器进行大量放电[13]。所以换流站避雷器的通流容量要比常规交流避雷器大得多。 2 影响DB直流试验数据准确率因素确定 通过对复龙±800kV特高压换流站、中州±800kV特高压换流站、金华±800kV特高压换流站以及锦屏±800kV特高压换流站极线避雷器直流试验数据进行抽查统计,发现极线避雷器直流试验数据准确率较低,如表1所示。

避雷器的校验工作不可忽视参考文本

避雷器的校验工作不可忽 视参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

避雷器的校验工作不可忽视参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 目前,雷雨季节已经到来,正值避雷器投入运行前的 检验安装阶段。然而,笔者发现许多电管站忽视了这项工 作,甚至将未经过工频校验的避雷器投入电网运行。这种 做法是不对的。 工频交流耐压试验是避雷器校验的主要项目。其试验 电压的波形和频率都接近于避雷器遭雷击时的实际情况, 可以有效地测量出避雷内部游离性的缺陷。用工频交流耐 压试验来校验避雷器,具有真实性强、准确率高等特点。 经试验,虽然有些避雷器从外观上看,无放电烧痕迹,瓷 裙也完整无损,就是用2500V的摇表测量其绝缘电阻值也 符合要求。但是,用工频放电电压试验时,其缺陷便暴露 无遗。不是泄漏电流大,就是放电压达不到要求。若将此

类避雷器投入电网运行,工频放电压低者,一旦下雨受潮,一相不合格则发生单相接地,两相不合格者则发生相间短路事故;工频放电电压高者,若遭雷击时,则不能做到对地放电,强大的雷电流将会损坏电气设备,或使电气设备带有危险的感应过电压,仍然不能起到避雷保护作用。 为此,笔者建议各地的电力管理部门应督促有关用户,重视防雷保护工作,认真做好避雷的工频试验。并对不合格的避雷器,应采取就地销毁处理,以防止其流入异地重新安装使用。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

避雷器试验

避雷器试验 一.实验目的: 了解阀型避雷器的种类、型号、规格、工作原理及不同种类避雷器的结构和适用范围,掌握阀型避雷器电气预防性试验的项目、具体内容、试验标准及试验方法。 二.实验项目: 1.FS-10型避雷器试验 (1).绝缘电阻检查 (2).工频放电电压测试 2.FZ-15型避雷器试验 (1).绝缘电阻检查 (2).泄漏电流及非线性系数的测试 三.实验说明: 阀型避雷器分普通型和磁吹型两类,普通型又分FS型(配电型)和FZ型(站用型)两种。它们的作用过程都是在雷电波入侵时击穿火花间隙,通过阀片(非线性电阻)泄导雷电流并限制残压值,在雷电过后又通过阀片减小工频续流并通过火花间隙的自然熄弧能力在工频续流第一次过零时切断之,避雷器实际工作时的通流时间≯10ms(半个工频周期)。FS型避雷器的结构最简单,如图4-1所示,由火花间隙和非线性电阻(阀片)串联组成。FZ型避雷器的结构特点是在火花间隙上并联有均压电阻(也为非线性电阻),如图4-2所示,增设均压电阻是为了提高避雷器的保护性能,因为多个火花间隙串联后将引起间隙上工频电压分布不均,并随外瓷套电压分布而变化,从而引起避雷器间隙恢复电压的不均匀及不稳定,降低避雷器熄弧能力,同时其工频放电电压也将下降和不稳定。加上均压电阻后,工频电压将按电阻分布,从而大大改善间隙工频电压的分布均匀度,提高避雷器的保护性能。非线性电阻的伏安特性式为:U=CIα,其中C 为材料系数,α即为非线性系数(普通型阀片的α≈0.2、磁吹型阀片的α≈0.24、FZ型避雷器因均压电阻的影响,其整体α≈0.35~0.45),其伏安特性曲线如图4-3所示。可见流过非线性电阻的电流越大,其阻值越小,反之其阻值越大,这种特性对避雷器泄导雷电流并限制残压,减小并切断工频续流都很有利。另外,FS型避雷器的工作电压较低(≤10kv),而FZ型避雷器工作电压可做到220kv。FZ型避雷器中的非线性电阻(均压电阻和阀片)的热容量较FS型为大,因其工作时要长期流过工频漏电流(很小、微安级)。磁吹型避雷器有FCZ型(电站用)和FCD型(旋转电机用)两种,其结构与FZ型相似,间隙上都有均压电阻,只是磁吹型避雷器采用磁吹间隙,并配有磁场线圈和辅助间隙。由于以上结构上的不同,所以对FS 型和FZ(FCZ、FCD)型避雷器的预防性试验项目和标准都有很大的不同。 根据《电力设备预防性试验规程》,对FS型避雷器主要应做绝缘电阻检查和工频放电电压试验,对FZ(及FCZ、FCD)型避雷器则应做绝缘电阻检查和直流泄漏电流及非线性系数的测试。只有在其解体检修后才要求做工频放电电压试验(需要专门设备)。避雷器其它的预防性试验还包括底座绝缘电阻的检查、放电计数器的检查及瓷套密封性检查等。 避雷器试验应在每年雷雨季节前及大修后或必要时进行。绝缘电阻的检查应采用电压≥2500v及量程≥2500MΩ的兆欧表。要求对于FS型避雷器绝缘电阻应不低于2500MΩ;FZ(FCZ、FCD)型避雷器绝缘电阻与前次或同类型的测试值比较,不应有明显差别。FS型避雷器的工频放电电压试验的合格值如表4-1所列。 表 FZ型避雷器的直流泄漏电流及非线性系数的测试的试验电压及电导电流值如表4-2所列,所测泄漏电流值

