文档库 最新最全的文档下载
当前位置:文档库 › 热红外遥感图像温度反演

热红外遥感图像温度反演

地表温度反演实验报告

遥感原理与及应用 地表温度反演实验报告 专业:地理信息系统 班级: XXXXXXXX 姓名: XXX 学号: XXXXXX 成绩: 指导教师: XXX 2014年12月17日 一. 实验目的 1. 根据实际需要,学会在网上(如中国科学院遥

感与数字地球研究所数据共享网)下载研究区内的遥感数据; 2. 掌握在ENVI中实现简单的地表温度反演的原理与步骤。 二. 实验任务 1. 在中国科学院遥感与数字地球研究所数据共享网上订购并下载覆盖郫县的TM影像; 2. 在ENVI中实现简单的地表温度反演算法。 三. 实验数据 在中国科学院遥感与数字地球研究所数据共享网上下载的覆盖郫县地区的TM影像。

四. 实验原理 图1 TM 影像地表温度反演流程 1. 地表温度(Land Surface Temperature)反演公 式为: 2 1(1)K LST K In R ε=+, 其中,R m DN d =?+,2111607.76K W m sr m μ---=???,21260.56K K =。 2. 根据TM 辐射定标原理,热红外波段表观辐亮 度可以进一步写作: max min 6min 255L L R DN L -=?+, 其中LmaxBand6=15.303 , LminBand6=1.238。 3. 地表比辐射率ε为同温度下地表辐射能与黑体 辐射能的比率,其可以表示为: 1.0090.047(In )(0)NDVI NDVI ε=+>,

其中,4343 TM TM NDVI TM TM -=+,当0NDVI <=时(如水体)地表比辐射率取常数1。 五. 实验步骤 1. TM 数据下载 数 据查询和下载网址https://www.wendangku.net/doc/3c2820025.html,/query.html ,界面如图2 所示。 图2 中国科学院遥感与数字地球研究所数据共享 网址界面

红外图像的处理及其MATLAB实现

红外图像的处理及其MATLAB 函数实现 0.引言 随着红外技术日新月异的发展,红外技术在军事及人们日常生活中有着越来越广泛的应用。但由于红外探照灯及红外探测器件的限制,红外成像系统的成像效果仍然不够理想。在民用监测应用中,主要表现为夜视距离近,图像背景与被监测目标之间对比度模糊,被监测目标细节难以辨认,图像特征信息不明确等方面。为使图像更适于人眼观测、适用于图像后续目标识别及跟踪处理,有必要在红外图像采集和处理上做进一步的研究,来增强红外图像视觉效果。 1. 红外图像的获取及其特点 1.1 红外图像的获取 红外图像主要是由红外热像仪采集的。红外热像仪是一种二维热图像成像装置。热成像系统是一个光学一电子系统,可用于接收波长在m 100~75.0之间的电磁辐射,它的基本功能是将接收到的红外辐射转换成电信号,再将电信号的大小用灰度等级的形式表示,最后在显示器上显示出来。图1.1就是一张采集到的红外图像。 图1.1 输入的红外图像

1.2 红外图像的特点 红外图像反映了目标和背景不可见红外辐射的空间分布,其辐射亮度分布主要由被观测景物的温度和发射率决定,因此红外图像近似反映了景物温度差或辐射差。 根据其成像原理,总结红外图像特点如下: (1)红外热图像表征景物的温度分布,是灰度图像,没有彩色或阴影(立体感觉),故对人眼而言,分辨率低、分辨潜力差; (2)由于景物热平衡、光波波长、传输距离远、大气衰减等原因,造成红外图像空间相关性强、对比度低、视觉效果模糊; (3)热成像系统的探测能力和空间分辨率低于可见光CCD阵列,使得红外图像的清晰度低于可见光图像; (4)外界环境的随机干扰和热成像系统的不完善,给红外图像带来多种多样的噪声,比如热噪声、散粒噪声、f 1噪声、光子电子涨落噪声等等。噪声来源多样,噪声类型繁多,这些都造成红外热图像噪声的不可预测的分布复杂性。这些分布复杂的噪声使得红外图像的信噪比比普通电视图像低; (5)由于红外探测器各探测单元的响应特性不一致等原因,造成红外图像的非均匀性,体现为图像的固定图案噪声、串扰、畸变等。 由以上五点可知,红外图像一般较暗,且目标与背景对比度低,边缘模糊,视觉效果差。 通过以上比较分析,可以总结:可见光图像与红外图像的成像机理虽然不同(可见光图像是利用物体对光线的反射来获得的,而红外图像是靠物体自身的红外辐射获取的),但在低照度情况下,可见光图像与红外图像的视觉效果和直方图特征均相同,因此可以采用低照度可见光图像的处理方法来处理红外图像。 2. 红外图像的增强 2.1 图像增强 图像增强是指对图像的某些特征,如边缘、轮廓、对比度等进行强调或突显,以便于观察或做进一步的分析与处理。图像增强不意味着能增加原始的信息,有时甚至会损失一些信息,但图像增强的结果却能加强对特定信息的识别能力,便图像中感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。 图像增强方法的分类如图2.1所示:

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时间中心经度中心纬度LC8LGN002016/7/263:26:56 ………………………… 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标

选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中, 选择数据LC8LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(),打开Radiometric Calibration面板。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC8LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings, 如下图。

注意与热红外数据辐射定标是的差 别,设置后Scale factor值为。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨 率自动读取; 6) 设置研究区域的地面高程数据;

基于单窗算法反演地表温度的ENVI操作教程

单窗算法反演地表温度教程 1.1 算法原理 1.1.1 单窗算法 单窗算法(M W算法)是覃志豪于2001年提出的针对TM 数据只有一个热红外波段的地面温度反演算法。经过众多学者验证,单窗算法具有很高的反演精度,且同样适用于ETM +和land sat 8数据。公式如下: 式中,LS T为地表温度(K),T sens or 是传感器上的亮度温度(K),T a 是大气平均温度(K );a 、b 为参考系数,当地表温度为0-70℃时,a = -67.355351,b = 0.458606;C 、D 为中间变量,计算公式为: 式中,为地表比辐射率,为地面到传感器的大气总透射率。 因此单窗算法反演地表温度的关键是计算得到亮度温度T senso 、地表比辐射率、大气透射率和大气平均作用温度Ta 。 1.1.2 参数计算 1.1. 2.1 辐射亮温计算 利用Pla nck 公式将图像像元对应传感器辐射强度值转换为对应的亮度温度值。公式如下 6666666666/)))1(()1((C T D T D C D C b D C a T a sensor s -++--+-- =

式中,T senso 为亮度温度值;λL 影像预处理后得到的光谱辐射值,单 位为 )/(2m sr m w μ??,K 1 、K2为常量,可由数据头文件获取。 计算图像辐射亮温之前,需采用辐射定标参数将像元灰度值DN 转换为热辐射强度值,公式如下: 式中,ML 为增益参数,A L为偏移参数,该参数可直接在影像通文件数据中获取,且ENV I软件中已经集成,不需要自己在查找。 1.1. 2.2 地表比辐射率计算 根据覃志豪针对TM 影像提出的混合像元分解法来确定区域地表福辐射率。对于城市区域,我们简单的将其分为水体、自然表面和建筑表面三种,因此针对混合像元尺度上的地表比辐射率通过下式来估算: 式中,为混合像元的地表比辐射率;P V 为植被覆盖率;R V为植被的温度比率;R M 为建筑表面的温度比率; V 表示植被法地表比辐射率,m表示建筑表面的地表比辐射率;d 表示辐射校正项。 根据覃志豪经验公式, V =0.986;m =0.972。

landsat 遥感影像地表温度反演 教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教 程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 标识日期采集时 间 中心经度中心纬度 LC81280402016208LGN002016/7/263:26:56106.1128830.30647…………………………注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程

三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。

Scale factor 不能改变,否则后续计算会报错。保持默认1即可。 Scale factor 不能改变,否则后续计算会报错。保持默认1即可。 (2)多光谱数据辐射定标 选择要校正的多光谱数 据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。

ENVI支持下地表温度反演

[转载]ENVI下利用ETM+数据反演地表温度 (2012-05-15 08:31:18) 转载▼ 标签: 转载 原文地址:ENVI下利用ETM+数据反演地表温度作者:ENVIIDL 地表温度作为地球环境分析的重要指标,而遥感技术作为现代重要的对地观测手段,使得基于遥感图像的地表温度反演的研究越来越多。主要的地表温度反演方法有:大气校正法,单窗算法,单通道法等等。本文介绍用辐射传输方程法对地表温度进行反演。 技术流程: 例子数据为2002年9月2日的襄樊市Landsat ETM+数据。根据数据的特点以及地表温度反演研究的技术要求,采用的技术路线为:先对Landsat ETM+数据进行预处理:数据读取、辐射定标、大气校正、襄樊区域裁剪,利用大气校正,即:辐射传输方程法对其影像热红外波段数据进行操作反演,实现襄樊市地区的地表真实温度的反演研究。具体的处理流程如下:

具体的实现步骤如下: 第一步:准备数据 热红外数据使用的是Landsat的第六波段,已经做了传感器定标、几何校正、工程区裁剪,详细流程参考上面的流程图。文件为TM6-rad-subset-jz-xiangfan.img。