避雷器耐压试验

《避雷器耐压试验》 避雷器直流耐压试验 避雷器直流耐压试验一、试验目的 避雷器施加高压电压时,避雷器不可避免地要产生泄流电流,这时衡量避雷器质量好坏是否合格的一个重要指标。 二、试验数据其试验数据≦50微安三、实验步骤 1、首先拆除避雷器上与计数器连线。 2然后用计数器检测仪将计数器进行试验。 3、用摇表测量避雷器上口对底座,上口对地及底座对地的绝缘电阻,其阻值应≥2500兆欧。3连接操作箱与直流高压发生器及避雷器之间的连线,仪器必须可靠接地。 4、合上电源开关,按下操作箱上的“启动”按钮,“电源”指示灯亮,慢慢调节“粗调”旋钮,操作箱电压表显示所调电压,当微安表显示电流接近1000微安时,可用“细调”旋钮调节,当微安表显示1000微安时,停止调节,快速记录电压表电压值,同时按下75%电压显示锁存按钮,将电压表电压降至75%的电压值,然后开始计时1分钟,1分钟后记录微安表上显示的电压值。 6、降压,当电压表上电压显示为零时,“零位”指示灯亮,按下“停止”按钮和电源开关。 7、用放电棒对高压发生器及避雷器进行充分放电。 8、然后用摇表摇测避雷器上口对地,上口对底座,底座对地的绝缘电阻。 9、恢复所拆避雷器及计数器接线。 四、注意事项 1、试验设备在通电前,务必接上地线。 2、实验前应将避雷器清扫干净,以减少测量误差。 3、接好线应复查无误后方可加压,同时应检查接地是否良好。 4、开机前应检查操作箱“粗调”“细调”旋钮是否良好,是否在零位。 5、实验前,应检查电源电压AC220V。

6、加压速度不能太快,以防止突然高压损坏避雷器。 7、在试验过程中应密切观察避雷器及各表计,如出现异常情况,应立即降压,并切断操作箱电源,停止操作。 五、主接线图 避雷器直流耐压试验.doc 避雷器直流耐压试验一、试验目的 避雷器施加高压电压时,避雷器不可避免地要产生泄流电流,这时衡量避雷器质量好坏是否合格的一个重要指标。 二、试验数据其试验数据?50微安三、实验步骤 1、首先拆除避雷器上与计数器连线。 2然后用计数器检测仪将计数器进行试验。 3、用摇表测量避雷器上口对底座,上口对地及底座对地的绝缘电阻,其阻值应?2500兆欧。3连接操作箱与直流高压发生器及避雷器之间的连线,仪器必须可靠接地。 4、合上电源开关,按下操作箱上的“启动”按钮,“电源”指示灯亮,慢慢调节“粗调”旋钮,操作箱电压表显示所调电压,当微安表显示电流接近1000微安时,可用“细调”旋钮调节,当微安表显示1000微安时,停止调节,快速记录电压表电压值,同时按下75%电压显示锁存按钮,将电压表电压降至75%的电压值,然后开始计时1分钟,1分钟后记录微安表上显示的电压值。 6、降压,当电压表上电压显示为零时,“零位”指示灯亮,按下“停止”按钮和电源开关。 7、用放电棒对高压发生器及避雷器进行充分放电。 8、然后用摇表摇测避雷器上口对地,上口对底座,底座对地的绝缘电阻。 9、恢复所拆避雷器及计数器接线。 四、注意事项 1、试验设备在通电前,务必接上地线。 2、实验前应将避雷器清扫干净,以减少测量误差。

避雷器基础知识讲解(图文) 民熔

避雷器 培训的主要内容: 避雷器的基本知识 1.避雷器的分类 2、各类避雷器的特点 3、金属氧化物避雷器( MOA ) 4、氧化锌避雷器的主要电气参数 5、避雷器型号说明 76、氧化锌避雷器的试验 一、避雷器基本知识1定义:能释放雷电或兼能释放电力系统操作过电压能量、保护电气设备免受瞬时过电压(雷电过电压、操作过电压、工频暂态过电压冲击)危害又能截断续流,不致引|起系统接地短路的电器装置。 ■作用:当过电压出现时,避雷器两端子间的电压被限制在不超过规定值,使电器设备免受过电压损坏;过电压作用后,又能使系统迅速恢复正常状态,以保证系统正常供电。 避雷器对过电压的保护作用: 避雷器的分类 保护间隙 排气式避雷器

阀式避雷器 普通阀式避雷器 磁吹式避雷器 金属氧化物避雷器( MOA ) 保护间隙 保护间隙由两个间隙(即主间隙和辅间隙)组成,常用的角型间隙与保护设备并联的 排气式避雷器 也称管型避雷器,实质上是- -种具有一种具有较高熄弧能力的保护间隙。 阀式避雷器 阀式避雷器的基本元件为间隙和非线性电阻(又称. 阀片)串联。 四、 3、各种类型的避雷器、保护间隙和排气型避雷器的伏安特性陡峭,放电色散大,而普通变压器和其他设备绝缘的冲击放电

特性相对平缓,不能很好地配合。 五、运行后,工作母线直接接地,形成高振幅的截止波,危及变压器的纵向绝缘。 六、阀式避雷器的缺点是普通型没有强制灭弧措施,阀片热容量有限,不能长期承受过电压冲击电流的影响。 七、磁吹式流量大,但阀阻力非线性系数高。 八、金属氧化物避雷器(MOA)的核心部件是ZnO阀,具有理想的非线性伏安特性。 具有优点的氧化锌避雷针,例如减少残余压力、响应速度、折叠波特性的缓慢、低动作负荷、高重复强度等。 大流量,性能稳定,耐老化性强。 结构简单、小、易于散装、价格低廉 氧化锌保险杠的主参数额定电压适用于保险杠端子之间工作频率电压的最有效值。冲击根据该电压设计的避雷针可在预定动作负载试验中临时确定 电压下的正确动作 连续操作电压允许永久地将工作频率电压的有效值应用于防雷电压决定了防雷器的长期老化,即吸收能量后温度的增加。张力这个电

电气试验总结

总结 各位领导: 一、电气工作自10月20日开工至今已过去一个多月,为了使10KV、400V 配电能够成功送电,我公司人员按照国家有关规范、规程和制造厂的规定,逐次对10KV母线、10KV电流互感器、10KV电压互感器、10KV电力电缆、干式变压器、真空断路器、过电压保护器、高压电机进行电气交接试验、10KV开关柜进行了二次传动试验。 二、主要做了如下工作: 1.10KVI段II段母线绝缘电阻及交流耐压试验合格,完成共两段。 2.10KV电流互感器变比、极性、励磁特性、绝缘电阻及交流耐压试验合格,完成共66台。 3.10KV电压互感器变比、极性、励磁特性、绝缘电阻及交流耐压试验合格,完成共6台。 4.10KV电力电缆绝缘电阻及交流耐压试验合格,完成共25根。 5.10KV干式变压器极性及接线组别、直流电阻测量、变比测定、绝缘及耐压试验合格,完成共4台。 6.10KV真空断路器绝缘电阻、交流耐压试验、机械特性测试、导电回路接触电阻测试合格,完成共23台。 7.三相组合式过电压保护绝缘电阻及工频放电电压试验合格,完成共66台。 8.10KV电动机绝缘电阻、线圈直流电阻及交流耐压试验合格,完成共13台。

9.继电综合保护按设计院整定值完成整定工作合格,完成共23台。 10.10KV高压柜远方就地传动试验合格,完成共20台。 11.10KVI段II段PT柜电压并列试验合格,完成共2台。 12.400VI段II段进线开关远方就地传动试验合格,完成共2台。 13.400VI段II段备用电源进线开关就地传动试验合格,完成共2台。 14.400VI段II段备自投静态试验合格,完成共2台。 三、试验过程中发现了一系列的问题,并逐次进行了处理 1.10KV母线第一次做耐压试验,放电声音比较响、升压困难,后经过处理,电压升到规定值 2.做继电保护校验时发现控制电缆有接错线及没有接线等问题并进行了处理。 3.原设计电度表屏有4台厂变的电度表,因高压柜没有设计去电度表的电流信号,现设计院把4台厂变的电度表取消。 4.10KV一段二段母线PT柜发现设计N相没有经过击穿保险接地,现击穿保险已安装完毕。 5.10KV一段二段母线电压设计有电压并列装置,但安装单位没有接线,现已解决并调试完毕。 6.10KV 4台厂变开关柜在传动试验时发现合不上闸,经厂家处理,现开关柜都能正常分合闸。 7.400V配电调试过程中, 1号2号400V进线开关二次原理图与设计图纸不