由TM影像(已经过大气校正)生成的NDVI数据,已经利用主菜单->Basic Tools- >Resize Data(SFatial/SFectral)重采样为60米分辨率,与TMi6数据保持一致,文件名为:TM-NDVI-60m.img。 第二步:地表比辐射率计算 物体的比辐射率是物体向外辐射电磁波的能力表征。它不仅依赖于地表物体的组成, 而且与物体的表面状态(表面粗糙度等)及物理性质(介电常数、含水量等)有关,并随着所测 定的波长和观测角度等因素有关。在大尺度上对比辐射率精确测量的难度很大,目前只是 基于某些假设获得比辐射率的相对值,本文主要根据可见光和近红外光谱信息来估计比辐 射率。 (一)植被覆盖度计算 计算植被覆盖度Fv采用的是混合像元分解法,将整景影像的地类大致分为水体、植被和建筑,具体的计算公式如下: F V = (NDVI- NDVI S)/(NDVI V - NDVI S) (2) 其中,NDVI为归一化差异植被指数,取NDVI V = 0.70和NDVI S = 0.00,且有,当某 个像元的NDVI大于0.70时,F V取值为1;当NDVI小于0.00,F V取值为0。 利用ENVI主菜单->Basic Tools->Band Math,在公式输入栏中输入: (b1 gt 0.7)*1+(b1 lt 0.)*0+(b1 ge 0 and b1 le 0.7)*((b1-0.0)/(0.7-0.0))b1:选择NDVI图像 得到植被盖度图像。 (二)地表比辐射率计算

定量遥感_地表温度反演

遥感数字影像处理 作品名称:黄河三角洲地表温度反演 +学号: 小组成绩:

一、概述 1、作业背景: 地表温度是很多环境模型的一个重要参数,在大气与地表的能量与物质交换,天气预报,全球洋流循环,气候变化等研究领域有重要的应用。利用热红外遥感可以得到大围的地表温度面状信息,与传统的地表温度测量方式相比,具有快速、便捷、测量围大、信息连续等特点,因此利用热红外遥感数据反演地面温度得到了广泛的应用 2、作业意义: 黄河三角洲是黄河携带大量泥沙在渤海凹陷处沉积形成的冲积平原,位处黄河入处的黄河三角洲自然保护区正是以保护河口湿地生态系统和珍稀、濒危鸟类为主的湿地类型保护区。以利津为顶点,北到徒骇河口,南到小清河口,呈扇状三角形,面积5,450平方公里。地面平坦,在海拔10公尺以下。向东撒开的扇状地形,海拔高程低于15米,面积达5450平方公里。三角洲属,温带季风性气候。四季分明,光照充足,区自然资源丰富。 黄河口湿地生态旅游区占地23万亩,都处在黄河三角洲之,地貌以芦苇沼泽,湿地为主,其次为河口滩地,带翅碱蓬盐滩湿地,灌丛疏林湿地以及人工槐林湿地等。集自然景观与人文景观为一体,既有沧海桑田的神奇与壮阔,又有黄龙入海的壮观和长河落日的静美,是人们休闲、度假、观光科普的最佳场所。 二、数据介绍 数据来自地理空间数据云,Landsat 4-5 TM(陆地卫星4、5号,1982年发射后运行至今,携带有TM传感器)的相关遥感影像作为研究数据,研究黄河三角洲温度分布状况。 实验数据:2010年9月11号黄河三角洲图像(中心经度:118.8878w,中心纬度:37.4815n) 三、基本概念及技术流程图 3.1、基本概念:

近地表气温遥感反演方法(定)

近地表气温遥感反演方法研究进展 摘要:气温是描述陆地环境条件的重要参数,也是气象观测资料中最基本观测项目之一。结合遥感的空间分辨率高,覆盖面广,资料同步性强的特点,运用遥感方法反演气温弥补了传统方法的缺点,气象卫星的发展,为其提供了技术平台支持。本文从近地表气温反演的各种不同的方法进行阐述,分别从半统计方法、统计方法、多因子分析方法和遗传算法方面进行叙述。 关键词:气温;遥感;反演方法这 1.引言 气温是描述陆地环境条件的重要参数,也是气象观测资料中最基本观测项目之一。由于近地球表面气温控制着大部分陆地表面过程(如光合作用、呼吸作用及陆地表面蒸散过程等),因此,气温是各种植物生理、水文、气象、环境等模式或模型中的一个非常重要的近地表气象参数输入因子[1,2]。高山、水体、植被以及土壤含水量等,以至于表现出很大的空间异质性。我们常常听说的气温,是有气象观测站在植有草皮的观测场所中离地面1.5米高的百叶箱中的温度表测得的。由于温度表保持了良好的通风性并避免了阳光直接照射,因而具有较好的代表性,这个温度基本上反映了观测地点(当地)的气温。但是随着数值预报的发展,常规的探测手段越来越不能满足现代业务预报的需要。特别是在海洋,沙漠,沙漠等的荒僻的地区,基本不可能设立气象站点,即使设立站点也十分稀疏,这就使得我们所获取的气温资料十分有限,要想研究特定位置的气温水平空间分布状况及其内部结构特征等都有一定的困难。同时在不同地形和不同景观条件下,一个气象站观测的数据能够代表的范围有很大差别,即使通过空间内插过程也不能够获得满意的气温空间分布,从影响模型模拟结果[3]。 而遥感具有覆盖面广,空间分辨率高,资料同步性强的特点,所以利用卫星遥感手段资料反演近地表的大气温度就弥补了传统手段的缺陷,不论在现实意义还是经济意义上,都是非常重要的。随着大气科学理论和遥感探测技术的迅速发展,在全球大气观测系统中,卫星探测技术将会成为中流砥柱。同时,从60年代有了气象卫星之后,给遥感反演温度提供了可靠的现实依据。 目前反演大气参数的方法基本可以分为三类:物理方法、半统计方法和统计方法。物理方法是从辐射传输方程出发,根据已知的一些大气知识对方程进行简化,从而达到求解的目的,至今对它们的物理机制认识得还很不清楚,所以极大地限制了该方法的应用与发展。半统计方法是采用物理方法与实测资料的结合,建立个大气参数间的关系,然后利用实测资料进行各参数的反演。目前在该领域采用比较多的是统计方法,它主要包括单因子线性回归分析方法、多元统计方法、Bowen 比分析方法、遗传算法和神经网络方法等,利用这些方法时需考虑多种影响因素,从而建立各因素之间的相互关系[4]。 本文具体从半统计方法和统计方法对气温反演进行研究,着重论述了统计方法反演近地表气温,考虑了热红外和微波两个波段对气温的反演。

基于热红外波段的地表温度反演实验报告

遥感原理与应用 地表温度反演 实验报告 专业:地理信息系统 班级:XXXXXXXX 姓名:XXX 学号:XXXXXX 成绩: 指导教师:XXX

2014年12月17日 一. 实验目的 1. 根据实际需要,学会在网上(如中国科学院遥感与数字地球研究所数据共享网)下载研究区内的遥感数据; 2. 掌握在ENVI中实现简单的地表温度反演的原理与步骤。 二. 实验任务 1. 在中国科学院遥感与数字地球研究所数据共享网上订购并下载覆盖郫县的TM影像; 2. 在ENVI中实现简单的地表温度反演算法。 三. 实验数据 在中国科学院遥感与数字地球研究所数据共享网上下载的覆盖郫县地区的TM影像。

四. 实验原理 图1 TM 影像地表温度反演流程 1. 地表温度(Land Surface Temperature)反演公式为: 21(1) K LST K In R ε= +, 其中,R m DN d =?+,2111607.76K W m sr m μ---=???,21260.56K K =。 2. 根据TM 辐射定标原理,热红外波段表观辐亮度可以进一步写作: max min 6min 255 L L R DN L -= ?+, 其中LmaxBand6=15.303 , LminBand6=1.238。 3. 地表比辐射率ε为同温度下地表辐射能与黑体辐射能的比率,其可以表示为: 1.0090.047(In ) (0)NDVI NDVI ε=+>, 其中,4343 TM TM NDVI TM TM -=+,当0NDVI <=时(如水体)地表比辐射率取常数1。

五. 实验步骤 1. TM数据下载 数据查询和下载网址https://www.wendangku.net/doc/3c2820025.html,/query.html,界面如图2所示。 图2 中国科学院遥感与数字地球研究所数据共享网址界面 图3 支持的数据查询条件界面

landsat 遥感影像地表温度反演教程

基于辐射传输方程的Landsat 数据地表温度反演教程 一、数据准备 Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标 地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration 。在File Selection 对话框中,选择数据LC8LGN02_MTL_Thermal ,单击Spectral Subset 选择Thermal Infrared1(),打开Radiometric Calibration 面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“进行辐射定标。 Settings ,如下图。 2、大气校正

本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候; 3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大; 4)中心点经纬度Scene Center Location:自动获取; 5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨率自动读取; 6) 设置研究区域的地面高程数据; 7)影像生成时的飞行过境时间:在layer manager中的Lc8数据图层右键选择View Metadata,浏览time字段获取成像时间; 注:也可以从元文件“”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME = 02:55:; 8) 大气模型参数选择:Sub-Arctic Summer(根据成像时间和纬度信息选择); 9) 气溶胶模型Aerosol Model:Urban,气溶胶反演方法Aerosol Retrieval:2-band(K-T); 10) 其他参数按照默认设置即可。 11) 多光谱参数设置中, K-T反演选择默认模式:Defaults->Over-Land Retrieval standard (600:2100) 波谱响应函数:默认指向.. \Program Files\Exelis\ENVI51\classic\filt_func\ 把它重新指向:..\Program Files\Exelis\ENVI51\resource\filterfuncs\ 注:这是因为版本的一个小bug,即Classic中的L8的波谱响应函数不正确,另外一个一劳永逸的方法是:将

landsat遥感影像地表温度反演教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教程一、数据准备 Landsa 8遥感影像数据一景,本教程以市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。 同时需提前查询影像的基本信息(详见下表) 注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。 二、地表温度反演的总体流程 三、具体步骤 1、辐射定标