变电站避雷器原理及参数

变电站避雷器原理及参数 一、氧化锌避雷器的定义: 金属氧化锌避雷器(MOA)是一种过电压保护装置,它由封装在瓷套内的若干非线性电阻阀片串联组成。其阀片以氧化锌为主要原料,并配以其它金属氧化物,所以又称为氧化锌(Zno)避雷器。 二、氧化锌避雷器的工作原理: 在额定电压下,流过氧化锌避雷器阀片的电流仅为10-5A以下,相当于绝缘体。因此,它可以不用火花间隙来隔离工作电压与阀片。当作用在金属氧化锌避雷器上的电压超过定值(起动电压)时,阀片“导通”将大电流通过阀片泄入地中,此时其残压不会超过被保护设备的耐压,达到了保护目地。此后,当作用电压降到动作电压以下时,阀片自动终止“导通”状态,恢复绝缘状态,因此,整个过程不存在电弧燃烧与熄灭的问题。 三、结构: 一般220kV等级的氧化锌避雷器采用2串、110kV采用1串。氧化锌避雷器底部与底座绝缘*的是绝缘瓷套(有采用一个大瓷套或采用四各小瓷套)。氧化锌避雷器内部有一导线从底部引出至大地,当中串联一只泄漏电流表,以监视避雷器阀片绝缘情况。避雷器屏蔽线接于避雷器瓷套的最后一级裙边上,用一导线连接大地,作用是使瓷套表面电导电流不进入泄漏电流表,使泄漏电流表测量更加精确。 四、最常见异常分析及处理: 1、泄漏电流表为零。可能引起该现象的原因有:表计指示失灵;屏蔽线将电流表短接。处理方法为: (1)用手轻拍表计看是否卡死,无法恢复时,应添报缺单,修理或更换。 (2)用令克棒将屏蔽线与避雷器导电部分相碰之处挑开,既可恢复正常。 2、泄漏电流表指示偏大:根据历史数据进行分析,如发现表计打足,应判断避雷器有问题,应立即汇报调度,将避雷器退出运行,请检修检查。 3、避雷器瓷套管破裂放电。在工频情况下,避雷器的瓷套管用于保证避雷器必要的绝缘水平,如果瓷套管发生破裂放电,则将成为电力系统的事故隐患。此种情况,应及时停用、更换。

工频耐压试验装置说明书

RTYD-30kVA/50kV工频耐压试验装置RTYD-30kVA/50kV Withstand HV Test Set 使用说明书 User's Manual 武汉锐拓普电力设备有限公司 W uhan Retop Electric Device Co.,LTD

前言 一、衷心感谢您选用本公司的产品,您将获得本公司全面的技术支持和服务保障。 二、本说明书适用于RTYD-30kVA数显工频耐压试验装置。 三、您在使用本产品前,请仔细阅读本说明书,并妥善保存以备查阅。 四、在阅读本说明书或仪器使用过程中如有疑惑,可向我公司咨询。

目录 1、概述 1.1用途----------------------------------------------------------------------1 1.2性能特点------------------------------------------------------------------1 2、特别提示 2.1电源输入------------------------------------------------------------------2 2.2安全注意事项--------------------------------------------------------------2 2.3测试准确度方面------------------------------------------------------------2 2.4操作方面------------------------------------------------------------------2 3、技术特征 3.1名称和分类----------------------------------------------------------------3 3.2主机结构型式与尺寸-------------------------------------------------------3 3.3使用电源------------------------------------------------------------------3 3.4使用环境要求--------------------------------------------------------------3 3.5安全性能------------------------------------------------------------------3 3.6测量精度------------------------------------------------------------------3 3.7测试项目-----------------------------------------------------------------3 4、工作原理 4.1原理框图------------------------------------------------------------------4 4.2工作原理------------------------------------------------------------------4 5、面板布置 5.1面板示意图----------------------------------------------------------------5 5.2各部件说明----------------------------------------------------------------5 6、基本操作 6.1计时触发电流--------------------------------------------------------------6 6.2过流保护------------------------------------------------------------------6 6.3零位保护------------------------------------------------------------------6 7、测试