地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射 定标。 (1)热红外数据辐射定标 选择Radiometric Correction/Radiometric Calibration。在File Selection对话框 中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset 选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。 (2)多光谱数据辐射定标 选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral” 进行辐射定标。 Scale factor 不能改变,否则后续 计算会报错。保持默认1即可。

因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。 注意与热红外数据辐射定标是的差 别,设置后Scale factor值为0.1。 2、大气校正 本教程选择Flaash 校正法。FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。 注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。 1)Input Radiance Image:打开辐射定标结果数据; 2)设置输出反射率的路径,由于定标时候;

遥感反演地表温度

遥感地学分析 实验报告 成绩: 姓名: 学号: 班级: 题目:

课程实验报告要求 一、实验目的 掌握并熟悉band math的操作,对建筑用地分离用的几个建筑指数;学会面对对象分类;学会反演地表温度。 二、实验准备 软件准备: 数据准备:中等分辨率数据AA、高分辨率数据、热岛监测band6 三、实验步骤 1.中等分辨率数据中城市范围的提取: (1)加载数据AA,首先在BAND MATH里面计算图像的NDVI值其公式:(float(b1)-float(b2))/(float(b1)+float(b2)),正确输入公式后点击OK; 在接下来的界面中为公式中b1和b2赋予相应的波段,及近红外波段和红色波段,选择合适的路径即可点击OK; 结果如图:

(2)同样用上述发放计算图像的归一化建筑指数(NDBI值),公式同样使用前面所用,但是后面给b1和b2赋予第五和第四波段就行,同样选择合适的路径即可; 结果如图:

(3)利用前面所计算的NDVI和NDBI值计算改进的归一化裸露指数(MNDBI),MNDBI= NDBI+(1-NDVI),首先在BAND MATH中输入一下公式并b1和b2赋予NDBI的波段和NDVI的波段; 结果如图:

(3)同样使用上述方法计算城镇用地指数(ULI)计算公式为ULI=NDBI and NDVI,同样在BAND MATH中输入公式并赋予相应的波段,在设置好输出路径即可; 结果如图:

(4)三种指数的阈值的设置,通过查看三种指数的直方图可以为每种指数的分离建筑用地提取合适的阈值;通过查看NDBI的阈值设置为,并将其在band math中进行二值化; 通过查看MNDBI的阈值设置为,并将其在band math中进行二值化;

红外图像

红外图像超分辨率的研究 1.红外图像和可见光图像的不同,突出的优点,它的缺点是什么 与可见光图像各项指标相比,红外图像的优缺点总结如下: 优点: (1)红外图像感受和反映的是目标及背景向外辐射能量的差异,或者说它描述的是目标和背景所保持温度的差异,属于被动成像,可以全天候工作。(2)红外辐射透过霆、雾及大气地的能力比可见光强。它可以克服部分视觉上的障碍而探测到目标,具有较大的作用距离和较强的抗干扰能力。 (3)红外波段的固有分辨率以及在传输过程中受大气吸收和散射的作用,使得红外图像缺乏较好的对比度和分辨率,很难反映出目标的纹理信息,同时也使得红外图像的像素之间具有良好的空间相关性,图像的灰度均值保持相对稳定,含有较多、较大的同质区。 缺点: (1)像素分辨率低,多采用插值显示。在红外热像图中,一般H(水平)向和V(垂直)向只有几十到上百个像素。插值显示的方法,增强了图像的美观性,但从某种程度上丧失了部分数据的真实性质。 (2)对比度较差,过渡较强,物体表面温度差较小的主要原因;另外在测试时所选定的温度区间及伪彩色显示区段也各不相同。所以在色彩标示上,为了适应图像的可视性要求,采用了较强的过渡彩显示形式,层次性不好。(3)图像边缘模糊,温度区间界限不明显。红外探测器的像元数目少,图像的分辨率较低是主要原因,而仪器追求图像美观等商业化的显示模式是另外一种原因。 (4)图像文件格式特殊,不通用。红外热图像的图像格式是由经营红外热像仪的厂家或商家制定的,它通常是为仪器“量身定做”的,文件格式比较特殊。这通常于仪器采用的图像采集、传输、存储、显示及处理软件有密切关系,如果没有专门的图像处理软件就无法看到红外热图像,更谈不上数据分析,这势必影响数据流通和传递。 2.红外图像的产生机理及特点 自然界中的一切物体,只要它的温度高于绝对零度,总是在不断地发射着红外辐射。因此,只要收集并探测这些辐射能,就可以形成于景物温度分布相对应的热图像。这种热图像再现了景物各部分温度和辐射发射率差异,因而能显示出物体的特征,形成可见光的热图像,即红外图像。能生成红外图像的系统就是红外成像系统,也可以成为红外热像仪。 红外成像系统必须具有把红外光变成可见光的功能,其转换分为两步:第一步是通过光学系统,由红外探测器把红外热辐射变成电信号,该信号的大小反映出红外辐射的强弱;第二步是通过电视显像系统,经过电子学处理,将反映目标红外辐射分布的电子视频信号在监视器上显示出来,实现从电到光的转换,得到反映目标热像的可见光图像