高电压技术实验实验报告(二)

----高电压技术实验报告 高电压技术实验报告 学院电气信息学院 专业电气工程及其自动化

实验一.介质损耗角正切值的测量 一.实验目的 学习使用QS1型西林电桥测量介质损耗正切值的方法。 二.实验项目 1.正接线测试 2.反接线测试 三.实验说明 绝缘介质中的介质损耗(P=ωC u2 tgδ)以介质损耗角δ的正切值(tgδ)来表征,介质损耗角正切值等于介质有功电流和电容电流之比。用测量tgδ值来评价绝缘的好坏的方法是很有效的,因而被广泛采用,它能发现下述的一些绝缘缺陷: 绝缘介质的整体受潮; 绝缘介质中含有气体等杂质; 浸渍物及油等的不均匀或脏污。 测量介质损耗正切值的方法较多,主要有平衡电桥法(QS1),不平衡电桥法 及瓦特表法。目前,我国多采用平衡电桥法,特别是 工业现场广泛采用QS1型西林电桥。这种电桥工作电 压为10Kv,电桥面板如图2-1所示,其工作原理及操 作方法简介如下: ⑴.检流计调谐钮⑵.检流计调零钮 ⑶.C4电容箱(tgδ)⑷.R3电阻箱 ⑸.微调电阻ρ(R3桥臂)⑹.灵敏度调节钮 ⑺.检流计电源开关⑻.检流计标尺框 ⑼.+tgδ/-tgδ及接通Ⅰ/断开/接通Ⅱ切换钮 ⑽.检流计电源插座⑾.接地 ⑿.低压电容测量⒀.分流器选择钮⒁.桥体引出线 1)工作原理: 原理接线图如图2-2所示,桥臂BC接入标准电容C N (一般C N =50pf),桥臂BD由固定的无感电阻R 4 和可调电 容C 4并联组成,桥臂AD接入可调电阻R 3 ,对角线AB上接 QS1西林电桥面板图

入检流计G ,剩下一个桥臂AC 就接被试品C X 。 高压试验电压加在CD 之间,测量时只要调节R 3和C 4就可使G 中的电流为零,此时电桥达到平衡。由电桥平衡原理有: BD CB AD CA U U U U = 即: BD CB AD CA Z Z Z Z = (式2-1) 各桥臂阻抗分别为: X X X X CA R C j R Z Z ?+= =?1 44441R C j R Z Z BD ?+==? 33R Z Z AD == N N CB C j Z Z ?1= = 将各桥臂阻抗代入式2-1,并使等式两边的实部和虚部分别相等,可得: 3 4 R R C C N X ? = 44R C tg ??=?δ (式2-2) 在电桥中,R4的数值取为=10000/π=3184(Ω),电源频率ω=100π,因此: tg δ= C 4(μf ) (式2-3) 即在C 4电容箱的刻度盘上完全可以将C 4的电容值直接刻度成tg δ值(实际上是刻度成tg δ(%)值),便于直读。 2)接线方式: QS1电桥在使用中有多种接线方式,如下图所示的正接线、反接线、对角接线,低压测量接线等。 正接线适用于所测设备两端都对地绝缘的情况,此时电桥的D 点接地,试验高电压在被试品及标准电容上形成压降后,作用于电桥本体的电压很低,测试操作很安全也很方便,而且电桥的三根引出线(C X 、C N 、E )也都是低压,不需要与地绝缘。 反接线适用于所测设备有一端接地的情况,这时是C 点接地,试验高电压通过电桥加在被试品及标准电容上,电桥本体处于高电位,在测试操作时应注意安全,电桥调节手柄应保证具有15kv 以上的交流耐压能力,电桥外壳应保证可靠接地。电桥的三根引出线为高压线,应对地绝缘。 对角接线使用于所测设备有一端接地而电桥耐压又不够,不能使用反接线的情况,但这种接线的测量误差较大,测量结果需进行校正。 低压接线可用来测量低压电容器的电容量及tg δ值,标准电容可选配0.001μf (可测C X 范围为300pf ~10μf )或0.01μf (可测C X 范围为3000pf ~100μf ) 3.分流电阻的选择及tg δ值的修正:

工频交流耐压试验

工频交流耐压试验工频交流(以下简称交流)耐压试验是考验被试品绝缘承受各种过电压能力最严格有效的方法,对保证设备安全运行具有重要意义。 交流耐压试验的电压、波形、频率和在被试品绝缘内部电压的分布,均符合实际运行情况,因此,能有效地发现绝缘缺陷。交流耐压试验应在被试品的绝缘电阻及吸收比测量、直流泄漏电流测量及介质损失角正切值tg δ测量均合格后进行。如在这些试验中已查明绝缘有缺陷,则应设法消除,并重新试验合格后才能进行交流耐压试验,以免造成不必要的损坏。 交流耐压试验对于固体有机绝缘来说,会使原来存在的绝缘弱点进一步发展(但又不致于在耐压时击穿),使绝缘强度逐渐衰减,形成绝缘内部劣化的积累效应,这是我们所不希望的。因此,必须正确地选择试验电压的标准和耐压时间。试验电压越高,发现绝缘缺陷的有效性越高,但被试品被击穿的可能性越大,积累效应也越严重。反之,试验电压低,又使设备在运行中击穿的可能性增加。实际上,国家根据各种设备的绝缘材质和可能遭受的过电压倍数,规定了相应的出厂试验电压标准。具有夹层绝缘的设备,在长期运行电压的作用下,绝缘具有累积效应,所以现行有关标准规定运行中设备的试验电压,比出厂试验电压有所降低,且按不同设备区别对待(主要由设备的经济性和安全性来决定)。但对纯瓷套管、充油套管及支持绝缘子则例外,因为它们几乎没有累积效应,故对运行中的设备就取出厂试验电压标准。 绝缘的击穿电压值与加压的持续时间有关,尤以有机绝缘特别明显,其击穿电压随加压时间的增加而逐渐下降。有关标准规定耐压时间为一分钟,一方面是为了便于观察被试品情况,使有弱点的绝缘来得及暴露(固体绝缘发生热击穿需要一定的时间);另一方面,又不致时间过长而引起不应有的绝缘击穿。 第一节试验方法 一、原理接线 交流耐压试验的接线,应按被试品的要求(电压、容量)和现有试验设备条件来决定。通常试验变压器是成套设备(包括控制及调压设备),对调压及控制回路加以简化如图一所示。 图1

避雷器预防性试验规程

避雷器预防性试验规程 修改时间:2011-9-21 09:05:04 浏览次数:838次 14避雷器 14.1阀式避雷器的试验项目、周期和要求见表39。 表39阀式避雷器的试验项目、周期和要求 序 号 项目周期要求说明 1绝缘电 阻 1)发电厂、 变电所避雷 器每年雷雨 季前 2)线路上 避雷器1~3 年 3)大修后 4)必要时 1)FZ(PBC.LD)、FCZ和FCD型避雷器的绝 缘电阻自行规定,但与前一次或同类型的测量 数据进行比较,不应有显著变化 2)FS型避雷器绝缘电阻应不低于2500MΩ 1)采用2500V及以上兆欧表 2)FZ、FCZ和FCD型主要 检查并联电阻通断和接触情 况 2 电导电 流及串联 组合元件 的非线性 因数差值 1)每年雷 雨季前 2)大修后 3)必要时 1)FZ、FCZ、FCD型避雷器的电导电流参考 值见附录F或制造厂规定值,还应与历年数据 比较,不应有显著变化 2)同一相内串联组合元件的非线性因数差 值,不应大于0.05;电导电流相差值(%)不应大 于30% 3)试验电压如下: 1)整流回路中应加滤波电容 器,其电容值一般为0.01~ 0.1μF,并应在高压侧测量电 流 2)由两个及以上元件组成的 避雷器应对每个元件进行试 验

元件额 定电压kV 3610152030 3)非线性因数差值及电导电 流相差值计算见附录F 4)可用带电测量方法进行测 量,如对测量结果有疑问时, 应根据停电测量的结果作出 判断 5)如FZ型避雷器的非线性 因数差值大于0.05,但电导电 流合格,允许作换节处理,换 节后的非线性因数差值不应 大于0.05 6)运行中PBC型避雷器的 电导电流一般应在300~ 400μA范围内 试验电 压U1 kV ———81012 试验电 压U2 kV 4610162024 3工频放电 电压1)1~3年 2)大修后 3)必要时 1)FS型避雷器的工频放电电压在下列范围内:带有非线性并联电阻的阀 型避雷器只在解体大修后进 行 额定电压 kV 3610 放电 电压 kV 大修后9~11 16~ 19 26~31 运行中8~12 15~ 21 23~33 2)FZ、FCZ和FCD型避雷器的电导电流值及 FZ、FCZ型避雷器的工频放电电压参考值见附