Landsat8 TIRS 地表温度反演

热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。 目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。 本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。 基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。 具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程): Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1) 式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。则温度为T的黑体在热红外波段的辐射亮度B(T S)为: B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2) T s可以用普朗克公式的函数获取。

T S = K2/ln(K1/ B(T S)+ 1) (1.3) 对于TM,K1 =607.76 W/(m2*μm*sr),K2 =1260.56K。 对于ETM+,K1=666.09 W/(m2*μm*sr),K2 =1282.71K。 对于TIRS Band10,K1= 774.89 W/(m2*μm*sr),K2 = 1321.08K。 从上可知此类算法需要2个参数:大气剖面参数和地表比辐射率。大气剖面参数在NASA提供的网站(https://www.wendangku.net/doc/3c2820025.html,/)中,输入成影时间以及中心经纬度可以获取大气剖面参数。适用于只有一个热红外波段的数据,如Landsat TM /ETM+/TIRS数据。 主要内容就是使用BandMath工具计算公式(1.2)和公式(1.3),处理流程如下图所示。

定量遥感:地表温度反演

作品名称:黄河三角洲地表温度反演 姓名+学号: 小组成绩:

一、概述 1、作业背景: 地表温度是很多环境模型的一个重要参数,在大气与地表的能量与物质交换,天气预报,全球洋流循环,气候变化等研究领域有重要的应用。利用热红外遥感可以得到大范围的地表温度面状信息,与传统的地表温度测量方式相比,具有快速、便捷、测量范围大、信息连续等特点,因此利用热红外遥感数据反演地面温度得到了广泛的应用 2、作业意义: 黄河三角洲是黄河携带大量泥沙在渤海凹陷处沉积形成的冲积平原,位处黄河入海口处的黄河三角洲自然保护区正是以保护河口湿地生态系统和珍稀、濒危鸟类为主的湿地类型保护区。以利津为顶点,北到徒骇河口,南到小清河口,呈扇状三角形,面积5,450平方公里。地面平坦,在海拔10公尺以下。向东撒开的扇状地形,海拔高程低于15米,面积达5450平方公里。三角洲属,温带季风性气候。四季分明,光照充足,区内自然资源丰富。 黄河口湿地生态旅游区占地23万亩,都处在黄河三角洲之内,地貌以芦苇沼泽,湿地为主,其次为河口滩地,带翅碱蓬盐滩湿地,灌丛疏林湿地以及人工槐林湿地等。集自然景观与人文景观为一体,既有沧海桑田的神奇与壮阔,又有黄龙入海的壮观和长河落日的静美,是人们休闲、度假、观光科普的最佳场所。 二、数据介绍 数据来自地理空间数据云,Landsat 4-5 TM(陆地卫星4、5号,1982年发射后运行至今,携带有TM传感器)的相关遥感影像作为研究数据,研究黄河三角洲温度分布状况。 实验数据:2010年9月11号黄河三角洲图像(中心经度:118.8878w,中心纬度:37.4815n) 三、基本概念及技术流程图 3.1、基本概念:

地表温度反演

地表温度反演

目录 一:单窗算法 (3) 1.1实验原理 (3) 1.1.1TM/ETM波段的热辐射传导方程: (3) 1.1.2化简后最终的单窗体算法模型为: (3) 1.1.3大气平均作用温度Ta的近似估计 (3) 1.1.4大气透射率t6的估计 (3) 1.1.5地表比辐射率的估计 (4) 1.1.6像元亮度温度计算 (4) 1.1.7遥感器接收的辐射强度计算 (4) 1.2操作步骤 (5) 1.2.1研究区示意图 (5) 1.3实验结果 (7) 1.3.1灰度图像 (7) 1.3.2密度分割后图像 (7) 二:单通道算法 (8) 2.1实验原理 (8) 2.1.1单通道算法模型为: (8) 2.1.2大气平均作用温度Ta的近似估计 (8) 2.1.3大气透射率t6的估计 (8) 2.1.5像元亮度温度计算 (8) 2.1.6遥感器接收的辐射强度计算 (9) 2.2操作步骤 (9) 研究区示意图 (9) 2.2.1计算L6 (10) 2.2.2T6e6的求算 (10) 2.2.3计算R (10) 2.2.4计算t (10) 2.3实验结果 (11) 2.3.1温度反演灰度图像 (11) 2.3.2密度分割后的图像 (11) 三:辐射方程 (12) 3.1实验过程 (12) 3.1.1数据准备 (12) 3.1.2地表比辐射率的估计 (12) 3.1.3计算同温度下黑体的辐射亮度值 (12) 3.1.4反演地表温度 (13) 3.2温度反演结果 (13)