流场空气间隙放电特性的高海拔校正

2005年8月第6卷第8期电力设备 ElectricalEauipment Agu.2005 VOI.6NO.8 换流站直流场空气间隙放电特性的高海拔校正 宿志一1,尚涛2,王代荣3 (1.中国电力科学研究院,北京市100085;2.中国南方电网有限公司,广东省广州市510620; 3.西南电力设计院,四川省成都市610021) 寨 摘要:整理和分析了中国电力科学研究院和云南电力试验研究所有关换流站直流场典型电极的操作波放电特性模拟试验数据,讨论了不同海拔高度下典型间隙的操作冲击放电电压的校正方法。文章指出:可以根据IEC和国家标准提出的g参数法以及文中得出的典型间隙公式确定海拔2000m以下的换流站直流场的空气间隙。 关键词:换流站;直流场;空气间隙;操作冲击 中图分类号:TM721;TM852 经研究表明,无论是棒一板问隙,还是导线一塔间隙,预加的直流电压都可以改善正极性操作冲击的绝缘强度。因此,可用纯正极性操作冲击来确定换流站直流场空气问隙的距离。由于空气间隙的正极性操作冲击放电电压低于负极性操作冲击放电电压,因此本文只对空气间隙的正极性操作冲击放电电压进行研究。此次试验主要是在中国电力科学研究院(简称电科院,处在低海拔地区,海拔高度为50m)高压试验大厅完成的,同时结合云南电力试验研究所(简称云南所,处在高海拔地区,海拔高度为l970m)高压试验基地的试验结果,进行了高海拔验证,从而提出了高海拔修正意见。 当换流站直流场设备空气间隙结构不同时,其操作冲击击穿电压是不一样的。根据我国葛州坝一南桥(简称葛南)高压直流换流站和天生桥一广州(简称天广)高压直流换流站以及国#1-直流工程换流站(如美国太平洋联络线Sylmar站和IPP工程Adelanto站等)直流场设备的布置情况,选取管母线一构架与遮栏、软母线一构架与遮栏作为典型电极。 1不同海拔高度下操作冲击模拟试验 1.1试验装置与试品 低海拔和高海拔的直流场典型间隙操作冲击模拟试验分别在电科院高压试验大厅(43mX30mX26.5m)和云南所户外高压试验场(1000m2)进行。试验装置与模拟试品的主要尺寸及参数见表1。 表1试验装置与模拟试品的主要尺寸及参数 试验地点电科院高压大厅(43m×30111×26.5in)云南所户外高压试验场 海拔高度/rll501970 3600kV、180kJ冲击电压发生器,可产生+250/2500妒的3600kV、180l【J冲击电压发生器,可产生试验装置 标准操作波+200/1500斗s的操作波 管母线长10in,直径110mm,两端装屏蔽环长9.6in,直径150inm,两端装屏蔽环 长10m,由4根西34mm镀锌铁管组成的分裂导线(分裂问长10In,由4根4,34mm镀锌铁管组成的分裂软母线 距为170mill),两端装屏蔽环导线(分裂间距为170mm),两端装屏蔽环 构架与遮拦模拟钢构架高1.85nl,模拟遮栏高1.8m,二者相距2.5m模拟钢构架高1.85nl,模拟遮栏高1.8in,二者 相距2.5111 导线对地距离/nl66 软母线与构架和遮栏平行(软母线在遮栏侧构架正上方); 软、硬母线与构架和遮栏垂直(软母线最低点在试品布置软母线与构架和遮栏垂直(软母线最低点在构架正上方)。硬 构架正上方) 母线只与构架和遮栏垂直(软母线最低点在构架正上方)布置 1.2试验条件与试验方法 气象参数的测量,两地统一使用动槽式水银气压计和通风式干湿温度计记录气压和干、湿球温度。为使两地试验结果易于比较,尽可能选取较干燥的晴好天气,保障试验期间天气的稳定,特别是每一间隙的试验要在同一气象条件下完成。 试验采用+250/2500灿(电科院)或+200/1500炉(云南所)操作波进行,采用升降法求取50%放电电压,每种工况放电次数为30一40次,间隙距离的试 ?本文是贵州一广州-t-500kV直流工程咨询项目“±500kV贵广直流输电工程安顺换流站外绝缘设计与高海拔修正”的子课题之一。主要工作人员还有李庆峰、梁宝生、李鹏、李明、陈磊、马仪、吴泽辉、龚天森、胡晓、余波等。

高电压技术实验实验报告(二)

高电压技术实验实验报告(二)