一:单窗算法 1.1实验原理 1.1.1TM/ETM波段的热辐射传导方程: B6(T6)=t6(q)[ ε6B6(Ts)+(1-ε6)I6~]+I6_ Ts是地表温度; T6是TM6的亮度温度; t6是大气透射率; ε6是地表辐射率。 B6(T6)表示TM6遥感器所接收到的热辐射强度; B6(Ts)是地表在TM6波段区间内的实际热辐射强度,直接决取于地表温度; I6~和I6_分别是大气在TM6波段区间内的向上和向下热辐射强度。 1.1.2化简后最终的单窗体算法模型计算Ts(地表温度): Ts={a(1-C-D)+[b(1-C-D)+C+D]T6-DTa}/C 式中 C6=τ6ε6(ε6为比辐射率,τ6为透射率) D6=(1-τ6)[1+t6(1-ε6)] a =-67.355351,b=0.458606 1.1.3大气平均作用温度Ta的近似估计 温度换算:T=t+273.15 本图为9月份拍摄,对于中纬度夏季平均大气Ta=16.0110+0.92621T0 取平均气温为25摄氏度时Ta = 312.15753 1.1.4大气透射率τ6的估计 τ6=0.974290-0.08007w,0.4≤w≤1.6。 w为水分含量,单位(g/cm2),这里,取w=1.0,计算得到τ6=0.89422

遥感反演地表温度

1、 裁剪出出济南市区 2、 分别利用ENVI 、ERDAS 反演地表温度(LST )、NDVI ,对LST 进行彩色显示。 3、 分析LST 、NDVI 的关系。 反演公式 具体流程: 图像的DN 值 辐射亮度 辐射亮温 地表温度。 反演时从图像数值(DN )转换成绝对辐射亮度值时的公式、从辐射亮度值转成辐射亮温时的公式、从亮温转换成地表温度时的公式分别是: min min max 6255)(L L L DN L tm +-?=、 )1/ln(/12+=λL K K T 、 ε ρλl n )/(1T T T s += 其中:6tm L 为TM 传感器所接收到的辐射亮度(mW .cm -2s r-1.um -1),max L 、min L 分别是传感器所接收到的最大和最小的辐射强度,即对应于DN =255和DN =0时的最大和最小辐射强度。对于Landsat5的TM 6波段, 1K =60.77mW .cm -2s r-1.um -1,2K =1260.56K 。S T 为地表温度(K ) ;T 为辐射温度(K );λ为有效波谱范围内的最大灵敏度值,λ=11.5um ,ρ=/hc δ=1.438×10-2mk ,其中δ=1.38 ×10-23/J k ,为玻尔兹曼常数,h =6.626×10-34Js ,为Plank′s 常数,c =2.998 ×108/m s ,为光速。一般地,有植被覆盖的地表取ε=0.95,没有植被覆盖的地表取ε=0.92(Weng ,2004[16])。 min L =0.1238 255 )(min max L L - =0.005632156 )1/ln(/12+=λL K K T 1260.56 / LOG ( 1 + 60.766 / $n8_fu ) $n1_12736l / (1 + (0.0000115 * $n1_12736l /0.01438) * LOG (0.95 ) )

地表温度热红外遥感反演的研究现状及其发展趋势_祝善友

收稿日期:2006-04-19;修订日期:2006-10-16 基金项目:上海市科委光科技专项(04dz05117)资助。 作者简介:祝善友(1977-),男,博士,主要从事遥感信息处理研究工作。 地表温度热红外遥感反演的研究现状及其发展趋势 祝善友1,张桂欣1,尹 球2,匡定波2 (1.南京信息工程大学遥感学院,江苏南京 210044;2.中国科学院上海技术物理研究所,上海 200083)摘要:区域性或全球性的地表温度,只有通过遥感手段才能获得,在诸多应用中是一个非常重要的参数。地表温度反演是热红外遥感研究的热点和难点之一,大气校正、温度与比辐射率的分离是必须考虑的两个重要方面。近年来有关的研究非常多,主要反演方法可分为5类:单通道方法、分裂窗(双波段)方法、多波段温度-比辐射率分离方法、多角度温度反演方法和多角度与多通道相结合的方法。这些方法都各有利弊,如何提高反演的精度和模型的适用性是地表温度热红外遥感的未来发展趋势,理论和实验相结合的多种信息源的综合应用成为必然的要求。关 键 词:地表温度;比辐射率;热红外波段;遥感 中图分类号:TP 751.1;TP 722.5 文献标识码:A 文章编号:1004-0323(2006)05-0420-06 1 引 言 在许多环境模型中,如大气与地表的能量与水汽交换、数字天气预报、全球洋流、气候变化等方面,地表温度都是一个不可或缺的重要参量。只有通过遥感技术,才能获得区域性或全球性的地表温度分布状况。近年来许多方法被用于从热红外波段探测到的经大气影响的地表辐射,并结合其它辅助数据来估算地表温度。但是许多原因限制了高精度的地表温度反演〔1,2〕:①大气对热红外波段的影响非常复杂,难以进行精确的大气校正;②热红外波段信息受地表热状况的影响,而且地物本身的热过程非常复杂,要定量表达这一过程非常困难;③热探测器获得的物体发射辐射信息包含了地表温度与比辐射率,温度与比辐射率的分离是热红外遥感的一个难点;④热红外遥感图像的空间分辨率一般低于可见光-近红外遥感图像,造成了混合像元(非同温像元)的定义和计算的复杂。因此,若想从遥感数据中获得地表温度,高精度的大气校正、温度与比辐射率的分离是首先必须考虑的两个关键方面。 2 地表温度热红外遥感反演的理论基 础 在热红外遥感的地-气辐射传输过程中,地面 与大气都是热红外辐射的辐射源,辐射能多次通过 大气层,被大气吸收、散射和发射。图1为热红外遥感的地-气辐射传输示意图,它表达了热红外辐射的传输方向以及相互作用过程〔2〕 。 图1 热红外遥感的地-气辐射传输示意图Fig .1  Sketch map of ground -atmospheric radiance transmission of thermal inf rared remote sensing 若考虑热辐射的方向性,则根据热辐射传输方程,卫星遥感器接收到的辐射亮度可由式(1)计算:L sensor j (θ)=f j (θ)·X j (θ)·B j (T s )+L atm ↑ j (θ)+ f j (θ)·∫ o f (θ′,h ′,θ,h )·L atm ↓j (θ′)·co s θ′do ′(1) 第21卷 第5期2006年10月 遥 感 技 术 与 应 用 REM OT E S EN SING TEC HNOLOGY AND APPLICA TION Vol .21 No .5Oct .2006

ENVI下利用ETM+数据反演地表温度

ENVI下利用ETM+数据反演地表温度 地表温度作为地球环境分析的重要指标,而遥感技术作为现代重要的对地观测手段,使得基于遥感图像的地表温度反演的研究越来越多。主要的地表温度反演方法有:大气校正法,单窗算法,单通道法等等。本文介绍用辐射传输方程法对地表温度进行反演。 技术流程: 例子数据为2002年9月2日的襄樊市Landsat ETM+数据。根据数据的特点以及地表温度反演研究的技术要求,采用的技术路线为:先对Landsat ETM+数据进行预处理:数据读取、辐射定标、大气校正、襄樊区域裁剪,利用大气校正,即:辐射传输方程法对其影像热红外波段数据进行操作反演,实现襄樊市地区的地表真实温度的反演研究。具体的处理流程如下: 具体的实现步骤如下: 第一步:准备数据 热红外数据使用的是Landsat的第六波段,已经做了传感器定标、几何校正、工程区裁剪,详细流程参考上面的流程图。文件为TM6-rad-subset-jz-xiangfan.img。 由TM影像(已经过大气校正)生成的NDVI数据,已经利用主菜单->Basic Tools->Resize Data(SFatial/SFectral)重采样为60米分辨率,与TMi6数据保持一致,文件名为:TM-NDVI-60m.img。 第二步:地表比辐射率计算 物体的比辐射率是物体向外辐射电磁波的能力表征。它不仅依赖于地表物体的组成,而且与物体的表面状态(表面粗糙度等)及物理性质(介电常数、含水量等)有关,并随着所测定的波长和观测角度等因素有关。在大尺度上对比辐射率精确测量的难度很大,目前只是基于某些假设获得比辐射率的相对值,本文主要根据可见光和近红外光谱信息来估计比辐射率。 (一)植被覆盖度计算 计算植被覆盖度Fv采用的是混合像元分解法,将整景影像的地类大致分为水体、植被和建筑,具体的计算公式如下: F V = (NDVI- NDVI S)/(NDVI V - NDVI S) (2) 其中,NDVI为归一化差异植被指数,取NDVI V = 0.70和NDVI S = 0.00,且有,当某个像元的NDVI大于0.70时,F V取值为1;当NDVI小于0.00,F V取值为0。 利用ENVI主菜单->Basic Tools->Band Math,在公式输入栏中输入: (b1 gt 0.7)*1+(b1 lt 0.)*0+(b1 ge 0 and b1 le 0.7)*((b1-0.0)/(0.7-0.0))b1:选择NDVI图像 得到植被盖度图像。 (二)地表比辐射率计算

相关文档
相关文档 最新文档