----高电压技术实验报告 高电压技术实验报告 学院电气信息学院

专业电气工程及其自动化

实验一.介质损耗角正切值的测量 一.实验目的 学习使用QS1型西林电桥测量介质损耗正切值的方法。 二.实验项目 1.正接线测试 2.反接线测试 三.实验说明 绝缘介质中的介质损耗(P=ωC u2 tgδ)以介质损耗角δ的正切值(tgδ)来表征,介质损耗角正切值等于介质有功电流和电容电流之比。用测量tgδ值来评价绝缘的好坏的方法是很有效的,因而被广泛采用,它能发现下述的一些绝缘缺陷: 绝缘介质的整体受潮; 绝缘介质中含有气体等杂质; 浸渍物及油等的不均匀或脏污。 测量介质损耗正切值的方法较多,主要有平衡电桥法(QS1),不平衡电桥法 及瓦特表法。目前,我国多采用平衡电桥法,特别是 工业现场广泛采用QS1型西林电桥。这种电桥工作电 压为10Kv,电桥面板如图2-1所示,其工作原理及操 作方法简介如下: ⑴.检流计调谐钮⑵.检流计调零钮 ⑶.C4电容箱(tgδ)⑷.R3电阻箱 ⑸.微调电阻ρ(R3桥臂)⑹.灵敏度调节钮 ⑺.检流计电源开关⑻.检流计标尺框

⑼.+tg δ/-tg δ及接通Ⅰ/断开/接通Ⅱ切换钮 ⑽.检流计电源插座 ⑾.接地 ⑿.低压电容测量 ⒀.分流器选择钮 ⒁.桥体引出线 1)工作原理: 原理接线图如图2-2所示,桥臂BC 接入标准电容C N (一般C N =50pf ),桥臂BD 由固定的无感电阻R 4和可调电容C 4并联组成,桥臂AD 接入可调电阻R 3,对角线AB 上接入检流计G ,剩下一个桥臂AC 就接被试品C X 。 高压试验电压加在CD 之间,测量时只要调节R 3 和C 4就可使G 中的电流为零,此时电桥达到平衡。由电桥平衡原理有: BD CB AD CA U U U U = 即: BD CB AD CA Z Z Z Z = (式 2-1) 各桥臂阻抗分别为: X X X X CA R C j R Z Z ?+= =?1 4 44 41R C j R Z Z BD ?+= =? 3 3R Z Z AD == N N CB C j Z Z ?1= = 将各桥臂阻抗代入式2-1,并使等式两边的实部和虚部分别相等,可得: 3 4R R C C N X ? = 4 4 R C tg ??=?δ (式 2-2) 在电桥中,R4的数值取为=10000/π=3184(Ω),电源频率ω=100π,因此: QS1西林电桥面板图 QS1西林电桥面板图

避雷器技术规范

避雷器技术规范

中华人民共和国电力行业标准 进口交流无间隙金属氧化物 避雷器技术规范 DL/T613—1997 Specification and technical requirement for import AC gapless metal oxide surge arresters 中华人民共和国电力工业部1997-05-19批准1997-10-01实 施 前言 本规范是根据1991年电力部避雷器标准化技术委员会年会上提出的任务制订的(后补列为95DB 087—95计划)。 本规范是根据中国电力系统运行条件,按国际标准IEC 99—4《交流无间隙金属氧化物避雷器》和有关国家标准制订的。由于国家标准GB 11032—89《交流无间隙金属氧化物避雷器》与IEC 99—4标准对中性点非直接接地系统中避雷器的规定有所不同,增加了制订本规范的难度。在本规范的制订中尽量总结中国进口与国产交流无间隙金属氧化物避雷器的使用与生产经验,体现其先进性与实用性,为引进产品提供了较全面的技术要求。

本规范由电力工业部避雷器标准化技术委员会提出并负责起草。 主要起草人:舒廉甫、梁毓锦、李启盛、陈慈萱、刘先进。 1 范围 本规范规定了进口交流无间隙金属氧化物避雷器的技术要求,并按本规范规定的试验项目、试验方法和技术要求的标准进行设备验收。 本规范适用于3kV~500kV交流电网进口无间隙金属氧化物避雷器的技术谈判,并给出应遵循的基本要求,以及一般情况下的推荐值,个别地区的特殊使用条件应由订货单位向外商及制造部门提出,本规范不作规定。 2 引用标准 下列标准包含的条文,经过在本规范中引用而构成为本规范的条文。本规范出版时,所示版本均为有效。所有标准都会被修订,使用本规范的各方应探讨使用下列标准最新版本的可能性。 GB 156—93 标准电压 GB 311.1—83 高压输变电设备的绝缘配合 GB 2900.12—89 电工名词术语避雷器 GB/T 5582—93 高压电力设备外绝缘污秽等级 GB 11032—89 交流无间隙金属氧化物避雷器

相关文档